

hcBLAS Documentation

Introduction

The hcBLAS library is an implementation of BLAS (Basic Linear Algebra Subprograms) targetting the AMD heterogenous hardware via HCC compiler runtime. The computational resources of underlying AMD heterogenous compute gets exposed and exploited through the HCC C++ frontend. Refer here [https://bitbucket.org/multicoreware/hcc/wiki/Home] for more details on HCC compiler.

To use the hcBLAS API, the application must allocate the required matrices and vectors in the GPU memory space, fill them with data, call the sequence of desired hcBLAS functions, and then upload the results from the GPU memory space back to the host. The hcBLAS API also provides helper functions for writing and retrieving data from the GPU.

The following list enumerates the current set of BLAS sub-routines that are supported so far.

	Sgemm : Single Precision real valued general matrix-matrix multiplication

	Cgemm : Complex valued general matrix matrix multiplication

	Sgemv : Single Precision real valued general matrix-vector multiplication

	Sger : Single Precision General matrix rank 1 operation

	Saxpy : Scale vector X and add to vector Y

	Sscal : Single Precision scaling of Vector X

	Dscal : Double Precision scaling of Vector X

	Scopy : Single Precision Copy

	Dcopy : Double Precision Copy

	Sasum : Single Precision Absolute sum of values of a vector

	Dasum : Double Precision Absolute sum of values of a vector

	Sdot : Single Precision Dot product

	Ddot : Double Precision Dot product

	1. Getting Started
	1.1. Introduction

	1.2. Prerequisites

	1.3. Tested Environments

	1.4. Installation steps

	1.5. Unit testing

	2. hcBLAS API Reference
	2.1. HCBLAS Helper functions

	2.2. Modules

	2.3. HCBLAS TYPES

1. Getting Started

	1.1. Introduction

	1.2. Prerequisites
	1.2.1. Hardware

	1.2.2. GPU cards supported

	1.2.3. AMD Driver and Runtime

	1.2.4. System software

	1.2.5. Tools and Misc

	1.2.6. Ubuntu Packages

	1.3. Tested Environments
	1.3.1. Driver versions

	1.3.2. GPU Cards

	1.3.3. Server System

	1.4. Installation steps
	1.4.1. ROCM 1.0 Installation

	1.4.2. Library Installation

	1.5. Unit testing
	1.5.1 Testing hcBLAS against CBLAS

1.1. Introduction

The hcBLAS library is an implementation of BLAS (Basic Linear Algebra Subprograms) targetting the AMD heterogenous hardware via HCC compiler runtime. The computational resources of underlying AMD heterogenous compute gets exposed and exploited through the HCC C++ frontend. Refer here [https://bitbucket.org/multicoreware/hcc/wiki/Home] for more details on HCC compiler.

To use the hcBLAS API, the application must allocate the required matrices and vectors in the GPU memory space, fill them with data, call the sequence of desired hcBLAS functions, and then upload the results from the GPU memory space back to the host. The hcBLAS API also provides helper functions for writing and retrieving data from the GPU.

The following list enumerates the current set of BLAS sub-routines that are supported so far.

	Sgemm : Single Precision real valued general matrix-matrix multiplication

	Cgemm : Complex valued general matrix matrix multiplication

	Sgemv : Single Precision real valued general matrix-vector multiplication

	Sger : Single Precision General matrix rank 1 operation

	Saxpy : Scale vector X and add to vector Y

	Sscal : Single Precision scaling of Vector X

	Dscal : Double Precision scaling of Vector X

	Scopy : Single Precision Copy

	Dcopy : Double Precision Copy

	Sasum : Single Precision Absolute sum of values of a vector

	Dasum : Double Precision Absolute sum of values of a vector

	Sdot : Single Precision Dot product

	Ddot : Double Precision Dot product

1.2. Prerequisites

This section lists the known set of hardware and software requirements to build this library

1.2.1. Hardware

	CPU: mainstream brand, Better if with >=4 Cores Intel Haswell based CPU

	System Memory >= 4GB (Better if >10GB for NN application over multiple GPUs)

	Hard Drive > 200GB (Better if SSD or NVMe driver for NN application over multiple GPUs)

	Minimum GPU Memory (Global) > 2GB

1.2.2. GPU cards supported

	dGPU: AMD R9 Fury X, R9 Fury, R9 Nano

	APU: AMD Kaveri or Carrizo

1.2.3. AMD Driver and Runtime

	Radeon Open Compute Kernel (ROCK) driver : https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver

	HSA runtime API and runtime for Boltzmann: https://github.com/RadeonOpenCompute/ROCR-Runtime

1.2.4. System software

	Ubuntu 14.04 trusty

	GCC 4.6 and later

	CPP 4.6 and later (come with GCC package)

	python 2.7 and later

	python-pip

	BeautifulSoup4 (installed using python-pip)

	HCC 0.9 from here [https://bitbucket.org/multicoreware/hcc/downloads/hcc-0.9.16041-0be508d-ff03947-5a1009a-Linux.deb]

1.2.5. Tools and Misc

	git 1.9 and later

	cmake 2.6 and later (2.6 and 2.8 are tested)

	firewall off

	root privilege or user account in sudo group

1.2.6. Ubuntu Packages

	libc6-dev-i386

	liblapack-dev

	graphicsmagick

	libblas-dev

1.3. Tested Environments

This sections enumerates the list of tested combinations of Hardware and system softwares.

1.3.1. Driver versions

	Boltzmann Early Release Driver + dGPU

	Radeon Open Compute Kernel (ROCK) driver : https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver

	HSA runtime API and runtime for Boltzmann: https://github.com/RadeonOpenCompute/ROCR-Runtime

	Traditional HSA driver + APU (Kaveri)

1.3.2. GPU Cards

	Radeon R9 Nano

	Radeon R9 FuryX

	Radeon R9 Fury

	Kaveri and Carizo APU

1.3.3. Server System

	Supermicro SYS 2028GR-THT 6 R9 NANO

	Supermicro SYS-1028GQ-TRT 4 R9 NANO

	Supermicro SYS-7048GR-TR Tower 4 R9 NANO

1.4. Installation steps

The following are the steps to use the library

	ROCM 1.0 Kernel, Driver and Compiler Installation (if not done until now)

	Library installation.

