
HC Documentation
Release 0.1-1

Matthias Richter

Oct 24, 2018

Contents

1 First steps 3

2 Get HC 5

3 Read on 7
3.1 Reference . 7
3.2 Tutorial . 22
3.3 License . 23
3.4 Indices and tables . 23

i

ii

HC Documentation, Release 0.1-1

HC is a Lua module to simplify one important aspect in computer games: Collision detection.

It can detect collisions between arbitrary positioned and rotated shapes. Built-in shapes are points, circles and poly-
gons. Any non-intersecting polygons are supported, even concave ones. You can add other types of shapes if you need
them.

The main interface is simple:

1. Set up your scene,

2. Check for collisions,

3. React to collisions.

Contents 1

HC Documentation, Release 0.1-1

2 Contents

CHAPTER 1

First steps

This is an example on how to use HC. One shape will stick to the mouse position, while the other will stay in the same
place:

HC = require 'HC'

-- array to hold collision messages
local text = {}

function love.load()
-- add a rectangle to the scene
rect = HC.rectangle(200,400,400,20)

-- add a circle to the scene
mouse = HC.circle(400,300,20)
mouse:moveTo(love.mouse.getPosition())

end

function love.update(dt)
-- move circle to mouse position
mouse:moveTo(love.mouse.getPosition())

-- rotate rectangle
rect:rotate(dt)

-- check for collisions
for shape, delta in pairs(HC.collisions(mouse)) do

text[#text+1] = string.format("Colliding. Separating vector = (%s,%s)",
delta.x, delta.y)

end

while #text > 40 do
table.remove(text, 1)

end
end

(continues on next page)

3

HC Documentation, Release 0.1-1

(continued from previous page)

function love.draw()
-- print messages
for i = 1,#text do

love.graphics.setColor(255,255,255, 255 - (i-1) * 6)
love.graphics.print(text[#text - (i-1)], 10, i * 15)

end

-- shapes can be drawn to the screen
love.graphics.setColor(255,255,255)
rect:draw('fill')
mouse:draw('fill')

end

4 Chapter 1. First steps

CHAPTER 2

Get HC

You can download the latest packaged version as zip- or tar-archive directly from github.

You can also have a look at the sourcecode online here.

If you use the Git command line client, you can clone the repository by running:

git clone git://github.com/vrld/HC.git

Once done, you can check for updates by running:

git pull

from inside the directory.

5

https://github.com/vrld/HC/zipball/master
https://github.com/vrld/HC/tarball/master
https://github.com
http://github.com/vrld/HC

HC Documentation, Release 0.1-1

6 Chapter 2. Get HC

CHAPTER 3

Read on

3.1 Reference

HC is composed of several parts. Most of the time, you will only have to deal with the main module and the Shapes
sub-module, but the other modules are at your disposal if you need them.

3.1.1 Main Module

HC = require 'HC'

The purpose of the main modules is to connect shapes with the spatial hash – a data structure to quickly look up
neighboring shapes – and to provide utilities to tell which shapes intersect (collide) with each other.

Most of the time, HC will be run as a singleton; you can, however, also create several instances, that each hold their
own little worlds.

Initialization

HC.new([cell_size = 100])
Arguments

• cell_size (number) – Resolution of the internal search structure (optional).

Returns Collider instance.

Creates a new collider instance that holds a separate spatial hash. Collider instances carry the same methods as the
main module. The only difference is that function calls must use the colon-syntax (see below).

Useful if you want to maintain several collision layers or several separate game worlds.

The cell_size somewhat governs the performance of HC.neighbors() and HC.collisions(). How this
parameter affects the performance depends on how many shapes there are, how big these shapes are and (somewhat)
how the shapes are distributed. A rule of thumb would be to set cell_size to be about four times the size of the

7

HC Documentation, Release 0.1-1

average object. Or just leave it as is and worry about it only if you run into performance problems that can be traced
back to the spatial hash.

Example:

collider = HC.new(150) -- create separate world

-- method calls with colon syntax
ball = collider:circle(100,100,20)
rect = collider:rectangle(110,90,20,100)

for shape, delta in pairs(collider:collisions(ball)) do
shape:move(delta.x, delta.y)

end

HC.resetHash([cell_size = 100])
Arguments

• cell_size (number) – Resolution of the internal search structure (optional).

