

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.





          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  
hbase_docker


Overview

The Dockerfile in this folder can be used to build a Docker image running
the latest HBase master branch in standalone mode. It does this by setting
up necessary dependencies, checking out the master branch of HBase from
GitHub, and then building HBase. By default, this image will start the HMaster
and launch the HBase shell when run.




Usage


	Download x64 .tar.gz files of the Oracle JDK and Apache Maven and place them
in this folder (i.e. both tarballs must be in the same folder as the
Dockerfile). Also note that the Dockerfile will properly pick up the tarballs
as long as the JDK file has “jdk” in its name and the Maven file contains
“maven”. As an example, while developing this Dockerfile, my working directory
looked like this:

$ ls -lh
total 145848
-rw-r--r-- 1 root root   6956162 Sep  3 15:48 apache-maven-3.2.3-bin.tar.gz
-rw-r--r-- 1 root root      2072 Sep  3 15:48 Dockerfile
-rw-r--r-- 1 root root 142376665 Sep  3 15:48 jdk-7u67-linux-x64.tar.gz
-rw-r--r-- 1 root root      1844 Sep  3 15:56 README.md







	Ensure that you have a recent version of Docker installed from
docker.io [http://www.docker.io].


	Set this folder as your working directory.


	Type docker build -t hbase_docker . to build a Docker image called hbase_docker.
This may take 10 minutes or more the first time you run the command since it will
create a Maven repository inside the image as well as checkout the master branch
of HBase.


	When this completes successfully, you can run docker run -it hbase_docker
to access an HBase shell running inside of a container created from the
hbase_docker image. Alternatively, you can type docker run -it hbase_docker bash to start a container without a running HMaster. Within this environment,
HBase is built in /root/hbase-bin.










          

      

      

    

  

    
      
          
            
  #hbase-archetypes

##Overview
The hbase-archetypes subproject of hbase provides an infrastructure for
creation and maintenance of Maven archetypes1
pertinent to HBase. Upon deployment to the archetype
catalog2 of the central Maven
repository3, these archetypes may be used by
end-user developers to autogenerate completely configured Maven projects
(including fully-functioning sample code) through invocation of the
archetype:generate goal of the
maven-archetype-plugin4.

##Notes for contributors and committers to the HBase project

####The structure of hbase-archetypes
The hbase-archetypes project contains a separate subproject for each archetype.
The top level components of such a subproject comprise a complete, standalone
exemplar Maven project containing:


	a src directory with sample, fully-functioning code in the ./main and
./test subdirectories,


	a pom.xml file defining all required dependencies, and


	any additional resources required by the exemplar project.




For example, the components of the hbase-client-project consist of (a) sample
code ./src/main/.../HelloHBase.java and ./src/test/.../TestHelloHBase.java,
(b) a pom.xml file establishing dependency upon hbase-client and test-scope
dependency upon hbase-testing-util, and (c) a log4j.properties resource file.

####How archetypes are created during the hbase install process
During the mvn install process, all standalone exemplar projects in the
hbase-archetypes subdirectory are first packaged/tested/installed, and then
the following steps are executed in hbase-archetypes/hbase-archetype-builder
(via the pom.xml, bash scripts, and xsl templates in that subdirectory):


	For each exemplar project, resources are copied (via
maven-resources-plugin) and transformed (via xml-maven-plugin xslt
functionality) to the exemplar project’s ./target/build-archetype
subdirectory5.


	The script createArchetypes.sh is executed to invoke the
maven-archetype-plugin’s create-from-project goal within each exemplar
project’s ./target/build-archetype subdirectory. For each exemplar
project, this creates a corresponding Maven archetype in the
./target/build-archetype/target/generate-sources/archetype subdirectory.
(Note that this step always issues two platform-encoding warnings per
archetype, due to hard-wired behavior of the
maven-archetype-plugin6.)


	The pom.xml file of each newly-created archetype is copied (via
maven-resources-plugin) and transformed (via xml-maven-plugin xslt
functionality)7.


	The script installArchetypes.sh is executed to install each archetype
into the local Maven repository, ready for deployment to the central Maven
repository. (Note that installation of an archetype automatically includes
invocation of integration-testing prior to install, which performs a test
generation of a project from the archetype.)




