
WebApi Documentation
Release 0.3

ByteAlly

Dec 19, 2018

Contents:

1 Installation 3

2 Quick start 5
2.1 Contract . 5
2.2 Server implementation . 6

3 Routing 9
3.1 Routes as types . 9
3.2 More examples . 10

4 Server implementation 11
4.1 Writing WebApiServer instance . 11
4.2 Writing instances for your handlers . 12
4.3 Doing more with your handler monad . 12

5 Content Serialization / Deserialization 15
5.1 Nested Types . 15
5.2 Writing Custom instances . 16
5.3 Content Types . 16

6 Error Handling 19

7 Building haskell client for third-party API 21

8 Mocking Data 25

i

ii

WebApi Documentation, Release 0.3

WebApi is a Haskell library that lets you

• Write web API services

• Quickly build Haskell client for existing API services

• Generate API console interface for your web API (coming soon)

• Generate a mock server that can mock your responses and requests

WebApi is built with WAI. It makes use of the strong type system of haskell which lets to

• Create a type safe routing system.

• Enable type safe generation of links.

• Specify a contract for the APIs.

• Auto serialization and deserialization of the request and response based on api contract.

• Write handlers which respect the contract.

Contents: 1

https://hackage.haskell.org/package/webapi
https://github.com/byteally/webapi-console
https://hackage.haskell.org/package/webapi
https://hackage.haskell.org/package/wai/docs/Network-Wai.html

WebApi Documentation, Release 0.3

2 Contents:

CHAPTER 1

Installation

We recommend using stack build tool for installation and building. If you don’t have stack already, follow these
instructions to install it. To setup your own project:

1) Create a project using stack:

stack new <Your-Project-Name>

2) Then add webapi to the extra-deps section in stack.yaml file:

extra-deps:
- webapi-0.3

3) Finally add webapi to the build-depends section of your cabal file.

build-depends: webapi

3

https://github.com/commercialhaskell/stack#readme
https://github.com/commercialhaskell/stack#readme
http://docs.haskellstack.org/en/stable/install_and_upgrade/

WebApi Documentation, Release 0.3

4 Chapter 1. Installation

CHAPTER 2

Quick start

Writing your API service comprises of two steps

• Writing a contract (schematic representation of your API)

• Providing a server implementation

2.1 Contract

A contract is the list of end-points in your API service and the definition of each API endpoint. We define what goes
in as request (Query params, form params, headers etc) and what comes out as the response of each API endpoint.

As an example, consider a API service that lets you create, update, delete and fetch users. First step is to create a
datatype for our API service. Lets call it MyApiService

To define your contract using the framework, you need to

• Declare a data type for your API service.

data MyApiService

• Declare your routes as types.

type User = Static "user"
type UserId = "user" :/ Int

• Write a WebApi instance which declares the endpoints.

instance WebApi MyApiService where
-- Route <Method> <Route Name>
type Apis MyApiService = '[Route '[GET, POST] User

, Route '[GET, PUT, DELETE] UserId
]

5

https://hackage.haskell.org/package/webapi/docs/WebApi-Contract.html#t:WebApi

WebApi Documentation, Release 0.3

• Write ApiContract instances describing what goes in an request and what comes out as response from each
API endpoint. Let’s write our first ApiContract instance for POST /user.

-- Our user type
data UserData = UserData { age :: Int

, address :: Text
, name :: Text
} deriving (Show, Eq, Generic)

data UserToken = UserToken { userId :: Text
, token :: Text
} deriving (Show, Eq, Generic)

-- Takes a User type in form params and returns UserToken.
instance ApiContract MyApiService POST User where

type FormParam POST User = UserData
type ApiOut POST User = UserToken

In our code snippet above, the end-point POST /user takes user’s information (name, age and address) as post
params and gives out the user’s token and userId

An equivalent curl syntax would be:

`curl -H "Content-Type: application/x-www-form-urlencoded" -d 'age=30&
→˓address=nazareth&name=Brian' http://api.peoplefrontofjudia.com/users `

• Finally to complete our contract, we have to write instances for json, param serialization & deserialization for
UserData and UserToken types. A definition needn’t be provided since GHC.Generics provides a generic
implementation.

instance FromJSON UserData
instance ToJSON UserData
instance FromParam 'FormParam UserData

{--We dont need a FromParam instance since UserToken according
to our example is not sent us form params or query params -}

instance FromJSON UserToken
instance ToJSON UserToken

This completes the contract part of the API.

