
Haydi Documentation
Release 1.0

Haydi team

Dec 04, 2017

User guide

1 Overview 1
1.1 Example of usage . 1

2 Example: Černy’s conjecture 3

3 Installation 5
3.1 Basic installation . 5
3.2 Distributed run . 5
3.3 PyPy . 5

4 Domains 7
4.1 Elementary Domains . 7
4.2 Composition . 8
4.3 Laziness of domains . 10
4.4 Transformations . 10
4.5 Names . 11

5 Pipeline 13
5.1 Overview . 13
5.2 Method . 14
5.3 Transformations . 15
5.4 Actions . 16
5.5 Run . 17
5.6 Shortcuts . 17
5.7 Immutability of pipelines . 18

6 Set and Map 19

7 Canonical forms 21
7.1 Atoms and USets . 21
7.2 Atoms from different USets . 22
7.3 Basic objects . 22
7.4 Canonical forms . 23
7.5 Strict domains . 24
7.6 Transformations on strict domains . 24
7.7 Domain CnfValues . 25
7.8 Public functions . 25

i

8 Distributed computation 27
8.1 Local computation . 27
8.2 Distributed computation . 27
8.3 Limitations . 28

9 Cookbook 29
9.1 Graphs . 29
9.2 Automata . 29

10 Performance tips 31
10.1 Materialization of domains . 31
10.2 Step jumps . 31

11 Contact 33
11.1 Authors . 33
11.2 Acknowledgment . 33

ii

CHAPTER 1

Overview

Haydi (Haystack diver) is a framework for generating discrete structures. It provides a way to define a structure
from basic building blocks (e.g. Cartesian product, mappings) and then enumerate all elements, all non-isomorphic
elements, or generate random elements.

• Pure Python implementation (Python 2.7+, PyPy supported)

• MIT license

• Sequential or distributed computation (via dask/distributed)

1.1 Example of usage

• Let us define directed graphs on two vertices (represented as a set of edges):

>>> import haydi as hd
>>> nodes = hd.USet(2, "n") # A two-element set with (unlabeled) elements {n0,
→˓n1}
>>> graphs = hd.Subsets(nodes * nodes) # Subsets of a cartesian product

• Now we can iterate all elements:

>>> list(graphs.iterate())
[{}, {(n0, n0)}, {(n0, n0), (n0, n1)}, {(n0, n0), (n0, n1), (n1, n0)}, {(n0,
... 3 lines removed ...
n1)}, {(n1, n0)}, {(n1, n0), (n1, n1)}, {(n1, n1)}]

• or iterate all non-isomorphic ones:

>>> list(graphs.cnfs()) # cnfs = canonical forms
[{}, {(n0, n0)}, {(n0, n0), (n1, n1)}, {(n0, n0), (n0, n1)}, {(n0, n0), (n0,
n1), (n1, n1)}, {(n0, n0), (n0, n1), (n1, n0)}, {(n0, n0), (n0, n1), (n1, n0),
(n1, n1)}, {(n0, n0), (n1, n0)}, {(n0, n1)}, {(n0, n1), (n1, n0)}]

1

https://github.com/dask/distributed

Haydi Documentation, Release 1.0

• or generate random instances:

>>> list(graphs.generate(3))
[{(n1, n0)}, {(n1, n1), (n0, n0)}, {(n0, n1), (n1, n0)}]

• Haydi supports standard operations like map, filter and reduce:

>>> op = graphs.map(lambda g: len(g)).reduce(lambda x, y: x + y)
Just a demonstration pipeline; nothing usefull
>>> op.run()

• We can run it transparently as a distributed application:

>>> from haydi import DistributedContext
We are now assuming that dask/distributed is running at hostname:1234
>>> context = DistributedContext("hostname", 1234)
>>> op.run(ctx=context)

2 Chapter 1. Overview

CHAPTER 2

Example: Černy’s conjecture

The following example shows how to use Haydi for verifying Černy’s conjecture on bounded instances. The conjecture
states that the length of a minimal reset word is bounded by (𝑛−1)2 where 𝑛 is the number of states of the automaton.
The reset word is a word that send all states of the automaton to a unique state.

The example program find the maximal length of a minimal reset word for automata of a given size. The full source
code is in examples/cerny/cerny.py in the repository.

The following approach is a simple one, just a few lines of code, without any sophisticated optimization. It takes
around two minutes (in PyPy) in the sequential mode to verify the conjecture for automata with five states. It probably
needs many hours to check automata with six states. The state of the art result is verifying the conjecture for automata
for more than 14 states, but it needs some clever optimizations that are out of scope of this example.