####How to add a new archetype to the hbase-archetypes collection


	Create a new subdirectory in hbase-archetypes, populated with a
completely configured Maven project, which will serve as the exemplar project
of the new archetype. (It may be most straightforward to simply copy the src
and pom.xml components from one of the existing exemplar projects, replace
the src/main and src/test code, and modify the pom.xml file’s
<dependencies>, <artifactId>,<name>, and <description> elements.)


	Modify the hbase-archetypes/pom.xml file: add a new <module> subelement
to the <modules> element, with the new exemplar project’s subdirectory name
as its value.


	Modify the hbase-archetype-builder/pom.xml file: (a) add a new <*.dir>
subelement to the <properties> element, with the new exemplar project’s
subdirectory name as its value, and (b) add appropriate <execution>
elements and <transformationSet> elements within the <plugin> elements
(using the existing entries from already-existing exemplar projects as a guide).


	Add appropriate entries for the new exemplar project to the
createArchetypes.sh and installArchetypes.sh scripts in the
hbase-archetype-builder subdirectory (using the existing entries as a guide).




####How to do additional testing/inspection of an archetype in this collection
Although integration-testing (which is automatically performed for each
archetype during the install process) already performs test generation of a
project from an archetype, it may often be advisable to do further manual
testing of a newly built and installed archetype, particularly to examine and
test a project generated from the archetype (emulating the end-user experience
of utilizing the archetype). Upon completion of the install process outlined
above, all archetypes will have been installed in the local Maven repository
and can be tested locally by executing the following:
mvn archetype:generate -DarchetypeCatalog=local
This displays a numbered list of all locally-installed archetypes for the user
to choose from for generation of a new Maven project.

##Footnotes:
1 – Maven Archetype
 [http://maven.apache.org/archetype/index.html] (“About” page).
– ↩

2 – Maven Archetype Catalog
 [http://repo1.maven.org/maven2/archetype-catalog.xml] (4MB+ xml file).
– ↩

3 – Maven Central Repository [http://search.maven.org/]
(search engine).
– ↩

4 – Maven Archetype Plugin - archetype:generate
 [http://maven.apache.org/archetype/maven-archetype-plugin/generate-mojo.html].
– ↩

5 – Prior to archetype creation, each exemplar project’s
pom.xml is transformed as follows to make it into a standalone project:
RESOURCE FILTERING (a) replaces ${project.version} with the literal value
of the current project.version and (b) replaces ${compileSource} with the
literal value of the version of Java that is being used for compilation;
XSLT TRANSFORMATION (a) copies <groupId> and <version> subelements of
<parent> to make them child elements of the root element, and (b) removes
the <parent> and <description> elements.
– ↩

6 – For an explanation of the platform-encoding warning issued
during maven-archetype-plugin processing, see the first answer to this
stackoverflow posting [http://stackoverflow.com/a/24161287/4112172].
– ↩

7 – Prior to archetype installation, each archetype’s pom.xml
is transformed as follows: a <project.build.sourceEncoding> subelement
with value ‘UTF-8’ is added to the <properties> element. This prevents
platform-encoding warnings from being issued when an end-user generates
a project from the archetype.
– ↩



          

      

      

    

  

    
      
          
            
  
hbase-native-client

Native client for HBase 0.96

This is a C  library that implements a
HBase client.  It’s thread safe and libEv
based.


Design Philosphy

Synchronous and Async versions will both be built
on the same foundation. The core foundation will
be C++.  External users wanting a C library will
have to choose either async or sync.  These
libraries will be thin veneers ontop of the C++.

We should try and follow pthreads example as much
as possible:


	Consistent naming.


	Opaque pointers as types so that binary compat is easy.


	Simple setup when the defaults are good.


	Attr structs when lots of paramters could be needed.







Naming

All public C files will start with hbase_*.{h, cc}.  This
is to keep naming conflicts to a minimum. Anything without
the hbase_ prefix is assumed to be implementation private.

All C apis and typedefs will be prefixed with hb_.

All typedefs end with _t.







          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_static/plus.png





_static/comment-bright.png





_static/file.png





_static/ajax-loader.gif





_static/minus.png





_static/up-pressed.png





_static/up.png





_static/down-pressed.png





_static/down.png





_static/comment-close.png





_static/comment.png