2.2 Server implementation

• First step is to create a type for the implementation and define WebApiServer instance for it.

data MyApiServiceImpl = MyApiServiceImpl

instance WebApiServer MyApiServiceImpl where
type HandlerM MyApiServiceImpl = IO
type ApiInterface MyApiServiceImpl = MyApiService

HandlerM is the base monad in which the handler will run. We also state that MyApiServiceImpl is the imple-
mentation for the contract MyApiServiceApi.

By keeping the implementation separate from the contract, it is possible for a contract to have multiple implementa-
tions.

6 Chapter 2. Quick start

https://hackage.haskell.org/package/webapi/docs/WebApi-Contract.html#t:ApiContract
https://hackage.haskell.org/package/webapi/docs/WebApi-Contract.html#t:ApiContract
https://hackage.haskell.org/package/base/docs/GHC-Generics.html
https://hackage.haskell.org/package/webapi/docs/WebApi-Server.html#t:WebApiServer
https://hackage.haskell.org/package/webapi-0.2.2.0/docs/WebApi-Server.html#t:HandlerM
https://hackage.haskell.org/package/webapi/docs/WebApi-Server.html#v:handler

WebApi Documentation, Release 0.3

• Now let’s create the ApiHandler for one of our end-point POST /user

instance ApiHandler MyApiServiceImpl POST User where
handler _ req = do
let _userInfo = formParam req
respond (UserToken "Foo" "Bar")

The last thing that is left is to create a WAI application from all the aforementioned information. For that we use
serverApp .

myApiApp :: Wai.Application
myApiApp = serverApp serverSettings MyApiServiceImpl

main :: IO ()
main = run 8000 myApiApp

That’s it - now myApiApp could be run like any other WAI application.

There’s more you could do with WebApi apart from building API services. You can also build haskell clients for
existing API services by defining just the contract, build full-stack webapps that serve html & javascript and generate
mock servers.

2.2. Server implementation 7

https://hackage.haskell.org/package/webapi/docs/WebApi-Server.html#t:ApiHandler
https://hackage.haskell.org/package/wai/docs/Network-Wai.html
https://hackage.haskell.org/package/webapi/docs/WebApi-Server.html#v:serverApp
https://hackage.haskell.org/package/wai/docs/Network-Wai.html

WebApi Documentation, Release 0.3

8 Chapter 2. Quick start

CHAPTER 3

Routing

WebApi supports the following HTTP verbs GET, POST, PUT, DELETE, PATCH, HEAD

You can also use any Custom method as per your needs.

In WebApi we need to first write all the routes as types and then declare the valid HTTP verbs for each route type.

3.1 Routes as types

Each route is declared as a type. For demo purposes let’s consider a API service that would allow you to create and
get users. We need two URIs. One to create a user and another one to get the user by her ID.

/user URI to create a user

type User = Static "user"

/user/9 URI to get a user

type UserId = "user" :/ Int

• Note that /user is declared as Static "user" to wrap user in Static to make all the types of the same
kind (*)

As you could see in the above examples, routes are defined as types. The next step is to write a WebApi instance for
the route types along with the HTTP verbs they support.

instance WebApi MyApiService where
-- Route <Method> <Route Name>
type Apis MyApiService = '[Route '[POST] User

, Route '[GET, PUT, DELETE] UserId
]

In the above code snippet, we are declaring that our route type

• User ie (/user) accepts POST

9

https://hackage.haskell.org/package/webapi
https://hackage.haskell.org/package/webapi/docs/WebApi-Method.html#t:CUSTOM
https://hackage.haskell.org/package/webapi

WebApi Documentation, Release 0.3

• UserId accepts GET, PUT, DELETE.