First, we describe deterministic automata by their transition functions (mapping from pair of state and symbol to a
new state):

>>> import haydi as hd
>>> n_states = 4 # Number of states
>>> n_symbols = 2 # Number of symbols in alphabet

>>> states = hd.USet(n_states, "q") # set of states q0, q1, ..., q_{n_states-1}
>>> alphabet = hd.USet(n_symbols, "a") # set of symbols a0, ..., a_{a_symbols-1}

All Mappings (states * alphabet) -> states
>>> delta = hd.Mappings(states * alphabet, states)

Now we can create a pipeline that goes through all non-isomorphic automata and finds maximum among lengths of
their minimal reset word:

>>> pipeline = delta.cnfs().map(check_automaton).max(size=1)
>>> result = pipeline.run()

>>> print ("The maximal length of a minimal reset word for an "
... "automaton with {} states and {} symbols is {}.".
... format(n_states, n_symbols, result[0]))

3

Haydi Documentation, Release 1.0

The function check_automaton takes an automaton (as a transition function) and returns the length the minimal
reset word or 0 when there is no such word. It is just a simple breath-first search on the set of states:

from haydi.algorithms import search

Let us precompute some values that will be repeatedly used
init_state = frozenset(states)
max_steps = (n_states**3 - n_states) / 6
Known result is that we do not need more than (n^3 - n) / 6 steps

def check_automaton(delta):
This function takes automaton as a transition function and
returns the minimal length of synchronizing word or 0 if there
is no such word

def step(state, depth):
A step in bread-first search; gives a set of states
and return a set reachable by one step
for a in alphabet:

yield frozenset(delta[(s, a)] for s in state)

delta = delta.to_dict()
return search.bfs(

init_state, # Initial state
step, # Function that takes a node and returns the followers
lambda state, depth: depth if len(state) == 1 else None,

Run until we reach a single state
max_depth=max_steps, # Limit depth of search
not_found_value=0) # Return 0 when we exceed depth limit

4 Chapter 2. Example: Černy’s conjecture

CHAPTER 3

Installation

Haydi is a pure Python package for Python 2.7+.

3.1 Basic installation

Haydi itself can be installed simply with pip:

pip install git+https://github.com/spirali/haydi.git

3.2 Distributed run

For distributed run you need to install dask/distributed:

pip install distributed

3.3 PyPy

Haydi is fully compatible with PyPy that can provide a substantial speed-up.

5

http://distributed.readthedocs.io
http://pypy.org/

Haydi Documentation, Release 1.0

6 Chapter 3. Installation

CHAPTER 4

Domains

This section introduces the core structure of Haydi: domains and basic operations with them. Advanced domains and
canonical forms are covered in a separate section: Canonical forms.

4.1 Elementary Domains

One of basic structures in Haydi is Domain that represents a generic collection of arbitrary objects. The main oper-
ation with domains is to provide a method for iteration and random generation of elements in domain. Domains are
composable, i.e. more complex domains can be created from the simpler ones.

There are six elementary domains shipped with Haydi: Range (range of integers), Values (domain of explicitly
listed Python objects), Boolean (two-element domain), and NoneDomain (a domain containing only one element:
None), USet, and CnfValues.

Domains USet and CnfValues are little bit special and they are designed for enumerating non-isomorphic struc-
tures. The topic is covered in Canonical forms; these domains are not used in this section.

Examples:

>>> import haydi as hd

>>> hd.Range(4) # Domain of four integers
<Range size=4 {0, 1, 2, 3}>

>>> hd.Values(["Haystack", "diver"])
<Values size=2 {'Haystack', 'diver'}>

>>> hd.Boolean()
<Boolean size=2 {False, True}>

>>> hd.NoneDomain()
<NoneDomain size=1 {None}>

7

Haydi Documentation, Release 1.0

4.2 Composition

New domains can be created by composing existing ones. There are the following compositions: product, sequences,
subsets, mappings, and join.

4.2.1 Cartesian product (𝐴×𝐵)

Product creates a domain of all ordered tuples; for example:

>>> import haydi as hd
>>> a = hd.Range(2)
>>> b = hd.Values(("a", "b", "c"))
>>> hd.Product((a, b))
<Product size=6 {(0, 'a'), (0, 'b'), (0, 'c'), (1, 'a'), ...}>

alternatively, the same thing can be written by using the infix operator *:

>>> a * b
<Product size=6 {(0, 'a'), (0, 'b'), (0, 'c'), (1, 'a'), ...}>

The product can be created on more than two domains:

>>> hd.Product((a, b, hd.Values["x", "y"]))
<Product size=12{(0, 'a', 'x'), (0, 'a', 'y'), (0, 'b', 'x'), ...}>

>>> a * b * hd.Values(["x", "y"])
<Product size=12{(0, 'a', 'x'), (0, 'a', 'y'), (0, 'b', 'x'), ...}>

Note: Generally, a * b equals to hd.Product((a, b)). However, there is one exception when a is
also product. The expression hd.Product((x, y)) * b is equal to hd.Product((x, y, b)) (not hd.
Product(hd.Product(x, y), b)). The reason is to enable definining n-ary tuples by multiplication. If you
want to avoid this behavior and define “product in product”, then explicitly use hd.Product instead of *.