Reset the internal search structure, the spatial hash. This clears all shapes that were registered beforehand, meaning
that HC will not be able to find any collisions with those shapes anymore.

Example:

function new_stage()
actors = {} -- clear the stage on our side
HC.resetHash() -- as well as on HC's side

end

Shapes

See also the HC.shapes sub-module.

HC.rectangle(x, y, w, h)

Arguments

• x,y (numbers) – Upper left corner of the rectangle.

• w,h (numbers) – Width and height of the rectangle.

Returns The rectangle Shape() added to the scene.

Add a rectangle shape to the scene.

Note: Shape() transformations, e.g. Shape.moveTo() and Shape.rotate() will be with respect to the
center, not the upper left corner of the rectangle!

Example:

rect = HC.rectangle(100, 120, 200, 40)
rect:rotate(23)

HC.polygon(x1, y1, ..., xn, yn)

Arguments

8 Chapter 3. Read on

HC Documentation, Release 0.1-1

• x1,y1,...,xn,yn (numbers) – The corners of the polygon. At least three corners that
do not lie on a straight line are required.

Returns The polygon Shape() added to the scene.

Add a polygon to the scene. Any non-self-intersection polygon will work. The polygon will be closed; the first and
the last point do not need to be the same.

Note: If three consecutive points lie on a line, the middle point will be discarded. This means you cannot construct
polygon shapes that are lines.

Note: Shape() transformations, e.g. Shape.moveTo() and Shape.rotate() will be with respect to the
center of the polygon.

Example:

shape = HC.polygon(10,10, 40,50, 70,10, 40,30)
shape:move(42, 5)

HC.circle(cx, cy, radius)

Arguments

• cx,cy (numbers) – Center of the circle.

• radius (number) – Radius of the circle.

Returns The circle Shape() added to the scene.

Add a circle shape to the scene.

Example:

circle = HC.circle(400, 300, 100)

HC.point(x, y)

Arguments

• x, y (numbers) – Position of the point.

Returns The point Shape() added to the scene.

Add a point shape to the scene.

Point shapes are most useful for bullets and such, because detecting collisions between a point and any other shape is
a little faster than detecting collision between two non-point shapes. In case of a collision, the separating vector will
not be valid.

Example:

bullets[#bullets+1] = HC.point(player.pos.x, player.pos.y)

HC.register(shape)

Arguments

• shape (Shape) – The Shape() to add to the spatial hash.

3.1. Reference 9

HC Documentation, Release 0.1-1

Add a shape to the bookkeeping system. HC.neighbors() and Hc.collisions() works only with registered
shapes. You don’t need to (and should not) register any shapes created with the above functions.

Overwrites Shape.move(), Shape.rotate(), and Shape.scale() with versions that update the
HC.spatialhash.

This function is mostly only useful if you provide a custom shape. See Custom Shapes.

HC.remove(shape)

Arguments

• shape (Shape) – The Shape() to remove from the spatial hash.

Remove a shape to the bookkeeping system.

Warning: This will also invalidate the functions Shape.move(), Shape.rotate(), and Shape.
scale(). Make sure you delete the shape from your own actor list(s).

Example:

for i = #bullets,1,-1 do
if bullets[i]:collidesWith(player)

player:takeDamage()

HC.remove(bullets[i]) -- remove bullet from HC
table.remove(bullets, i) -- remove bullet from own actor list

end
end

Collision Detection

HC.collisions(shape)

Arguments

• shape (Shape) – Query shape.

Returns Table of colliding shapes and separating vectors.

Get shapes that are colliding with shape and the vector to separate the shapes. The separating vector points in the
direction that shape has to move to clear the collission. The length of the vector is the minimal amount that either
shape has to move to clear the collission.

The table is a set, meaning that the shapes are stored in keys of the table. The values are the separating vector. You can
iterate over the shapes using pairs (see example).

Example:

local collisions = HC.collisions(shape)
for other, separating_vector in pairs(collisions) do

shape:move(separating_vector.x/2, separating_vector.y/2)
other:move(-separating_vector.x/2, -separating_vector.y/2)

end

HC.neighbors(shape)

Arguments

• shape (Shape) – Query shape.

10 Chapter 3. Read on

HC Documentation, Release 0.1-1

Returns Table of neighboring shapes, where the keys of the table are the shapes.