– Let’s say the user Id is 9, then GET /user/9 could be used to get the user, PUT /user/9 to edit the
user and DELETE user/9 to delete the user.

3.2 More examples

/post/tech/why-i-like-web-api

type Post = "post" :/ Text :/ Text

/post/tech/why-i-like-web-api/edit

type EditPost = "post" :/ Text :/ Text :/ "edit"

/why-i-like-web-api/comments

type Comments = Text :/ "comments"

Note: Please note that when two route format overlaps, for example user/posts and user/brian WebApi’s
routing system would take the first route that is declared first in the WebApi instance.

10 Chapter 3. Routing

CHAPTER 4

Server implementation

An ApiContract is just a schematic representation of your API service. We still need to implement our handlers that
actually does the work. You would have already read about this in the Quick start section.

Implementation of a contract consists of

• Writing a WebApiServer instance.

• Writing ApiHandler instances for all your end-points.

4.1 Writing WebApiServer instance

The WebApiServer typeclass has

• Two associated types

– HandlerM - It is the type of monad in which our handler should run (defaults to IO). This monad
should implement MonadCatch and MonadIO classes.

– ApiInterface - ApiInterface links the implementation with the contract. This lets us have multi-
ple implementations for the same contract

• One method

– toIO - It is a method which is used to convert our handler monad’s action to IO. (defaults to id)

Let’s define a type for our implementation and write a WebApiServer instance for the same.

data MyApiServiceImpl = MyApiServiceImpl

instance WebApiServer MyApiServiceImpl where
type HandlerM MyApiServiceImpl = IO
type ApiInterface MyApiServiceImpl = MyApiService
toIO _ = id

11

https://hackage.haskell.org/package/webapi/docs/WebApi-Contract.html#t:ApiContract
https://hackage.haskell.org/package/webapi/docs/WebApi-Server.html
https://hackage.haskell.org/package/webapi/docs/WebApi-Server.html#t:ApiHandler

WebApi Documentation, Release 0.3

Note: You can skip writing HandlerM’s and toIO’s definitions if you want your HandlerM to be IO.

4.2 Writing instances for your handlers

Now we can write handler for our User route as

instance ApiHandler MyApiServiceImpl POST User where
handler _ req = do
let _userInfo = formParam req
respond (UserToken "Foo" "Bar")

handler returns a Response. Here we used respond to build a Success Response. You can use its counter-part
raise as discussed in Error Handling to send Failure Response

4.3 Doing more with your handler monad

Though the above implementation can get you started, it falls short for many practical scenarios. We’ll discuss some
of them in the following sections.

4.3.1 Adding a config Reader

Most of the times our app would need some kind of initial setting which could come from a config file or some
environment variables. To accomodate for that, we can change MyApiServiceImpl to

data AppSettings = AppSettings

data MyApiServiceImpl = MyApiServiceImpl AppSettings

Just adding AppSettings to our MyApiServiceImpl is useless unless our monad gives a way to access those
settings. So we need a monad in which we can read these settings, anytime we require. A ReaderT transformer
would fit perfectly for this scenario.

For those who are not familiar with Reader monad, it is a monad which gives you read only access to some data(say,
settings) throughout a computation. You can access that data in your monad using ask. ReaderT is a monad
transformer which adds capabilities of Reader monad on top of another monad. In our case, we’ll add reading
capabilities to IO. So the monad for our handler would look something like

newtype MyApiMonad a = MyApiMonad (ReaderT AppSettings IO a)
deriving (Monad, MonadIO, MonadCatch)

Note: HandlerM is required to have MonadIO and MonadCatch instances. Thats why you see them in the
deriving clause.