4.2.2 Sequences (𝐴𝑛)

Sequences is a shortcut for a product over the same domain. Sequences of a given length can be defined as:

>>> import haydi as hd
>>> a = hd.Range(2)
>>> hd.Sequences(a, 3) # Sequences of length 3
<Sequences size=8 {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), ...}>

or sequences with a length in a given range:

>>> hd.Sequences(a, 0, 2) # Sequences of length 0 to 2
<Sequences size=7 {(), (0,), (1,), (0, 0), ...}>

Sequences of a fixed length can also be created by the ** operator on a domain:

>>> hd.Range(2) ** 3
<Sequences size=8 {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), ...>

8 Chapter 4. Domains

Haydi Documentation, Release 1.0

4.2.3 Subsets (𝒫(𝐴))

The Subsets contains subsets from elements of a given domain; the following example creates the power set:

>>> import haydi as hd
>>> hd.Subsets(hd.Range(2))
<Subsets size=4 {{}, {0}, {0, 1}, {1}}>

When a single argument is provided, it is used to limit subsets to a given size:

>>> hd.Subsets(hd.Range(3), 2) # Subsets of size 2
<Subsets size=3 {{0, 1}, {0, 2}, {1, 2}}>

Two arguments limit the subsets to a size in a given range:

>>> hd.Subsets(hd.Range(3), 0, 1) # Subsets of size between 0 and 1
<Subsets size=4 {{}, {0}, {1}, {2}}>

Note: Type of elements created by Subsets is not the standard Python set, but haydi.Set. For more informa-
tion, see Set and Map. This behavior can be overridden by argument set_class:

>>> hd.Subsets(hd.Range(2), set_class=frozenset)
<Subsets size=4 {frozenset([]), frozenset([0]), frozenset([0, 1]), ...}>

4.2.4 Mappings (𝐴 → 𝐵)

The domain Mappings contains all mappings from a domain to another domain:

>>> import haydi as hd
>>> a = hd.Range(2)
>>> b = hd.Values(["a", "b"])
>>> hd.Mappings(a, b)
<Mappings size=4 {{0: 'a'; 1: 'a'}, {0: 'a'; 1: 'b'}, {0: ... a'}, ...}>

Note: Type of elements created by Mappings is not the standard Python dict, but haydi.Map. For more
information, see Set and Map. This behavior can be overridden by argument map_class:

>>> hd.Mappings(a, b, map_class=dict)
<Mappings size=4 {{0: 'a', 1: 'a'}, {0: 'a', 1: 'b'}, {0: ... a'}, ...}>

4.2.5 Join (𝐴 ⊎𝐵)

Join operation creates a new domain that contains elements of all given domains (disjoint union):

>>> import haydi as hd
>>> a = hd.Range(2)
>>> b = hd.Values(["abc", "ikl", "xyz"])
>>> c = hd.Values([123])

>>> hd.Join((a, b, c))
<Join size=6 {0, 1, 'abc', 'ikl', ...}>

4.2. Composition 9

Haydi Documentation, Release 1.0

The same behavior can be also achieved by + operator on domains:

>>> a + b + c
<Join size=6 {0, 1, 'abc', 'ikl', ...}>

Note that Join does not collapse the same elements in the joined domains:

>>> a = hd.Range(2)
>>> b = hd.Range(3)
>>> a + b
<Join size=5 {0, 1, 0, 1, 2}>

Let us make now a small detour: Each domain can create a random element by calling generate_one():

>>> a = hd.Range(2)
>>> b = hd.Values(["abc", "ikl", "xyz"])
>>> c = hd.Values([123])
>>> d = a + b + c
>>> d.generate_one()
"ikl"

By default, domains return each element with the same probability and Join is not an exception. Therefore, each
element of d has probablity 1/6 to be returned by generate_one() (d has six elements).

This can be changed by ratios argument:

>>> d2 = hd.Join((a, b, c), ratios=(1, 1, 1))

First, we choose with the same probability (1:1:1) from which subdomain we want to pick an element and
generate_one() is called on the selected domain. Therefore 123 will occur with probability 1/3; “ikl” has proba-
bility 1/9.

4.3 Laziness of domains

A domain is generally a lazy object that does not eagerly construct its elements. Therefore if we use code like this:

>>> import haydi as hd
>>> a = hd.Range(1000000)
>>> a * a * a
<Product size=1000000000000000000 {(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 0, 3), ...}>

we obtain the result instantly, it only instantiates first few objects for the repr string. The ways how to instantiate
elements from a domain is explained in Pipeline.

4.4 Transformations

Another way of creating new domains is applying a transformation on an existing domain. There are two basic
transformations: map and filter.

10 Chapter 4. Domains

Haydi Documentation, Release 1.0

4.4.1 Map

Map transformation takes elements of a domain and applies a function to each element to create a new domain:

>>> a = hd.Range(4).map(lambda x: x * 10)
>>> a
<MapTransformation size=4 {0, 10, 20, 30}>

The resulting object is again a domain. For example we can make a product of it:

>>> a * a
<Product size=16 {(0, 0), (0, 10), (0, 20), (0, 30), ...}>

4.4.2 Filter

Filter transformation creates a new domain by removing some elements from an existing domain. What elements are
removed is configured by providing a function that is called for each element and should return True/False. When the
function returns True, then the element is put into the new domain.

>>> hd.Range(10).filter(lambda x: x % 2 == 0 and x > 5)
<FilterTransformation size=10 filtered>

As we can see, the returned repr string is a different from what we have seen so far. The flag ‘filtered’ means that
domain contains a filter transformation and the size argument is not exact but only an upper bound. The reason is
that to obtain a real size we need to apply the filter function to each element (which would require going through a
potentially very large domain).