1.4.1. ROCM 1.0 Installation

To Know more about ROCM refer https://github.com/RadeonOpenCompute/ROCm/blob/master/README.md

a. Installing Debian ROCM repositories

Before proceeding, make sure to completely uninstall any pre-release ROCm packages.

Refer https://github.com/RadeonOpenCompute/ROCm#removing-pre-release-packages for instructions to remove pre-release ROCM packages.

Steps to install rocm package are,

wget -qO - http://packages.amd.com/rocm/apt/debian/rocm.gpg.key | sudo apt-key add -

sudo sh -c 'echo deb [arch=amd64] http://packages.amd.com/rocm/apt/debian/ trusty main > /etc/apt/sources.list.d/rocm.list'

sudo apt-get update

sudo apt-get install rocm

and Reboot the system

b. Verifying the Installation

Once Reboot, to verify that the ROCm stack completed successfully you can execute HSA vector_copy sample application:

	cd /opt/rocm/hsa/sample

	make

	./vector_copy

1.4.2. Library Installation

	Install using Prebuilt debian

wget https://bitbucket.org/multicoreware/hcblas/downloads/hcblas-master-db04c54-Linux.deb

sudo dpkg -i hcblas-master-db04c54-Linux.deb

	Build debian from source

git clone https://bitbucket.org/multicoreware/hcblas.git && cd hcblas

chmod +x build.sh && ./build.sh

build.sh execution builds the library and generates a debian under build directory.

	Install CPU based CBLAS library

sudo apt-get install libblas-dev

1.5. Unit testing

1.5.1 Testing hcBLAS against CBLAS

	Automated testing:

cd ~/hcblas/

./build.sh --test=on

	Manual testing:

cd ~/hcblas/build/test/src/bin/

choose the appropriate named binary

Here are some notes for performing manual testing:

TransA (TA) and TransB(TB) takes 0 or 1.

0 - NoTrans (Operate with the given matrix)

1 - Trans (Operate with the transpose of the given matrix)

Implementation type (Itype) takes 1 or 2.

1 - Inputs and Outputs are device pointers.

2 - Inputs and Outputs are device pointers with batch processing.

	SGEMM

./sgemm M N K TA TB Itype

	CGEMM

./cgemm M N K TA TB Itype

	SGEMV

./sgemv M N Trans Itype

	SGER

./sger M N Itype

	SAXPY

./saxpy N Itype

	SSCAL

./sscal N Itype

	DSCAL

./dscal N Itype

	SCOPY

./scopy N Itype

	DCOPY

./dcopy N Itype

	SASUM

./sasum N Itype

	DASUM

./dasum N Itype

	SDOT

./sdot N Itype

	DDOT

./ddot N Itype

2. hcBLAS API Reference

	2.1. HCBLAS Helper functions
	2.1.1. hcblasCreate()

	2.1.2. hcblasDestory()

	2.1.3. hcblasSetVector()

	2.1.4. hcblasGetVector()

	2.1.5. hcblasSetMatrix()

	2.1.6. hcblasGetMatrix()

	2.1.7. hcblasDeviceOrderSelect()

	2.2. Modules
	2.2.1. SGEMM

	2.2.2. CGEMM

	2.2.3. SGEMV

	2.2.4. SGER

	2.2.5. SAXPY

	2.2.6. SSCAL

	2.2.7. DSCAL

	2.2.8. SCOPY

	2.2.9. DCOPY

	2.2.10. SASUM

	2.2.11. DASUM

	2.2.12. SDOT

	2.2.13. DDOT

	2.3. HCBLAS TYPES
	2.3.1. Enumerations

	2.3.2. Detailed Description

2.1. HCBLAS Helper functions

2.1.1. hcblasCreate()

hcblasStatus_t hcblasCreate (hcblasHandle_t *handle)

This function initializes the HCBLAS library and creates a handle to an opaque structure

holding the HCBLAS library context.

Return Values,

	STATUS
	DESCRIPTION

	HCBLAS_STATUS_SUCCESS
	initialization succeeded

	HCBLAS_STATUS_ALLOC_FAILED
	the resources could not be allocated

2.1.2. hcblasDestory()

hcblasStatus_t hcblasDestroy (hcblasHandle_t handle)

This function releases hardware resources used by the HCBLAS library.

This function is usually the last call with a particular handle to the HCBLAS library.

Return Values,

	STATUS
	DESCRIPTION

	HCBLAS_STATUS_SUCCESS
	the shut down succeeded

	HCBLAS_STATUS_NOT_INITIALIZED
	the library was not initialized

2.1.3. hcblasSetVector()

hcblasStatus_t hcblasSetVector (hcblasHandle_t handle, int n, int elemSize, const void* x, int incx, void* y, int incy)

This function copies n elements from a vector x in host memory space to a vector y in GPU memory space.

Elements in both vectors are assumed to have a size of elemSize bytes. The storage spacing between

consecutive elements is given by incx for the source vector x and by incy for the destination vector y.

Return Values,

	STATUS
	DESCRIPTION

	HCBLAS_STATUS_SUCCESS
	the operation completed successfully

	HCBLAS_STATUS_NOT_INITIALIZED
	the library was not initialized

	HCBLAS_STATUS_INVALID_VALUE
	the parameters incx, incy, elemSize<=0

	HCBLAS_STATUS_MAPPING_ERROR
	there was an error accessing GPU memory

2.1.4. hcblasGetVector()

hcblasStatus_t hcblasGetVector (hcblasHandle_t handle, int n, int elemSize, const void* x, int incx, void* y, int incy)

This function copies n elements from a vector x in GPU memory space to a vector y in host memory space.

