

Haskell Tutorials

Contents:

	Opaleye Tutorials
	Instant Gratification

	Basic DB mappings

	Advanced DB Mappings

	Selecting rows

	Inserting rows

	Updating rows

	Reflex Tutorials
	An outline of the tutorials

	Getting Started with Reflex

	A server-client architecture

	Webapp Framework
	Migrations: Creating and editing DB models

	Basic CRUD Operations with models

	General validation helpers

	Strict model validations

	Deploying

	Outline

Opaleye Tutorials

Contents:

	Instant Gratification
	Overview

	Preliminaries

	Teaching your table schema to Opaleye

	Connecting to the Postgresql database

	Selecting all rows

	Inserting a row

	Updating a row

	Selecting a single row

	Basic DB mappings
	Overview

	Creating the DB

	Strange polymorphic records

	Different types for read & write

	Handling NULL and database defaults

	Different types for read & write - again

	Wrapping-up

	Template Haskell expansion

	Advanced DB Mappings
	Overview

	SQL for table creation

	Code that we’ll run through

	Core mechanism for mapping custom Haskell types to PG types

	Newtypes for primary keys

	Mapping ENUMs to Haskell ADTs

	Handing Postgres Arrays

	Handling JSONB

	Making columns read-only

	Selecting rows

	Inserting rows
	SQL for table creation

	Inserting rows

	Getting the ID of a newly inserted row

	Three functions missing from the Opaleye API

	Dealing with errors

	Using a different record-type for INSERTs

	Updating rows
	SQL for table creation

	Updating rows

	Getting the updated rows back from the DB

	Commentary on Opaleye’s update APIs

	Multi-table updates (updates with JOINs)

Instant Gratification

Overview

We’ll start by quickly running through the following DB operations, which should give you a sense of “instant gratification” (as the title says!) However, do not start writing apps with Opaleye just after reading this. As they say, a little knowledge is a dangerous thing! We strongly encourage you to read all the chapters in this tutorial before using Opaleye in any serious project.

	Connecting to the Postgres DB

	Selecting multiple rows

	Selecting a row

	Inserting a row

	Updating a row

	Selecting a single row

Preliminaries

	Install PostgreSQL. Create a database. Run the table creation script given below.

create table users(
 id serial primary key
 ,name text not null
 ,email text not null
);

insert into users(name, email) values ('John', 'john@mail.com');
insert into users(name, email) values ('Bob', 'bob@mail.com');
insert into users(name, email) values ('Alice', 'alice@mail.com');

	Install opaleye using your favourite package management tool

	Fire up your favourite text editor and copy-paste the code snippet below, and make sure it compiles without any errors.

{-# LANGUAGE Arrows #-}
module Main where

import Opaleye
import Database.PostgreSQL.Simple
import Data.Profunctor.Product (p3)
import Control.Arrow

userTable :: Table
 (Column PGInt4, Column PGText, Column PGText) -- read type
 (Column PGInt4, Column PGText, Column PGText) -- write type
userTable = Table "users" (p3 (required "id",
 required "name",
 required "email"))

selectAllRows :: Connection -> IO [(Int, String, String)]
selectAllRows conn = runQuery conn $ queryTable userTable

insertRow :: Connection -> (Int, String, String) -> IO ()
insertRow conn row = do
 runInsertMany conn userTable [(constant row)]
 return ()

selectByEmail :: Connection -> String -> IO [(Int, String, String)]
selectByEmail conn email = runQuery conn $ proc () ->
 do
 row@(_, _, em) <- queryTable userTable -< ()
 restrict -< (em .== constant email)
 returnA -< row

updateRow :: Connection -> (Int, String, String) -> IO ()
updateRow conn row@(key, name, email) = do
 runUpdate
 conn
 userTable
 (_ -> constant row) -- what should the matching row be updated to
 (\ (k, _, _) -> k .== constant key) -- which rows to update?
 return ()

main :: IO ()
main = do
 conn <- connect ConnectInfo{connectHost="localhost"
 ,connectPort=5432
 ,connectDatabase="opaleye_tutorial"
 ,connectPassword="opalaye_tutorial"
 ,connectUser="opaleye_tutorial"
 }

 allRows <- selectAllRows conn
 print allRows

 insertRow conn (4, "Saurabh", "saurabhnanda@gmail.com")

 row <- selectByEmail conn "saurabhnanda@gmail.com"
 print row

 updateRow conn (4, "Don", "corleone@puzo.com")

 allRows <- selectAllRows conn
 print allRows

 return ()

Now read on to understand what this code is doing...

Teaching your table schema to Opaleye

Let’s tackle the cryptic userTable definition at the very beginning of this code.

userTable :: Table
 (Column PGInt4, Column PGText, Column PGText) -- read type
 (Column PGInt4, Column PGText, Column PGText) -- write type
userTable = Table "users" (p3 (required "id",
 required "name",
 required "email"))

Here’s what it is basically teaching Opaleye:

	We will be reading rows of the type (Column PGInt4, Column PGText, Column PGText) from the table. The Column a type is what Opaleye uses to represent Postgres columns in Haskell-land. So integer columns become Column PGInt4, varchar columns become Column PGText and so on.

	We will be writing rows of the same type to the table. (Opaleye allows you to read and write rows of different types for very valid reasons. Read Basic DB mappings for more details on this.)

	The table’s name is users

	The first column in the table is called id; it is required; and it maps to the first value of the tuple. Marking a column required means that you will have to specify a value for it whenever you are inserting or updating a row via Opaleye. You can mark a column as optional as well, but we talk about the subtle differences between required, optional, NULL and NOT NULL in the Basic DB mappings chapter.

	The second column in the table is called name; it is required; and it maps to the second value of the tuple.

	The third column in the table is called email; it is required; and it maps to the third value of the tuple.

We will need to use userTable to SELECT, INSERT, UPDATE, or DELETE from the users table via Opaleye.

To learn more about mapping different types of DB schemas to Opaleye’s Table types, please read Basic DB mappings and Advanced DB Mappings chapters.

Connecting to the Postgresql database

Opaleye uses postgresql-simple [https://hackage.haskell.org/package/postgresql-simple] to actually talk to the database.So, we first start by getting hold of a DB Connection using postgres-simples’s connect function:

conn <- connect ConnectInfo{connectHost="localhost"
 ,connectPort=5432
 ,connectDatabase="opaleye_tutorial"
 ,connectPassword="opalaye_tutorial"
 ,connectUser="opaleye_tutorial"
 }

Warning

Please take care to change the DB connection settings based on your local system.

Selecting all rows

Next we fetch and print all the rows from the users table:

allRows <- selectAllRows conn
print allRow

which calls selectAllRows:

selectAllRows :: Connection -> IO [(Int, String, String)]
selectAllRows conn = runQuery conn $ queryTable userTable

This uses runQuery, which is basically SELECT in Opaleye. Please take special note of the type signature of this function. It evaluates to IO [(Int, String, String)], whereas we clearly told Opaleye that we will be reading rows of type (Column PGInt4, Column PGText, ColumnPGText). So, why doesn’t this function evaluate to IO [(Column PGInt4, Column PGText, ColumnPGText)]?

This is because Opaleye knows how to convert most basic data types from DB => Haskell (eg. PGInt4 => Int). And vice versa.

However, here’s a gotcha! Try compiling ths function without the type signature. The compiler will fail to infer the types. This is also due to the underlying infrastructure that Opaleye uses to convert DB => Haskell types. To understand this further, please read Advanced DB Mappings.

Inserting a row

insertRow :: Connection -> (Int, String, String) -> IO ()
insertRow conn row = do
 runInsertMany conn userTable [(constant row)]
 return ()

This function uses runInsertMany which is basically Opaleye’s version of INSERT, but it only supports inserting multiple rows. This is why it is called runInsertMany instead of runInsert and the third argument is a list of rows.

Note

So, what does constant row do? It converts Haskell types => DB types, i.e. (Int, String, String) => (Column PGInt4, Column PGText, Column PGText) This is because we clearly told Opaleye that we will be writing rows of type (Column PGInt4, Column PGText, Column PGText) to userTable. However, our program doesn’t deal with values of type Column PGText or Column PGInt4 directly. So, this function - insertRow - gets a regular (Int, String, String) tuple and uses constant to convert it to (Column PGInt4, Column PGText, Column PGText) before handing it over to Opaleye.

Note

Strangely, while runQuery converts DB => Haskell types automagically, runInsertMany and runUpdate refuse to do Haskell => DB conversions on their own. Hence the need to do it explicitly when using these functions.

Updating a row

updateRow :: Connection -> (Int, String, String) -> IO ()
updateRow conn row@(key, name, email) = do
 runUpdate
 conn
 userTable
 (_ -> constant row) -- what should the matching row be updated to
 (\ (k, _, _) -> k .== constant key) -- which rows to update?
 return ()

	As you can see from this function, updating rows in Opaleye is not very pretty! The biggest pain is that you cannot specify only a few columns from the row – you are forced to update the entire row. More about this in Updating rows.

	You already know what constant row does - it converts a Haskell datatype to its corresponding PG data type, which for some strange reason, Opaleye refuses to do here automagically.

	The comparison operator .== is what gets translated to equality operator in SQL. We cannot use Haskell’s native equality operator because it represents equality in Haskell-land, whereas we need to represent equality when it gets converted to SQL-land. You will come across a lot of such special operators that map to their correspnding SQL parts.

Selecting a single row

Warning

Caution! Extreme hand-waving lies ahead. This is probably an incorrect explanation, but should work well-enough to serve your intuition for some time.

selectByEmail :: Connection -> String -> IO [(Int, String, String)]
selectByEmail conn email = runQuery conn $ proc () ->
 do
 row@(_, _, em) <- queryTable userTable -< ()
 restrict -< (em .== constant email)
 returnA -< row

And finally, the last section of this chapter introduces you to a weird arrow notation -<, which we have absolutely no clue about! All we know is that it works... mostly!

Check the type of row@(_, _, em) in your editor. It should be (Column PGInt4, Column PGText, Column PGText), which means that if we do some hand-waving, here’s what’s happening in this function:

	queryTable userTable -< () maps to a SELECT clause in SQL-land.

	The columns selected are conceptually capurted in row@(_, _, em) in SQL-land (which is why the row is a PG type instead of a Haskell type).

	restrict maps to WHERE in SQL.

	The WHERE condition, i.e. em .== constant email needs to convert email, which is of type String, to Column PGText (through the constant function) before it can compare it with em

	Finally returnA does some magic to return the row back to Haskell-land. Notice, that we don’t have to do a DB => Haskell conversion here, because, as mentioned earlier, runQuery does that conversion automagically.

Basic DB mappings

Overview

In this chapter we will configure the DB<=>Haskell mapping for the following table:

	tenants - the master table of “tenants” in a typical multi-tenant SaaS app. You can think of a tenant as a “company account”, where no two company accounts share any data.

At the end of the mapping process, we would like to have a schema as close to the following, as possible.

--
-- Tenants
--

create table tenants(
 id serial primary key
 ,created_at timestamp with time zone not null default current_timestamp
 ,updated_at timestamp with time zone not null default current_timestamp
 ,name text not null
 ,first_name text not null
 ,last_name text not null
 ,email text not null
 ,phone text not null
 ,status text not null default 'inactive'
 ,owner_id integer
 ,backoffice_domain text not null
 constraint ensure_not_null_owner_id check (status!='active' or owner_id is not null)
);
create unique index idx_index_owner_id on tenants(owner_id);
create index idx_status on tenants(status);
create index idx_tenants_created_at on tenants(created_at);
create index idx_tenants_updated_at on tenants(updated_at);
create unique index idx_unique_tenants_backoffice_domain on tenants(lower(backoffice_domain));

Further, we will see how Opaleye deals with the following four cases:

	Non-nullable columns without DB-specified defaults

	Non-nullable columns with DB-specified defaults

	Nullable columns without DB-specified defaults

	Nullable columns with DB-specified defaults - TODO: What’s a good use-case for such a column?

Creating the DB

Since Opaleye does not have any support for migrations, setting up the DB schema is done by simply issuing SQL statement directly.

$ createdb vacationlabs
$ psql vacationlabs < includes/db-mappings/schema.sql

Now, to setup the DB<=>Haskell mapping for the tenants table, we’ll walk down the following code:

module DB where

import Opalaye
import Data.Text
import Data.Time (UTCTime)

data TenantPoly key createdAt updatedAt name status ownerId backofficeDomain = Tenant {
 tenantKey :: key
 ,tenantCreatedAt :: createdAt
 ,tenantUpdatedAt :: updatedAt
 ,tenantName :: name
 ,tenantStatus :: status
 ,tenantOwnerId :: ownerId
 ,tenantBackofficeDomain :: backofficeDomain
 } deriving Show

type TenantPGWrite = TenantPoly
 (Maybe (Column PGInt8)) -- key
 (Maybe (Column PGTimestamptz)) -- createdAt
 (Column PGTimestamptz) -- updatedAt
 (Column PGText) -- name
 (Column PGText) -- status
 (Column (Nullable PGInt8)) -- ownerId
 (Column PGText) -- backofficeDomain

type TenantPGRead = TenantPoly
 (Column PGInt8) -- key
 (Column PGTimestamptz) -- createdAt
 (Column PGTimestamptz) -- updatedAt
 (Column PGText) -- name
 (Column PGText) -- status
 (Column (Nullable PGInt8)) -- ownerId
 (Column PGText) -- backofficeDomain

type Tenant = TenantPoly
 Integer -- key
 UTCTime -- createdAt
 UTCTime -- updatedAt
 Text -- name
 Text -- status
 (Maybe Integer) -- ownerId
 Text -- backofficeDomain

$(makeAdaptorAndInstance "pTenant" ''TenantPoly)
$(makeLensesWith abbreviatedFields ''TenantPoly)

tenantTable :: Table TenantPGWrite TenantPGRead
tenantTable = Table "tenants" (pTenant Tenant{
 tenantKey = optional "id"
 ,tenantCreatedAt = optional "created_at"
 ,tenantUpdatedAt = required "updated_at"
 ,tenantName = required "name"
 ,tenantStatus = required "status"
 ,tenantOwnerId = required "owner_id"
 ,tenantBackofficeDomain = required "backoffice_domain"
 })

That’s quite a lot of code to setup mappings for just one table! Most of it is just boilerplate that can easily be abstracted away using type-families or some TemplateHaskell. In fact there are libraries, such as, SilkOpaleye and dbrecord-opaleye which try to give Opaleye an easier-to-use API.

Strange polymorphic records

Firstly, let’s tackle the strangely polymorphic TenantPoly.

data TenantPoly key createdAt updatedAt name status ownerId backofficeDomain = Tenant {
 tenantKey :: key
 ,tenantCreatedAt :: createdAt
 ,tenantUpdatedAt :: updatedAt
 ,tenantName :: name
 ,tenantStatus :: status
 ,tenantOwnerId :: ownerId
 ,tenantBackofficeDomain :: backofficeDomain
 } deriving Show

This is a base type which defines the shape of a set of related record-types (namely TenantPGRead, TenantPGWrite, and Tenant). TenantPoly is polymorphic over every single field of the record. This allows us to easily change the type of each field, while ensuring that the shape of all these related records is always the same. (Why would we want records with similar shapes, but different types, will get clearer in a moment - hang in there!) Generally, TenantPoly is never used directly in any Opaleye operation. The concrete types - TenantPGRead TenantPGWrite and Tenant - are used instead.