Get other shapes in that are close to shape. The table is a set, meaning that the shapes are stored in keys of the table.
You can iterate over the shapes using pairs (see example).

Note: The result depends on the size and position of shape as well as the grid size of the spatial hash: HC.
neighbors() returns the shapes that are in the same cell(s) as shape.

Example:

local candidates = HC.neighbors(shape)
for other in pairs(candidates) do

local collides, dx, dy = shape:collidesWith(other)
if collides then

other:move(dx, dy)
end

end

HC.shapesAt(x, y)

Arguments

• x,y (numbers) – Point to query.

Returns Table of shapes at the point, where the keys of the table are the shapes.

Get shapes that contain the point (x,y). The table is a set, meaning that the shapes are stored in keys of the table. You
can iterate over the shapes using pairs (see example).

Example:

local shapes = HC.shapesAt(love.mouse.getPosition)
for s in pairs(shapes) do

game.selectUnit(s)
end

HC.hash()

Returns SpatialHash().

Get a reference to the SpatialHash() instance.

3.1.2 HC.shapes

shapes = require 'HC.shapes'

Shape classes with collision detection methods.

This module defines methods to move, rotate and draw shapes created with the main module.

As each shape is at it’s core a Lua table, you can attach values and add functions to it. Be careful not to use keys that
name a function or start with an underscore, e.g. move or _rotation, since these are used internally. Everything else is
fine.

If you don’t want to use the full blown module, you can still use these classes to test for colliding shapes. This may
be useful for scenes where the shapes don’t move very much and only few collisions are of interest - for example
graphical user interfaces.

3.1. Reference 11

HC Documentation, Release 0.1-1

Base Class

class Shape(type)

Arguments

• type (any) – Arbitrary type identifier of the shape’s type.

Base class for all shapes. All shapes must conform to the interface defined below.

Shape:move(dx, dy)

Arguments

• dx,dy (numbers) – Coordinates to move the shape by.

Move the shape by some distance.

Example:

circle:move(10, 15) -- move the circle 10 units right and 15 units down.

Shape:moveTo(x, y)

Arguments

• x,y (numbers) – Coordinates to move the shape to.

Move the shape to some point. Most shapes will be centered on the point (x,y).

Note: Equivalent to:

local cx,cy = shape:center()
shape:move(x-cx, y-cy)

Example:

local x,y = love.mouse.getPosition()
circle:moveTo(x, y) -- move the circle with the mouse

Shape:center()

Returns x, y - The center of the shape.

Get the shape’s center.

Example:

local cx, cy = circle:center()
print("Circle at:", cx, cy)

Shape:rotate(angle[, cx, cy])
Arguments

• angle (number) – Amount of rotation in radians.

• cx, cy (numbers) – Rotation center; defaults to the shape’s center if omitted (optional).

Rotate the shape by some angle. A rotation center can be specified. If no center is given, rotate around the center of
the shape.

Example:

12 Chapter 3. Read on

HC Documentation, Release 0.1-1

rectangle:rotate(math.pi/4)

Shape:setRotation(angle[, cx, cy])
Arguments

• angle (number) – Amount of rotation in radians.

• cx, cy (numbers) – Rotation center; defaults to the shape’s center if omitted (optional).

Set the rotation of a shape. A rotation center can be specified. If no center is given, rotate around the center of the
shape.

Note: Equivalent to:

shape:rotate(angle - shape:rotation(), cx,cy)

Example:

rectangle:setRotation(math.pi, 100,100)

Shape:rotation()

Returns The shape’s rotation in radians.

Get the rotation of the shape in radians.

Shape:scale(s)

Arguments

• s (number) – Scale factor; must be > 0.

Scale the shape relative to it’s center.

Note: There is no way to query the scale of a shape.

Example:

circle:scale(2) -- double the size

Shape:outcircle()

Returns x, y, r - Parameters of the outcircle.

Get parameters of a circle that fully encloses the shape.

Example:

if player:hasShield() then
love.graphics.circle('line', player:outcircle())

end

Shape:bbox()

Returns x1, y1, x2, y2 - Corners of the counding box.

Get axis aligned bounding box. x1, y1 defines the upper left corner, while x2, y2 define the lower right corner.