If we transform the domain into the list, we force the evaluation of the domain and obtain:

>>> list(a)
[6, 8]

The ‘filtered’ flag is propaged during the composition of domains. When a domain is created by composing at least
one filtered domain, it is also filtered:

>>> p = a * a
<Product size=100 filtered>

4.5 Names

It is possible to provide a name for a domain as an argument in the domain constructor. This name serves only for
debugging purposes. For example:

>>> import haydi as hd
>>> a = hd.Range(10, name="MyRange")
>>> a
<MyRange size=10 {0, 1, 2, 3, ...}>
>>> a.name
'MyRange'

>>> a = hd.Range(10)
>>> hd.Product((a, a), name="MyProduct")
<MyProduct size=100 {(0, 0), (0, 1), (0, 2), (0, 3), ...}>

4.5. Names 11

Haydi Documentation, Release 1.0

12 Chapter 4. Domains

CHAPTER 5

Pipeline

This section contains a description of working with elements of domains. The main message of this section is that
there are three basic methods of creating a stream of elements from a domain:

• iterate() – stream of all elements in domain

• cnfs() – stream of all canonical elements in domain

• generate() – stream of random elements from domain

The rest of this section describes the whole machinery in more detail. If you are interested in sequential computations
only, and you want to handle the stream manually, you can just directly use Python iterators as follows:

>>> import haydi as hd
>>> for x in hd.Subsets(hd.Range(10)).generate(5): # print five random subsets
>>> print x

The purpose of the pipeline is to simplify some common operations and enable transparent distributed computations.

5.1 Overview

The whole pipeline is composed of the following elements:

• Domain – a domain as described in the previous section

• Method – how to take elements from the domain into the stream

13

Haydi Documentation, Release 1.0

• Transformations – transformations of the stream

• Action – final aggregation of results

• Run – the actual invocation of the pipeline

5.2 Method

There are three methods how we can walk through a domain: iterate, iterate through canonical forms and random
generation.

5.2.1 Iterate

A pipeline that iterates through all elements is created by method iterate():

>>> import haydi as hd
>>> domain = hd.Range(2) * hd.Range(2)
>>> domain.iterate()
<Pipeline for Product: method=iterate action=Collect>

Calling iterate() on a domain creates a pipeline object. Moreover, we can also see that the default action is
Collect. This action simply takes all elements and put them into the list. More details about actions can be found in
Section Actions.

The pipeline is a lazy object and no elements are actually constructed. To run the pipeline, we need to call run()
method:

>>> domain.iterate().run()
[(0, 0), (0, 1), (1, 0), (1, 1)]

The iterate() method iterates through all elements in the domain. It is guaranteed that each element in the domain
occurs in the stream in the same number of occurrences as in the domain. The actual order of elements in the stream
is not guaranteed.

5.2.2 Canonical forms

Iterating over canonical elements is a more complex operation, hence there is a dedicated section about this topic:
Canonical forms.

5.2.3 Random elements

A pipeline that generates random elements from a domain is created by method generate(count=None), where
the optional parameter count specifies the number of generated elements:

>>> domain = hd.Range(2) * hd.Range(2)
>>> domain.generate(5)
[(0, 1), (0, 0), (1, 0), (0, 0), (1, 1)]

By default, all elements are generated with the same probability, however it can be configured in some places. See the
API documentation for Join.

When the argument of generate is None, then we obtain an infinite pipeline of random instances. It usually makes
sense in combination with a filter and setting a limit after the filter.

14 Chapter 5. Pipeline

Haydi Documentation, Release 1.0

For example, the following code generates 10 pairs whose sum is 11:

>>> domain = hd.Range(10) * hd.Range(10)
>>> domain.generate().filter(lambda x: x[0] + x[1] == 11).take(5).run()
[(3, 8), (5, 6), (9, 2), (3, 8), (6, 5)]

Transformation take(5) limits the pipeline for the first five elements. As an exercise we left what happens when we
put 5 as the argument for generate and remove the take. TODO

5.3 Transformations

The current version offers three pipeline transformations:

• map(fn) – maps the function fn on each element that goes through the pipeline

• filter(fn) – filters elements in the pipeline according to the provided function

• take(count) – takes only first count elements from pipeline

At the first sight, there is an overlap between transformations on domains and in the pipeline. In fact, they have in
many cases completely the same effect:

>>> domain = hd.Range(5)
>>> domain.map(lambda x: x * 10).iterate().run() # Create a new domain and then
→˓iterate
[0, 10, 20, 30, 40]
>>> domain.iterate().map(lambda x: x * 10).run() # Transformation in pipeline
[0, 10, 20, 30, 40]

So why distinguish transformations in pipelines and on domains? The reason is that in the pipeline, we know that pro-
cess of the domain creation is completed and have more freedom for additional features and optimizations. We already
have a stream of elements; therefore, we can introduce take transformation. Moreover, the pipeline transformations
do not have limitation in case of Strict domains that are important in the usage of cnfs().

For performance reasons, pipeline transformations provide more opportunities for efficient distributed computations.
Therefore, Haydi prefers map and filter transformations as pipeline transformations rather than domain transforma-
tions. For this reason, Haydi automatically moves last transformations on domains to the pipeline; therefore, the above
example actually creates the same pipeline (with one pipeline transformation):

>>> domain.map(lambda x: x * 10).iterate()
<Pipeline for Range: method=iterate ts=[MapTransformation] action=Collect>
>>> domain.iterate().map(lambda x: x * 10)
<Pipeline for Range: method=iterate ts=[MapTransformation] action=Collect>

Of course ‘inner’ domain transformations cannot be moved. For example the following code creates a pipeline without
any transformation (the transformation remains hidden inside the domain composition):

>>> domain = hd.Subsets(hd.Range(3).map(lambda x: x * x))
>>> domain.iterate().run()
[{}, {0}, {0, 1}, {0, 1, 4}, {0, 4}, {1}, {1, 4}, {4}]
>>> domain.iterate()
<Pipeline for Subsets: method=iterate action=Collect>

5.3. Transformations 15

Haydi Documentation, Release 1.0

5.4 Actions

Action is a terminal operation on a stream of elements. The list of operations follows; more details can be found in
API documentation of Pipeline.