Elements in both vectors are assumed to have a size of elemSize bytes. The storage spacing between

consecutive elements is given by incx for the source vector and incy for the destination vector y.

Return Values,

	STATUS
	DESCRIPTION

	HCBLAS_STATUS_SUCCESS
	the operation completed successfully

	HCBLAS_STATUS_NOT_INITIALIZED
	the library was not initialized

	HCBLAS_STATUS_INVALID_VALUE
	the parameters incx, incy, elemSize<=0

	HCBLAS_STATUS_MAPPING_ERROR
	there was an error accessing GPU memory

2.1.5. hcblasSetMatrix()

hcblasStatus_t hcblasSetMatrix (hcblasHandle_t handle, int rows, int cols, int elemSize, const void* A, int lda, void* B, int ldb)

This function copies a tile of rows x cols elements from a matrix A in host memory space to a

matrix B in GPU memory space. It is assumed that each element requires storage of elemSize bytes

and that both matrices are stored in column-major format, with the leading dimension of the source

matrix A and destination matrix B given in lda and ldb, respectively.

Return Values,

	STATUS
	DESCRIPTION

	HCBLAS_STATUS_SUCCESS
	the operation completed successfully

	HCBLAS_STATUS_NOT_INITIALIZED
	the library was not initialized

	HCBLAS_STATUS_INVALID_VALUE
	the parameters rows, cols<0 or elemSize, lda, ldb<=0

	HCBLAS_STATUS_MAPPING_ERROR
	there was an error accessing GPU memory

2.1.6. hcblasGetMatrix()

hcblasStatus_t hcblasGetMatrix (hcblasHandle_t handle, int rows, int cols, int elemSize, const void* A, int lda, void* B, int ldb)

This function copies a tile of rows x cols elements from a matrix A in GPU memory space to

a matrix B in host memory space. It is assumed that each element requires storage of elemSize

bytes and that both matrices are stored in column-major format, with the leading dimension of

the source matrix A and destination matrix B given in lda and ldb, respectively.

Return Values,

	STATUS
	DESCRIPTION

	HCBLAS_STATUS_SUCCESS
	the operation completed successfully

	HCBLAS_STATUS_NOT_INITIALIZED
	the library was not initialized

	HCBLAS_STATUS_INVALID_VALUE
	the parameters rows, cols<0 or elemSize, lda, ldb<=0

	HCBLAS_STATUS_MAPPING_ERROR
	there was an error accessing GPU memory

2.1.7. hcblasDeviceOrderSelect()

hcblasStatus_t hcblasDeviceOrderSelect (hcblasHandle_t handle, int deviceId, hcblasOrder order)

This function allows the user to provide the number of GPU devices and their respective Ids that will participate to the subsequent hcblas API Math function calls. User can select their order of operation in this function (RowMajor/ColMajor).

Return Values,

	STATUS
	DESCRIPTION

	HCBLAS_STATUS_SUCCESS
	user call was sucessful

	HCBLAS_STATUS_INVALID_VALUE
	Access to at least one of the device could not be done

	HCBLAS_STATUS_MAPPING_ERROR
	there was an error accessing GPU memory

2.2. Modules

	2.2.1. SGEMM
	Functions
	Implementation type I

	Implementation type II

	Detailed Description

	Function Documentation

	2.2.2. CGEMM
	Functions
	Implementation type I

	Implementation type II

	Detailed Description

	Function Documentation

	2.2.3. SGEMV
	Functions
	Implementation type I

	Implementation type II

	Detailed Description

	Function Documentation

	2.2.4. SGER
	Functions
	Implementation type I

	Implementation type II

	Detailed Description

	Function Documentation

	2.2.5. SAXPY
	Implementation type I

	Implementation type II
	Detailed Description

	Function Documentation

	2.2.6. SSCAL
	Functions
	Implementation type I

	Implementation type II

	Detailed Description

	Function Documentation

	2.2.7. DSCAL
	Functions
	Implementation type I

	Implementation type II

	Detailed Description

	Function Documentation

	2.2.8. SCOPY
	Functions
	Implementation type I

	Implementation type II

	Detailed Description

	Function Documentation

	2.2.9. DCOPY
	Functions
	Implementation type I

	Implementation type II

	Detailed Description

	Function Documentation

	2.2.10. SASUM
	Functions
	Implementation type I

	Implementation type II

	Detailed Description

	Function Documentation

	2.2.11. DASUM
	Functions
	Implementation type I

	Implementation type II

	Detailed Description

	Function Documentation

	2.2.12. SDOT
	Functions
	Implementation type I

	Implementation type II

	Detailed Description

	Function Documentation

	2.2.13. DDOT
	Functions
	Implementation type I

	Implementation type II

	Detailed Description

	Function Documentation

2.2.1. SGEMM

Single precision real valued general matrix-matrix multiplication.

Matrix-matrix products:

C := alpha*A*B + beta*C

C := alpha*A^T*B + beta*C

C := alpha*A*B^T + beta*C

C := alpha*A^T*B^T + beta*C

Where alpha and beta are scalars, and A, B and C are matrices.

matrix A - m x k matrix

matrix B - k x n matrix

matrix C - m x n matrix

() - the actual matrix and ()^T - transpose of the matrix

Functions

Implementation type I

Note

Inputs and Outputs are HCC device pointers.

hcblasStatus_t hcblasSgemm (hcblasHandle_t handle, hcblasOperation_t transa, hcblasOperation_t transb, int m, int n, int k, const float* alpha, float* A, int lda, float* B, int ldb, const float* beta, float* C, int ldc)

Implementation type II

Note

Inputs and Outputs are HCC device pointers with batch processing.

hcblasStatus_t hcblasSgemmBatched (hcblasHandle_t handle, hcblasOperation_t transa, hcblasOperation_t transb, int m, int n, int k, const float* alpha, float* A, int lda, float* B, int ldb, const float* beta, float* C, int ldc, int batchCount)

Detailed Description

Function Documentation

hcblasStatus_t hcblasSgemm(hcblasHandle_t handle,
 hcblasOperation_t transa, hcblasOperation_t transb,
 int m, int n, int k,
 const float *alpha,
 float *A, int lda,
 float *B, int ldb,
 const float *beta,
 float *C, int ldc)

	In/out
	Parameters
	Description

	[in]
	handle
	handle to the HCBLAS library context.