Example:

3.1. Reference 13

HC Documentation, Release 0.1-1

-- draw bounding box
local x1,y1, x2,y2 = shape:bbox()
love.graphics.rectangle('line', x1,y1, x2-x1,y2-y1)

Shape:draw(mode)

Arguments

• mode (DrawMode) – How to draw the shape. Either ‘line’ or ‘fill’.

Draw the shape either filled or as outline. Mostly for debug-purposes.

Example:

circle:draw('fill')

Shape:support(dx, dy)

Arguments

• dx, dy (numbers) – Search direction.

Returns The furthest vertex in direction dx, dy.

Get furthest vertex of the shape with respect to the direction dx, dy.

Used in the collision detection algorithm, but may be useful for other things - e.g. lighting - too.

Example:

-- get vertices that produce a shadow volume
local x1,y1 = circle:support(lx, ly)
local x2,y2 = circle:support(-lx, -ly)

Shape:collidesWith(other)

Arguments

• other (Shape) – Test for collision with this shape.

Returns collide, dx, dy - Collision indicator and separating vector.

Test if two shapes collide.

The separating vector dx, dy will only be defined if collide is true. If defined, the separating vector will point
in the direction of other, i.e. dx, dy is the direction and magnitude to move other so that the shapes do not
collide anymore.

Example:

if circle:collidesWith(rectangle) then
print("collision detected!")

end

Shape:contains(x, y)

Arguments

• x, y (numbers) – Point to test.

Returns true if x,y lies in the interior of the shape.

Test if the shape contains a given point.

Example:

14 Chapter 3. Read on

HC Documentation, Release 0.1-1

if unit.shape:contains(love.mouse.getPosition) then
unit:setHovered(true)

end

Shape:intersectionsWithRay(x, y, dx, dy)

Arguments

• x, y (numbers) – Starting point of the ray.

• dx, dy (numbers) – Direction of the ray.

Returns Table of ray parameters.

Test if the shape intersects the given ray. The ray parameters of the intersections are returned as a table. The position
of the intersections can be computed as (x,y) + ray_parameter * (dx, dy).

Example:

local ts = player:intersectionsWithRay(x,y, dx,dy)
for _, t in ipairs(t) do

-- find point of intersection
local vx,vy = vector.add(x, y, vector.mul(t, dx, dy))
player:addMark(vx,vy)

end

Shape:intersectsRay(x, y, dx, dy)

Arguments

• x, y (numbers) – Starting point of the ray.

• dx, dy (numbers) – Direction of the ray.

Returns intersects, ray_parameter - intersection indicator and ray paremter.

Test if the shape intersects the given ray. If the shape intersects the ray, the point of intersection can be computed by
(x,y) + ray_parameter * (dx, dy).

Example:

local intersecting, t = player:intersectsRay(x,y, dx,dy)
if intersecting then

-- find point of intersection
local vx,vy = vector.add(x, y, vector.mul(t, dx, dy))
player:addMark(vx,vy)

end

Custom Shapes

Custom shapes must implement at least the following methods (as defined above)

• Shape:move()

• Shape:rotate()

• Shape:scale()

• Shape:bbox()

• Shape:collidesWith()

3.1. Reference 15

HC Documentation, Release 0.1-1

Built-in Shapes

class ConcavePolygonShape()

class ConvexPolygonShape()

class CircleShape()

class PointShape()

newPolygonShape(...)

Arguments

• ... (numbers) – Vertices of the Polygon().

Returns ConcavePolygonShape() or ConvexPolygonShape().

newCircleShape(cx, cy, radius)

Arguments

• cx,cy (numbers) – Center of the circle.

• radius (number) – Radius of the circle.

Returns CircleShape().

newPointShape()

Arguments

• x, y (numbers) – Position of the point.

Returns PointShape().

3.1.3 HC.polygon

polygon = require 'HC.polygon'

Polygon class with some handy algorithms. Does not provide collision detection - this functionality is provided by
newPolygonShape() instead.

class Polygon(x1, y1, ..., xn, yn)

Arguments

• x1,y1, ..., xn,yn (numbers) – The corners of the polygon. At least three corners
are needed.

Returns The polygon object.

Construct a polygon.

At least three points that are not collinear (i.e. not lying on a straight line) are needed to construct the polygon. If there
are collinear points, these points will be removed. The shape of the polygon is not changed.