At the the time of writing, Opalaye does not do any reflection on the DB schema whatsoever. This is very different from something like Rails (in the Ruby world) and HRR (in the Haskell world), which generate the DB<=>Haskell mappings on the basis of schema reflection). So, Opaleye does not know what data-types to expect for each column when talking to the DB. Therefore, we have to teach it by essentially duplicating the SQL column definitions in Haskell. This is precisely what TenantPGRead, TenantPGWrite, makeAdaptorAndInstance and tenantTable do, and this is what we absolutely hate about Opaleye!

Note

We’ve scratched our own itch here and are working on Opaleye Helpers [https://github.com/vacationlabs/opaleye-helpers/] to help remove this duplication and boilerplate from Opaleye.

type TenantPGWrite = TenantPoly
 (Maybe (Column PGInt8)) -- key
 (Maybe (Column PGTimestamptz)) -- createdAt
 (Column PGTimestamptz) -- updatedAt
 (Column PGText) -- name
 (Column PGText) -- status
 (Column (Nullable PGInt8)) -- ownerId
 (Column PGText) -- backofficeDomain

type TenantPGRead = TenantPoly
 (Column PGInt8) -- key
 (Column PGTimestamptz) -- createdAt
 (Column PGTimestamptz) -- updatedAt
 (Column PGText) -- name
 (Column PGText) -- status
 (Column (Nullable PGInt8)) -- ownerId
 (Column PGText) -- backofficeDomain

$(makeAdaptorAndInstance "pTenant" ''TenantPoly)

tenantTable :: Table TenantPGWrite TenantPGRead
tenantTable = Table "tenants" (pTenant Tenant{
 tenantKey = optional "id"
 ,tenantCreatedAt = optional "created_at"
 ,tenantUpdatedAt = optional "updated_at"
 ,tenantName = required "name"
 ,tenantStatus = required "status"
 ,tenantOwnerId = required "owner_id"
 ,tenantBackofficeDomain = required "backoffice_domain"
 })

Different types for read & write

With this, we witness another quirk (and power) of Opaleye. It allows us to define different types for the read (SELECT) and write (INSERT/UPDATE) operations. In fact, our guess is that, to achieve type-safety, it is forced to do this. Let us explain. If you’re using standard auto-increment integers for the primary key (which most people do), you essentially end-up having two different types for the INSERT and SELECT operations. In the INSERT operation, you should not be specifying the id field/column. Whereas, in the SELECT operation, you will always be reading it. (Look at Persistent if you want to see another approach of solving this problem.)

One way to avoid having separate types for read & write operations, is to allow the PK field to be undefined in Haskell, being careful not to evaluate it when dealing with a record that has not yet been saved to the DB. We haven’t tried this approach yet, but we’re very sure it would require us to teach Opalaye how to map undefined values to SQL. Nevertheless, depending upon partially defined records for something as common as INSERT operations does not bode too well for a language that prides itself on type-safety and correctness.

Therefore, the need for two separate types: TenantPGRead and TenantPGWrite, with subtle differences. But, before we discuss the differences, we need to understand how Opaleye deals with NULL values and “omitted columns”.

Handling NULL and database defaults

Let’s look at the types of a few fields from TenantPGWrite and how they interact with NULL values and the DEFAULT value in the DB:

The (Column a) types

	updatedAt of type (Column PGTimestamptz) corresponding to updated_at timestamp with time zone not null default current_timestamp

	name of type (Column PGText) corresponding to name text not null

	status of type (Column PGText) corresponding to status text not null default 'inactive'

In each of these cases you have to specify the field’s value whenever you are inserting or updating via Opaleye. Moreover, the type ensures that you cannot assign a null value to any of them at the Haskell-level. Please note, null is NOT the same as Nothing

The (Maybe (Column a)) types

	key of type (Maybe (Column PGInt8)) corresponding to id serial primary key

	createdAt of type (Maybe (Column PGTimestamptz)) corresponding to created_at timestamp with time zone not null default current_timestamp

In both these cases, during an INSERT, if the value is a Nothing, the entire column itself will be omitted from the INSERT statement and its fate will be left to the DB.

The (Column (Nullable a)) types

	ownerId of type (Column (Nullable PGInt8)) corresponding to owner_id integer

In this case, while you have to specify a value at the Haskell level, you can specify a null as well.

For example, this is a possible INSERT operation:

runInsertMany
 conn -- PG Connection
 userTable -- Opaleye table identifer
 [(
 TenantPGWrite
 {
 tenantKey = Nothing -- column will be omitted from query; will use DB's DEFAULT
 , tenantCreatedAt = Just $ pgUTCTime someTime -- column will NOT be omitted from query; will NOT use DB's DEFAULT
 , tenantUpdatedAt = pgUTCTime someTime
 , tenantName = pgText "Saurabh"
 , tenantStatus = pgText "inactive"
 , tenantOwnerId = null -- specfically store a NULL value
 , tenantBackofficeDomain = pgText "saurabh.vacationlabs.com"
 }
)]

Note

Please make sure you understand the difference between Maybe (Column a) and Column (Nullable a). And possibly Maybe (Column (Nullable a)) - although we’re not sure how useful the last one is!

Different types for read & write - again

Now, coming back to the subtle differences in TenantPGWrite and TenantPGRead:

	While writing, we may omit the key and createdAt columns (because their type is (Maybe (Column x)) in TenantPGWrite)

	However, while reading, there is really no way to omit columns. You can, of course select 2 columns instead of 3, but that would result in completely different data types, eg: (Column PGText, Column PGInt4) vs (Column PGText, Column PGInt4, Column PGTimestamptz).

	If your result-set is obtained from a LEFT JOIN, you can have a PGRead type of (Column a, Column b, Column (Nullable c), Column (Nullable d)), with the Nullable columns repreenting the result-set in a type-safe manner.

Note

Here are two small exercises:

What if ownerId had the following types. What would it mean? What is a possible use-case for having these types?

	TenantPGWrite: (Maybe (Column (Nullable PGInt8)))

	TenantPGRead: (Column (Nullable PGInt8))

And what about the following types for onwerId?

	TenantPGWrite: (Maybe (Column PGInt8))

	TenantPGRead: (Column (Nullable PGInt8))

Making things even more typesafe: If you notice, TenantPGWrite has the key field as (Maybe (Column PGInt8)), which makes it omittable, but it also makes it definable. Is there really any use of sending the primary-key’s value from Haskell to the DB? In most cases, we think not. So, if we want to make this interface uber typesafe, Opaleye allows us to do the following as well (notice the type of key):

type TenantPGWrite = TenantPoly
 () -- key
 (Maybe (Column PGTimestamptz)) -- createdAt
 (Column PGTimestamptz) -- updatedAt
 (Column PGText) -- name
 (Column PGText) -- status
 (Column (Nullable PGInt8)) -- ownerId
 (Column PGText) -- backofficeDomain

See also

You’ll need to do some special setup for this to work as described in Making columns read-only

Wrapping-up

Coming to the last part of setting up DB<=>Haskell mapping with Opaleye, we need to issue these magic incantations:

$(makeAdaptorAndInstance "pTenant" ''TenantPoly)

tenantTable :: Table TenantPGWrite TenantPGRead
tenantTable = Table "tenants" (pTenant Tenant{
 tenantKey = optional "id"
 ,tenantCreatedAt = optional "created_at"
 ,tenantUpdatedAt = optional "updated_at"
 ,tenantName = required "name"
 ,tenantStatus = required "status"
 ,tenantOwnerId = required "owner_id"
 ,tenantBackofficeDomain = required "backoffice_domain"
 })

The TH splice - makeAdaptorAndInstance - does two very important things:

	Defines the pTenant function, which is subsequently used in tenantTable

	Defines the Default instance for TenantPoly (this is not Data.Default, but the poorly named *Data.Profunctor.Product.Default* [https://github.com/tomjaguarpaw/haskell-opaleye/issues/225#issuecomment-258441089]

Right now, we don’t need to be bothered with the internals of pTenant and Default, but we will need them when we want to do some advanced DB<=>Haskell mapping. Right now, what we need to be bothered about is tenantTable. That is what we’ve been waiting for! This is what represents the tenants table in the Haskell land. Every SQL operation on the tenants table will need to reference tenantsTable. And while defining tenantsTable we’ve finally assembled the last piece of the puzzle: field-name <=> column-name mappings AND the name of the table! (did you happen to forget about them?)

Note

We’re not really clear why we need to specify optional and required in the table definition when TenantPGWrite has already defined which columns are optional and which are required.

And, one last thing. We’ve been talking about PGText, PGTimestamptz, and PGInt8 till now. These aren’t the regular Haskell types that we generally deal with! These are representations of native PG types in Haskell. You would generally not build your app with these types. Instead, you would use something like Tenant, defined below:

type Tenant = TenantPoly
 Integer -- key
 UTCTime -- createdAt
 UTCTime -- updatedAt
 Text -- name
 Text -- status
 (Maybe Integer) -- ownerId
 Text -- backofficeDomain

Remember these three types and their purpose. We will need them when we’re inserting, udpating, and selecting rows.

	TenantPGWrite defines the record-type that can be written to the DB in terms of PG types.

	TenantPGRead defines the record-type that can be read from the DB in terms of PG types.

	Tenant defines the records that represents rows of the tenants table, in terms of Haskell types. We haven’t yet split this into separate read and write types.

Template Haskell expansion

If you’re curious, this is what the TH splice expands to (not literally, but conceptually). You might also want to read the [documentation of Data.Profunctor.Product.TH](https://hackage.haskell.org/package/product-profunctors-0.7.1.0/docs/Data-Profunctor-Product-TH.html) to understand what’s going on here.

pTenant :: ProductProfunctor p =>
 TenantPoly
 (p key0 key1)
 (p createdAt0 createdAt1)
 (p updatedAt0 updatedAt1)
 (p name0 name1)
 (p status0 status1)
 (p ownerId0 ownerId1)
 (p backofficeDomain0 backofficeDomain1)
 -> p (TenantPoly key0 createdAt0 updatedAt0 name0 status0 ownerId0 backofficeDomain0)
 (TenantPoly key1 createdAt1 updatedAt1 name1 status ownerId1 backofficeDomain1)
pTenant = (((dimap toTuple fromTuple) . Data.Profunctor.Product.p7). toTuple)
 where
 toTuple (Tenant key createdAt updatedAt name status ownerId backofficeDomain)
 = (key, createdAt, updatedAt, name, status, ownerId, backofficeDomain)
 fromTuple (key, createdAt, updatedAt, name, status, ownerId, backofficeDomain)
 = Tenant key createdAt updatedAt name status ownerId backofficeDomain

instance (ProductProfunctor p,
 Default p key0 key1,
 Default p createdAt0 createdAt1,
 Default p updatedAt0 updatedAt1,
 Default p name0 name1,
 Default p status0 status,
 Default p ownerId0 ownerId1,
 Default p backofficeDomain0 backofficeDomain1) =>
 Default p (TenantPoly key0 createdAt0 updatedAt0 name0 status0 ownerId0 backofficeDomain0)
 (TenantPoly key1 createdAt1 updatedAt1 name1 status ownerId1 backofficeDomain1) where
 def = pTenant (Tenant def def def def def def def)

Advanced DB Mappings

Overview

In this chapter we’ll build upon what we did in the last chapter:

	We’ll modify the tenants table, to be a little more typesafe by changing the type of the status column to a Postgres ENUM (rather than a text) and mapping it to a Haskell ADT.

	We’ll add a new table called products that will be used to store information of various products in our hypothetical ecommerce store

	We’ll change the id and createdAt columns to be read-only, for greater type-safety while inserting records.

	We’ll change the primary keys, tenants.id and products.id to TenantId and ProductId respecively. Again, for greater type-safety.

SQL for table creation

--
-- Tenants
--

create type tenant_status as enum('active', 'inactive', 'new');
create table tenants(
 id serial primary key
 ,created_at timestamp with time zone not null default current_timestamp
 ,updated_at timestamp with time zone not null default current_timestamp
 ,name text not null
 ,first_name text not null
 ,last_name text not null
 ,email text not null
 ,phone text not null
 ,status tenant_status not null default 'inactive'
 ,owner_id integer
 ,backoffice_domain text not null
 constraint ensure_not_null_owner_id check (status!='active' or owner_id is not null)
);
create unique index idx_index_owner_id on tenants(owner_id);
create index idx_status on tenants(status);
create index idx_tenants_created_at on tenants(created_at);
create index idx_tenants_updated_at on tenants(updated_at);
create unique index idx_unique_tenants_backoffice_domain on tenants(lower(backoffice_domain));

--- Products

create type product_type as enum('physical', 'digital');
create table products(
 id serial primary key
 ,created_at timestamp with time zone not null default current_timestamp
 ,updated_at timestamp with time zone not null default current_timestamp
 ,tenant_id integer not null references tenants(id)
 ,name text not null
 ,description text
 ,url_slug text not null
 ,tags text[] not null default '{}'
 ,currency char(3) not null
 ,advertised_price numeric not null
 ,comparison_price numeric not null
 ,cost_price numeric
 ,type product_type not null
 ,is_published boolean not null default false
 ,properties jsonb
);
create unique index idx_products_name on products(tenant_id, lower(name));
create unique index idx_products_url_sluf on products(tenant_id, lower(url_slug));
create index idx_products_created_at on products(created_at);
create index idx_products_updated_at on products(updated_at);
create index idx_products_comparison_price on products(comparison_price);
create index idx_products_tags on products using gin(tags);
create index idx_product_type on products(type);
create index idx_product_is_published on products(is_published);

Code that we’ll run through

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

	{-# LANGUAGE Arrows #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE TemplateHaskell #-}

module Main where

import Data.Aeson
import Data.Profunctor.Product
import Data.Profunctor.Product.Default
import Data.Profunctor.Product.TH (makeAdaptorAndInstance)
import Data.Scientific
import Data.ByteString hiding (putStrLn)
import Data.Text
import Data.Time
import Opaleye

import Database.PostgreSQL.Simple
import Database.PostgreSQL.Simple.FromField (Conversion,
 FromField (..),
 ResultError (..),
 returnError)

import Control.Arrow
import Prelude hiding (id)

-- Tenant stuff

newtype TenantId = TenantId Int deriving(Show)

data TenantStatus = TenantStatusActive | TenantStatusInActive | TenantStatusNew
 deriving (Show)

data TenantPoly key name fname lname email phone status b_domain = Tenant
 { tenant_id :: key
 , tenant_name :: name
 , tenant_firstname :: fname
 , tenant_lastname :: lname
 , tenant_email :: email
 , tenant_phone :: phone
 , tenant_status :: status
 , tenant_backofficedomain :: b_domain
 } deriving (Show)

type Tenant = TenantPoly TenantId Text Text Text Text Text TenantStatus Text

type TenantTableW = TenantPoly
 (Maybe (Column PGInt4))
 (Column PGText)
 (Column PGText)
 (Column PGText)
 (Column PGText)
 (Column PGText)
 (Column PGText)
 (Column PGText)

type TenantTableR = TenantPoly
 (Column PGInt4)
 (Column PGText)
 (Column PGText)
 (Column PGText)
 (Column PGText)
 (Column PGText)
 (Column PGText)
 (Column PGText)