	[in]
	transa
	How matrix A is to be transposed (0 and 1 for NoTrans
and Trans case respectively).

	[in]
	transb
	How matrix B is to be transposed (0 and 1 for NoTrans
and Trans case respectively).

	[in]
	m
	Number of rows in matrix A.

	[in]
	n
	Number of columns in matrix B.

	[in]
	k
	Number of columns in matrix A and rows in matrix B.

	[in]
	alpha
	The factor of matrix A.

	[in]
	A
	Buffer object storing matrix A.

	[in]
	lda
	Leading dimension of matrix A. It cannot be less than K when
the order parameter is set to RowMajor, or less than M when
the parameter is set to ColMajor.

	[in]
	B
	Buffer object storing matrix B.

	[in]
	ldb
	Leading dimension of matrix B. It cannot be less than N when
the order parameter is set to RowMajor, or less than K when
it is set to ColMajor.

	[in]
	beta
	The factor of matrix C.

	[out]
	C
	Buffer object storing matrix C.

	[in]
	ldc
	Leading dimension of matrix C. It cannot be less than N when
the order parameter is set to RowMajor, or less than M when
it is set to ColMajor.

Implementation type II has other parameters as follows,

	In/out
	Parameters
	Description

	[in]
	batchCount
	The size of batch of threads to be processed in parallel for
Matrices A, B and Output matrix C.

Returns,

	STATUS
	DESCRIPTION

	HCBLAS_STATUS_SUCCESS
	the operation completed successfully

	HCBLAS_STATUS_NOT_INITIALIZED
	the library was not initialized

	HCBLAS_STATUS_INVALID_VALUE
	the parameters m,n,k,batchCount<0

	HCBLAS_STATUS_EXECUTION_FAILED
	the function failed to launch on the GPU

2.2.2. CGEMM

Complex valued general matrix-matrix multiplication.

Matrix-matrix products:

C := alpha*A*B + beta*C

C := alpha*A^T*B + beta*C

C := alpha*A*B^T + beta*C

C := alpha*A^T*B^T + beta*C

Where alpha and beta are scalars, and A, B and C are matrices.

matrix A - m x k matrix

matrix B - k x n matrix

matrix C - m x n matrix

() - the actual matrix and ()^T - transpose of the matrix

Functions

Implementation type I

Note

Inputs and Outputs are HCC device pointers.

hcblasStatus_t hcblasCgemm (hcblasHandle_t handle, hcblasOperation_t transa, hcblasOperation_t transb, int m, int n, int k, const hcComplex* alpha, hcComplex* A, int lda, hcComplex* B, int ldb, const hcComplex* beta, hcComplex* C, int ldc)

Implementation type II

Note

Inputs and Outputs are HCC device pointers with batch processing.

hcblasStatus_t hcblasCgemmBatched (hcblasHandle_t handle, hcblasOperation_t transa, hcblasOperation_t transb, int m, int n, int k, const hcComplex* alpha, hcComplex* A, int lda, hcComplex* B, int ldb, const hcComplex* beta, hcComplex* C, int ldc, int batchCount)

Detailed Description

Function Documentation

hcblasStatus_t hcblasCgemm(hcblasHandle_t handle,
 hcblasOperation_t transa, hcblasOperation_t transb,
 int m, int n, int k,
 const hcComplex *alpha,
 hcComplex *A, int lda,
 hcComplex *B, int ldb,
 const hcComplex *beta,
 hcComplex *C, int ldc)

	In/out
	Parameters
	Description

	[in]
	handle
	handle to the HCBLAS library context.

	[in]
	transa
	How matrix A is to be transposed (0 and 1 for NoTrans
and Trans case respectively).

	[in]
	transb
	How matrix B is to be transposed (0 and 1 for NoTrans
and Trans case respectively).

	[in]
	m
	Number of rows in matrix A.

	[in]
	n
	Number of columns in matrix B.

	[in]
	k
	Number of columns in matrix A and rows in matrix B.

	[in]
	alpha
	The factor of matrix A.

	[in]
	A
	Buffer object storing matrix A.

	[in]
	lda
	Leading dimension of matrix A. It cannot be less than K when
the order parameter is set to RowMajor, or less than M when
the parameter is set to ColMajor.

	[in]
	B
	Buffer object storing matrix B.

	[in]
	ldb
	Leading dimension of matrix B. It cannot be less than N when
the order parameter is set to RowMajor, or less than K when
it is set to ColMajor.

	[in]
	beta
	The factor of matrix C.

	[out]
	C
	Buffer object storing matrix C.

	[in]
	ldc
	Leading dimension of matrix C. It cannot be less than N when
the order parameter is set to RowMajor, or less than M when
it is set to ColMajor.

Implementation type II has other parameters as follows,

	In/out
	Parameters
	Description

	[in]
	batchCount
	The size of batch of threads to be processed in parallel for
Matrices A, B and Output matrix C.

Returns,

	STATUS
	DESCRIPTION

	HCBLAS_STATUS_SUCCESS
	the operation completed successfully

	HCBLAS_STATUS_NOT_INITIALIZED
	the library was not initialized

	HCBLAS_STATUS_INVALID_VALUE
	the parameters m,n,k,batchCount<0

	HCBLAS_STATUS_EXECUTION_FAILED
	the function failed to launch on the GPU

2.2.3. SGEMV

Single Precision real valued general matrix-vector multiplication.

Matrix-vector products:

y := alpha*A*x + beta*y

y := alpha*A^T*y + beta*y

Where alpha and beta are scalars, A is the matrix and x, y are vectors.