Note: The syntax depends on used class system. The shown syntax works when using the bundled hump.class or
slither.

Example:

16 Chapter 3. Read on

http://vrld.github.com/hump/#hump.class
https://bitbucket.org/bartbes/slither

HC Documentation, Release 0.1-1

Polygon = require 'HC.polygon'
poly = Polygon(10,10, 40,50, 70,10, 40,30)

Polygon:unpack()

Returns x1,y1, ..., xn,yn - The vertices of the polygon.

Get the polygon’s vertices. Useful for drawing with love.graphics.polygon().

Example:

love.graphics.draw('line', poly:unpack())

Polygon:clone()

Returns A copy of the polygon.

Get a copy of the polygon.

Note: Since Lua uses references when simply assigning an existing polygon to a variable, unexpected things can
happen when operating on the variable. Consider this code:

p1 = Polygon(10,10, 40,50, 70,10, 40,30)
p2 = p1 -- p2 is a reference
p3 = p1:clone() -- p3 is a clone
p2:rotate(math.pi) -- p1 will be rotated, too!
p3:rotate(-math.pi) -- only p3 will be rotated

Example:

copy = poly:clone()
copy:move(10,20)

Polygon:bbox()

Returns x1, y1, x2, y2 - Corners of the counding box.

Get axis aligned bounding box. x1, y1 defines the upper left corner, while x2, y2 define the lower right corner.

Example:

x1,y1,x2,y2 = poly:bbox()
-- draw bounding box
love.graphics.rectangle('line', x1,y2, x2-x1, y2-y1)

Polygon:isConvex()

Returns true if the polygon is convex, false otherwise.

Test if a polygon is convex, i.e. a line line between any two points inside the polygon will lie in the interior of the
polygon.

Example:

-- split into convex sub polygons
if not poly:isConvex() then

list = poly:splitConvex()
else

list = {poly:clone()}
end

3.1. Reference 17

HC Documentation, Release 0.1-1

Polygon:move(x, y)

Arguments

• x, y (numbers) – Coordinates of the direction to move.

Move a polygon in a direction..

Example:

poly:move(10,-5) -- move 10 units right and 5 units up

Polygon:rotate(angle[, cx, cy])
Arguments

• angle (number) – The angle to rotate in radians.

• cx, cy (numbers) – The rotation center (optional).

Rotate the polygon. You can define a rotation center. If it is omitted, the polygon will be rotated around it’s centroid.

Example:

p1:rotate(math.pi/2) -- rotate p1 by 90° around it's center
p2:rotate(math.pi/4, 100,100) -- rotate p2 by 45° around the point 100,100

Polygon:triangulate()

Returns table of Polygons: Triangles that the polygon is composed of.

Split the polygon into triangles.

Example:

triangles = poly:triangulate()
for i,triangle in ipairs(triangles) do

triangles.move(math.random(5,10), math.random(5,10))
end

Polygon:splitConvex()

Returns table of Polygons: Convex polygons that form the original polygon.

Split the polygon into convex sub polygons.

Example:

convex = concave_polygon:splitConvex()
function love.draw()

for i,poly in ipairs(convex) do
love.graphics.polygon('fill', poly:unpack())

end
end

Polygon:mergedWith(other)

Arguments

• other (Polygon) – The polygon to merge with.

Returns The merged polygon, or nil if the two polygons don’t share an edge.

18 Chapter 3. Read on

HC Documentation, Release 0.1-1

Create a merged polygon of two polygons if, and only if the two polygons share one complete edge. If the polygons
share more than one edge, the result may be erroneous.

This function does not change either polygon, but rather creates a new one.

Example:

merged = p1:mergedWith(p2)

Polygon:contains(x, y)

Arguments

• x, y (numbers) – Point to test.

Returns true if x,y lies in the interior of the polygon.

Test if the polygon contains a given point.

Example:

if button:contains(love.mouse.getPosition()) then
button:setHovered(true)

end

Polygon:intersectionsWithRay(x, y, dx, dy)

Arguments

• x, y (numbers) – Starting point of the ray.

• dx, dy (numbers) – Direction of the ray.

Returns Table of ray parameters.

Test if the polygon intersects the given ray. The ray parameters of the intersections are returned as a table. The position
of the intersections can be computed as (x,y) + ray_parameter * (dx, dy).