There is still one more piece left, before we can use this. We need to define toIO function to convert MyApiMonad’s
actions to IO. We can use runReaderT to pass the initial Reader’s environment settings and execute the computation
in the underlying monad(IO in this case).

toIO (MyApiServiceImpl settings) (MyApiMonad r) = runReaderT r settings

So the WebApiServer instance for our modified MyApiServiceImpl would look like:

12 Chapter 4. Server implementation

https://hackage.haskell.org/package/webapi/docs//WebApi-Contract.html#t:Response
https://hackage.haskell.org/package/webapi/docs//WebApi-Contract.html#t:Response
https://hackage.haskell.org/package/mtl-2.2.1/docs/Control-Monad-Reader.html#t:ReaderT

WebApi Documentation, Release 0.3

instance WebApiServer MyApiServiceImpl where
type HandlerM MyApiServiceImpl = MyApiMonad
type ApiInterface MyApiServiceImpl = MyAppService
toIO (MyApiServiceImpl settings) (MyApiMonad r) = runReaderT r settings

A sample ApiHandler for this would be something like:

instance ApiHandler MyApiServiceImpl POST User where
handler _ req = do

settings <- ask
-- do something with settings
respond (UserToken "Foo" "Bar")

4.3.2 Adding a logger

Adding a logging system to our implementation is similar to adding a Reader. We use LoggingT transformer to
achieve that.

newtype MyApiMonad a = MyApiMonad (LoggingT (ReaderT AppSettings IO) a)
deriving (Monad, MonadIO, MonadCatch, MonadLogger)

instance WebApiServer MyApiServiceImpl where
type HandlerM MyApiServiceImpl = MyApiMonad
type ApiInterface MyApiServiceImpl = MyAppService
toIO (MyApiServiceImpl settings) (MyApiMonad r) = runReaderT (runStdoutLoggingT

→˓r) settings

4.3. Doing more with your handler monad 13

WebApi Documentation, Release 0.3

14 Chapter 4. Server implementation

CHAPTER 5

Content Serialization / Deserialization

In WebApi, ToParam and FromParam are the typeclasses responsible for serializing and deserializing data. Seri-
alization and deserialization for your data types are automatically take care of if they have generic instances without
you having to write anything. You still have to derive them though.

Lets look at an example

data LatLng = LatLng
{ lat :: Double
, lng :: Double
} deriving Generic

To let WebApi automatically deserialize this type, we just need to give an empty instance declaration

instance FromParam 'QueryParam LatLng

And to serialize a type (in case you are writing a client), you can give a similar ToParam instance.

instance ToParam 'QueryParam LatLng

5.1 Nested Types

If you use Generic instance for nested types, they will be serialized with a dot notation.

data UserData = UserData
{ age :: Int
, address :: Text
, name :: Text
, location :: LatLng
} deriving (Show, Eq, Generic)

Here the location field would be serialized as location.lat and location.lng

15

https://hackage.haskell.org/package/webapi
https://hackage.haskell.org/package/webapi

WebApi Documentation, Release 0.3

5.2 Writing Custom instances

Sometimes you may want to serialize/deserialize the data to a custom format. You can easily do this by writing a
custom instance of ToParam and FromParam. Lets declare a datatype and try to write ToParam and FromParam
instances for those.

data Location = Location { loc :: LatLng } deriving Generic

data LatLng = LatLng
{ lat :: Double
, lng :: Double
} deriving Generic

Lets say we want to deserialize query parameter loc=10,20 to Location where 10 and 20 are values of lat and
lng respectively. We can write a FromParam instance for this as follows:

instance FromParam 'QueryParam Location where
fromParam pt key trie = case lookupParam pt key trie of

Just (Just par) -> case splitOnComma par of
Just (lt, lg) -> case (LatLng <$> decodeParam lt <*> decodeParam lg) of

Just ll -> Validation $ Right (Location ll)
_ -> Validation $ Left [ParseErr key "Unable to cast to LatLng"]

Nothing -> Validation $ Left [ParseErr key "Unable to cast to LatLng
→˓"]