() - the actual matrix and ()^T - Transpose of the matrix

Functions

Implementation type I

Note

Inputs and Outputs are HCC device pointers.

hcblasStatus_t hcblasSgemv (hcblasHandle_t handle, hcblasOperation_t trans, int m, int n, const float* alpha, float* A, int lda, float* x, int incx, const float* beta, float* y, int incy)

Implementation type II

Note

Inputs and Outputs are HCC device pointers with batch processing.

hcblasStatus_t hcblasSgemvBatched (hcblasHandle_t handle, hcblasOperation_t trans, int m, int n, const float* alpha, float* A, int lda, float* x, int incx, const float* beta, float* y, int incy, int batchCount)

Detailed Description

Function Documentation

hcblasStatus_t hcblasSgemv(hcblasHandle_t handle, hcblasOperation_t trans,
 int m, int n,
 const float *alpha,
 float *A, int lda,
 float *x, int incx,
 const float *beta,
 float *y, int incy)

	In/out
	Parameters
	Description

	[in]
	handle
	handle to the HCBLAS library context.

	[in]
	trans
	How matrix A is to be transposed (0 and 1 for NoTrans and
Trans case respectively).

	[in]
	m
	Number of rows in matrix A.

	[in]
	n
	Number of columns in matrix A.

	[in]
	alpha
	The factor of matrix A.

	[in]
	A
	Buffer object storing matrix A.

	[in]
	lda
	Leading dimension of matrix A. It cannot be less than N when
the order parameter is set to RowMajor, or less than M when
the parameter is set to ColMajor.

	[in]
	x
	Buffer object storing vector x.

	[in]
	incx
	Increment for the elements of x. It cannot be zero

	[in]
	beta
	The factor of the vector y.

	[out]
	y
	Buffer object storing the vector y.

	[in]
	incy
	Increment for the elements of y. It cannot be zero.

Implementation type II has other parameters as follows,

	In/out
	Parameters
	Description

	[in]
	batchCount
	The size of batch of threads to be processed in parallel for
vectors x, y and matrix A.

Returns,

	STATUS
	DESCRIPTION

	HCBLAS_STATUS_SUCCESS
	the operation completed successfully

	HCBLAS_STATUS_NOT_INITIALIZED
	the library was not initialized

	HCBLAS_STATUS_INVALID_VALUE
	the parameters m,n<0 or incx,incy=0

	HCBLAS_STATUS_EXECUTION_FAILED
	the function failed to launch on the GPU

2.2.4. SGER

Vector-vector product with float elements and performs the rank 1 operation (Single precision).

Vector-vector products:

A := alpha*x*y^T + A

Where alpha is a scalar, A is the matrix and x, y are vectors.

() - the actual matrix and ()^T - transpose of the matrix

Functions

Implementation type I

Note

Inputs and Outputs are HCC device pointers.

hcblasStatus_t hcblasSger (hcblasHandle_t handle, int m, int n, const float* alpha, const float* x, int incx, const float* y, int incy, float* A, int lda)

Implementation type II

Note

Inputs and Outputs are HCC device pointers with batch processing.

hcblasStatus_t hcblasSgerBatched (hcblasHandle_t handle, int m, int n, const float* alpha, const float* x, int incx, const float* y, int incy, float* A, int lda, int batchCount)

Detailed Description

Function Documentation

hcblasStatus_t hcblasSger(hcblasHandle_t handle, int m, int n,
 const float *alpha,
 const float *x, int incx,
 const float *y, int incy,
 float *A, int lda)

	In/out
	Parameters
	Description

	[in]
	handle
	handle to the HCBLAS library context.

	[in]
	m
	Number of rows in matrix A.

	[in]
	n
	Number of columns in matrix A.

	[in]
	alpha
	specifies the scalar alpha.

	[in]
	x
	Buffer object storing vector x.

	[in]
	incx
	Increment for the elements of x. Must not be zero.

	[in]
	y
	Buffer object storing vector y.

	[in]
	incy
	Increment for the elements of y. Must not be zero.

	[out]
	A
	Buffer object storing matrix A. On exit, A is overwritten
by the updated matrix.

	[in]
	lda
	Leading dimension of matrix A. It cannot be less than N when
the order parameter is set to RowMajor, or less than M
when the parameter is set to ColMajor.

Implementation type II has other parameters as follows,

	In/out
	Parameters
	Description

	[in]
	batchCount
	The size of batch of threads to be processed in parallel for
vectors x, y and Output matrix A.

Returns,

	STATUS
	DESCRIPTION

	HCBLAS_STATUS_SUCCESS
	the operation completed successfully

	HCBLAS_STATUS_NOT_INITIALIZED
	the library was not initialized

	HCBLAS_STATUS_INVALID_VALUE
	the parameters m,n<0 or incx,incy=0

	HCBLAS_STATUS_EXECUTION_FAILED
	the function failed to launch on the GPU

2.2.5. SAXPY

Scale vector x of float elements and add to y.

y := alpha*x + y

Where alpha is a scalar, and x, y are n-dimensional vectors.

Implementation type I

Note

Inputs and Outputs are HCC device pointers.

hcblasStatus_t hcblasSaxpy (hcblasHandle_t handle, int n, const float* alpha, const float* x, int incx, float* y, int incy)

Implementation type II

Note

Inputs and Outputs are HCC device pointers with batch processing.

hcblasStatus_t hcblasSaxpyBatched (hcblasHandle_t handle, int n, const float* alpha, const float* x, int incx, float* y, int incy, int batchCount)

Detailed Description

Function Documentation

hcblasStatus_t hcblasSaxpy(hcblasHandle_t handle, int n,
 const float *alpha,
 const float *x, int incx,
 float *y, int incy)

	In/out
	Parameters
	Description

	[in]
	handle
	handle to the HCBLAS library context.

	[in]
	n
	Number of elements in vector x.