Polygon:intersectsRay(x, y, dx, dy)

Arguments

• x, y (numbers) – Starting point of the ray.

• dx, dy (numbers) – Direction of the ray.

Returns intersects, ray_parameter - intersection indicator and ray paremter.

Test if the polygon intersects a ray. If the shape intersects the ray, the point of intersection can be computed by (x,y)
+ ray_parameter * (dx, dy).

Example:

if poly:intersectsRay(400,300, dx,dy) then
love.graphics.setLine(2) -- highlight polygon

end

3.1.4 HC.spatialhash

spatialhash = require 'HC.spatialhash'

A spatial hash implementation that supports scenes of arbitrary size. The hash is sparse, which means that cells will
only be created when needed.

3.1. Reference 19

HC Documentation, Release 0.1-1

class Spatialhash([cellsize = 100])
Arguments

• cellsize (number) – Width and height of a cell (optional).

Create a new spatial hash with a given cell size.

Choosing a good cell size depends on your application. To get a decent speedup, the average cell should not contain
too many objects, nor should a single object occupy too many cells. A good rule of thumb is to choose the cell size so
that the average object will occupy only one cell.

Note: The syntax depends on used class system. The shown syntax works when using the bundled hump.class or
slither.

Example:

Spatialhash = require 'hardoncollider.spatialhash'
hash = Spatialhash(150)

Spatialhash:cellCoords(x, y)

Arguments

• x, y (numbers) – The position to query.

Returns Coordinates of the cell which would contain x,y.

Get coordinates of a given value, i.e. the cell index in which a given point would be placed.

Example:

local mx,my = love.mouse.getPosition()
cx, cy = hash:cellCoords(mx, my)

Spatialhash:cell(i, k)

Arguments

• i, k (numbers) – The cell index.

Returns Set of objects contained in the cell.

Get the cell with given coordinates.

A cell is a table which’s keys and value are the objects stored in the cell, i.e.:

cell = {
[obj1] = obj1,
[obj2] = obj2,
...

}

You can iterate over the objects in a cell using pairs():

for object in pairs(cell) do stuff(object) end

Example:

local mx,my = love.mouse.getPosition()
cx, cy = hash:cellCoords(mx, my)
cell = hash:cell(cx, cy)

20 Chapter 3. Read on

http://vrld.github.com/hump/#hump.class
https://bitbucket.org/bartbes/slither

HC Documentation, Release 0.1-1

Spatialhash:cellAt(x, y)

Arguments

• x, y (numbers) – The position to query.

Returns Set of objects contained in the cell.

Get the cell that contains point x,y.

Same as hash:cell(hash:cellCoords(x,y))

Example:

local mx,my = love.mouse.getPosition()
cell = hash:cellAt(mx, my)

Spatialhash:shapes()

Returns Set of all shapes in the hash.

Get all shapes that are recorded in the hash.

Spatialhash:inSameCells(x1, y1, x2, y2)

Arguments

• x1,y1 (numbers) – Upper left corner of the query bounding box.

• x2,y2 (numbers) – Lower right corner of the query bounding box.

Returns Set of all shapes in the same cell as the bbox.

Get the shapes that are in the same cell as the defined bounding box.

Spatialhash:register(obj, x1, y1, x2, y2)

Arguments

• obj (mixed) – Object to place in the hash. It can be of any type except nil.

• x1,y1 (numbers) – Upper left corner of the bounding box.

• x2,y2 (numbers) – Lower right corner of the bounding box.

Insert an object into the hash using a given bounding box.

Example:

hash:register(shape, shape:bbox())

Spatialhash:remove(obj[, x1, y1[, x2, y2]])
Arguments

• obj (mixed) – The object to delete

• x1,y1 (numbers) – Upper left corner of the bounding box (optional).

• x2,y2 (numbers) – Lower right corner of the bounding box (optional).

Remove an object from the hash using a bounding box.

If no bounding box is given, search the whole hash to delete the object.

Example:

3.1. Reference 21

HC Documentation, Release 0.1-1

hash:remove(shape, shape:bbox())
hash:remove(object_with_unknown_position)

Spatialhash:update(obj, x1, y1, x2, y2, x3, y3, x4, y4)

Arguments

• obj (mixed) – The object to be updated.