-- Product stuff

newtype ProductId = ProductId Int deriving (Show)

data ProductType = ProductPhysical | ProductDigital deriving (Show)

data ProductPoly id created_at updated_at tenant_id name description url_slug tags currency advertised_price comparison_price cost_price product_type is_published properties = Product {
 product_id :: id
 , product_created_at :: created_at
 , product_updated_at :: updated_at
 , product_tenant_id :: tenant_id
 , product_name :: name
 , product_description :: description
 , product_url_slug :: url_slug
 , product_tags :: tags
 , product_currency :: currency
 , product_advertised_price :: advertised_price
 , product_comparison_price :: comparison_price
 , product_cost_price :: cost_price
 , product_product_type :: product_type
 , product_is_published :: is_published
 , product_properties :: properties
 } deriving (Show)

type Product = ProductPoly ProductId UTCTime UTCTime TenantId Text (Maybe Text) Text [Text] Text Scientific Scientific (Maybe Scientific) ProductType Bool Value
type ProductTableW = ProductPoly
 (Maybe (Column PGInt4))
 (Maybe (Column PGTimestamptz))
 (Maybe (Column PGTimestamptz))
 (Column PGInt4)
 (Column PGText)
 (Maybe (Column (Nullable PGText)))
 (Column PGText)
 (Column (PGArray PGText))
 (Column PGText)
 (Column PGFloat8)
 (Column PGFloat8)
 (Maybe (Column (Nullable PGFloat8)))
 (Column PGText)
 (Column PGBool)
 (Column PGJsonb)

type ProductTableR = ProductPoly
 (Column PGInt4)
 (Column PGTimestamptz)
 (Column PGTimestamptz)
 (Column PGInt4)
 (Column PGText)
 (Column (Nullable PGText))
 (Column PGText)
 (Column (PGArray PGText))
 (Column PGText)
 (Column PGFloat8)
 (Column PGFloat8)
 (Column (Nullable PGFloat8))
 (Column PGText)
 (Column PGBool)
 (Column PGJsonb)

-- Table defs

$(makeAdaptorAndInstance "pTenant" ''TenantPoly)
tenantTable :: Table TenantTableW TenantTableR
tenantTable = Table "tenants" (pTenant
 Tenant {
 tenant_id = (optional "id"),
 tenant_name = (required "name"),
 tenant_firstname = (required "first_name"),
 tenant_lastname = (required "last_name"),
 tenant_email = (required "email"),
 tenant_phone = (required "phone"),
 tenant_status = (required "status"),
 tenant_backofficedomain = (required "backoffice_domain")
 }
)

$(makeAdaptorAndInstance "pProduct" ''ProductPoly)

productTable :: Table ProductTableW ProductTableR
productTable = Table "products" (pProduct
 Product {
 product_id = (optional "id"),
 product_created_at = (optional "created_at"),
 product_updated_at = (optional "updated_at"),
 product_tenant_id = (required "tenant_id"),
 product_name = (required "name"),
 product_description = (optional "description"),
 product_url_slug = (required "url_slug"),
 product_tags = (required "tags"),
 product_currency = (required "currency"),
 product_advertised_price = (required "advertised_price"),
 product_comparison_price = (required "comparison_price"),
 product_cost_price = (optional "cost_price"),
 product_product_type = (required "type"),
 product_is_published = (required "is_published"),
 product_properties = (required "properties") })

-- Instance declarations for custom types
-- For TenantStatus

instance FromField TenantStatus where
 fromField field mb_bytestring = makeTenantStatus mb_bytestring
 where
 makeTenantStatus :: Maybe ByteString -> Conversion TenantStatus
 makeTenantStatus (Just "active") = return TenantStatusActive
 makeTenantStatus (Just "inactive") = return TenantStatusInActive
 makeTenantStatus (Just "new") = return TenantStatusNew
 makeTenantStatus (Just _) = returnError ConversionFailed field "Unrecognized tenant status"
 makeTenantStatus Nothing = returnError UnexpectedNull field "Empty tenant status"

instance QueryRunnerColumnDefault PGText TenantStatus where
 queryRunnerColumnDefault = fieldQueryRunnerColumn

-- For ProductType

instance FromField ProductType where
 fromField field mb_bytestring = makeProductType mb_bytestring
 where
 makeProductType :: Maybe ByteString -> Conversion ProductType
 makeProductType (Just "physical") = return ProductPhysical
 makeProductType (Just "digital") = return ProductDigital
 makeProductType (Just _) = returnError ConversionFailed field "Unrecognized product type"
 makeTenantStatus Nothing = returnError UnexpectedNull field "Empty product type"

instance QueryRunnerColumnDefault PGText ProductType where
 queryRunnerColumnDefault = fieldQueryRunnerColumn

-- For productId

instance FromField ProductId where
 fromField field mb_bytestring = ProductId <$> fromField field mb_bytestring

instance QueryRunnerColumnDefault PGInt4 ProductId where
 queryRunnerColumnDefault = fieldQueryRunnerColumn
-- For TenantId
instance FromField TenantId where
 fromField field mb_bytestring = TenantId <$> fromField field mb_bytestring

instance QueryRunnerColumnDefault PGInt4 TenantId where
 queryRunnerColumnDefault = fieldQueryRunnerColumn

-- For Scientific we didn't have to implement instance of fromField
-- because it is already defined in postgresql-simple

instance QueryRunnerColumnDefault PGFloat8 Scientific where
 queryRunnerColumnDefault = fieldQueryRunnerColumn

-- Default instance definitions for custom datatypes for converison to
-- PG types while writing into tables

-- For Tenant stuff

instance Default Constant TenantStatus (Column PGText) where
 def = Constant def'
 where
 def' :: TenantStatus -> (Column PGText)
 def' TenantStatusActive = pgStrictText "active"
 def' TenantStatusInActive = pgStrictText "inactive"
 def' TenantStatusNew = pgStrictText "new"

instance Default Constant TenantId (Maybe (Column PGInt4)) where
 def = Constant (\(TenantId x) -> Just $ pgInt4 x)

-- For Product stuff

instance Default Constant ProductType (Column PGText) where
 def = Constant def'
 where
 def' :: ProductType -> (Column PGText)
 def' ProductDigital = pgStrictText "digital"
 def' ProductPhysical = pgStrictText "physical"

instance Default Constant ProductId (Maybe (Column PGInt4)) where
 def = Constant (\(ProductId x) -> Just $ constant x)

instance Default Constant Scientific (Column PGFloat8) where
 def = Constant (pgDouble.toRealFloat)

instance Default Constant Scientific (Column (Nullable PGFloat8)) where
 def = Constant (toNullable.constant)

instance Default Constant Text (Column (Nullable PGText)) where
 def = Constant (toNullable.pgStrictText)

instance Default Constant UTCTime (Maybe (Column PGTimestamptz)) where
 def = Constant ((Just).pgUTCTime)

instance Default Constant TenantId (Column PGInt4) where
 def = Constant (\(TenantId x) -> constant x)

getProducts :: IO [Product]
getProducts = do
 conn <- connect defaultConnectInfo { connectDatabase = "scratch"}
 runQuery conn $ queryTable productTable

getTenants :: IO [Tenant]
getTenants = do
 conn <- connect defaultConnectInfo { connectDatabase = "scratch"}
 runQuery conn $ queryTable tenantTable

insertTenant :: IO ()
insertTenant = do
 conn <- connect defaultConnectInfo { connectDatabase = "scratch"}
 runInsertManyReturning conn tenantTable [constant getTestTenant] (\x -> x) :: IO [Tenant]
 return ()

insertProduct :: IO ()
insertProduct = do
 conn <- connect defaultConnectInfo { connectDatabase = "scratch"}
 product <- getTestProduct
 runInsertManyReturning conn productTable [constant product] (\x -> x) :: IO [Product]
 return ()

getTestTenant :: TenantIncoming
getTestTenant = Tenant {
 tenant_id = (),
 tenant_name = "Tenant Bob",
 tenant_firstname = "Bobby",
 tenant_lastname = "Bob",
 tenant_email = "bob@gmail.com",
 tenant_phone = "2255",
 tenant_status = TenantStatusInActive,
 tenant_backofficedomain = "bob.com"
}

getTestProduct :: IO Product
getTestProduct = do
 time <- getCurrentTime
 let (Just properties) = decode "{\"weight\": \"200gm\"}" :: Maybe Value
 return $ Product {
 product_id = (ProductId 5),
 product_created_at = time,
 product_updated_at = time,
 product_tenant_id = (TenantId 5),
 product_name = "snacks",
 product_description = Just "",
 product_url_slug = "",
 product_tags = ["tag1", "tag2"],
 product_currency = "INR",
 product_advertised_price = 30,
 product_comparison_price = 45,
 product_cost_price = Nothing,
 product_product_type = ProductPhysical,
 product_is_published = False,
 product_properties = properties
 }

main :: IO ()
main = do
 insertTenant
 insertProduct
 tenants <- getTenants
 products <- getProducts
 putStrLn $ show tenants
 putStrLn $ show products

-- Output
--
-- [Tenant {tenant_id = TenantId 1, tenant_name = "Tenant John", tenant_firstname
-- = "John", tenant_lastname = "Honai", tenant_email = "john@mail.com", tenant_pho
-- ne = "2255", tenant_status = TenantStatusInActive, tenant_backofficedomain = "j
-- honhonai.com"}]
-- [Product {product_id = ProductId 1, product_created_at = 2016-11-27 10:24:31.60
-- 0244 UTC, product_updated_at = 2016-11-27 10:24:31.600244 UTC, product_tenant_i
-- d = TenantId 1, product_name = "Biscuits", product_description = Just "Biscuits
-- , you know..", product_url_slug = "biscuits", product_tags = ["bakery","snacks"
--], product_currency = "INR", product_advertised_price = 40.0, product_compariso
-- n_price = 55.0, product_cost_price = Just 34.0, product_product_type = ProductP
-- hysical, product_is_published = False, product_properties = Object (fromList [(
-- "weight",String "200gm")])}]

Warning

In the code given above, we are using PGFloat8 to represent monetary values. This is a bad idea and absolutely not recommended. We are forced to do this because Opaleye’s support for Postgres NUMERIC datatype is not really complete. [https://github.com/tomjaguarpaw/haskell-opaleye/issues/230]

Core mechanism for mapping custom Haskell types to PG types

There are three typeclasses at play in converting values between Haskell types (like Int, Text and other user defined types)
and PG types (like PGInt4, PGText etc). These are:

	FromField

	QueryRunnerColumnDefault

	Default (not Data.Default)

FromField

This is a typeclass defined by the postgresql-simple library. This typeclass decides how values read from database are
converted to their Haskell counterparts. It is defined as:

class FromField a where
 fromField :: FieldParser a

type FieldParser a = Field -> Maybe ByteString -> Conversion a

The basic idea of this typeclass is simple. It wants you to define a function fromField which will be passed the following:

	Field - a record holding a lot of metadata about the underlying Postgres column

	Maybe ByteString - the raw value of that column

You are expected to return a Conversion a which is conceptually an action, which when evaluated will do the conversion from Maybe ByteString to your desired type a.

Diligent readers will immediately have the following questions:

What kind of metadata does Field have?

name :: Field -> Maybe ByteString
tableOid :: Field -> Maybe Oid
tableColumn :: Field -> Int
format :: Field -> Format
typeOid :: Field -> Oid
-- and more

How does one write a (Conversion a) action?

Good question! The answer is that we (the authors of this tutorial) don’t know! And we didn’t feel the need to find out as well. Because you already have the fromField functions for a lot of pre-defined Haskell types. In practice, you usually compose them to obtain your desired Conversion action. Read the other sections in this chapter to find exampler of how to do this.

QueryRunnerColumnDefault

This typeclass is used by Opaleye to do the conversion from postgres types defined by Opaleye, into Haskell types. It is defined as

class QueryRunnerColumnDefault pgType haskellType where
 queryRunnerColumnDefault :: QueryRunnerColumn pgType haskellType

Opaleye provides with a function

fieldQueryRunnerColumn:: FromField haskell => QueryRunnerColumn pgType haskell

As the type signature shows, fieldQueryRunnerColumn can return a value of type QueryRunnerColumn a b as long as b is an instance
of FromField typeclass. So once we define an instance of FromField for our type, all we have to do is the following.

For the data type TenantStatus that we saw earlier,

instance QueryRunnerColumnDefault PGText TenantStatus where
 queryRunnerColumnDefault = fieldQueryRunnerColumn

Default

Note

This is not the Data.Default that you may be familiar with. This is Data.Profunctor.Product.Default

This is a typeclass that Opaleye uses to convert Haskell values to Postgres values while writing to the database. It is defined as:

class Default (p :: * -> * -> *) a b where
 def :: p a b

You see a type variable p, that this definition required. Opaleye provided with a type Constant that can be used here. It is defined as

newtype Constant haskells columns
 = Constant {constantExplicit :: haskells -> columns}

So if we are defining a Default instance for the TenantStatus we saw earlier, it would be something like this.

instance Default Constant TenantStatus (Column PGText) where
 def = Constant def'
 where
 def' :: TenantStatus -> (Column PGText)
 def' TenantStatusActive = pgStrictText "active"
 def' TenantStatusInActive = pgStrictText "inactive"
 def' TenantStatusNew = pgStrictText "new"

Newtypes for primary keys

Ideally, we would like to represent our primary keys using newtypes that wrap around an Int. For example:

newtype TenantId = TenantId Int
newtype ProductId = ProductId Int

This is generally done to extract greater type-safety out of the system. For instance, doing this would prevent the following class of errors:

	Comparing a TenantId to a ProductId, which would rarely make sense.

	Passing a TenantId to a function which is expecting a ProductId

	At an SQL level, joining the tenantTable with the productTable by matching tenants.id to products.id

But it seems that Opaleye’s support for this feature is not really ready [https://github.com/tomjaguarpaw/haskell-opaleye/issues/242]. So we will skip it for now.

Mapping ENUMs to Haskell ADTs

Here’s what our ADT for TenantStatus looks like:

data TenantStatus = TenantStatusActive | TenantStatusInActive | TenantStatusNew
 deriving (Show)

Here’s how we would setup the DB => Haskell conversion. If you notice, we didn’t really need to bother with how to build Conversion TenantStatus because once we know what the incoming ByteString is, we know exactly which ADT value it should map to. We simply return that value, since Conversion is a Monad.

instance FromField TenantStatus where
 fromField field mb_bytestring = makeTenantStatus mb_bytestring
 where
 makeTenantStatus :: Maybe ByteString -> Conversion TenantStatus
 makeTenantStatus (Just "active") = return TenantStatusActive
 makeTenantStatus (Just "inactive") = return TenantStatusInActive
 makeTenantStatus (Just "new") = return TenantStatusNew
 makeTenantStatus (Just _) = returnError ConversionFailed field "Unrecognized tenant status"
 makeTenantStatus Nothing = returnError UnexpectedNull field "Empty tenant status"

instance QueryRunnerColumnDefault PGText TenantStatus where
 queryRunnerColumnDefault = fieldQueryRunnerColumn

TODO: As we saw in the Typeclasses section, Opaleye requires the QueryRunnerColumnDefault typeclass instances for converting from data read from Database to Haskell values. the function fieldQueryRunnerColumn can return the value of the required type as long as there is a FromField instance for the required type.