Just Nothing -> Validation $ Left [ParseErr key "Value not found"]
_ -> Validation $ Left [NotFound key]

where
splitOnComma :: ByteString -> Maybe (ByteString, ByteString)
splitOnComma x =

let (a, b) = C.break (== ',') x -- Data.ByteString.Char8 imported as C
in if (BS.null a) || (BS.null b) -- Data.ByteString imported as BS

then Nothing
else Just (a, b)

fromParam takes a Proxy of our type (here, Location), a key (ByteString) and a Trie. WebApi uses Trie
to store the parsed data while deserialization. fromParam returns a value of type Validation which is a wrapper
over Either type carrying the parsed result.

We use lookupParam function for looking up the key (loc). If the key matches, it’ll return Just with the value of
the key (in our case 10,20). Now we split this value into a tuple using splitOnComma and make a value of type
LatLng using these.

Similarly, a ToParam instance for Location can be written as:

instance ToParam 'QueryParam Location where
toParam pt pfx (Location (LatLng lt lg)) = [("loc", Just $ encodeParam lt <> "," <>

→˓encodeParam lg)]

Here we take a value of type Location and convert it into a key-value pair. WebApi uses this key-value pair to form
the query string.

This example only included QueryParam but this can be easily extended to other param types.

5.3 Content Types

You can tell WebApi about the content-type of ApiOut/ApiErr using ContentTypes.

16 Chapter 5. Content Serialization / Deserialization

https://hackage.haskell.org/package/webapi

WebApi Documentation, Release 0.3

instance ApiContract MyApiService POST User where
type FormParam POST User = UserData
type ApiOut POST User = UserToken
type ContentTypes POST User = '[JSON]

By default ContentTypes is set to JSON. That means you need to give ToJSON instances for the types associated
with ApiOut/ApiErr while writing server side component and FromJSON instances while writing client side
version.

Apart from JSON you can give other types such as HTML, PlainText etc. You can see a complete list here

5.3. Content Types 17

https://hackage.haskell.org/package/webapi/docs//WebApi-ContentTypes.html

WebApi Documentation, Release 0.3

18 Chapter 5. Content Serialization / Deserialization

CHAPTER 6

Error Handling

WebApi gives you a way to raise errors in your handler using raise. The following handler is an example that raises
a 404 error

instance ApiHandler MyApiImpl GET User where
handler _ req = do

hasUser <- isUserInDB
if (hasUser)

then respond (UserToken "Foo" "Bar")
else raise status404 ()

raise takes two arguments. First one is the status code which we need to send with the Response. Second
argument is of type ApiErr m r which defaults to Unit ().

If you want to send some additional information with your error response, you can write a data type for error and
specify that as ApiErr in your contract.

An example,

data Error = Error { error :: Text } deriving (Show, Generic)
instance ToJSON Error
instance ParamErrToApiErr Error where

toApiErr errs = Error (toApiErr errs)

instance ApiContract MyApiService POST User where
type FormParam POST User = UserData
type ApiOut POST User = UserToken
type ApiErr POST User = Error

Any type which you associate with ApiErr, should have a ParamErrToApiErr instance. This is needed for
WebApi to map all the failures to this type. Also based on ContentType set in the contract (which defaults to
JSON), we need to give the required instance. In this case it is ToJSON.

19

https://hackage.haskell.org/package/webapi

WebApi Documentation, Release 0.3

20 Chapter 6. Error Handling

CHAPTER 7

Building haskell client for third-party API

WebApi framework could be used to build haskell clients for existing API services. All you have to do is

• Define the routes (as types)

• Write the contract for the API service.

To demonstrate, we’ve chosen Uber API as the third party API service and picked the two most commonly used
endpoints in Uber API

• get time estimate - Gets the time estimate for nearby rides

• request a ride - Lets us request a ride.

Since we have already discussed what a contract is under the Quick start section in detail we can jump straight to our
example.