• x1,y1 (numbers) – Upper left corner of the bounding box before the object was moved.

• x2,y2 (numbers) – Lower right corner of the bounding box before the object was moved.

• x3,y3 (numbers) – Upper left corner of the bounding box after the object was moved.

• x4,y4 (numbers) – Lower right corner of the bounding box after the object was moved.

Update an objects position given the old bounding box and the new bounding box.

Example:

hash:update(shape, -100,-30, 0,60, -100,-70, 0,20)

Spatialhash:draw(draw_mode[, show_empty = true[, print_key = false]])
Arguments

• draw_mode (string) – Either ‘fill’ or ‘line’. See the LÖVE wiki.

• show_empty (boolean) – Wether to draw empty cells (optional).

• print_key (boolean) – Wether to print cell coordinates (optional).

Draw hash cells on the screen, mostly for debug purposes

Example:

love.graphics.setColor(160,140,100,100)
hash:draw('line', true, true)
hash:draw('fill', false)

3.1.5 HC.vector

vector = require 'HC.vector'

See hump.vector_light.

3.1.6 HC.class

class = require 'HC.class'

See hump.class.

3.2 Tutorial

To be rewritten.

22 Chapter 3. Read on

HC Documentation, Release 0.1-1

3.3 License

Copyright (c) 2011-2015 Matthias Richter

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

Except as contained in this notice, the name(s) of the above copyright holders shall not be used in advertising or
otherwise to promote the sale, use or other dealings in this Software without prior written authorization.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

3.4 Indices and tables

• genindex

• modindex

• search

3.3. License 23

HC Documentation, Release 0.1-1

24 Chapter 3. Read on

Index

C
CircleShape() (class), 16
ConcavePolygonShape() (class), 16
ConvexPolygonShape() (class), 16

H
HC.circle() (HC method), 9
HC.collisions() (HC method), 10
HC.hash() (HC method), 11
HC.neighbors() (HC method), 10
HC.new() (HC method), 7
HC.point() (HC method), 9
HC.polygon() (HC method), 8
HC.rectangle() (HC method), 8
HC.register() (HC method), 9
HC.remove() (HC method), 10
HC.resetHash() (HC method), 8
HC.shapesAt() (HC method), 11

N
newCircleShape() (built-in function), 16
newPointShape() (built-in function), 16
newPolygonShape() (built-in function), 16

P
PointShape() (class), 16
Polygon() (class), 16
Polygon:bbox() (built-in function), 17
Polygon:clone() (built-in function), 17
Polygon:contains() (built-in function), 19
Polygon:intersectionsWithRay() (built-in function), 19
Polygon:intersectsRay() (built-in function), 19
Polygon:isConvex() (built-in function), 17
Polygon:mergedWith() (built-in function), 18
Polygon:move() (built-in function), 17
Polygon:rotate() (built-in function), 18
Polygon:splitConvex() (built-in function), 18
Polygon:triangulate() (built-in function), 18
Polygon:unpack() (built-in function), 17

S
Shape() (class), 12
Shape:bbox() (built-in function), 13
Shape:center() (built-in function), 12
Shape:collidesWith() (built-in function), 14
Shape:contains() (built-in function), 14
Shape:draw() (built-in function), 14
Shape:intersectionsWithRay() (built-in function), 15
Shape:intersectsRay() (built-in function), 15
Shape:move() (built-in function), 12
Shape:moveTo() (built-in function), 12
Shape:outcircle() (built-in function), 13
Shape:rotate() (built-in function), 12
Shape:rotation() (built-in function), 13
Shape:scale() (built-in function), 13
Shape:setRotation() (built-in function), 13
Shape:support() (built-in function), 14
Spatialhash() (class), 19
Spatialhash:cell() (built-in function), 20
Spatialhash:cellAt() (built-in function), 20
Spatialhash:cellCoords() (built-in function), 20
Spatialhash:draw() (built-in function), 22
Spatialhash:inSameCells() (built-in function), 21
Spatialhash:register() (built-in function), 21
Spatialhash:remove() (built-in function), 21
Spatialhash:shapes() (built-in function), 21
Spatialhash:update() (built-in function), 22

25

	First steps
	Get HC
	Read on
	Reference
	Tutorial
	License
	Indices and tables