	[in]
	alpha
	The constant factor for vector x.

	[in]
	x
	Buffer object storing vector x.

	[in]
	incx
	Increment for the elements of x. Must not be zero.

	[out]
	y
	Buffer object storing the vector y.

	[in]
	incy
	Increment for the elements of y. Must not be zero.

Implementation type II has other parameters as follows,

	In/out
	Parameters
	Description

	[in]
	batchCount
	The size of batch for vector x and Output vector y.

Returns,

	STATUS
	DESCRIPTION

	HCBLAS_STATUS_SUCCESS
	the operation completed successfully

	HCBLAS_STATUS_NOT_INITIALIZED
	the library was not initialized

	HCBLAS_STATUS_EXECUTION_FAILED
	the function failed to launch on the GPU

2.2.6. SSCAL

Scales a float vector by a float constant (Single precision).

x := alpha*x

Where alpha is a scalar, and x is a n-dimensional vector.

Functions

Implementation type I

Note

Inputs and Outputs are HCC device pointers.

hcblasStatus_t hcblasSscal (hcblasHandle_t handle, int n, const float* alpha, float* x, int incx)

Implementation type II

Note

Inputs and Outputs are HCC device pointers with batch processing.

hcblasStatus_t hcblasSscalBatched (hcblasHandle_t handle, int n, const float* alpha, float* x, int incx, int batchCount)

Detailed Description

Function Documentation

hcblasStatus_t hcblasSscal(hcblasHandle_t handle, int n,
 const float *alpha,
 float *x, int incx)

	In/out
	Parameters
	Description

	[in]
	handle
	handle to the HCBLAS library context.

	[in]
	n
	Number of elements in vector x.

	[in]
	alpha
	The constant factor for vector x.

	[out]
	x
	Buffer object storing vector x.

	[in]
	incx
	Increment for the elements of x. Must not be zero.

Implementation type II has other parameters as follows,

	In/out
	Parameters
	Description

	[in]
	batchCount
	The size of batch for vector x.

Returns,

	STATUS
	DESCRIPTION

	HCBLAS_STATUS_SUCCESS
	the operation completed successfully

	HCBLAS_STATUS_NOT_INITIALIZED
	the library was not initialized

	HCBLAS_STATUS_EXECUTION_FAILED
	the function failed to launch on the GPU

2.2.7. DSCAL

Scales a double vector by a double constant (Double precision).

x := alpha*x

Where alpha is a scalar, and x is a n-dimensional vector.

Functions

Implementation type I

Note

Inputs and Outputs are HCC device pointers.

hcblasStatus_t hcblasDscal (hcblasHandle_t handle, int n, const double* alpha, double* x, int incx)

Implementation type II

Note

Inputs and Outputs are HCC device pointers with batch processing.

hcblasStatus_t hcblasDscalBatched (hcblasHandle_t handle, int n, const double* alpha, double* x, int incx, int batchCount)

Detailed Description

Function Documentation

hcblasStatus_t hcblasDscal(hcblasHandle_t handle, int n,
 const double *alpha,
 double *x, int incx)

	In/out
	Parameters
	Description

	[in]
	handle
	handle to the HCBLAS library context.

	[in]
	n
	Number of elements in vector x.

	[in]
	alpha
	The constant factor for vector x.

	[out]
	x
	Buffer object storing vector x.

	[in]
	incx
	Increment for the elements of x. Must not be zero.

Implementation type II has other parameters as follows,

	In/out
	Parameters
	Description

	[in]
	batchCount
	The size of batch for vector x.

Returns,

	STATUS
	DESCRIPTION

	HCBLAS_STATUS_SUCCESS
	the operation completed successfully

	HCBLAS_STATUS_NOT_INITIALIZED
	the library was not initialized

	HCBLAS_STATUS_EXECUTION_FAILED
	the function failed to launch on the GPU

2.2.8. SCOPY

Copies float elements from vector x to vector y (Single precision Copy).

y := x

Where x, y are n-dimensional vectors.

Functions

Implementation type I

Note

Inputs and Outputs are HCC device pointers.

hcblasStatus_t hcblasScopy (hcblasHandle_t handle, int n, const float* x, int incx, float* y, int incy)

Implementation type II

Note

Inputs and Outputs are HCC device pointers with batch processing.

hcblasStatus_t hcblasScopyBatched (hcblasHandle_t handle, int n, const float* x, int incx, float* y, int incy, int batchCount)

Detailed Description

Function Documentation

hcblasStatus_t hcblasScopy(hcblasHandle_t handle, int n,
 const float *x, int incx,
 float *y, int incy);

	In/out
	Parameters
	Description

	[in]
	handle
	handle to the HCBLAS library context.

	[in]
	n
	Number of elements in vector x.

	[in]
	x
	Buffer object storing vector x.

	[in]
	incx
	Increment for the elements of x. Must not be zero.

	[out]
	y
	Buffer object storing the vector y.

	[in]
	incy
	Increment for the elements of y. Must not be zero.

Implementation type II has other parameters as follows,

	In/out
	Parameters
	Description

	[in]
	batchCount
	The size of batch for vector x and Output vector y.

Returns,

	STATUS
	DESCRIPTION

	HCBLAS_STATUS_SUCCESS
	the operation completed successfully

	HCBLAS_STATUS_NOT_INITIALIZED
	the library was not initialized

	HCBLAS_STATUS_EXECUTION_FAILED
	the function failed to launch on the GPU

2.2.9. DCOPY

Copies double elements from vector x to vector y (Double precision Copy).

y := x

Where x and y are n-dimensional vectors.