Now, let’s look at how to setup the Haskell => DB conversion.

instance Default Constant TenantStatus (Column PGText) where
 def = Constant def'
 where
 def' :: TenantStatus -> (Column PGText)
 def' TenantStatusActive = pgStrictText "active"
 def' TenantStatusInActive = pgStrictText "inactive"
 def' TenantStatusNew = pgStrictText "new"

Handing Postgres Arrays

Postgresql Array column are represented by the PGArray type. It can take
an additional type to represent the kind of the array. So if the column
is text[], the type needs to be PGArray PGText.

If you look at the earlier code, you can see that the output contains a
list for the tag fields.

Handling JSONB

The type that represents jsonb postgresql columns in Opaleye is PGJsonb. It will support any type that has a ToJSON/FromJSON instances defined for it.

ToJSON/FromJSON typeclasses are exported by the Aeson json library.

This is how it is done. Let us change the properties field of the Product type
we saw earlier into a record in see how we can store it in a jsonb field.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

	{-# LANGUAGE Arrows #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE TemplateHaskell #-}

module Main where

import Data.Aeson
import Data.Aeson.Types
import Data.Profunctor.Product
import Data.Profunctor.Product.Default
import Data.Profunctor.Product.TH (makeAdaptorAndInstance)
import Data.Scientific
import Data.ByteString hiding (putStrLn)
import Data.Text
import Data.Time
import Opaleye

import Database.PostgreSQL.Simple
import Database.PostgreSQL.Simple.FromField (Conversion,
 FromField (..),
 ResultError (..),
 returnError)

import Control.Arrow
import Prelude hiding (id)

readOnly :: String -> TableProperties () (Column a)
readOnly = lmap (const Nothing) . optional

-- Tenant stuff

newtype TenantId = TenantId Int deriving(Show)

data TenantStatus = TenantStatusActive | TenantStatusInActive | TenantStatusNew
 deriving (Show)

data TenantPoly key name fname lname email phone status b_domain = Tenant
 { tenant_id :: key
 , tenant_name :: name
 , tenant_firstname :: fname
 , tenant_lastname :: lname
 , tenant_email :: email
 , tenant_phone :: phone
 , tenant_status :: status
 , tenant_backofficedomain :: b_domain
 } deriving (Show)

type Tenant = TenantPoly TenantId Text Text Text Text Text TenantStatus Text

type TenantTableW = TenantPoly
 (Maybe (Column PGInt4))
 (Column PGText)
 (Column PGText)
 (Column PGText)
 (Column PGText)
 (Column PGText)
 (Column PGText)
 (Column PGText)

type TenantTableR = TenantPoly
 (Column PGInt4)
 (Column PGText)
 (Column PGText)
 (Column PGText)
 (Column PGText)
 (Column PGText)
 (Column PGText)
 (Column PGText)

-- Product stuff

newtype ProductId = ProductId Int deriving (Show)

data ProductType = ProductPhysical | ProductDigital deriving (Show)

data ProductProperties = ProductProperties { product_color :: String, product_weight :: String} deriving (Show)

data ProductPoly id created_at updated_at tenant_id name description url_slug tags currency advertised_price comparison_price cost_price product_type is_published properties = Product {
 product_id :: id
 , product_created_at :: created_at
 , product_updated_at :: updated_at
 , product_tenant_id :: tenant_id
 , product_name :: name
 , product_description :: description
 , product_url_slug :: url_slug
 , product_tags :: tags
 , product_currency :: currency
 , product_advertised_price :: advertised_price
 , product_comparison_price :: comparison_price
 , product_cost_price :: cost_price
 , product_product_type :: product_type
 , product_is_published :: is_published
 , product_properties :: properties
 } deriving (Show)

type Product = ProductPoly ProductId UTCTime UTCTime TenantId Text (Maybe Text) Text [Text] Text Scientific Scientific (Maybe Scientific) ProductType Bool ProductProperties
type ProductTableW = ProductPoly
 (Maybe (Column PGInt4))
 (Maybe (Column PGTimestamptz))
 (Maybe (Column PGTimestamptz))
 (Column PGInt4)
 (Column PGText)
 (Maybe (Column (Nullable PGText)))
 (Column PGText)
 (Column (PGArray PGText))
 (Column PGText)
 (Column PGFloat8)
 (Column PGFloat8)
 (Maybe (Column (Nullable PGFloat8)))
 (Column PGText)
 (Column PGBool)
 (Column PGJsonb)

type ProductTableR = ProductPoly
 (Column PGInt4)
 (Column PGTimestamptz)
 (Column PGTimestamptz)
 (Column PGInt4)
 (Column PGText)
 (Column (Nullable PGText))
 (Column PGText)
 (Column (PGArray PGText))
 (Column PGText)
 (Column PGFloat8)
 (Column PGFloat8)
 (Column (Nullable PGFloat8))
 (Column PGText)
 (Column PGBool)
 (Column PGJsonb)

-- Table defs

$(makeAdaptorAndInstance "pTenant" ''TenantPoly)
tenantTable :: Table TenantTableW TenantTableR
tenantTable = Table "tenants" (pTenant
 Tenant {
 tenant_id = (optional "id"),
 tenant_name = (required "name"),
 tenant_firstname = (required "first_name"),
 tenant_lastname = (required "last_name"),
 tenant_email = (required "email"),
 tenant_phone = (required "phone"),
 tenant_status = (required "status"),
 tenant_backofficedomain = (required "backoffice_domain")
 }
)

$(makeAdaptorAndInstance "pProduct" ''ProductPoly)

productTable :: Table ProductTableW ProductTableR
productTable = Table "products" (pProduct
 Product {
 product_id = (optional "id"),
 product_created_at = (optional "created_at"),
 product_updated_at = (optional "updated_at"),
 product_tenant_id = (required "tenant_id"),
 product_name = (required "name"),
 product_description = (optional "description"),
 product_url_slug = (required "url_slug"),
 product_tags = (required "tags"),
 product_currency = (required "currency"),
 product_advertised_price = (required "advertised_price"),
 product_comparison_price = (required "comparison_price"),
 product_cost_price = (optional "cost_price"),
 product_product_type = (required "type"),
 product_is_published = (required "is_published"),
 product_properties = (required "properties") })

-- Instance declarations for custom types
-- For TenantStatus

instance FromField TenantStatus where
 fromField field mb_bytestring = makeTenantStatus mb_bytestring
 where
 makeTenantStatus :: Maybe ByteString -> Conversion TenantStatus
 makeTenantStatus (Just "active") = return TenantStatusActive
 makeTenantStatus (Just "inactive") = return TenantStatusInActive
 makeTenantStatus (Just "new") = return TenantStatusNew
 makeTenantStatus (Just _) = returnError ConversionFailed field "Unrecognized tenant status"
 makeTenantStatus Nothing = returnError UnexpectedNull field "Empty tenant status"

instance QueryRunnerColumnDefault PGText TenantStatus where
 queryRunnerColumnDefault = fieldQueryRunnerColumn

-- For ProductType

instance FromField ProductType where
 fromField field mb_bytestring = makeProductType mb_bytestring
 where
 makeProductType :: Maybe ByteString -> Conversion ProductType
 makeProductType (Just "physical") = return ProductPhysical
 makeProductType (Just "digital") = return ProductDigital
 makeProductType (Just _) = returnError ConversionFailed field "Unrecognized product type"
 makeTenantStatus Nothing = returnError UnexpectedNull field "Empty product type"

instance QueryRunnerColumnDefault PGText ProductType where
 queryRunnerColumnDefault = fieldQueryRunnerColumn

-- For productId

instance FromField ProductId where
 fromField field mb_bytestring = ProductId <$> fromField field mb_bytestring

instance QueryRunnerColumnDefault PGInt4 ProductId where
 queryRunnerColumnDefault = fieldQueryRunnerColumn
-- For TenantId
instance FromField TenantId where
 fromField field mb_bytestring = TenantId <$> fromField field mb_bytestring

instance QueryRunnerColumnDefault PGInt4 TenantId where
 queryRunnerColumnDefault = fieldQueryRunnerColumn

-- For Scientific we didn't have to implement instance of fromField
-- because it is already defined in postgresql-simple

instance QueryRunnerColumnDefault PGFloat8 Scientific where
 queryRunnerColumnDefault = fieldQueryRunnerColumn

-- Default instance definitions for custom datatypes for converison to
-- PG types while writing into tables

-- For Tenant stuff

instance Default Constant TenantStatus (Column PGText) where
 def = Constant def'
 where
 def' :: TenantStatus -> (Column PGText)
 def' TenantStatusActive = pgStrictText "active"
 def' TenantStatusInActive = pgStrictText "inactive"
 def' TenantStatusNew = pgStrictText "new"

instance Default Constant TenantId (Maybe (Column PGInt4)) where
 def = Constant (\(TenantId x) -> Just $ pgInt4 x)

-- For Product stuff

instance Default Constant ProductType (Column PGText) where
 def = Constant def'
 where
 def' :: ProductType -> (Column PGText)
 def' ProductDigital = pgStrictText "digital"
 def' ProductPhysical = pgStrictText "physical"

instance Default Constant ProductId (Maybe (Column PGInt4)) where
 def = Constant (\(ProductId x) -> Just $ constant x)

instance Default Constant Scientific (Column PGFloat8) where
 def = Constant (pgDouble.toRealFloat)

instance Default Constant Scientific (Column (Nullable PGFloat8)) where
 def = Constant (toNullable.constant)

instance Default Constant Text (Column (Nullable PGText)) where
 def = Constant (toNullable.pgStrictText)

instance Default Constant UTCTime (Maybe (Column PGTimestamptz)) where
 def = Constant ((Just).pgUTCTime)

instance Default Constant TenantId (Column PGInt4) where
 def = Constant (\(TenantId x) -> constant x)

-- FromJSON/ToJSON instances for properties

instance FromJSON ProductProperties where
 parseJSON (Object v) = ProductProperties <$> v .: "color" <*> v .: "weight"
 parseJSON invalid = typeMismatch "Unrecognized format for product properties" invalid

instance ToJSON ProductProperties where
 toJSON ProductProperties {product_color = color, product_weight = weight} = object ["color" .= color, "weight" .= weight]

instance FromField ProductProperties where
 fromField field mb = do
 v <- fromField field mb
 valueToProductProperties v
 where
 valueToProductProperties :: Value -> Conversion ProductProperties
 valueToProductProperties v = case fromJSON v of
 Success a -> return a
 Error err -> returnError ConversionFailed field "Cannot parse product properties"

instance QueryRunnerColumnDefault PGJsonb ProductProperties where
 queryRunnerColumnDefault = fieldQueryRunnerColumn

instance Default Constant ProductProperties (Column PGJsonb) where
 def = Constant (\pp -> pgValueJSONB $ toJSON pp)

getProducts :: IO [Product]
getProducts = do
 conn <- connect defaultConnectInfo { connectDatabase = "scratch"}
 runQuery conn $ queryTable productTable

getTenants :: IO [Tenant]
getTenants = do
 conn <- connect defaultConnectInfo { connectDatabase = "scratch"}
 runQuery conn $ queryTable tenantTable

insertTenant :: IO ()
insertTenant = do
 conn <- connect defaultConnectInfo { connectDatabase = "scratch"}
 runInsertManyReturning conn tenantTable [constant getTestTenant] (\x -> x) :: IO [Tenant]
 return ()

insertProduct :: IO ()
insertProduct = do
 conn <- connect defaultConnectInfo { connectDatabase = "scratch"}
 product <- getTestProduct
 runInsertManyReturning conn productTable [constant product] (\x -> x) :: IO [Product]
 return ()

getTestTenant :: Tenant
getTestTenant = Tenant (TenantId 5) "Tenant Bob" "Bobby" "Bob" "bob@mail.com" "2255" TenantStatusInActive "bob.com"

getTestProduct :: IO Product
getTestProduct = do
 time <- getCurrentTime
 let properties = ProductProperties { product_color = "red", product_weight = "200gm"}
 return $ Product (ProductId 5) time time (TenantId 5) "snacks" (Just "") "" ["tag1", "tag2"] "INR" 30 45 Nothing ProductPhysical False properties

main :: IO ()
main = do
 insertTenant
 insertProduct
 tenants <- getTenants
 products <- getProducts
 putStrLn $ show tenants
 putStrLn $ show products

-- Output
--
--
-- [Tenant {tenant_id = TenantId 1, tenant_name = "Tenant John", tenant_firstname = "John", tenant_lastname = "Honai", te
-- nant_email = "john@mail.com", tenant_phone = "2255", tenant_status = TenantStatusInActive, tenant_backofficedomain = "
-- jhonhonai.com"},Tenant {tenant_id = TenantId 5, tenant_name = "Tenant Bob", tenant_firstname = "Bobby", tenant_lastnam
-- e = "Bob", tenant_email = "bob@mail.com", tenant_phone = "2255", tenant_status = TenantStatusInActive, tenant_backoffi
-- cedomain = "bob.com"}]
-- [Product {product_id = ProductId 5, product_created_at = 2016-11-28 12:31:40.085634 UTC, product_updated_at = 2016-11-
-- 28 12:31:40.085634 UTC, product_tenant_id = TenantId 5, product_name = "snacks", product_description = Just "", produc
-- t_url_slug = "", product_tags = ["tag1","tag2"], product_currency = "INR", product_advertised_price = 30.0, product_co
-- mparison_price = 45.0, product_cost_price = Nothing, product_product_type = ProductPhysical, product_is_published = Fa
-- lse, product_properties = ProductProperties {product_color = "red", product_weight = "200gm"}}]

In the emphasized lines in code above, we are defining instances to support json conversion.
The binary operators .: and .= that you see are
stuff exported by the Aeson json library.
The basis of Json decoding/encoding is the aeson’s Value type. This type can represent
any json value. It is defined as

data Value
 = Object !Object
 | Array !Array
 | String !Text
 | Number !Scientific
 | Bool !Bool
 | Null

The Object type is an alias for a HashMap, and Array for a Vector and so on.

The instances are our usual type conversion instances. The Value type has the instances built in, so
we will use them for defining instances for ProductProperties.
So when we define a FromField instance for ProductProperties, we use the fromField instance of the Value
type. We are also handling errors that might occur while parsing and reporting via postgresql’s error reporting functions.

In the last instance, we are using the Default instance of the aforementioned Value type to implement instance
for ProductProperties. The toJSON converts our ProductProperties to Value type, and since there are already
built in Default instance for Value type, we were able to call the constant function on it, to return the
appropriate opaleye’s column type.

Making columns read-only

Sometimes we will want to make a certain column read only, accepting only values generated from the database.
Here is how we can do it.