Lets first define the type for the API service, call it UberApi and types for our routes. (get time estimate and request
a ride).

data UberApi

-- pieces of a route are seperated using ':/'
type TimeEstimateR = "estimates" :/ "time"
-- If the route has only one piece, we use 'Static' constructor to build it.
type RequestRideR = Static "requests"

Now lets define what methods (GET, POST etc.) can be used on these routes. For this we need to define WebApi
instance for our service UberApi .

instance WebApi UberApi where
type Apis UberApi =

'[Route '[GET] TimeEstimateR
, Route '[POST] RequestRideR
]

So far, we have defined the routes and the methods associated with them. We are yet to define how the requests and
responses will look for these two end-points (contract).

21

https://hackage.haskell.org/package/webapi
https://developer.uber.com/docs/api-overview
https://developer.uber.com/docs/v1-estimates-time
https://developer.uber.com/docs/v1-requests
https://developer.uber.com/docs/v1-estimates-time
https://developer.uber.com/docs/v1-requests
https://developer.uber.com/docs/v1-requests
https://hackage.haskell.org/package/webapi/docs//WebApi-Contract.html#t:WebApi

WebApi Documentation, Release 0.3

We’ll start with the TimeEstimateR route. As defined in the Uber API doc , GET request for TimeEstimateR
takes the user’s current latitude, longitude, product_id (if any) as query parameters and return back a result containig
a list of TimeEstimate (rides nearby along with time estimates). And this is how we represent the query and the
response as data types.

-- query data type
data TimeParams = TimeParams

{ start_latitude :: Double
, start_longitude :: Double
, product_id :: Maybe Text
} deriving (Generic)

-- response data type
newtype Times = Times { times :: [TimeEstimate] }

deriving (Show, Generic)

-- We prefix each field with 't_' to prevent name clashes.
-- It will be removed during deserialization
data TimeEstimate = TimeEstimate

{ t_product_id :: Text
, t_display_name :: Text
, t_estimate :: Int
} deriving (Show, Generic)

instance ApiContract UberApi GET TimeEstimateR where
type HeaderIn GET TimeEstimateR = Token
type QueryParam GET TimeEstimateR = TimeParams
type ApiOut GET TimeEstimateR = Times

As request to Uber API requires an Authorization header, we include that in our contract for each route. The data type
Token used in the header is defined here

There is still one piece missing though. Serialization/ de-serialization of request/response data types. To do that, we
need to give FromJSON instance for our response and ToParam instance for the query param datatype.

instance ToParam 'QueryParam TimeParams
instance FromJSON Times
instance FromJSON TimeEstimate where

parseJSON = genericParseJSON defaultOptions { fieldLabelModifier = drop 2 }

Similarly we can write contract for the other routes too. You can find the full contract here .

And that’s it! By simply defining a contract we have built a Haskell client for Uber API. The code below shows how
to make the API calls.

-- To get the time estimates, we can write our main function as:
main :: IO ()
main = do

manager <- newManager tlsManagerSettings
let timeQuery = TimeParams 12.9760 80.2212 Nothing

cSettings = ClientSettings "https://sandbox-api.uber.com/v1" manager
auth' = OAuthToken "<Your-Access-Token-here>"
auth = OAuth auth'

times' <- client cSettings (Request () timeQuery () () auth () () :: WebApi.
→˓Request GET TimeEstimateR)

-- remaining main code

22 Chapter 7. Building haskell client for third-party API

https://developer.uber.com/docs/v1-estimates-time
https://hackage.haskell.org/package/uber-0.1.0.0/docs/Uber-Auth.html#t:Token
https://hackage.haskell.org/package/uber-0.1.0.0/docs/Uber-Auth.html
http://hackage.haskell.org/package/aeson-0.3.2.0/docs/Data-Aeson.html#t:FromJSON
https://hackage.haskell.org/package/webapi/docs//WebApi-Param.html#t:ToParam
https://hackage.haskell.org/package/uber-0.1.0.0/docs/src/Uber-Contract.html#UberAPI