Functions

Implementation type I

Note

Inputs and Outputs are HCC device pointers.

hcblasStatus_t hcblasDcopy (hcblasHandle_t handle, int n, const double* x, int incx, double* y, int incy)

Implementation type II

Note

Inputs and Outputs are HCC device pointers with batch processing.

hcblasStatus_t hcblasDcopyBatched (hcblasHandle_t handle, int n, const double* x, int incx, double* y, int incy, int batchCount)

Detailed Description

Function Documentation

hcblasStatus_t hcblasDcopy(hcblasHandle_t handle, int n,
 const double *x, int incx,
 double *y, int incy)

	In/out
	Parameters
	Description

	[in]
	handle
	handle to the HCBLAS library context.

	[in]
	n
	Number of elements in vector x.

	[in]
	x
	Buffer object storing vector x.

	[in]
	incx
	Increment for the elements of x. Must not be zero.

	[out]
	y
	Buffer object storing the vector y.

	[in]
	incy
	Increment for the elements of y. Must not be zero.

Implementation type II has other parameters as follows,

	In/out
	Parameters
	Description

	[in]
	batchCount
	The size of batch for vector x and Output vector y.

Returns,

	STATUS
	DESCRIPTION

	HCBLAS_STATUS_SUCCESS
	the operation completed successfully

	HCBLAS_STATUS_NOT_INITIALIZED
	the library was not initialized

	HCBLAS_STATUS_EXECUTION_FAILED
	the function failed to launch on the GPU

2.2.10. SASUM

Absolute sum of values of a vector (vector x) containing float elements (Single precision).

Where x is a n-dimensional vector.

Functions

Implementation type I

Note

Inputs and Outputs are HCC device pointers.

hcblasStatus_t hcblasSasum (hcblasHandle_t handle, int n, float* x, int incx, float* result)

Implementation type II

Note

Inputs and Outputs are HCC device pointers with batch processing.

hcblasStatus_t hcblasSasumBatched (hcblasHandle_t handle, int n, float* x, int incx, float* result, int batchCount)

Detailed Description

Function Documentation

hcblasStatus_t hcblasSasum(hcblasHandle_t handle, int n,
 float *x,
 int incx, float *result)

	In/out
	Parameters
	Description

	[in]
	handle
	handle to the HCBLAS library context.

	[in]
	n
	Number of elements in vector x.

	[in]
	x
	Buffer object storing vector x.

	[in]
	incx
	Increment for the elements of x. Must not be zero.

	[out]
	result
	Buffer object that will contain the absolute sum value.

Implementation type II has other parameters as follows,

	In/out
	Parameters
	Description

	[in]
	batchCount
	The size of batch for vector x.

Returns,

	STATUS
	DESCRIPTION

	HCBLAS_STATUS_SUCCESS
	the operation completed successfully

	HCBLAS_STATUS_NOT_INITIALIZED
	the library was not initialized

	HCBLAS_STATUS_EXECUTION_FAILED
	the function failed to launch on the GPU

2.2.11. DASUM

Absolute sum of values of a vector (vector x) containing double elements (Double precision).

Where x is a n-dimensional vector.

Functions

Implementation type I

Note

Inputs and Outputs are HCC device pointers.

hcblasStatus_t hcblasDasum (hcblasHandle_t handle, int n, double* x, int incx, double* result)

Implementation type II

Note

Inputs and Outputs are HCC device pointers with batch processing.

hcblasStatus_t hcblasDasumBatched (hcblasHandle_t handle, int n, double* x, int incx, double* result, int batchCount)

Detailed Description

Function Documentation

hcblasStatus_t hcblasDasum(hcblasHandle_t handle, int n,
 double *x,
 int incx, double *result)

	In/out
	Parameters
	Description

	[in]
	handle
	handle to the HCBLAS library context.

	[in]
	n
	Number of elements in vector x.

	[in]
	x
	Buffer object storing vector x.

	[in]
	incx
	Increment for the elements of x. Must not be zero.

	[out]
	result
	Buffer object that will contain the absolute sum value.

Implementation type II has other parameters as follows,

	In/out
	Parameters
	Description

	[in]
	batchCount
	The size of batch for vector x.

Returns,

	STATUS
	DESCRIPTION

	HCBLAS_STATUS_SUCCESS
	the operation completed successfully

	HCBLAS_STATUS_NOT_INITIALIZED
	the library was not initialized

	HCBLAS_STATUS_EXECUTION_FAILED
	the function failed to launch on the GPU

2.2.12. SDOT

Dot product of two vectors (vectors x and y) containing float elements (Single precision Dot product).

Where x, y are n-dimensional vectors.

Functions

Implementation type I

Note

Inputs and Outputs are HCC device pointers.

hcblasStatus_t hcblasSdot (hcblasHandle_t handle, int n, const float* x, int incx, const float* y, int incy, float* result)

Implementation type II

Note

Inputs and Outputs are HCC device pointers with batch processing.

hcblasStatus_t hcblasSdotBatched (hcblasHandle_t handle, int n, const float* x, int incx, const float* y, int incy, float* result, int batchCount)

Detailed Description

Function Documentation

hcblasStatus_t hcblasSdot (hcblasHandle_t handle, int n,
 const float *x, int incx,
 const float *y, int incy,
 float *result)

	In/out
	Parameters
	Description

	[in]
	handle
	handle to the HCBLAS library context.

	[in]
	n
	Number of elements in vector x.

	[in]
	x
	Buffer object storing vector x.

	[in]
	incx
	Increment for the elements of x. Must not be zero.

	[in]
	y
	Buffer object storing the vector y.

	[in]
	incy
	Increment for the elements of y. Must not be zero.

	[out]
	result
	Buffer object that will contain the dot-product value.

Implementation type II has other parameters as follows,

	In/out
	Parameters
	Description

	[in]
	batchCount
	The size of batch for vector x and vector y.

Returns,

	STATUS
	DESCRIPTION

	HCBLAS_STATUS_SUCCESS
	the operation completed successfully

	HCBLAS_STATUS_NOT_INITIALIZED
	the library was not initialized

	HCBLAS_STATUS_EXECUTION_FAILED
	the function failed to launch on the GPU

2.2.13. DDOT

Dot product of two vectors (vectors x and y) containing double elements (Double precision Dot product).