We have to define a new function readOnly, which will make the required field of type (), in the write types
so we won’t be able to provide a value for writing.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

	{-# LANGUAGE Arrows #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE TemplateHaskell #-}

module Main where

import Data.Aeson
import Data.Aeson.Types
import Data.Profunctor
import Data.Profunctor.Product
import Data.Profunctor.Product.Default
import Data.Profunctor.Product.TH (makeAdaptorAndInstance)
import Data.Scientific
import Data.ByteString hiding (putStrLn)
import Data.Text
import Data.Time
import Opaleye

import Database.PostgreSQL.Simple
import Database.PostgreSQL.Simple.FromField (Conversion,
 FromField (..),
 ResultError (..),
 returnError)

import Control.Arrow
import Prelude hiding (id)

readOnly :: String -> TableProperties () (Column a)
readOnly = lmap (const Nothing) . optional

-- Tenant stuff

newtype TenantId = TenantId Int deriving(Show)

data TenantStatus = TenantStatusActive | TenantStatusInActive | TenantStatusNew
 deriving (Show)

data TenantPoly key name fname lname email phone status b_domain = Tenant
 { tenant_id :: key
 , tenant_name :: name
 , tenant_firstname :: fname
 , tenant_lastname :: lname
 , tenant_email :: email
 , tenant_phone :: phone
 , tenant_status :: status
 , tenant_backofficedomain :: b_domain
 } deriving (Show)

type Tenant = TenantPoly TenantId Text Text Text Text Text TenantStatus Text
type TenantIncoming = TenantPoly () Text Text Text Text Text TenantStatus Text

type TenantTableW = TenantPoly
 ()
 (Column PGText)
 (Column PGText)
 (Column PGText)
 (Column PGText)
 (Column PGText)
 (Column PGText)
 (Column PGText)

type TenantTableR = TenantPoly
 (Column PGInt4)
 (Column PGText)
 (Column PGText)
 (Column PGText)
 (Column PGText)
 (Column PGText)
 (Column PGText)
 (Column PGText)

-- Product stuff

newtype ProductId = ProductId Int deriving (Show)

data ProductType = ProductPhysical | ProductDigital deriving (Show)

data ProductProperties = ProductProperties { product_color :: String, product_weight :: String} deriving (Show)

data ProductPoly id created_at updated_at tenant_id name description url_slug tags currency advertised_price comparison_price cost_price product_type is_published properties = Product {
 product_id :: id
 , product_created_at :: created_at
 , product_updated_at :: updated_at
 , product_tenant_id :: tenant_id
 , product_name :: name
 , product_description :: description
 , product_url_slug :: url_slug
 , product_tags :: tags
 , product_currency :: currency
 , product_advertised_price :: advertised_price
 , product_comparison_price :: comparison_price
 , product_cost_price :: cost_price
 , product_product_type :: product_type
 , product_is_published :: is_published
 , product_properties :: properties
 } deriving (Show)

type Product = ProductPoly ProductId UTCTime UTCTime TenantId Text (Maybe Text) Text [Text] Text Scientific Scientific (Maybe Scientific) ProductType Bool ProductProperties
type ProductTableW = ProductPoly
 (Maybe (Column PGInt4))
 (Maybe (Column PGTimestamptz))
 (Maybe (Column PGTimestamptz))
 (Column PGInt4)
 (Column PGText)
 (Maybe (Column (Nullable PGText)))
 (Column PGText)
 (Column (PGArray PGText))
 (Column PGText)
 (Column PGFloat8)
 (Column PGFloat8)
 (Maybe (Column (Nullable PGFloat8)))
 (Column PGText)
 (Column PGBool)
 (Column PGJsonb)

type ProductTableR = ProductPoly
 (Column PGInt4)
 (Column PGTimestamptz)
 (Column PGTimestamptz)
 (Column PGInt4)
 (Column PGText)
 (Column (Nullable PGText))
 (Column PGText)
 (Column (PGArray PGText))
 (Column PGText)
 (Column PGFloat8)
 (Column PGFloat8)
 (Column (Nullable PGFloat8))
 (Column PGText)
 (Column PGBool)
 (Column PGJsonb)

-- Table defs

$(makeAdaptorAndInstance "pTenant" ''TenantPoly)
tenantTable :: Table TenantTableW TenantTableR
tenantTable = Table "tenants" (pTenant
 Tenant {
 tenant_id = (readOnly "id"),
 tenant_name = (required "name"),
 tenant_firstname = (required "first_name"),
 tenant_lastname = (required "last_name"),
 tenant_email = (required "email"),
 tenant_phone = (required "phone"),
 tenant_status = (required "status"),
 tenant_backofficedomain = (required "backoffice_domain")
 }
)

$(makeAdaptorAndInstance "pProduct" ''ProductPoly)

productTable :: Table ProductTableW ProductTableR
productTable = Table "products" (pProduct
 Product {
 product_id = (optional "id"),
 product_created_at = (optional "created_at"),
 product_updated_at = (optional "updated_at"),
 product_tenant_id = (required "tenant_id"),
 product_name = (required "name"),
 product_description = (optional "description"),
 product_url_slug = (required "url_slug"),
 product_tags = (required "tags"),
 product_currency = (required "currency"),
 product_advertised_price = (required "advertised_price"),
 product_comparison_price = (required "comparison_price"),
 product_cost_price = (optional "cost_price"),
 product_product_type = (required "type"),
 product_is_published = (required "is_published"),
 product_properties = (required "properties") })

-- Instance declarations for custom types
-- For TenantStatus

instance FromField TenantStatus where
 fromField field mb_bytestring = makeTenantStatus mb_bytestring
 where
 makeTenantStatus :: Maybe ByteString -> Conversion TenantStatus
 makeTenantStatus (Just "active") = return TenantStatusActive
 makeTenantStatus (Just "inactive") = return TenantStatusInActive
 makeTenantStatus (Just "new") = return TenantStatusNew
 makeTenantStatus (Just _) = returnError ConversionFailed field "Unrecognized tenant status"
 makeTenantStatus Nothing = returnError UnexpectedNull field "Empty tenant status"

instance QueryRunnerColumnDefault PGText TenantStatus where
 queryRunnerColumnDefault = fieldQueryRunnerColumn

-- For ProductType

instance FromField ProductType where
 fromField field mb_bytestring = makeProductType mb_bytestring
 where
 makeProductType :: Maybe ByteString -> Conversion ProductType
 makeProductType (Just "physical") = return ProductPhysical
 makeProductType (Just "digital") = return ProductDigital
 makeProductType (Just _) = returnError ConversionFailed field "Unrecognized product type"
 makeTenantStatus Nothing = returnError UnexpectedNull field "Empty product type"

instance QueryRunnerColumnDefault PGText ProductType where
 queryRunnerColumnDefault = fieldQueryRunnerColumn

-- For productId

instance FromField ProductId where
 fromField field mb_bytestring = ProductId <$> fromField field mb_bytestring

instance QueryRunnerColumnDefault PGInt4 ProductId where
 queryRunnerColumnDefault = fieldQueryRunnerColumn
-- For TenantId
instance FromField TenantId where
 fromField field mb_bytestring = TenantId <$> fromField field mb_bytestring

instance QueryRunnerColumnDefault PGInt4 TenantId where
 queryRunnerColumnDefault = fieldQueryRunnerColumn

-- For Scientific we didn't have to implement instance of fromField
-- because it is already defined in postgresql-simple

instance QueryRunnerColumnDefault PGFloat8 Scientific where
 queryRunnerColumnDefault = fieldQueryRunnerColumn

-- Default instance definitions for custom datatypes for converison to
-- PG types while writing into tables

-- For Tenant stuff

instance Default Constant TenantStatus (Column PGText) where
 def = Constant def'
 where
 def' :: TenantStatus -> (Column PGText)
 def' TenantStatusActive = pgStrictText "active"
 def' TenantStatusInActive = pgStrictText "inactive"
 def' TenantStatusNew = pgStrictText "new"

instance Default Constant TenantId (Maybe (Column PGInt4)) where
 def = Constant (\(TenantId x) -> Just $ pgInt4 x)

-- For Product stuff

instance Default Constant ProductType (Column PGText) where
 def = Constant def'
 where
 def' :: ProductType -> (Column PGText)
 def' ProductDigital = pgStrictText "digital"
 def' ProductPhysical = pgStrictText "physical"

instance Default Constant ProductId (Maybe (Column PGInt4)) where
 def = Constant (\(ProductId x) -> Just $ constant x)

instance Default Constant Scientific (Column PGFloat8) where
 def = Constant (pgDouble.toRealFloat)

instance Default Constant Scientific (Column (Nullable PGFloat8)) where
 def = Constant (toNullable.constant)

instance Default Constant Text (Column (Nullable PGText)) where
 def = Constant (toNullable.pgStrictText)

instance Default Constant UTCTime (Maybe (Column PGTimestamptz)) where
 def = Constant ((Just).pgUTCTime)

instance Default Constant TenantId (Column PGInt4) where
 def = Constant (\(TenantId x) -> constant x)

-- FromJSON/ToJSON instances for properties

instance FromJSON ProductProperties where
 parseJSON (Object v) = ProductProperties <$> v .: "color" <*> v .: "weight"
 parseJSON invalid = typeMismatch "Unrecognized format for product properties" invalid

instance ToJSON ProductProperties where
 toJSON ProductProperties {product_color = color, product_weight = weight} = object ["color" .= color, "weight" .= weight]

instance FromField ProductProperties where
 fromField field mb = do
 v <- fromField field mb
 valueToProductProperties v
 where
 valueToProductProperties :: Value -> Conversion ProductProperties
 valueToProductProperties v = case fromJSON v of
 Success a -> return a
 Error err -> returnError ConversionFailed field "Cannot parse product properties"

instance QueryRunnerColumnDefault PGJsonb ProductProperties where
 queryRunnerColumnDefault = fieldQueryRunnerColumn

instance Default Constant ProductProperties (Column PGJsonb) where
 def = Constant (\pp -> pgValueJSONB $ toJSON pp)

getProducts :: IO [Product]
getProducts = do
 conn <- connect defaultConnectInfo { connectDatabase = "scratch"}
 runQuery conn $ queryTable productTable

getTenants :: IO [Tenant]
getTenants = do
 conn <- connect defaultConnectInfo { connectDatabase = "scratch"}
 runQuery conn $ queryTable tenantTable

insertTenant :: IO ()
insertTenant = do
 conn <- connect defaultConnectInfo { connectDatabase = "scratch"}
 runInsertManyReturning conn tenantTable [constant getTestTenant] (\x -> x) :: IO [Tenant]
 return ()

insertProduct :: IO ()
insertProduct = do
 conn <- connect defaultConnectInfo { connectDatabase = "scratch"}
 product <- getTestProduct
 runInsertManyReturning conn productTable [constant product] (\x -> x) :: IO [Product]
 return ()

getTestTenant :: TenantIncoming
getTestTenant = Tenant {
 tenant_id = (),
 tenant_name = "Tenant Bob",
 tenant_firstname = "Bobby",
 tenant_lastname = "Bob",
 tenant_email = "bob@gmail.com",
 tenant_phone = "2255",
 tenant_status = TenantStatusInActive,
 tenant_backofficedomain = "bob.com"
}

getTestProduct :: IO Product
getTestProduct = do
 time <- getCurrentTime
 let properties = ProductProperties { product_color = "red", product_weight = "200gm"}
 return $ Product {
 product_id = (ProductId 5),
 product_created_at = time,
 product_updated_at = time,
 product_tenant_id = (TenantId 5),
 product_name = "snacks",
 product_description = Just "",
 product_url_slug = "",
 product_tags = ["tag1", "tag2"],
 product_currency = "INR",
 product_advertised_price = 30,
 product_comparison_price = 45,
 product_cost_price = Nothing,
 product_product_type = ProductPhysical,
 product_is_published = False,
 product_properties = properties
 }

main :: IO ()
main = do
 insertTenant
 insertProduct
 tenants <- getTenants
 products <- getProducts
 putStrLn $ show tenants
 putStrLn $ show products

-- Output
--
--
-- [Tenant {tenant_id = TenantId 1, tenant_name = "Tenant John", tenant_firstname = "John", tenant_lastname = "Honai", te
-- nant_email = "john@mail.com", tenant_phone = "2255", tenant_status = TenantStatusInActive, tenant_backofficedomain = "
-- jhonhonai.com"},Tenant {tenant_id = TenantId 5, tenant_name = "Tenant Bob", tenant_firstname = "Bobby", tenant_lastnam
-- e = "Bob", tenant_email = "bob@mail.com", tenant_phone = "2255", tenant_status = TenantStatusInActive, tenant_backoffi
-- cedomain = "bob.com"}]
-- [Product {product_id = ProductId 5, product_created_at = 2016-11-28 12:31:40.085634 UTC, product_updated_at = 2016-11-
-- 28 12:31:40.085634 UTC, product_tenant_id = TenantId 5, product_name = "snacks", product_description = Just "", produc
-- t_url_slug = "", product_tags = ["tag1","tag2"], product_currency = "INR", product_advertised_price = 30.0, product_co
-- mparison_price = 45.0, product_cost_price = Nothing, product_product_type = ProductPhysical, product_is_published = Fa
-- lse, product_properties = ProductProperties {product_color = "red", product_weight = "200gm"}}]

The type Conversion is a functor, so you can define instances for custom types in terms of existing FromField instances.
For example, if you have a type that wraps an Int, like

data ProductId = ProductId Int

You can make a field parser instance for ProductId as follows

instance FromField ProductId where
 fromField field mb_bytestring = ProductId <$> fromField field mb_bytestring

While doing the above method, you have to make sure that the FromField instance that you are depending on
can actually accept data from the underlying database column. This is relavant if you want to do this for
enum types.

If you depend on the FromField instance of a String to read the data coming from an Enum field, it will error out
because the FromField instance of String checks if the data is coming from a Varchar or Char field (using the first argument
to the fromField function), and errors out if it is not.

Since the second argument to the fromField functon is a Maybe Bytestring,
for a data type TenantStatus defined as

data TenantStatus = TenantStatusActive | TenantStatusInActive | TenantStatusNew

we could do the following

instance FromField TenantStatus where
 fromField field mb_bytestring = makeTenantStatus mb_bytestring
 where
 makeTenantStatus :: Maybe ByteString -> Conversion TenantStatus
 makeTenantStatus (Just "active") = return TenantStatusActive
 makeTenantStatus (Just "inactive") = return TenantStatusInActive
 makeTenantStatus (Just "new") = return TenantStatusNew
 makeTenantStatus (Just _) = returnError ConversionFailed field "Unrecognized tenant status"
 makeTenantStatus Nothing = returnError UnexpectedNull field "Empty tenant status"

With OverloadedStrings extension enabled, we could pattern match on Bystrings using normal String literals, and return the proper value.
You can also see how we are handling unexpected values or a null coming from the column.

Selecting rows

TODO

Inserting rows

SQL for table creation

We’ll stick with the same tenants table as the previous chapter:

--
-- Tenants
--

create type tenant_status as enum('active', 'inactive', 'new');
create table tenants(
 id serial primary key
 ,created_at timestamp with time zone not null default current_timestamp
 ,updated_at timestamp with time zone not null default current_timestamp
 ,name text not null
 ,first_name text not null
 ,last_name text not null
 ,email text not null
 ,phone text not null
 ,status tenant_status not null default 'inactive'
 ,owner_id integer
 ,backoffice_domain text not null
 constraint ensure_not_null_owner_id check (status!='active' or owner_id is not null)
);
create unique index idx_index_owner_id on tenants(owner_id);
create index idx_status on tenants(status);
create index idx_tenants_created_at on tenants(created_at);
create index idx_tenants_updated_at on tenants(updated_at);
create unique index idx_unique_tenants_backoffice_domain on tenants(lower(backoffice_domain));

Inserting rows

TODO

	Quick example of inserting a new row into the tenants table using runInsertMany

	Explanation of the code and how it corresponds to the type-signature of runInsertMany

Getting the ID of a newly inserted row

TODO

	Quick example of inserting a new row into the tenants table and getting back the ID

	Explanation of the type-signature of runInsertManyReturning API call

	Showing the actual SQL queries being executed in the background

Three functions missing from the Opaleye API

TODO: Recommended functions for the following two common operations:

	Inserting a row using Haskell types as input (as against the PG type as input)

	Inserting a single row and getting back the newly inserted ID

	Inserting a single row and getting back the newly inserted row

Dealing with errors

TODO:

	What happens when an insert fails at the DB level, eg. a CHECK CONSTRAINT prevents insertion?