5.4.1 Collect

Action collect creates a list from the stream:

>>> hd.Range(5).iterate().collect().run()
[0, 1, 2, 3, 4]

The collect is the default action; therefore, the above code is equivalent to:

>>> hd.Range(5).iterate().run()
[0, 1, 2, 3, 4]

5.4.2 First

Action first takes the first element from the stream. If the stream is empty it returns the provided argument (the default
is None).

>>> hd.Range(5).iterate().first().run()
0
>>> hd.Range(5).filter(lambda x: x > 10).first().run()
None
>>> hd.Range(5).filter(lambda x: x > 10).first("no value").run()
'no value'

5.4.3 Reduce

Action reduce applies a binary operation on elements of the stream:

>>> hd.Range(10).reduce(lambda x, y: x + y).run()
45

You can optionally specify an initial value:

>>> hd.Range(10).reduce(lambda x, y: x + y, -3).run()
42

It is assumed by default that the operation is associative, if that is not true, you have to explicitly specify it:

>>> hd.Range(10).reduce(lambda x, y: x - y, 100, associative=False).run()
55

5.4.4 Max

Action max gathers maximal elements in the stream, optionally it can take a function that extracts a value from the
element that is used for comparison. The second optional argument specifies the limit of maximal elements. No more
than the limit number of elements is returned; the rest of maximal elements is thrown away. Which maximal elements

16 Chapter 5. Pipeline

Haydi Documentation, Release 1.0

are thrown away and what are returned is not specified. If the value of the second argument is None (default) then all
maximal elements are returned:

>>> domain = hd.Range(5) * hd.Range(5)

>>> domain.max().run()
[(4, 4)]

>>> domain.max(lambda x: x[0]).run() # Maximum in the first element in the pair
[(4, 0), (4, 1), (4, 2), (4, 3), (4, 4)]

>>> domain.max(lambda x: x[0], 2).run() # At most two maximal elements
[(4, 0), (4, 1)]

5.4.5 Groups

Action groups divides elements in the stream into groups according to a key. The method takes a function that is
applied on each element to obtain the key.

>>> hd.Range(10).groups(lambda x: x % 3).run()
{0: [0, 3, 6, 9], 1: [1, 4, 7], 2: [2, 5, 8]}

Optionally, it takes an integer argument that limits the size of groups. No more than the limit number of elements is
returned for each group. What elements in the group are thrown away and what are returned is not specified.

>>> hd.Range(10).groups(lambda x: x % 3, 2).run()
{0: [0, 3], 1: [1, 4], 2: [2, 5]}

5.4.6 Groups_counts

This is an extension of Groups action that also returns the total number of elements including the elements that was
thrown away. The total number of elements is returned at the first index of the lists:

>>> hd.Range(10).groups_counts(lambda x: x % 3, 2).run()
{0: [4, 0, 3], 1: [3, 1, 4], 2: [3, 2, 5]}

5.5 Run

The run(ctx=None, timeout=None, otf_trace=False) method invokes the pipeline. By default, it
creates and executes a sequential computation without any time limit. This can be changed by arguments.

The ctx parameter defines a context used for the execution of the the pipeline. Providing an instance of a distributed
context, makes the pipeline parallel and distributed, see distributed computation.

Parameter timeout expects float (a number of seconds) or a timedelta object. This defines the maximum time
of the computation. If the allocated time runs out, the computation is stopped and a partial result is returned.

5.6 Shortcuts

To make the code more concise, there are the following defaults defined for the pipeline:

5.5. Run 17

Haydi Documentation, Release 1.0

• Method: iterate

• Transformations: None

• Action: collect

• Run: run()

Therefore, we can call .run() directly on domain and obtain the same results as using .iterate().
collect().run(). It automatically creates the default pipeline.

In the same manner, we can also directly call actions on a domain. It creates a pipeline with iterate() method.

Examples:

>>> hd.Range(5).run() # .iterate().collect() is used
[0, 1, 2, 3, 4]

>>> hd.Range(5).max().run() # .iterate() is used
[4]

When we create an iterator from a domain or a pipeline, we obtain an iterator to the result of pipeline where missing
elements are filled by defaults:

>>> list(hd.Range(5))
[0, 1, 2, 3, 4]

>>> list(hd.Range(5).map(lambda x: x * x))
[0, 1, 4, 9, 16]

>>> list(hd.Range(5).max())
[4]

5.7 Immutability of pipelines

Pipelines are immutable objects (as same domains); therefore, calling methods on them actually creates new objects.
It is thus safe to reuse them:

>>> pipeline = hd.Range(5).iterate()
>>> pipeline.take(2).run()
[0, 1]
>>> pipeline.max().run()
[4]

18 Chapter 5. Pipeline

CHAPTER 6

Set and Map

Domains distributed with Haydi use standard Python types almost in all places for example: Range creates a domain
where elements have type int, Product and Sequences use tuple as elements in the resulting domains. The
exceptions are Subsets that use haydi.Set and Mappings with haydi.Map, even though a natural choice
would be a standard set and dict. The reason is a performance optimization during generation (mainly in generating
Canonical forms).