Where x, y are n-dimensional vectors.

Functions

Implementation type I

Note

Inputs and Outputs are HCC device pointers.

hcblasStatus_t hcblasDdot (hcblasHandle_t handle, int n, const double* x, int incx, const double* y, int incy, double* result)

Implementation type II

Note

Inputs and Outputs are HCC device pointers with batch processing.

hcblasStatus_t hcblasDdotBatched (hcblasHandle_t handle, int n, const double* x, int incx, const double* y, int incy, double* result, int batchCount)

Detailed Description

Function Documentation

hcblasStatus_t hcblasDdot (hcblasHandle_t handle, int n,
 const double *x, int incx,
 const double *y, int incy,
 double *result)

	In/out
	Parameters
	Description

	[in]
	handle
	handle to the HCBLAS library context.

	[in]
	n
	Number of elements in vector x.

	[in]
	x
	Buffer object storing vector x.

	[in]
	incx
	Increment for the elements of x. Must not be zero.

	[in]
	y
	Buffer object storing the vector y.

	[in]
	incy
	Increment for the elements of y. Must not be zero.

	[out]
	result
	Buffer object that will contain the dot-product value.

Implementation type II has other parameters as follows,

	In/out
	Parameters
	Description

	[in]
	batchCount
	The size of batch for vector x and vector y.

Returns,

	STATUS
	DESCRIPTION

	HCBLAS_STATUS_SUCCESS
	the operation completed successfully

	HCBLAS_STATUS_NOT_INITIALIZED
	the library was not initialized

	HCBLAS_STATUS_EXECUTION_FAILED
	the function failed to launch on the GPU

2.3. HCBLAS TYPES

2.3.1. Enumerations

enum hcblasStatus_t {

HCBLAS_STATUS_SUCCESS,

HCBLAS_STATUS_NOT_INITIALIZED,

HCBLAS_STATUS_ALLOC_FAILED,

HCBLAS_STATUS_INVALID_VALUE,

HCBLAS_STATUS_MAPPING_ERROR,

HCBLAS_STATUS_EXECUTION_FAILED,

HCBLAS_STATUS_INTERNAL_ERROR

}

enum hcblasOrder { RowMajor, ColMajor}

enum hcblasOperation_t {

HCBLAS_OP_N,

HCBLAS_OP_T,

HCBLAS_OP_C

}

typedef float2 hcFloatComplex;

typedef hcFloatComplex hcComplex;

2.3.2. Detailed Description

2.3.2.1. HCBLAS STATUS (hcblasStatus_t)

This enumeration is the set of HCBLAS error codes.

	Enumerator

	HCBLAS_STATUS_SUCCESS
	the operation completed successfully.

	HCBLAS_STATUS_NOT_INITIALIZED
	HCBLAS library not initialized.

	HCBLAS_STATUS_ALLOC_FAILED
	resource allocation failed.

	HCBLAS_STATUS_INVALID_VALUE
	unsupported numerical value was passed to function.

	HCBLAS_STATUS_MAPPING_ERROR
	access to GPU memory space failed.

	HCBLAS_STATUS_EXECUTION_FAILED
	GPU program failed to execute.

	HCBLAS_STATUS_INTERNAL_ERROR
	an internal HCBLAS operation failed.

2.3.2.2. HCBLAS ORDER (hcblasOrder)

Shows how matrices are placed in memory.

	Enumerator

	RowMajor
	Every row is placed sequentially.

	ColMajor
	Every column is placed sequentially.

2.3.2.3. HCBLAS TRANSPOSE (hcblasOperation_t)

Used to specify whether the matrix is to be transposed or not.

	Enumerator

	HCBLAS_OP_N
	The Non transpose operation is selected.

	HCBLAS_OP_T
	Transpose operation is selected.

	HCBLAS_OP_C
	Conjugate transpose operation is selected.

Index

 C
 | D
 | H
 | S

C

 	
 	CGEMM

D

 	
 	DASUM

 	DCOPY

 	
 	DDOT

 	DSCAL

H

 	
 	HCBLAS_TYPES

S

 	
 	SASUM

 	SAXPY

 	SCOPY

 	SDOT

 	
 	SGEMM

 	SGEMV

 	SGER

 	SSCAL

 _static/comment.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		hcBLAS Documentation

 		1. Getting Started

 		1.1. Introduction

 		1.2. Prerequisites

 		1.2.1. Hardware

 		1.2.2. GPU cards supported

 		1.2.3. AMD Driver and Runtime

 		1.2.4. System software

 		1.2.5. Tools and Misc

 		1.2.6. Ubuntu Packages

 		1.3. Tested Environments

 		1.3.1. Driver versions

 		1.3.2. GPU Cards

 		1.3.3. Server System

 		1.4. Installation steps

 		1.4.1. ROCM 1.0 Installation

 		1.4.2. Library Installation

 		1.5. Unit testing

 		1.5.1 Testing hcBLAS against CBLAS

 		2. hcBLAS API Reference

 		2.1. HCBLAS Helper functions

 		2.1.1. hcblasCreate()

 		2.1.2. hcblasDestory()

 		2.1.3. hcblasSetVector()

 		2.1.4. hcblasGetVector()

 		2.1.5. hcblasSetMatrix()

 		2.1.6. hcblasGetMatrix()

 		2.1.7. hcblasDeviceOrderSelect()

 		2.2. Modules

 		2.2.1. SGEMM

 		2.2.2. CGEMM

 		2.2.3. SGEMV

 		2.2.4. SGER

 		2.2.5. SAXPY

 		2.2.6. SSCAL

 		2.2.7. DSCAL

 		2.2.8. SCOPY

 		2.2.9. DCOPY

 		2.2.10. SASUM

 		2.2.11. DASUM

 		2.2.12. SDOT

 		2.2.13. DDOT

 		2.3. HCBLAS TYPES

 		2.3.1. Enumerations

 		2.3.2. Detailed Description

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