	Take the example of idx_unique_tenants_backoffice_domain

Using a different record-type for INSERTs

TODO

	Example of defining and using a NewTenant type for row creation

	Commentary on why this could be useful

	Link-off to a later section which discusses these design decisions in detail - “Designing a domain API using Opaleye”

Updating rows

SQL for table creation

We’ll stick with the same tenants table as the previous chapter:

--
-- Tenants
--

create type tenant_status as enum('active', 'inactive', 'new');
create table tenants(
 id serial primary key
 ,created_at timestamp with time zone not null default current_timestamp
 ,updated_at timestamp with time zone not null default current_timestamp
 ,name text not null
 ,first_name text not null
 ,last_name text not null
 ,email text not null
 ,phone text not null
 ,status tenant_status not null default 'inactive'
 ,owner_id integer
 ,backoffice_domain text not null
 constraint ensure_not_null_owner_id check (status!='active' or owner_id is not null)
);
create unique index idx_index_owner_id on tenants(owner_id);
create index idx_status on tenants(status);
create index idx_tenants_created_at on tenants(created_at);
create index idx_tenants_updated_at on tenants(updated_at);
create unique index idx_unique_tenants_backoffice_domain on tenants(lower(backoffice_domain));

--- Products

create type product_type as enum('physical', 'digital');
create table products(
 id serial primary key
 ,created_at timestamp with time zone not null default current_timestamp
 ,updated_at timestamp with time zone not null default current_timestamp
 ,tenant_id integer not null references tenants(id)
 ,name text not null
 ,description text
 ,url_slug text not null
 ,tags text[] not null default '{}'
 ,currency char(3) not null
 ,advertised_price numeric not null
 ,comparison_price numeric not null
 ,cost_price numeric
 ,type product_type not null
 ,is_published boolean not null default false
 ,properties jsonb
);
create unique index idx_products_name on products(tenant_id, lower(name));
create unique index idx_products_url_sluf on products(tenant_id, lower(url_slug));
create index idx_products_created_at on products(created_at);
create index idx_products_updated_at on products(updated_at);
create index idx_products_comparison_price on products(comparison_price);
create index idx_products_tags on products using gin(tags);
create index idx_product_type on products(type);
create index idx_product_is_published on products(is_published);

Updating rows

TODO

	Quick example of selecting a single row by PK, changing a field, and updating it back, using runUpdate

	Explanation of the code and how it corresponds to the type-signature of runUpdate

Getting the updated rows back from the DB

TODO

	Quick example of updating multiple rows in the products table and getting back the updated rows

	Explanation of the type-signature of runUpdateReturning API call

	Show the actual SQL queries being executed in the background

Commentary on Opaleye’s update APIs

TODO:

	Opaleye forces you to update every single column in the row being updated. Why is this?

Multi-table updates (updates with JOINs)

TODO: Does Opaleye even support them? If not, what’s the escape hatch?

Reflex Tutorials

Contents:

	An outline of the tutorials
	First Part: How to get started

	Second Part: Client-Server structure and validations

	Third Part: Large scale structure of the app, JSX templating

	Getting Started with Reflex
	Quick Start

	A look at the code

	Simple deployment

	A server-client architecture
	Validation

	How to query the API endpoint

An outline of the tutorials

This tutorial will be a progressive installment on how to write more and more
complex reflex apps; Each major section will have a companion repo that you can
install and use to learn the concepts we’re presenting.

First Part: How to get started

Here we’ll cover how to build, and minify an example app (commands, cabal flags,
etc). From the code perspective, the code is slightly more complex than the one
in the author’s reflex tutorial, offering a first example of a more complex
interaction of signals.

Companion repo: starterApp [https://github.com/meditans/haskell-webapps/tree/master/UI/ReflexFRP/starterApp]

Second Part: Client-Server structure and validations

Here we’ll see how to write an application with a server and a client part,
doing a simple authentication of a form.

	How to organize a project with a common part shared between backend and
frontend.

	A simple server, handling the requests for authentication and using wai to
gzip the js he’s sending.

	Servant integration: how to treat communication with server in the reflex
network (and calculate the reflex functions directly from the API
specification).

	A general take on validation, showing how to mix validations on the client and
on the server side.

Companion repo: mockLoginPage [https://github.com/meditans/haskell-webapps/tree/master/UI/ReflexFRP/mockLoginPage], corresponding to the mockup here [https://vacationlabs.github.io/haskell-webapps/ui-mockups/].

Third Part: Large scale structure of the app, JSX templating

Here we’ll show how to write a multi-page app complete with routing, jsx
templating, hiding of signals with EventWriter, and we’ll share a simple case of
ffi binding.

	Descriving the problem we’re solving with reflex-jsx and the solution

	Global app structuring

	Routing with servant-router and reflex-contrib-router

	An example of advanced widget creation

	EventWriter and the related advantages in the link structure

	The global interceptor-like feature

	FFI bindings

	Comments on Reflex Ecosystem

Companion repo: mockUsersRoles [https://github.com/meditans/haskell-webapps/tree/mockUsersRoles/UI/ReflexFRP/mockUsersRoles], corresponding to the mockup here [https://vacationlabs.github.io/haskell-webapps/ui-mockups/role-edit.html] and related.

Getting Started with Reflex

In this first installment of the reflex tour, we’ll set up a stack-based
infrastructure for compiling reflex programs, see some basic code, and see how
we can compile and minify our app.

Quick Start

Contrary to the standard way of installing reflex, which is based on the nix
package manager, we’ll focus on a stack based installation. The repo for
this tutorial is here [https://github.com/vacationlabs/haskell-webapps/tree/master/UI/ReflexFRP/starterApp].

Clone the entire repo, move to that folder and launch these installation steps:

	stack build gtk2hs-buildtools

	Be sure to have the required system libraries (like webkitgtk). If you
miss some of the libraries, they will pop up as error in the next step, and
you can install the missing ones

	Build with ghc: stack build

	Execute the desktop app: stack exec userValidation

	Build with ghcjs: ./deploy.sh

	Execute the web app: firefox js/index.html

	TODO: check that this works on macOS

Update: Instruction for macOS, on yosemite 10.10.5

git clone https://github.com/vacationlabs/haskell-webapps.git
cd haskell-webapps/
cd UI/ReflexFRP/starterApp/
stack build gtk2hs-buildtools
stack setup --stack-yaml=stack-ghcjs.yaml
stack install happy
stack build --stack-yaml=stack-ghcjs.yaml
/Applications/Firefox.app/Contents/MacOS/firefox $(stack path --local-install-root --stack-yaml=stack-ghcjs.yaml)/bin/starterApp.jsexe/index.html

While all this builds (it will be a fairly lengthy process the first time), if
you are a new reflex user, be sure to check the beginners tutorial [https://github.com/reflex-frp/reflex-platform] (if you want an installation
process based on stack for the same code, check out here [https://github.com/meditans/stack-reflex-webkitgtk].

and the two quick-start
references that will constitute most of the function we’ll use in this series
(for both reflex [https://github.com/reflex-frp/reflex/blob/develop/Quickref.md] and
reflex-dom [https://github.com/reflex-frp/reflex-dom/blob/develop/Quickref.md]).

You can see that there are two files: a stack.yaml [https://github.com/vacationlabs/haskell-webapps/blob/master/UI/ReflexFRP/starterApp/stack.yaml]
and a stack-ghcjs.yaml [https://github.com/vacationlabs/haskell-webapps/blob/master/UI/ReflexFRP/starterApp/stack-ghcjs.yaml].
Both contain the same version of the libraries we’re using, but with this setup
we get a desktop app for free (built using webkit), and we’re able to use tools
for checking the code (like intero or ghc-mod) that don’t yet directly
support ghcjs.

Here below you can see the two versions of the app:

[image: ../../_images/starterApp.png]

A look at the code

The first objective that this file has is to show how to deal with the fact that
sometimes we don’t want our values to be updated continuously: for example when
designing a form, we want the feedback from the program to happen only when something happens (like, the login button is clicked, or the user navigates away from the textbox

Let’s begin commenting the main function:

main :: IO ()
main = run 8081 $ mainWidgetWithHead htmlHead $ do
 el "h1" (text "A validation demo")
 rec firstName <- validateInput "First Name:" nameValidation signUpButton
 lastName <- validateInput "Last Name:" nameValidation signUpButton
 mail <- validateInput "Email:" emailValidation signUpButton
 age <- validateInput "Age:" ageValidation signUpButton
 signUpButton <- button "Sign up"
 let user = (liftM4 . liftM4) User firstName lastName mail age

The first function we’ll going to see is:

mainWidgetWithHead :: (forall x. Widget x ()) -> (forall x. Widget x ()) -> IO ()

This is the type of a Widget:

type Widget x = PostBuildT Spider
 (ImmediateDomBuilderT Spider
 (WithWebView x
 (PerformEventT Spider
 (SpiderHost Global))))

(it’s a bit scary, but I want to introduce it here because there is an error
that happens sometimes when not constraing the monad enough, and this is the key
to understand that. TODO, flesh out this section)

You don’t need to concern yourself with the exact meaning of this, it’s just a
convenient way to talk about a monadic transformer which hold the semantics
together. Usually we just pass to that function an argument of type
MonadWidget t m => m (), as you can see from:

htmlHead :: MonadWidget t m => m ()
htmlHead = do
 styleSheet "https://fonts.googleapis.com/css?family=Roboto:300,300italic,700,700italic"
 styleSheet "https://cdnjs.cloudflare.com/ajax/libs/milligram/1.1.0/milligram.min.css"
 where

In which we import the css files we need from a cdn.

As you can see, the structure of the main function denotates the components of
this simple app, giving a name to the return values.

Note that the RecursiveDo pragma lets us use the return value of the button
before of his definition. It’s useful to think at the main as having the
following meaning: in the first pass, the widgets are constructed, and
subsequently the reactive network continues the elaboration (TODO: I’m not sure
to include this visualization).

The most important functions are validateInput and notifyLogin, defined below:

validateInput :: MonadWidget t m
 => Prompt -- ^ The text on the label
 -> (Text -> Either Text a) -- ^ A pure validation function
 -> Event t b -- ^ An event so syncronize the update with

The validateInput function is directly responsable for the rendering of the
label, using the pure function to validate the data, and change the value
reported back to the caller as soon as the button is pressed.

On the other hand, the function:

notifyLogin :: MonadWidget t m

is responsible for drawing the notification for the successful login as it
happens.

With these suggestions in mind, you can read directly the source code [https://github.com/vacationlabs/haskell-webapps/blob/master/UI/ReflexFRP/starterApp/Main.hs]
which is thoroughly commented.

Simple deployment

The ghcjs compiler by default generates some extra code dealing with node
bindings: as we want only the webapp here, the first pass in the optimization is
using the -DGHCJS_BROWSER option to strip the node code from the generated
executable. We also use the new -dedupe flags that optimizes for generated
size. All this is accomplished in this section of the cabal file [https://github.com/vacationlabs/haskell-webapps/blob/master/UI/ReflexFRP/starterApp/starterApp.cabal]:

 if impl(ghcjs)
 ghc-options: -dedupe
 cpp-options: -DGHCJS_BROWSER
 else

The next step will be using google’s closure compiler to minify the compiles
javascript, and then google’s zopfli to gzip it; go ahead and install those
tools (I just did sudo dnf install ccjs zopfli on fedora, but you can find
the relevant instructions on their github pages).

I included a simple deployment script to show how you could compile and minify
your app (I’m purposefully creating a simple bash script, there are much more
things you can do, check them at ghcjs deployment page [https://github.com/ghcjs/ghcjs/wiki/Deployment]).

#!/usr/bin/env bash

Compiling with ghcjs:
stack build --stack-yaml=stack-ghcjs.yaml

Moving the generated files to the js folder:
mkdir -p js
cp -r $(stack path --local-install-root --stack-yaml=stack-ghcjs.yaml)/bin/starterApp.jsexe/all.js js/

Minifying all.js file using the closure compiler:
cd js
ccjs all.js --compilation_level=ADVANCED_OPTIMIZATIONS > all.min.js

OPTIONAL: zipping, to see the actual transferred size of the app:
zopfli all.min.js

Here’s the relevant output of ls -alh js, to show the size of the generated files:

-rw-r--r--. 1 carlo carlo 3.0M Dec 12 17:16 all.js
-rw-rw-r--. 1 carlo carlo 803K Dec 12 17:17 all.min.js
-rw-rw-r--. 1 carlo carlo 204K Dec 12 17:17 all.min.js.gz

So, the final minified and zipped app is about 204 Kb, not bad since we have to
bundle the entire ghc runtime (and that’s a cost that we only pay once,
regardless of the size of our application).

We could also wonder if we have a size penalty from the fact that I used
classy-prelude instead of manually importing all the required libraries.
So I did an alternative benchmark, and it turns out that that’s not the case:

-rw-r--r--. 1 carlo carlo 3.1M Dec 12 17:35 all.js
-rw-rw-r--. 1 carlo carlo 822K Dec 12 17:35 all.min.js
-rw-rw-r--. 1 carlo carlo 206K Dec 12 17:35 all.min.js.gz

As you can see, the difference is really minimal. In fact, all the size is
probably taken up by the encoding of the ghc runtime.

A server-client architecture

In this installment of the series, we’ll see:

	how to implement a client-server architecture, with a common package to share
code and abstractions between the two parts.

	how to use the package servant-reflex to seamlessy embed server requests
in the frp network.

	how to use a library to talk about data validation, of the kind done in html
forms.

The code for today’s repo is in: TODO

Let’s begin with the simplest matter: how to share data definitions and
abstractions between the backend and the frontend. It seems a very widespread
practice to create three packages: one, let’s say common, will contain the
shared abstractions, and will be included by the other two, client (with the
code for the webapp, to be compiled with ghcjs), and server (with the code
for the server, to be compiled with ghc). That’s all.

Let’s also briefly describe here what this application does and the structure of
the server: TODO

Validation

The requisites for validation

When designing a web app there are two kinds of validations that can be run: the
first is the one done on the client, to provide validation against crude error
(think of inputing a well-formed email address); the other one, usually done on
the server, is about validating the data against our knowledge (think of
checking if an email address is in the user database).

Sometimes, for security reasons, the server might want to do again the
validations which happened in the client, and so we need way of easily composing
validations, sharing the common infrastructure, so that code duplication is
reduced.

Another problem that we encouter is that the format in which we report back the
error to the client must be convenient enough to report errors near the UI
element which caused them; for example, when validating a user with a
combination of mail and password, an error message for a wrong password should
be displayed near the password itself.

This brings us to discussing common solution for validation: there is the
Data.Validation approach, in the validation package, which is
essentially Either with another applicative instance. Unfortunately this
approach fails us because we have no obvious way of reporting back errors to
their use site.

On the other hand we have the digestive-functors approach, which
unfortunately is geared towards a server-centric approach, and makes validations
on the client difficult to write (TODO: Check the correctness of this
information with Jasper).

A possible solution

So let’s think about another solution: let’s say I’m implementing a
Mail/Password validation, so the type of my user could be

data User = User Mail Text

Now, if we expand slightly our definition to

data UserShape f = UserShape (f Mail) (f Text)

we gain the possibility of talking about a structure whose fields talk about
operations or data parametrized by Mail and Text.