If you need, both types can be simply converted into the standard ones:

>>> import haydi as hd
>>> a = hd.Range(2)

>>> hd.Subsets(a).map(lambda s: s.to_set()) # Creates standard Python sets
<MapTransformation size=4 {set([]), set([0]), set([0, 1]), set([1])}>

>>> hd.Subsets(a).map(lambda s: s.to_frozenset()) # Creates standard Python
→˓frozensets
<MapTransformation size=4 {frozenset([]), frozenset([0]), frozenset([0, , ...}>

>>> hd.Mappings(a, a).map(lambda m: m.to_dict()) # Creates standard Python dicts
<MapTransformation size=4 {{0: 0, 1: 0}, {0: 0, 1: 1}, {0: 1, 1: 0}, {0:, ...}>

Note: Classes Set and Map are not designed for frequent searching. If you need it, please convert them to set/dict.
From this reasons they do not intentionally implement methods __in__ and __getitem__ to avoid accident usage
theses class instead of set/dict. For occasional lookup, there are methods contains/get in these classes.

This is still a subject of discussions if we want to introduce __in__ and __getitem__ method for these classes.

19

Haydi Documentation, Release 1.0

20 Chapter 6. Set and Map

CHAPTER 7

Canonical forms

This section covers a feature that serves to iterate only non-isomorphic elements in a domain. It is based on iterating
over canonical forms – one element for each equivalence class of isomorphism.

Basic building blocks for the whole machinery are Atoms and USets, that allows to define bijections between elements.

7.1 Atoms and USets

Domain USet contains a finite number of instances of class Atom. When a new USet is created a number of atoms
and a name have to be specified. With a new USet new atoms are created. Each atom remembers its index number and
parent USet that created it:

>>> import haydi as hd
>>> uset = hd.USet(3, "a") # Create a new USet
>>> uset
<USet id=1 size=3 name=a>
>>> list(uset) # Atoms in uset
[a0, a1, a2]
>>> a0, a1, a2 = list(uset)
>>> a0.index
0
>>> a0.parent # Each Atom remembers its parent USet
<USet id=1 size=3 name=a>

From the perspective of pipeline methods iterate() and generate(), USet behaves as a kind of fancy Range
that wraps numbers into special objects.

The main difference between Range and USet arises when we introduce isomorphism. Let us remind that two
(discrete) objects are isomorphic if there exits a bijection between them that preserves the structure.

In our case, we are establishing bijection between atoms and two objects are isomorphic when we can obtain one from
another by replacing atoms according to the bijection.

Let us show some examples that use haydi.is_isomorphic() which checks isomorphism:

21

https://en.wikipedia.org/wiki/Canonical_form
https://en.wikipedia.org/wiki/Isomorphism

Haydi Documentation, Release 1.0

>>> a0, a1, a2 = hd.USet(3, "a")

>>> hd.is_isomorphic(a0, a1)
True # Because there is bijection: a0 -> a1; a1 -> a0; a2 -> a2

>>> hd.is_isomorphic((a0, a1), a1)
False # No mapping between atoms can bring us from a tuple to an atom

>>> hd.is_isomorphic((a0, a1), (a1, a2))
True # Because there is mapping: a0 -> a1; a1 -> a2; a2 -> a0

>>> hd.is_isomorphic((a0, a0), (a0, a1))
False # The explanation below

The bijection between objects in the last case cannot exists. The first tuple represents a pair of the same object and
“renaming” a0 to anything else preserves this property. The second one represents a pair of two different atoms (even
from the same USet) and any renaming cannot achieve the property of the first one (any mapping containing a0 ->
a0; a1 -> a0 is not bijective)

7.2 Atoms from different USets

Two atoms from different USets cannot be renamed to each other; i.e. they are never isomorphic. It can be seen as
each USet and its atoms have a different color.

>>> a0, a1 = hd.USet(2, "a")
>>> b0, b1 = hd.USet(2, "b")

>>> hd.is_isomorphic(a0, b0)
False # Map containing a0 -> b0 is not allowed

>>> hd.is_isomorphic((a0, b1), (a1, b0))
True # There is bijection: a0 -> a1; a1 -> a0; b0 -> b1; b1 -> b0

The bijection in the second case is correct, since each atom has an image from its parent USet.

Note: The name of an USet serves only for the debugging purpose and has no impact on behavior. Creating two
USets with the same name still creates two disjoint sets of atoms with their own parents.