WebApi Documentation, Release 0.3

We use client function to send the request. It takes ClientSettings and Request as input and gives us the Response . If
you see the Request pattern synonym, we need to give it all the params, headers etc. to construct a Request . So for a
particular route, the params which we declare in the contract are filled with the declared datatypes and the rest defaults
to () unit

When the endpoint gives a response back, WebApi deserializes it into Response . Lets write a function to handle the
response.

let responseHandler res fn = case res of
Success _ res' _ _ -> fn res'
Failure err -> print "Request failed :("

We have successfully made a request and now can handle the response with responseHandler. If the previous
request (to get time estimate) was succesful, lets book the nearest ride with our second route.

responseHandler times' $ \times -> do
let rideId = getNearestRideId times

reqQuery = defRideReqParams { product_id = Just rideId, start_place_id =
→˓Just "work", end_place_d = Just "home" }

ridereq = client cSettings (Request () () () () auth' () reqQuery ::
→˓WebApi.Request POST RequestRideR)

rideInfo' <- ridereq
responseHandler rideInfo' $ \rideInfo -> do

putStrLn "You have successfully booked a ride. Yay!"
putStrLn $ "Ride Status: " ++ unpack (status rideInfo)

return ()
where

getNearestRideId (Times xs) = t_product_id . head . sortBy (comparing t_estimate) $
→˓xs

And that’s it! We now have our haskell client. Using the same contract you can also generate a mock server

You can find the full uber client library for haskell here .

23

https://hackage.haskell.org/package/webapi/docs//WebApi-Client.html
https://hackage.haskell.org/package/webapi/docs//WebApi-Client.html#t:ClientSettings
https://hackage.haskell.org/package/webapi/docs//WebApi-Contract.html#t:Request
https://hackage.haskell.org/package/webapi/docs//WebApi-Contract.html#t:Response
https://hackage.haskell.org/package/webapi/docs//WebApi-Contract.html#v:Request
https://hackage.haskell.org/package/webapi/docs//WebApi-Contract.html#t:Request
https://hackage.haskell.org/package/webapi
https://hackage.haskell.org/package/webapi/docs//WebApi-Contract.html#t:Response
https://hackage.haskell.org/package/uber-0.1.0.0

WebApi Documentation, Release 0.3

24 Chapter 7. Building haskell client for third-party API

CHAPTER 8

Mocking Data

Writing a contract enables you to create a mock server or a client by just writing the Arbitrary instances for
datatypes used in the contract.

Lets create a mock server for the contract mentioned in Quick start by writing arbitrary instances for our datatypes.

instance Arbitrary UserData where
arbitrary = UserData <$> arbitrary

<*> arbitrary
<*> arbitrary

instance Arbitrary UserToken where
arbitrary = UserToken <$> arbitrary

<*> arbitrary
instance Arbitrary Text where

arbitrary = elements ["Foo", "Bar", "Baz"]

Now we can create a Wai.Application for our mock server as

mockApp :: Wai.Application
mockApp = mockServer serverSettings (MockServer mockServerSettings :: MockServer
→˓MyApiService)

mockServer takes ServerSettings and MockServer as arguments. MockServer lets you decide what kind
of mock data is to be returned (ApiOut, ApiError or OtherError). It returns ApiOut (SuccessData) by
default.

Now you can run this Wai.Application on some port to bring up your mock server.

main :: IO ()
main = run 8000 mockApp

You can even mock the requests. To create a mock Request for route User declared in Quick start, we can write:

req <- mockClient (Res :: Resource GET User)

25

WebApi Documentation, Release 0.3

We can use this req while calling client function to make a Request.

26 Chapter 8. Mocking Data

	Installation
	Quick start
	Contract
	Server implementation

	Routing
	Routes as types
	More examples

	Server implementation
	Writing WebApiServer instance
	Writing instances for your handlers
	Doing more with your handler monad

	Content Serialization / Deserialization
	Nested Types
	Writing Custom instances
	Content Types

	Error Handling
	Building haskell client for third-party API
	Mocking Data