For example, some functor that we might want to use are Identity (and in
fact User is obiously isomorphic to UserShape Identity), Maybe or
Either Text to model the presence of errors, or for example

newtype Validation a = Validation { unValidationF :: Compose ((->) a) Maybe a }

so that:

UserShape Validation ~ UserShape (Mail -> Maybe Mail) (Text -> Maybe Text)

Now that we can talk about this “user shaped” objects, we might want to combine
them, for example with something like:

validateUser :: User -> UserShape Validation -> UserShape Maybe

the shaped library has a generic mechanism of doing this kind of
manipulations (check out the validateRecord function). The library uses
internally generics-sop to construct and match the generic representations,
and some Template Haskell to shield the user from the boilerplate instance
declarations.

Now, we can send to the server a tentative User to check, and get back a
UserShape Maybe that we can easily map back to our input text-boxes.

You can check how that’s done in the client for today’s installment (TODO link
the correct lines).

How to query the API endpoint

The common code in this simple case contains only the definition of the user
type and the type for our servant API

The server code is a simple server that serves a mock authentication. I’m not
entering in an in depth discussion on the servant approach here (if you’re
interested check the wonderful servant documentation [http://haskell-servant.readthedocs.io/en/stable/tutorial/index.html], but the
gist is that you can create from a description of the api, in this project:

type MockApi = "auth" :> ReqBody '[JSON] User :> Post '[JSON] Text
 :<|> Raw

A server satisfying that api, here:

server :: Server MockApi
server = authenticate :<|> serveAssets :<|> serveJS

The package servant-reflex transforms a Servant API in Reflex functions for
querying it, in the same way servant-server transforms it in a server. The
invocation is very easy:

let url = BaseFullUrl Http "localhost" 8081 ""
(invokeAPI :<|> _ :<|> _) = client (Proxy @MockApi) (Proxy @m) (constDyn url)

client :: HasClient t m layout => Proxy layout -> Proxy m -> Dynamic t BaseUrl -> Client t m layout

As you can see, client is the most important function: it takes proxies for
the API and the monad in which the computation is executed (as it’s customary to
run a reflex computation in a (constrained) universally quantified monad, like
our own body :: MonadWidget t m => m () (the syntax with @ is due to the
ghc 8’s TypeApplications extension, without it you should have written
Proxy :: Proxy MockApi etc.)

That gives us a mean to call the relevant API endpoint (TODO: detail the type of
the transformed function, detailing how the API call is translated in events.
Also talk about Xhr).

For example in our code we use this feature to like this:

Webapp Framework

Contents:

	Migrations: Creating and editing DB models
	Setting up a fresh database

	Creating a new model

	Editing existing models

	Other useful command-line arguments

	Basic CRUD Operations with models
	Model code-generator

	(C)reate operations on models

	(R)ead operations on models

	(U)pdate operations on models

	(D)elete operations on models

	General validation helpers

	Strict model validations

	Deploying
	Using stack with Docker

	Building from docker file

	Configuring Stack

Outline

	Overall project layout - partial design:

projectRoot
|
|-- src
| |
| |-- Models
| | |
| | |-- User
| | | \-- Types
| | |
| | |-- Customer
| | | \-- Types
| | |
| | |-- Order
| | | \-- Types
| | |
| | \-- (and so on)
| |
| |-- Endpoints
| | |
| | |-- User
| | | \-- Types
| | |
| | |-- Customer
| | | \-- Types
| | |
| | |-- Order
| | | \-- Types
| | |
| | \-- (and so on)
| |
| \-- Foundation
| | Import
| | DBImport
| \-- Types
| |-- Currency
| |-- PrimaryKey
| |-- Config
| \-- (and so on)
|
|-- app
| \-- Main
|
|
|-- autogen
| \-- AutoGenarated
| |
| |-- Models
| | |-- User
| | |-- Customer
| | |-- Order
| | \-- (and so on)
| |
| |-- PrimaryKeys
| | |-- UserId
| | |-- CustomerId
| | |-- OrderId
| | \-- (and so on)
| |
| \-- Classes (used for lenses)
| |-- Id
| |-- Name
| |-- Phone
| \-- (and so on)
|
|-- autogen-config.yml
|
\-- scripts

	Models / Database

	Naming conventions - almost final design

	Migrations: Creating and editing models - almost final

	Strict validations - WIP

	Query helpers - partial design

	DB transactions & savepoints - partial design

	Creating JSON APIs - WIP

	Basic JSON API - almost final

	API-specific validations - WIP

	File-uploads - WIP

	Frontend/UI code

	Communicating with JSON APIs - WIP

	Validations - WIP

	Static assets - WIP

	Logging

	File based logging - almost final

	Exception/error notifications - WIP

	Performance metrics in production - WIP

	Sending emails - almost final

	Job queues - partial design

	Testing - WIP

	Deployment - WIP

	Authentication & authorization - WIP

	Audit logs - partial design

Migrations: Creating and editing DB models

Setting up a fresh database

poi migrate prepare

This command will generate the following tables and triggers in your DB, if they don’t already exist:

	schema_migrations table to track which migrations have already been run. This is directly influenced from Rails migrations.

	trg_update_modified_column - a trigger to automatically set updated_at column to current_timestamp whenever any row is updated in a table which contains this column.

Creating a new model

poi migrate new createUsers

This will create a file called <projectRoot>/migrations/MYYYYMMDDHHmmSS-createUsers.hs (where YYYYMMDDHHmmSS is the actual timestamp on which you run the command). The file will look like the following:

module M20170828164533_createUsers where

import Control.Monad
import Database.Rivet.V0
import Text.InterpolatedString.Perl6 (qc)

migrate :: Migration IO ()
migrate = sql up down

up = ([qc|
-- INSERT YOUR MIGRATION SQL HERE
|])

down = ([qc|
-- INSERT YOUR ROLLBACK SQL HERE
|])

Now edit this file to create your tables, indexes, constraints, triggers, etc. using raw SQL:

module M20170828164533_createUsers where

import Control.Monad
import Database.Rivet.V0
import Text.InterpolatedString.Perl6 (qc)

migrate :: Migration IO ()
migrate = sql up down

up = ([qc|
CREATE TABLE users
 (
 id serial primary key
 ,created_at timestamp with time zone not null default current_timestamp
 ,updated_at timestamp with time zone not null default current_timestamp
 ,username text not null
 ,password text not null
 ,first_name text
 ,last_name text
 ,status user_status not null default 'inactive'
 CONSTRAINT chk_status CHECK ((status IN ('active', 'inactive', 'deleted', 'blocked')))
);
CREATE INDEX idx_users_created_at on users(created_at);
CREATE INDEX idx_users_updated_at on users(updated_at);
CREATE INDEX idx_users_status on users(status);
CREATE UNIQUE INDEX idx_users_username on users(username);

CREATE TRIGGER trg_modify_updated_at
 BEFORE UPDATE ON users
 FOR EACH ROW EXECUTE PROCEDURE update_modified_column();
|])

down = ([qc|
DROP TABLE users;
|])

Tip

We should probably have our own quasi-quoter called sql or something, which allows mixing of raw SQL along with custom helper functions. We can write helper functions to generated indexes, triggers for audit logs, triggers for updating updated_at, triggers for pushing to DB based event_log, etc.

Now, run the migration, with the following command:

poi migrate up

Here is what this will do, under the hood:

	This will connect to the development database (by default) and execute all pending migrations. The timestamp/version of all migrations in the <projectRoot>/migrations/ directory will be looked-up in the schema_migrations table. Any migration which is not there in the table will be executed in ascending order of the timestamp/version.

	Each individual migration will be wrapped within a single BEGIN/COMMIT block - which means that if any migration throws an error:
	that particular migration will be rolled back,

	all previous migrations (which have already executed successful) will persist,

	and all migrations which are yet to be executed, will be aborted.

	Once the migration runs successfully, it will run the model code-generator under the hood, to create/modify/delete any model files that need to be updated as a result of this migration.

Editing existing models

The worlflow remains pretty much the same as “Creating a new model”:

	Create a migration file

	Write a bunch of ALTER statements in the migration

	Run poi migrate up

Other useful command-line arguments

poi migrate [up | down | redo | prepare | new]

--env environmentName

 Explicitly pass an environment to the script. Default value is
 `development` or the value of the `APP_ENV` environment variable (in
 that order)

--version regex

 Pass a specific migration version to the script. A fuzzy (or regex)
 match will be attempted with the given argument. If exactly one
 migration matches, it will be targeted, else all matching migrations
 will be printed out STDOUT.

Basic CRUD Operations with models

Model code-generator

Once you’ve generated your models using the migration tool you’ll notice a lot of files getting auto-generated in the <projectRoot>/autogen & <projectRoot>/src/Models directories:

	For every table that your DB contains you’ll have an auto-generated DB interface called AutoGenerated.Models.<SingularizedTableNameInCamelCase>.

	For every table that has a primary key called id (which is a recommended convention), you’ll have an auto-generated module called AutoGenerated.PrimaryKeys.<SingularizedTableNameInCamelCase>Id

	For every unique column-name, across all your tables, you’ll have an auto-generated lens-class called AutoGenerated.Classes.Has<FieldNameInCamelCase>

	For every model that is newly generated, you’ll have a file called Models.<SingularizedTableNameInCamelCase> and a file called Models.<SingularizedTableNameInCamelCase>.Types

For example, if you have the following two tables in your DB schema...

	users
	contacts

	id
	id

	created_at
	created_at

	updated_at
	updated_at

	email
	email

	password
	first_name

	first_name
	last_name

	last_name
	street_address

	
	state

	
	country

	
	zip

	
	user_id references users(id)

...you’ll end up with the following files:

	Filename
	Purpose
	Overwitten?

	autogen/AutoGenerated/Models/User.hs
	Auto-generated DB interface
	Yes

	autogen/AutoGenerated/Models/Contact.hs
	Auto-generated DB interface
	Yes

	autogen/AutoGenerated/PrimaryKeys/UserId.hs
	newtype for PK
	Yes

	autogen/AutoGenerated/PrimaryKeys/ContactId.hs
	newtype for PK
	Yes

	autogen/AutoGenerated/Classes/Id.hs
	Lens class
	Yes

	autogen/AutoGenerated/Classes/Id.hs
	Lens class
	Yes

	autogen/AutoGenerated/Classes/CreatedAt.hs
	Lens class
	Yes

	autogen/AutoGenerated/Classes/UpdatedAt.hs
	Lens class
	Yes

	autogen/AutoGenerated/Classes/Email.hs
	Lens class
	Yes

	autogen/AutoGenerated/Classes/Password.hs
	Lens class
	Yes

	autogen/AutoGenerated/Classes/FirstName.hs
	Lens class
	Yes

	autogen/AutoGenerated/Classes/LastName.hs
	Lens class
	Yes

	autogen/AutoGenerated/Classes/StreetAddress.hs
	Lens class
	Yes

	autogen/AutoGenerated/Classes/State.hs
	Lens class
	Yes

	autogen/AutoGenerated/Classes/Country.hs
	Lens class
	Yes

	autogen/AutoGenerated/Classes/Zip.hs
	Lens class
	Yes

	autogen/AutoGenerated/Classes/UserId.hs
	Lens class
	Yes

	src/Models/User.hs
	Domain-level model
	No

	src/Models/User/Types.hs
	supporting types for Models.User
	No

	src/Models/Contact.hs
	Domain-level model
	No

	src/Models/Contact/Types.hs
	supporting types for Models.Contact
	No

Points to note

	All files in the <projectRoot>/autogen directory are marked as read-only and will be over-written if the underlying DB schema changes. You should not touch these files. Simply commit them into your version control.

	All files in <projectRoot>/src/Models will be generated only once by the code-generation tool. Once generated, they will never be touched by the tool. You should put all your domain logic, custom types, enumeration types, etc. in these files.

(C)reate operations on models

Try the following in your REPL:

createModel UserPoly
{
 _userId = Nothing
, _userCreatedAt = Nothing
, _userUpdatedAt = Nothing
, _userEmail = "saurabh@vacationlabs.com"
, _userPassword = "blahblah"
, _userFirstName = "Saurabh"
, _userLastName = "Nanda"
}

(R)ead operations on models

Try the following in your REPL:

-- finding by a primary key
findByPk (PK 1 :: UserId)

-- find a single row by matching over two columns. Will throw an error if
-- this results in multiple rows being returned.

findSingle2 tableForUser
 (
 (email, pgEq, "saurabh@vacationlabs.com")
 , (password, pgEq, "blahblah")
)

-- find a single row by matching over three columns. Will throw an error if
-- this results in multiple rows being returned.
findSingle3 tableForUser
 (
 (email, pgEq, "saurabh@vacationlabs.com")
 , (firstName, pgEq, "Saurabh")
 , (lastName, pgEq, "Nanda")
)

-- find the first row by matching over four columns. Will not throw an error
-- if this results in multiple rows being returned. Will silently return the
-- first row.
findFirst4 tableForUser
 (
 (email, pgEq, "saurabh@vacationlabs.com")
 , (country, pgIn, ["IN", "US"])
 , (state, pgIn, ["UP", "MH"])
 , (userId, pgEq, PK 10)
)

-- return all matching rows
filter1 tableForUser
 (
 (email, pgEq, "saurabh@vacationlabs.com")
)

filter2 tableForUser
 (
 (email, pgEq, "saurabh@vacationlabs.com")
 , (country, pgIn, ["IN", "US"])
)

-- and so on, up to filter6. If you need more than 6 columns, you should
-- probably use the underlying Opaleye querying infrastructure.