7.3 Basic objects

So far, we have seen atoms and tuples of atoms in the examples. However, the whole machinery around isomorphisms
is implemented for objects that we call basic objects; they are inductively defined as follows:

• atoms, integers, strings, True, False, and None are basic objects

• a tuple of basic objects is a basic object

• haydi.Set of basic objects is a basic object

• haydi.Map where keys and values are basic objects is a basic object

Examples:

22 Chapter 7. Canonical forms

Haydi Documentation, Release 1.0

>>> a0, a1, a2 = hd.USet(3, "a")

>>> hd.is_isomorphic((a0, 1), (a0, 2))
False # Renaming is defined only for atoms, not for other objects

>>> hd.is_isomorphic((a0, 1), (a1, 1))
True # Bijection: a0 -> a1; a1 -> a0; a2 -> a2

>>> hd.is_isomorphic(hd.Set((a0, a1)), hd.Set((a2, a0)))
True # Bijection: a0 -> a0; a1 -> a2; a2 -> a1

7.4 Canonical forms

Since we are interested only in finite (basic) objects, they contain only finitely many atoms, so there are only finitely
many bijections (recall that USets are finite). Therefore, each class of equivalence induced by isomorphism is also
finite.

In Haydi, there there is a fixed linear ordering of all basic objects defined by haydi.compare(). Since each
isomorphic class is finite, hence each class has the smallest element according this ordering. We call this element as a
canonical form of the class.

The pipeline method cnfs() iterates only through canonical elements in a domain; therefore, we obtain only one
element for each equivalence class.

Let us show some examples:

>>> uset = hd.USet(3, "a")
>>> bset = hd.USet(3, "b")

>>> list(uset) # All elements
[a0, a1, a2]

>>> list(uset.cnfs()) # Canonical forms
[a0]

>>> list(uset + bset) # All elements
[a0, a1, a2, b0, b1, b2]

>>> list((uset + bset).cnfs()) # Canonical forms
[a0, b0]

>>> p = uset * uset
>>> list(p) # All elements
[(a0, a0), (a0, a1), (a0, a2),(a1, a0), (a1, a1),
(a1, a2), (a2, a0), (a2, a1), (a2, a2)]

>>> list(p.cnfs()) # Canonical forms
[(a0, a0), (a0, a1)]

>>> s = hd.Subsets(uset + bset, 2)
>>> list(s) # All elements
[{a0, a1}, {a0, a2}, {a0, b0}, {a0, b1}, {a0, b2}, {a1, a2}, {a1, b0},
{a1, b1}, {a1, b2}, {a2, b0}, {a2, b1}, {a2, b2}, {b0, b1}, {b0, b2}, {b1, b2}]

7.4. Canonical forms 23

Haydi Documentation, Release 1.0

>>> list(s.cnfs()) # Canonical forms
[{a0, a1}, {a0, b0}, {b0, b1}]

7.5 Strict domains

The pipeline method cnfs() is allowed only for strict domains. Strict domain is a domain that contains only basic
objects and is closed under isomorphism (if it contains an element, it contains also all isomorphic ones). We call it
“strict”, but it is usually not a problem to fulfill these criteria in practice.

All elementary domains except Values are always strict. (Domain CnfValues is a counter-part of Values for
canonical forms; see Domain CnfValues). The strictness of a domain can be checked by reading its attribute strict:

>>> hd.Range(10).strict
True

All basic domain compositions preserve strictness if and only if all their inner domains are also strict, e.g.:

>>> domain = hd.Subsets(hd.Range(5) * hd.USet(2))
>>> domain.strict
True

The only places where we have to be more careful are transformations and when we create a strict domain from explicit
elements. These topics are covered in next two subsections.

7.6 Transformations on strict domains

Generally transformations may break strict-domain invariant. A filter may remove some elements and left some
isomorphic ones. A map may even returns some non-basic objects. Therefore, a domain created by transformation is
non-strict by default.

In most cases, when we want to use cnfs() while applying a transformation, we can simply move the transformation
into the pipeline, where are no such restrictions, since in the pipeline we do not create a new domain:

>>> domain = hd.USet(3, "a") * hd.Range(4)

>>> list(domain.cnfs()) # This is Ok
>>> new_domain = domain.map(lambda x: SomeMyClass(x))

>>> new_domain.strict
False

>>> new_domain.cnfs() # Throws an error

>>> domain.cnfs().map(lambda x: SomeMyClass(x)) # This is ok, map is in pipeline

If we really need to create a new strict domain by applying a transformation, it is now possible only with filter by the
following way:

>>> domain = hd.USet(3, "a") * hd.Range(4)
>>> new_domain = domain.filter(lambda x: x[1] != 2, strict=True)
>>> new_domain.strict
True

24 Chapter 7. Canonical forms

Haydi Documentation, Release 1.0

>>> list(new_domain.cnfs())
[(a0, 0), (a0, 1), (a0, 3)]

When the filter parameter strict is set to True and the original domain is strict, then the resulting domain is still
strict.

Warning: It is the user’s responsibility to assure that strict filter removes all isomorphic elements. Fortunately, in
practice it is usually the desired behavior of filters. However, if the rule of strict filter is broken, the behavior of
cnfs() is undefined on such a domain.

7.7 Domain CnfValues

Domain Values creates a non-strict domain, since we cannot assure that all invariants are valid. If you want to create
a strict domain from explicit elements, you can use CnfValues. The difference is that CnfValues is constructed
from canonical elements and it automatically adds necessary objects into the domain to make it strict (i.e. it adds all
elements isomorphic to the given canonical elements):

>>> uset = hd.USet(3, "a")
>>> a0, a1, a2 = uset
>>> domain = hd.CnfValues((a0, (a0, a1), "x"))

>>> list(domain.cnfs())
[a0, (a0, a1), 'x']

>>> list(domain.iterate())
[a0, a1, a2, (a0, a1), (a0, a2), (a1, a0), (a1, a2), (a2, a0), (a2, a1), 'x']

7.8 Public functions

This is list of public methods that may be useful when you are working with canonical forms:

• is_canonical() – returns True if and only if a given is in canonical form.

• haydi.expand() – returns a list of isomorphic objects to a given objects.

• haydi.compare() – defines a linear ordering between two objects. The exact ordering is left is unspecified,
but it is guaranteed that for basic objects it stays fixed even between separated executions.

• haydi.sort() – sorts object according hayd.compare.

7.7. Domain CnfValues 25

Haydi Documentation, Release 1.0

26 Chapter 7. Canonical forms

CHAPTER 8

Distributed computation

The pipeline computation in Haydi can be transparently executed through dask/distributed. This enables distributed
computation or local parallel computation.

Switching pipeline from default serial context to distributed one, is done through providing a class to run method in
the pipeline.

8.1 Local computation

The following example shows how to start four local dask/distributed workers and run Haydi computation on them:

>>> from haydi import DistributedContext
>>> dctx = DistributedContext(spawn_workers=4)
>>> hd.Range(100).map(lambda x: x + 1).collect().run(ctx=dctx)
[1, 2, 3, 4, ...]

The argument spawn_workers forces DistributedContext to spawn dask/distributed workers for you.
Switching pipeline from default serial context to distributed one, is done through providing a distributed context
to run method in the pipeline.

8.2 Distributed computation

If you want to distribute the computation amongst multiple computers, you first have to create a distributed cluster.
An example of cluster setup can be found here. Once the cluster is created, simply pass the IP adress and port of the
clusters’ scheduler to the context:

>>> dctx = DistributedContext(ip='192.168.1.1', port=8787)
connects to cluster at 192.168.1.1:8787
>>> hd.Range(100).map(lambda x: x + 1).collect().run(ctx=dctx)
[1, 2, 3, 4, ...]

27

https://distributed.readthedocs.io/
https://distributed.readthedocs.io/en/latest/setup.html

Haydi Documentation, Release 1.0

8.3 Limitations

The nested distributed computations are not allowed, i.e. you cannot run distributed pipeline in another distributed
pipeline. The following example shows the invalid case:

>>> def worker(x):
... r = hd.Range(x)
... # invalid! sequential run() must be used
... return r.collect().run(DistributedContext(spawn_workers=4))
THIS IS INVALID - nested distributed computations are not allowed
>>> hd.Range(100).map(worker).run(DistributedContext(spawn_workers=4))

28 Chapter 8. Distributed computation

CHAPTER 9

Cookbook

Cookbook of Haydi snippets for commonly occurring patterns:

9.1 Graphs

Directed graphs (subsets of pair of nodes):

>>> nodes = hd.USet(3, "n")
>>> graphs = hd.Subsets(nodes * nodes)

Undirected graphs (subsets of two-element sets):

>>> nodes = hd.USet(3, "n")
>>> graphs = hd.Subsets(Subsets(nodes, 2))

Directed graphs with labeled arcs by “x” or “y”:

>>> nodes = hd.USet(3, "n")
>>> graphs = hd.Subsets(nodes * nodes * hd.Values(("x", "y"))

Undirected graphs with 2 “red” and 3 “blue” vertices:

>>> nodes = hd.USet(2, "red") + hd.USet(3, "blue")
>>> graphs = hd.Subsets(Subsets(nodes, 2))

9.2 Automata

Deterministic finite automaton with more accepting states:

>>> SIMPLE TODO

29

Haydi Documentation, Release 1.0

Deterministic one-counter automata:

>>> SIMPLE TODO

Deterministic push-down automata:

>>> SIMPLE TODO

30 Chapter 9. Cookbook

CHAPTER 10

Performance tips

This section collects tips for better performace.

10.1 Materialization of domains

TODO

10.2 Step jumps

TODO

31

Haydi Documentation, Release 1.0

32 Chapter 10. Performance tips

CHAPTER 11

Contact

11.1 Authors

• Stanislav Böhm <stanislav.bohm at vsb.cz>

• Jakub Beránek <berykubik at gmail.com>

• Martin Šurkovský <martin.surkovsky at gmail.com>

11.2 Acknowledgment

The development of Haydi was supported by the Grant Agency of the Czech Republic, project GAČR 15-13784S. Core
hours for optimization on HPC infrastructure was provided by project OPEN-8-26 at the National Supercomputing
Center IT4Innovations.

33

	Overview
	Example of usage

	Example: Černy's conjecture
	Installation
	Basic installation
	Distributed run
	PyPy

	Domains
	Elementary Domains
	Composition
	Laziness of domains
	Transformations
	Names

	Pipeline
	Overview
	Method
	Transformations
	Actions
	Run
	Shortcuts
	Immutability of pipelines

	Set and Map
	Canonical forms
	Atoms and USets
	Atoms from different USets
	Basic objects
	Canonical forms
	Strict domains
	Transformations on strict domains
	Domain CnfValues
	Public functions

	Distributed computation
	Local computation
	Distributed computation
	Limitations

	Cookbook
	Graphs
	Automata

	Performance tips
	Materialization of domains
	Step jumps

	Contact
	Authors
	Acknowledgment