(U)pdate operations on models

Try the following in your REPL:

u <- findByPk (PK 1 :: UserId)
saveModel (u & firstName .~ "new name")

-- OR

updateModel
 (PK 1 :: UserId) -- which row to update
 (\u -> (u & firstName .~ (pgStrictText "new name"))) -- updater function

(D)elete operations on models

Try the following in your REPL:

u <- findByPk (PK 1 :: UserId)
deleteModel u

-- OR

deleteModelByPk (PK 1 :: UserId)

General validation helpers

--
validateLength :: (Foldable t, Monoid e, MonadIO m) => Text -> (Int, Int) -> Getting (t a) s (t a) -> s -> m e

-- NOTE: The type signature is probably incomplete. Please refer to the usage
-- sample to figure out what the actual type signature needs to be.
validateFormat :: (MonadIO m, Monoid e) => m RE -> Lens' s a -> s -> m e

-- Strips the field of all leading and trailing whitespace and then ensures
-- that is not a blank string. TODO: Should the whitespace-stripped string be
-- stored in the DB? How do we ensure that?
validatePresence :: (Monoid e, MonadIO m) => Text -> Getting Text s Text -> s -> m e

-- Ensures that a field is either Nothing OR a blank string (ignoring all
-- leading and trailing whitespace). TODO: How do we ensure that a blank-string
-- is actually treated as a Nothing when storing into the DB? Also, is there a
-- use-case for having a non-Maybe (i.e. NOT NULL) field, which is validated to
-- be a blank string?
validateAbsence :: (Monoid e, MonadIO m) => Text -> Getting (Maybe Text) s (Maybe Text) -> s -> m e

-- This will end up making a DB call, because of which, more class -
-- constraints will get added. Like `Default Constant a1 (Column a1)`. Also,
-- please NOTE - you have to be careful while querying the DB for rows with the
-- same fields to NOT match the record which is being validated. This can be
-- ensured by passing another condition to `filterN` -
-- (id, pgNotEq, record ^.id)
validateUnique1 :: (Monoid e, HasDatabase m) => Text -> (Getting a1 s a1) -> s -> m e
validateUnique2 :: (Monoid e, HasDatabase m) => Text -> (Getting a1 s a1, Getting a2 s a2) -> s -> m e
validateUnique3 :: (Monoid e, HasDatabase m) => Text -> (Getting a1 s a1, Getting a2 s a2, Getting a3 s a3) -> s -> m e
-- and so on... til validateUnique5

--
validateIn :: (Monoid e, MonadIO m) => Text -> [a] -> Getting [a] s [a] -> s -> m e

Strict model validations

module Models.User
 (
 module Models.User
 , module Models.User.Types
 , module Autogenerated.Models.User
) where

instance DbModel User where
 strictValidations :: (MonadIO m) => User -> m [Error]
 strictValidations user =
 (validateUnique "Email must be unique" email)
 <> (validateLength "Name must be between 5 and 100 chars" (5, 100) name)
 <> (validateFormat "Doesn't seem like a valid email." (compiledRegex "(.*)@(.*)\.(.*)") email)
 <> (validatePresence "Name should be present" name) -- strips the field of whitespace
 <> (validateIn "Should be one of black or gray" ["black", "gray"] colourCode)
 <> (if (present $ user ^. firstName)
 then (validatePresence "Last name should be present if first name is given" lastName)
 else [])

Deploying

Using stack with Docker

NOTE: If you are using Windows operating system, this is not yet working for Windows. Watch this
issue https://github.com/commercialhaskell/stack/issues/2421

The Stack tool has built in support for executing builds inside a docker container. But first
you have to set up some stuff on your machine. First of which is installing docker on your system.

https://docs.docker.com/engine/installation/

Download and install the CE (Community Edition) version. After the installation
you should have a docker command available in your terminal.

Try the docker command docker images and see if works without errors. If
you are getting a permission denied error, try running the following command,

sudo usermod -a -G docker $USER

NOTE: After the above command, you should completly log out and log in to see the affect.
Or if you cannot do that, just relogin as the same user, for ex, if you are loggied in as user vl
just do a su vl and that should be enough.

Next you have to build the docker image that we will use for our builds. You have two options here.

	You can either build one from using the docker file

	You can pull a prebuilt image from the docker hub.

Building from docker file

Open up a terminal and go to the root of the app. There should be a docker folder there. Go to that folder,
and do docker build . there.

cd docker
docker build -t vacationlabs-ubuntu .

When this is done, you will have a new docker image with name “vl-ubuntu-image”.

Configuring Stack

Your stack.yaml will contain the following lines.

docker:
 env:
 - "APP_ENV=development"
 enabled: false
 image: vacationlabs-ubuntu
 run-args: ["--ulimit=nofile=60000", "--memory=4g"]

	The env key contains a list and is used to set environment variables inside the container
before the build.yaml

	The enabled flag set to false to NOT use docker by default. Docker will be involved only
upon specifing the command line flag --docker.

	The image key is used to specify the docker image from which the container for the build will be made.
This should already exist.

	The run-args key us used to pass arguments to the docker command that created the container. Here we
have used it to increase the maximum number of open files that will be allowed inside the container and
the maximum amount of host memory the container is allowed to use.

Now you can build the app using the stack build --docker

When you do this for the first time, stack will complain there is no compiler installed in
the container. Just use --install-ghc flag like stack build --docker --install-ghc. And it will
install the compiler inside the container.

Stack will mount the ~/.stack folder inside the container, so installing compiler and dependencies
only need to be done once. That is unless you change the image for the container.

If you find that stack gets stalled after downloading the compiler at around 90mb, you can just download
the required tar archive from https://github.com/commercialhaskell/ghc/releases to the ~/.stack/programs/x86_64-linux-* folder and name it using format ghc-8.0.2.tar.xz and run the build command again. That stack will use
downloaded archive instead of downloading it again.

After the build, the binary file will be in the usual location.

Further reference : https://docs.haskellstack.org/en/stable/docker_integration/

Index

 —
title: About
—
Nullam imperdiet sodales orci vitae molestie. Nunc quam orci, pharetra a
rhoncus vitae, eleifend id felis. Suspendisse potenti. Etiam vitae urna orci.
Quisque pellentesque dignissim felis, egestas tempus urna luctus vitae. In hac
habitasse platea dictumst. Morbi fringilla mattis odio, et mattis tellus
accumsan vitae.

	Amamus Unicode 碁

	Interdum nex magna.

Vivamus eget mauris sit amet nulla laoreet lobortis. Nulla in diam elementum
risus convallis commodo. Cras vehicula varius dui vitae facilisis. Proin
elementum libero eget leo aliquet quis euismod orci vestibulum. Duis rhoncus
lorem consequat tellus vestibulum aliquam. Quisque orci orci, malesuada porta
blandit et, interdum nec magna.

CRUD workflow in HRR

	[This chapter is about the basic DB operations, with Haskell code examples;

	special attention must be given here to how parametrized queries are defined
as well as the placeholder syntax HRR employs]

Select

Insert

Update

Delete

Where clauses

	[illustrate some examples of clauses with comparison operators and boolean

	expressions, e.g. IN, LIKE and such]

[This chapter should cover the Haskell-side syntax of HRRs query DSL]

Advanced Workflow

DB-side constraints / data validation

[explain how (sadly) HRR can’t capture a DB constraint as a Haskell function for validation; only flat data type derivation]

Joins

[explain examples utilizing various kinds of joins in HRR]

Subqueries

[provide examples of subselects]

Union, Coalesce

[check if HRR supports these expressions, if so, give examples]

Case ... when

[check if HRR supports that expression, if so, give an example]

Functions

[Say something about functions like e.g. char_length(), date_part(), ...]

Housekeeping

[how to deal with housekeeping columns, like timestamps]

Fallback to HDBC

	[being based on HDBC, you can have a fallback when doing something

	with the DB that HRRs abstractions don’t cover, like e.g. select the
last inserted PK or do INSERT ... RETURNING *]

Bulk inserting / preparing statements

	[as before, this stuff has to be done one level below HRRs abstraction; HRR

	does not provide any mechanism for these cases]

Advanced DB mapping

	[HRR is DB agnostic, meaning that user defined types or extensions are not supported, by choice of HRRs authors.

	This chapter should give an overview how to approach that topic]

[This chapter includes a view on how HRR interoperates with postgres additions to the SQL standard]

date/time types

[how are date/time values mapped by HRR? is there any special way necessary to deal with them?]

JSON(B) type

	[Show how a patched HRR library can derive JSON(B) as ByteString but provides

	no abstraction for it in its query syntax (like cf. https://www.postgresql.org/docs/9.5/static/functions-json.html)]

Enums

	[Show how with some TH magic you can use HRRs data type derivation to actually

	generate Haskell sum types and HRR projections from postgres enums, so that
this feature becomes usable quite well]

Arrays

	[There are yet some experiments to do here on how to best deal with

	postgres arrays, e.g. parse the literals into Haskell lists with
custom FromSql / ToSql instances - in short, proof of concept still missing]

	[Is it possible to use a type alias on the DB and generate a mapping to a Haskell

	newtype, for additional type safety?]

Summary and Conclusion

Why and when you should use HRR in a live system

	[Describe what use scenario HRRs handles best; outline the benefits:

	type safety of queries defined in Haskell and type checking of queries against the DB schema; avoiding boilerplate]

Drawbacks you might be in for

	[HRRs limitation to the base cases, as per decision of the authors; sometimes clumsy

	syntax; need for a complete and running DB backend to build Haskell project;
while HRR entry-level docs are quite good, lack of mid-level documentation
and reference examples becomes obvious later on]

Integration

	[To live up to the promise of type-safety, a change in the underlying DB schema

	must be reflected when (re)building a Haskell project which uses HRR. Say something
about how HRR can be integrated with a build system like stack so that data types
get derived anew in their respective Haskell modules when necessary]

Haskell Relational Record Tutorials

Contents:

	Instant Gratification
	Connecting to the PostgreSQL database

	Your very first query

	Introduction
	What is Haskell Relational Record?

	What HRR is not

	How does it work

	Basic DB mapping
	Full example

	Projections

	TypeMap

	CRUD workflow in HRR
	Select

	Insert

	Update

	Delete

	Where clauses

	Advanced DB mapping
	date/time types

	JSON(B) type

	Enums

	Arrays

	Advanced Workflow
	DB-side constraints / data validation

	Joins

	Subqueries

	Union, Coalesce

	Case ... when

	Functions

	Housekeeping

	Fallback to HDBC

	Bulk inserting / preparing statements

	Summary and Conclusion
	Why and when you should use HRR in a live system

	Drawbacks you might be in for

	Integration

Instant Gratification

Connecting to the PostgreSQL database

Haskell Relational Record (HRR) promises to be a very high level abstraction for both SQL query generation as well as correlation
of SQL results with Haskell data types. It sits on top of HDBC, the Haskell Database Connectivity package. So connecting
to your PostgreSQL database entails no more than installing HDBC’s PostgresSQL driver, importing its Haskell
module and passing a PostgreSQL connection string as an argument.

import Database.HDBC.PostgreSQL (connectPostgreSQL, Connection)

getDataSource :: IO Connection
getDataSource = connectPostgreSQL "host=some.dbserver.com dbname=mydatabase"

For any project using HRR this is the very first thing you should define - otherwise your project won’t even compile! Why’s that?
Because HRR generates Haskell record data types from your database schema at compile-time via Template Haskell (TH);
those in turn must then type-check against the queries you’ve defined in your code. The instant gratification here is that you can’t
end up with queries in your project that are inconsistent with your database (e.g. when the underlying schema has changed due to
some migration). Also, you avoid writing a fair amount of boilerplate code.

On the other hand though, a live connection to a database is prerequisite to even compiling a HRR project.

Your very first query

Let’s assume a database table like the following storing user data for some app or service:

create table users
 (id serial primary key
 , email text not null
 , name text
);

What needs to be done to query this table? Well, first of all, HRR needs to derive a Haskell data type for it. It’s advised to have a separate
Haskell module (and thus, namespace) for each data type you derive with HRR, since there might be more than one table in the database using
identical column names like e.g. ‘id’ and ‘name’.

So you define a small helper module which will contain a wrapper function for HRR; this function will output some
top-level defintions via HRR’s TH magic.

import Database.HDBC.Query.TH (defineTableFromDB)
import Database.HDBC.Schema.PostgreSQL (driverPostgreSQL)

defineTable :: String -> Q [Dec]
defineTable tableName =
 defineTableFromDB getDataSource driverPostgreSQL "public" tableName [''Show]

As you can see, we needed getDataSource from above; "public" (or whatever name) refers to the corresponding PostgreSQL schema.
Now we’re good to go to derive our Haskell record type Users:

{-# LANGUAGE TemplateHaskell, MultiParamTypeClasses, FlexibleInstances #-}

$(defineTable "users")

And that’s it. The module now contains the definition of the record type, along with several instances that handle conversion from and to SQL,
and a basic relation to access the underlying database table. Since that’s exactly what we wanted to do in the first place, let’s do it! We
import that module and define a query that looks up the user’s complete record, given their registration e-mail address:

getUserEntry :: Relation String Users
getUserEntry = relation' . placeholder $ \param -> do
 u <- query users
 wheres $ u ! email' .=. param
 return u

The type signature reads ‘... is a relation from String to Users‘ in a straightforward way; the rest will be explained in more detail later. For
now you just need to know that all building blocks of this relation are either part of HRR’s DSL for describing queries or part of what we’ve derived
earlier for the record data type - thus the definition is wholly type-safe. What remains is rendering the relation as a SQL query and
executing it on the DB:

import Database.HDBC.Record.Query (runQuery)
import Database.Relational.Query (relationalQuery)

myFirstQuery :: IO [Users]
myFirstQuery = getDataSource >>= \conn ->
 runQuery conn (relationalQuery getUserEntry) "some.user@mailprovider.com"

And that was your very first query in HRR!

Basic DB mapping

	[Data type derivation being a pivotal point of HRR, explain more in detail

	what HRR does at compile time and what the result looks like]

Full example

	[Take a table like e.g. users and explain all the stuff HRR generates via Template Haskell:

	the record data type, selectors, projections, and a basic relation that is equivalent to SELECT * FROM]

Projections

[Explain HRRs projections (:: Pi a b) and what they’re useful for]

TypeMap

	[How to tell HRR to use custom type mappings, like mappings to different

	Haskell string/text or numeric types]

Introduction

What is Haskell Relational Record?

[Definition of HRR, presenting its way of abstraction; Motivation for it as a framework]

What HRR is not

[Explain difference from Object-Relational-Mappers like Persistent, or other query generators like Opaleye]

How does it work

[Dip into HRRs template Haskell data type derivation system; show, how relations defined in Haskell are rendered as SQL]

(How detailed should this paragraph be?)

 _static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/up.png

_static/minus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		Haskell Tutorials

 		Opaleye Tutorials

 		Instant Gratification

 		Overview

 		Preliminaries

 		Teaching your table schema to Opaleye

 		Connecting to the Postgresql database

 		Selecting all rows

 		Inserting a row

 		Updating a row

 		Selecting a single row

 		Basic DB mappings

 		Overview

 		Creating the DB

 		Strange polymorphic records

 		Different types for read & write

 		Handling NULL and database defaults

 		Different types for read & write - again

 		Wrapping-up

 		Template Haskell expansion

 		Advanced DB Mappings

 		Overview

 		SQL for table creation

 		Code that we'll run through

 		Core mechanism for mapping custom Haskell types to PG types

 		Newtypes for primary keys

 		Mapping ENUMs to Haskell ADTs

 		Handing Postgres Arrays

 		Handling JSONB

 		Making columns read-only

 		Selecting rows

 		Inserting rows

 		SQL for table creation

 		Inserting rows

 		Getting the ID of a newly inserted row

 		Three functions missing from the Opaleye API

 		Dealing with errors

 		Using a different record-type for INSERTs

 		Updating rows

 		SQL for table creation

 		Updating rows

 		Getting the updated rows back from the DB

 		Commentary on Opaleye's update APIs

 		Multi-table updates (updates with JOINs)

 		Reflex Tutorials

 		An outline of the tutorials

 		First Part: How to get started

 		Second Part: Client-Server structure and validations

 		Third Part: Large scale structure of the app, JSX templating

 		Getting Started with Reflex

 		Quick Start

 		A look at the code

 		Simple deployment

 		A server-client architecture

 		Validation

 		How to query the API endpoint

 		Webapp Framework

 		Migrations: Creating and editing DB models

 		Setting up a fresh database

 		Creating a new model

 		Editing existing models

 		Other useful command-line arguments

 		Basic CRUD Operations with models

 		Model code-generator

 		(C)reate operations on models

 		(R)ead operations on models

 		(U)pdate operations on models

 		(D)elete operations on models

 		General validation helpers

 		Strict model validations

 		Deploying

 		Using stack with Docker

 		Building from docker file

 		Configuring Stack

 		Outline

_static/comment-close.png

_images/starterApp.png
Mozilla Firefox

starterApp

file:///hom.../index.html x

{66 neimicsniseiat ¢ A validation demo
A validation demo FirstName

First Name:

Last Name!

Last Name:

