
Haddock Documentation
Release 1.0

Simon Marlow

Sep 22, 2023

Contents

1 Introduction 3
1.1 Obtaining Haddock . 4
1.2 License . 4
1.3 Contributors . 4
1.4 Acknowledgements . 4

2 Invoking Haddock 7
2.1 Using literate or pre-processed source . 13
2.2 Avoiding recompilation . 13

3 Documentation and Markup 15
3.1 Documenting a Top-Level Declaration . 15
3.2 Documenting Parts of a Declaration . 16
3.3 The Module Description . 18
3.4 Controlling the Documentation Structure . 20
3.5 Hyperlinking and Re-Exported Entities . 25
3.6 Module Attributes . 26
3.7 Markup . 27

4 Common Errors 35
4.1 parse error on input ‘-- | xxx’ . 35
4.2 parse error on input ‘-- $ xxx’ . 35

5 Haddocks of multiple components 37

6 Indices and tables 39

Index 41

i

ii

Haddock Documentation, Release 1.0

This is Haddock, a tool for automatically generating documentation from annotated Haskell source code.

Contents:

Contents 1

Haddock Documentation, Release 1.0

2 Contents

CHAPTER 1

Introduction

This is Haddock, a tool for automatically generating documentation from annotated Haskell source code. Haddock
was designed with several goals in mind:

• When documenting APIs, it is desirable to keep the documentation close to the actual interface or implemen-
tation of the API, preferably in the same file, to reduce the risk that the two become out of sync. Haddock
therefore lets you write the documentation for an entity (function, type, or class) next to the definition of the
entity in the source code.

• There is a tremendous amount of useful API documentation that can be extracted from just the bare source code,
including types of exported functions, definitions of data types and classes, and so on. Haddock can therefore
generate documentation from a set of straight Haskell 98 modules, and the documentation will contain precisely
the interface that is available to a programmer using those modules.

• Documentation annotations in the source code should be easy on the eye when editing the source code itself, so
as not to obscure the code and to make reading and writing documentation annotations easy. The easier it is to
write documentation, the more likely the programmer is to do it. Haddock therefore uses lightweight markup in
its annotations, taking several ideas from IDoc. In fact, Haddock can understand IDoc-annotated source code.

• The documentation should not expose any of the structure of the implementation, or to put it another way,
the implementer of the API should be free to structure the implementation however he or she wishes, without
exposing any of that structure to the consumer. In practical terms, this means that while an API may internally
consist of several Haskell modules, we often only want to expose a single module to the user of the interface,
where this single module just re-exports the relevant parts of the implementation modules.

Haddock therefore understands the Haskell module system and can generate documentation which hides not only
non-exported entities from the interface, but also the internal module structure of the interface. A documentation
annotation can still be placed next to the implementation, and it will be propagated to the external module in the
generated documentation.

• Being able to move around the documentation by following hyperlinks is essential. Documentation generated
by Haddock is therefore littered with hyperlinks: every type and class name is a link to the corresponding
definition, and user-written documentation annotations can contain identifiers which are linked automatically
when the documentation is generated.

• We might want documentation in multiple formats - online and printed, for example. Haddock comes with

3

https://web.archive.org/web/20180621053227/http://www.cse.unsw.edu.au/~chak/haskell/idoc/

Haddock Documentation, Release 1.0

HTML, LaTeX, and Hoogle backends, and it is structured in such a way that adding new backends is straight-
forward.

1.1 Obtaining Haddock

Haddock is distributed with GHC distributions, and will automatically be provided if you use ghcup, for instance.

Up-to-date sources can also be obtained from our public GitHub repository. The Haddock sources are at https://
github.com/haskell/haddock.

1.2 License

The following license covers this documentation, and the Haddock source code, except where otherwise indicated.

Copyright (c) 2002-2010, Simon Marlow All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBU-
TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUP-
TION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

1.3 Contributors

A list of contributors to the project can be seen at https://github.com/haskell/haddock/graphs/
contributors.

1.4 Acknowledgements

Several documentation systems provided the inspiration for Haddock, most notably:

• IDoc

• HDoc

• Doxygen

4 Chapter 1. Introduction

https://www.haskell.org/ghcup
https://web.archive.org/web/20180621053227/http://www.cse.unsw.edu.au/~chak/haskell/idoc/
https://mail.haskell.org/pipermail/haskelldoc/2001-April/000067.html
https://www.doxygen.nl/index.html

Haddock Documentation, Release 1.0

and probably several others I’ve forgotten.

Thanks to the the members of haskelldoc@haskell.org, haddock@projects.haskell.org and everyone who contributed
to the many libraries that Haddock makes use of.

1.4. Acknowledgements 5

mailto:haskelldoc@haskell.org
mailto:haddock@projects.haskell.org

Haddock Documentation, Release 1.0

6 Chapter 1. Introduction

CHAPTER 2

Invoking Haddock

Haddock is invoked from the command line, like so:

haddock [option ...] file ...

Where each file is a filename containing a Haskell source module (.hs) or a Literate Haskell source module (.lhs) or
just a module name.

All the modules specified on the command line will be processed together. When one module refers to an entity in
another module being processed, the documentation will link directly to that entity.

Entities that cannot be found, for example because they are in a module that isn’t being processed as part of the
current batch, simply won’t be hyperlinked in the generated documentation. Haddock will emit warnings listing all
the identifiers it couldn’t resolve.

The modules should not be mutually recursive, as Haddock don’t like swimming in circles.

Note that while older version would fail on invalid markup, this is considered a bug in the new versions. If you ever
get failed parsing message, please report it.

You must also specify an option for the output format. Currently only the --html option for HTML, the --hoogle
option for outputting Hoogle data, and the --latex option are functional.

The packaging tool Cabal has Haddock support, and is often used instead of invoking Haddock directly.

The following options are available:

-B <dir>
Tell GHC that its lib directory is dir. Can be used to override the default path.

-o <dir>
--odir=<dir>

Generate files into dir instead of the current directory.

-l <dir>
--lib=<dir>

Use Haddock auxiliary files (themes, javascript, etc. . .) in dir.

-i <file>

7

http://www.haskell.org/ghc/docs/latest/html/Cabal/index.html

Haddock Documentation, Release 1.0

--read-interface=<file>
-i <docpath>,<file>
--read-interface=<docpath>,<file>
-i <docpath>,<srcpath>,<file>
--read-interface=<docpath>,<srcpath>,<file>
-i <docpath>,<srcpath>,<visibility>,<file>

Read the interface file in file, which must have been produced by running Haddock with the
--dump-interface option. The interface describes a set of modules whose HTML documentation is lo-
cated in docpath (which may be a relative pathname). The docpath is optional, and defaults to “.”. The srcpath
is optional but has no default value.

This option allows Haddock to produce separate sets of documentation with hyperlinks between them. The
docpath is used to direct hyperlinks to point to the right files; so make sure you don’t move the HTML files later
or these links will break. Using a relative docpath means that a documentation subtree can still be moved around
without breaking links.

Similarly to docpath, srcpath is used generate cross-package hyperlinks but within sources rendered with
--hyperlinked-source option.

If visibility is set to hidden, modules from that interface file will not be listed in haddock generated content file.

Multiple --read-interface options may be given.

-D <file>
--dump-interface=<file>

Produce an interface file1 in the file file. An interface file contains information Haddock needs to produce more
documentation that refers to the modules currently being processed - see the --read-interface option for
more details. The interface file is in a binary format; don’t try to read it.

--show-interface=<file>
Dumps a binary interface file to stdout in a human readable fashion. Uses json as output format.

--html, -h
Generate documentation in HTML format. Several files will be generated into the current directory (or the
specified directory if the -o option is given), including the following:

module.html; mini_module.html An HTML page for each module, and a “mini” page for each used
when viewing their synopsis.

index.html The top level page of the documentation: lists the modules available, using indentation to rep-
resent the hierarchy if the modules are hierarchical.

doc-index.html; doc-index-X.html The alphabetic index, possibly split into multiple pages if big
enough.

some.css; etc... Files needed for the themes used. Specify your themes using the --theme option.

haddock-util.js Some JavaScript utilities used to implement some of the dynamic features like collapsi-
ble sections.

--mathjax
Specify a custom URL for a mathjax-compatible JS script. By default, this is set to MathJax.

--latex
Generate documentation in LaTeX format. Several files will be generated into the current directory (or the
specified directory if the -o option is given), including the following:

package.tex The top-level LaTeX source file; to format the documentation into PDF you might run some-
thing like this:

1 Haddock interface files are not the same as Haskell interface files, I just couldn’t think of a better name.

8 Chapter 2. Invoking Haddock

https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML

Haddock Documentation, Release 1.0

$ pdflatex package.tex

haddock.sty The default style. The file contains definitions for various macros used in the LaTeX sources
generated by Haddock; to change the way the formatted output looks, you might want to override these by
specifying your own style with the --latex-style option.

module.tex The LaTeX documentation for each module.

--latex-style=<style>
This option lets you override the default style used by the LaTeX generated by the --latex option.
Normally Haddock puts a standard haddock.sty in the output directory, and includes the command
\usepackage{haddock} in the LaTeX source. If this option is given, then haddock.sty is not gen-
erated, and the command is instead \usepackage{style}.

--hoogle
Generate an index file for the Hoogle search engine. One text file will be generated into the current directory (or
the specified directory if the -o is given). Note that the --package-name is required.

Since the output is intended to be parsed by Hoogle, some conventions need to be upheld:

• Every entity should span exactly one line.

newtype ReaderT r (m :: * -> *) a :: * -> (* -> *) -> * -> *

The one exception to this rule is classes. The body of a class is split up with one class member per line, an
opening brace on the line of the header, and a closing brace on a new line after the class.

class Foo a where {
foo :: a -> a -> Baz a;
type family Baz a;
type Baz a = [(a, a)];

}

• Entites that are exported only indirectly (for instance data constructors visible via a ReaderT(..) ex-
port) have their names wrapped in square brackets.

[ReaderT] :: (r -> m a) -> ReaderT r m a
[runReaderT] :: ReaderT r m a -> r -> m a

--hyperlinked-source
Generate hyperlinked source code (as HTML web page). All rendered files will be put into src/ subfolder of
output directory.

Usually, this should be used in combination with --html option - generated documentation will then contain
references to appropriate code fragments. Previously, this behaviour could be achieved by generating sources us-
ing external tool and specifying --source-base, --source-module, --source-entity and related
options. Note that these flags are ignored once --hyperlinked-source is set.

In order to make cross-package source hyperlinking possible, appropriate source paths have to be set up when
providing interface files using --read-interface option.

--source-css=<style>
Use custom CSS file for sources rendered by the --hyperlinked-source option. If no custom style file is
provided, Haddock will use default one.

-S, --docbook
Reserved for future use (output documentation in DocBook XML format).

--base-url=<url>
Base url for static assets (eg. css, javascript, json files etc.). When present, static assets are not copied. This

9

http://hackage.haskell.org/package/hoogle

Haddock Documentation, Release 1.0

option is useful when creating documentation for multiple packages, it allows to have a single copy of static
assets served from the given url.

--source-base=<url>
--source-module=<url>
--source-entity=<url>
--source-entity-line=<url>

Include links to the source files in the generated documentation. Use the --source-base option to add a
source code link in the header bar of the contents and index pages. Use the --source-module to add a
source code link in the header bar of each module page. Use the --source-entity option to add a source
code link next to the documentation for every value and type in each module. --source-entity-line is
a flag that gets used for entities that need to link to an exact source location rather than a name, eg. since they
were defined inside a Template Haskell splice.

In each case URL is the base URL where the source files can be found. For the per-module and per-entity URLs,
the following substitutions are made within the string URL:

• The string %M or %{MODULE} is replaced by the module name. Note that for the per-entity URLs this is
the name of the exporting module.

• The string %N or %{NAME} is replaced by the name of the exported value or type. This is only valid for
the --source-entity option.

• The string %K or %{KIND} is replaced by a flag indicating whether the exported name is a value v or a
type t. This is only valid for the --source-entity option.

• The string %L or %{LINE} is replaced by the number of the line where the exported value or type is
defined. This is only valid for the --source-entity option.

• The string %% is replaced by %.

If you have html versions of your sources online with anchors for each type and function
name, you would say haddock --source-base=url/ --source-module=url/%M.html
--source-entity=url/%M.html#%N

For the %{MODULE} substitution you may want to replace the . character in the module names with some other
character (some web servers are known to get confused by multiple . characters in a file name). To replace it
with a character c use %{MODULE/./c}.

One example of a tool that can generate syntax-highlighted HTML from your source code, complete with
anchors suitable for use from haddock, is hscolour.

-s <url>
--source=<url>

Deprecated aliases for --source-module

--comments-base=<url>
--comments-module=<url>
--comments-entity=<url>

documentation. This feature would typically be used in conjunction with a Wiki system.

Use the --comments-base option to add a user comments link in the header bar of the contents and index
pages. Use the --comments-module to add a user comments link in the header bar of each module page.
Use the --comments-entity option to add a comments link next to the documentation for every value and
type in each module.

In each case URL is the base URL where the corresponding comments page can be found. For the
per-module and per-entity URLs the same substitutions are made as with the --source-module and
--source-entity options above.

10 Chapter 2. Invoking Haddock

http://www.cs.york.ac.uk/fp/darcs/hscolour

Haddock Documentation, Release 1.0

For example, if you want to link the contents page to a wiki page, and every module to subpages, you would say
haddock --comments-base=url --comments-module=url/%M

If your Wiki system doesn’t like the . character in Haskell module names, you can replace it with a differ-
ent character. For example to replace the . characters with _ use haddock --comments-base=url
--comments-module=url/%{MODULE/./_}. Similarly, you can replace the / in a file name (may be
useful for entity comments, but probably not).

--theme=<path>
Specify a theme to be used for HTML (--html) documentation. If given multiple times then the pages will use
the first theme given by default, and have alternate style sheets for the others. The reader can switch between
themes with browsers that support alternate style sheets, or with the “Style” menu that gets added when the page
is loaded. If no themes are specified, then just the default built-in theme (“Linuwial”) is used.

The path parameter can be one of:

• A directory: The base name of the directory becomes the name of the theme. The directory must contain
exactly one some.css file. Other files, usually image files, will be copied, along with the some.css
file, into the generated output directory.

• A CSS file: The base name of the file becomes the name of the theme.

• The name of a built-in theme (“Linuwial”, “Ocean”, or “Classic”).

--built-in-themes
Includes the built-in themes (“Linuwial”, “Ocean”, and “Classic”). Can be combined with --theme. Note that
order matters: The first specified theme will be the default.

--use-unicode
Enable use of Unicode characters in HTML output.

-c <file>
--css=<file>

Deprecated aliases for --theme

-p <file>
--prologue=<file>

Specify a file containing documentation which is placed on the main contents page under the heading “Descrip-
tion”. The file is parsed as a normal Haddock doc comment (but the comment markers are not required).

-t <title>
--title=<title>

Use title as the page heading for each page in the documentation.This will normally be the name of the library
being documented.

The title should be a plain string (no markup please!).

--package-name=<name>
Specify the name of the package being documented.

--package-version=<version>
Specify the version of the package being documented.

-q <mode>
--qual=<mode>

Specify how identifiers are qualified.

mode should be one of

• none (default): don’t qualify any identifiers

• full: always qualify identifiers completely

11

Haddock Documentation, Release 1.0

• local: only qualify identifiers that are not part of the module

• relative: like local, but strip name of the module from qualifications of identifiers in submodules

Example: If you generate documentation for module A, then the identifiers A.x, A.B.y and C.z are qualified as
follows.

• none: x, y, z

• full: A.x, A.B.y, C.z

• local: x, A.B.y, C.z

• relative: x, B.y, C.z

--since-qual=<mode>
Specify how @since annotations are qualified.

mode should be one of

• always (default): always qualify @since annotations with a package name and version

• only-external: only qualify @since annotations with a package name and version when they do not
come from the current package

-?
--help

Display help and exit.

-V
--version

Output version information and exit.

--ghc-version
Output the version of GHC which Haddock expects to find at :option:-B and exit.

--print-ghc-path
Output the path to the GHC (which Haddock computes based on :option:-B) and exit.

--print-ghc-libdir
Output the path to the GHC lib directory (which Haddock computes based on :option:-B) and exit.

-v
--verbose

Increase verbosity. Currently this will cause Haddock to emit some extra warnings, in particular about modules
which were imported but it had no information about (this is often quite normal; for example when there is no
information about the Prelude).

--use-contents=<url>
--use-index=<url>

When generating HTML, do not generate an index. Instead, redirect the Contents and/or Index link on each
page to URL. This option is intended for use in conjunction with --gen-contents and/or --gen-index
for generating a separate contents and/or index covering multiple libraries.

--gen-contents
--gen-index

Generate an HTML contents and/or index containing entries pulled from all the specified interfaces (interfaces
are specified using -i or --read-interface). This is used to generate a single contents and/or index for
multiple sets of Haddock documentation.

--hide <module>
Causes Haddock to behave as if module module has the hide attribute. (Module Attributes).

12 Chapter 2. Invoking Haddock

Haddock Documentation, Release 1.0

--show <module>
Causes Haddock to behave as if module module does not have the hide attribute. (Module Attributes).

--show-all
Causes Haddock to behave as if no modules have the hide attribute. (Module Attributes).

--show-extensions <module>
Causes Haddock to behave as if module module has the show-extensions attribute. (Module Attributes).

--optghc=<option>
Pass option to GHC. Note that there is a double dash there, unlike for GHC.

-w
--no-warnings

Turn off all warnings.

--interface-version
Prints out the version of the binary Haddock interface files that this version of Haddock generates.

--compatible-interface-versions
Prints out space-separated versions of binary Haddock interface files that this version of Haddock is compatible
with.

--bypass-interface-version-check
DANGEROUS Causes Haddock to ignore the interface versions of binary Haddock interface files. This can
make Haddock crash during deserialization of interface files.

--no-tmp-comp-dir
Do not use a temporary directory for reading and writing compilation output files (.o, .hi, and stub files). In-
stead, use the present directory or another directory that you have explicitly told GHC to use via the --optghc
flag.

This flag can be used to avoid recompilation if compilation files already exist. Compilation files are produced
when Haddock has to process modules that make use of Template Haskell, in which case Haddock compiles the
modules using the GHC API.

--print-missing-docs
Print extra information about any undocumented entities.

--trace-args
Make Haddock print the arguments it receives to standard output. This is useful for examining arguments when
invoking through cabal haddock, as cabal uses temporary response files to pass arguments to Haddock.

2.1 Using literate or pre-processed source

Since Haddock uses GHC internally, both plain and literate Haskell sources are accepted without the need for the user
to do anything. To use the C pre-processor, however, the user must pass the -cpp option to GHC using --optghc.

2.2 Avoiding recompilation

With the advent of “hi-haddock”, Haddock now produces documentation from .hi (Haskell interface) files and .hie
(.hi extended) files2, rather than typechecked module results. This means that as long as the necessary .hi and
.hie files are available (i.e. produced by your build process), recompilation can be avoided during documentation
generation.

2 Note that .hie files are only necessary to build documentation which includes hyperlinked source files like this one, while .hi files are
required for all Haddock documentation flavors.

2.1. Using literate or pre-processed source 13

https://gcc.gnu.org/wiki/Response_Files
https://hackage.haskell.org/package/base-4.18.0.0/docs/src/GHC.Base.html

Haddock Documentation, Release 1.0

The first step is to ensure that your build process is producing .hi files that contain Haddock docstrings. This requires
that you somehow provide the -fwrite-interface and -haddock flags to GHC. If you intend to generate
documentation that includes hyperlinked source files, you should also provide the -fwrite-ide-info flag to
GHC. You may specify the directory in which GHC should write the .hi and .hie files by providing the -hidir=/
path/to/hidir and -hiedir=/path/to/hiedir flags to GHC. If you are building your application with
cabal build, the default location is in dist-newstyle/build/<arch>-<os>/ghc-<ghc-version>/
<component>-0.1.0/build.

The next step is to ensure that the flags which Haddock passes to GHC will not trigger recompilation. Unfortunately,
this is not very easy to do if you are invoking Haddock through cabal haddock. Upon cabal haddock, Cabal
passes a --optghc="-optP-D__HADDOCK_VERSION__=NNNN" (where NNNN is the Haddock version number)
flag to Haddock, which forwards the -optP=... flag to GHC and triggers a recompilation (unless the existing build
results were also created by a cabal haddock). Additionally, Cabal passes a --optghc="-stubdir=<temp
directory>" flag to Haddock, which forwards the -stubdir=<temp directory> flag to GHC and trig-
gers a recompilation since -stubdir adds a global include directory. Moreover, since the stubdir that Ca-
bal passes is a temporary directory, a recompilation is triggered even for immediately successive invocations. To
avoid recompilations due to these flags, one must manually extract the arguments passed to Haddock by Cabal and
remove the --optghc="-optP-D__HADDOCK_VERSION__=NNNN" and --optghc="-stubdir=<temp
directory>" flags. This can be achieved using the --trace-args flag by invoking cabal haddock with
--haddock-option="--trace-args" and copying the traced arguments to a script which makes an equiva-
lent call to Haddock without the aformentioned flags.

In addition to the above, Cabal passes a temporary directory as -hidir to Haddock by default. Obviously, this also
triggers a recompilation for every invocation of cabal haddock, since it will never find the necessary interface files
in that temporary directory. To remedy this, pass a --optghc="-hidir=/path/to/hidir" flag to Haddock,
where /path/to/hidir is the path to the directory in which your build process is writing .hi files.

Following the steps above will allow you to take full advantage of “hi-haddock” and generate Haddock documentation
from existing build results without requiring any further compilation.

14 Chapter 2. Invoking Haddock

CHAPTER 3

Documentation and Markup

Haddock understands special documentation annotations in the Haskell source file and propagates these into the gen-
erated documentation. The annotations are purely optional: if there are no annotations, Haddock will just generate
documentation that contains the type signatures, data type declarations, and class declarations exported by each of the
modules being processed.

3.1 Documenting a Top-Level Declaration

The simplest example of a documentation annotation is for documenting any top-level declaration (function type
signature, type declaration, or class declaration). For example, if the source file contains the following type signature:

square :: Int -> Int
square x = x * x

Then we can document it like this:

-- |The 'square' function squares an integer.
square :: Int -> Int
square x = x * x

The -- | syntax begins a documentation annotation, which applies to the following declaration in the source file.
Note that the annotation is just a comment in Haskell — it will be ignored by the Haskell compiler.

The declaration following a documentation annotation should be one of the following:

• A type signature for a top-level function,

• A definition for a top-level function with no type signature,

• A data declaration,

• A pattern declaration,

• A newtype declaration,

• A type declaration

15

Haddock Documentation, Release 1.0

• A class declaration,

• An instance declaration,

• A data family or type family declaration, or

• A data instance or type instance declaration.

If the annotation is followed by a different kind of declaration, it will probably be ignored by Haddock.

Some people like to write their documentation after the declaration; this is possible in Haddock too:

square :: Int -> Int
-- ^The 'square' function squares an integer.
square x = x * x

Since Haddock uses the GHC API internally, it can infer types for top-level functions without type signatures. How-
ever, you’re encouraged to add explicit type signatures for all top-level functions, to make your source code more
readable for your users, and at times to avoid GHC inferring overly general type signatures that are less helpful to your
users.

Documentation annotations may span several lines; the annotation continues until the first non-comment line in the
source file. For example:

-- |The 'square' function squares an integer.
-- It takes one argument, of type 'Int'.
square :: Int -> Int
square x = x * x

You can also use Haskell’s nested-comment style for documentation annotations, which is sometimes more convenient
when using multi-line comments:

{-|
The 'square' function squares an integer.
It takes one argument, of type 'Int'.

-}
square :: Int -> Int
square x = x * x

3.2 Documenting Parts of a Declaration

In addition to documenting the whole declaration, in some cases we can also document individual parts of the decla-
ration.

3.2.1 Class Methods

Class methods are documented in the same way as top level type signatures, by using either the -- | or -- ^
annotations:

class C a where
-- | This is the documentation for the 'f' method
f :: a -> Int
-- | This is the documentation for the 'g' method
g :: Int -> a

Associated type and data families can also be annotated in this way.

16 Chapter 3. Documentation and Markup

Haddock Documentation, Release 1.0

3.2.2 Constructors and Record Fields

Constructors are documented like so:

data T a b
-- | This is the documentation for the 'C1' constructor
= C1 a b
-- | This is the documentation for the 'C2' constructor
| C2 a b

or like this:

data T a b
= C1 -- ^ This is the documentation for the 'C1' constructor

a -- ^ This is the documentation for the argument of type 'a'
b -- ^ This is the documentation for the argument of type 'b'

There is one edge case that is handled differently: only one -- ^ annotation occurring after the constructor and all its
arguments is applied to the constructor, not its last argument:

data T a b
= C1 a b -- ^ This is the documentation for the 'C1' constructor
| C2 a b -- ^ This is the documentation for the 'C2' constructor

Record fields are documented using one of these styles:

data R a b =
C { -- | This is the documentation for the 'a' field

a :: a,
-- | This is the documentation for the 'b' field
b :: b

}

data R a b =
C { a :: a -- ^ This is the documentation for the 'a' field
, b :: b -- ^ This is the documentation for the 'b' field
}

Alternative layout styles are generally accepted by Haddock - for example doc comments can appear before or after
the comma in separated lists such as the list of record fields above.

In cases where more than one constructor exports a field with the same name, the documentation attached to the first
occurrence of the field will be used, even if a comment is not present.

data T a = A { someField :: a -- ^ Doc for someField of A
}

| B { someField :: a -- ^ Doc for someField of B
}

In the above example, all occurrences of someField in the documentation are going to be documented with Doc
for someField of A. Note that Haddock versions 2.14.0 and before would join up documentation of each field
and render the result. The reason for this seemingly weird behaviour is the fact that someField is actually the same
(partial) function.

3.2. Documenting Parts of a Declaration 17

Haddock Documentation, Release 1.0

3.2.3 Deriving clauses

Most instances are top-level, so can be documented as in Documenting a Top-Level Declaration. The exception to this
is instance that are come from a deriving clause on a datatype declaration. These can be documented like this:

data D a = L a | M
deriving (Eq -- ^ @since 4.5

, Ord -- ^ default 'Ord' instance
)

This also scales to the various GHC extensions for deriving:

newtype T a = T a
deriving Show -- ^ derivation of 'Show'
deriving stock (Eq -- ^ stock derivation of 'Eq'

, Foldable -- ^ stock derivation of 'Foldable'
)

deriving newtype Ord -- ^ newtype derivation of 'Ord'
deriving anyclass Read -- ^ unsafe derivation of 'Read'
deriving (Eq1 -- ^ deriving 'Eq1' via 'Identity'

, Ord1 -- ^ deriving 'Ord1' via 'Identity'
) via Identity

3.2.4 Function Arguments

Individual arguments to a function may be documented like this:

f :: Int -- ^ The 'Int' argument
-> Float -- ^ The 'Float' argument
-> IO () -- ^ The return value

Pattern synonyms, GADT-style data constructors, and class methods also support this style of documentation.

3.3 The Module Description

A module itself may be documented with multiple fields that can then be displayed by the backend. In particular, the
HTML backend displays all the fields it currently knows about. We first show the most complete module documenta-
tion example and then talk about the fields.

{-|
Module : W
Description : Short description
Copyright : (c) Some Person, 2013

Someone Else, 2014
License : GPL-3
Maintainer : sample@email.com
Stability : experimental
Portability : POSIX

Here is a longer description of this module, containing some
commentary with @some markup@.
-}
module W where
...

18 Chapter 3. Documentation and Markup

Haddock Documentation, Release 1.0

All fields are optional but they must be in order if they do appear. Multi-line fields are accepted but the consecutive
lines have to start indented more than their label. If your label is indented one space, as is often the case with the
-- syntax, the consecutive lines have to start at two spaces at the very least. For example, above we saw a multiline
Copyright field:

{-|
...
Copyright : (c) Some Person, 2013

Someone Else, 2014
...
-}

That could equivalently be written as:

-- | ...
-- Copyright:
-- (c) Some Person, 2013
-- Someone Else, 2014
-- ...

or as:

-- | ...
-- Copyright: (c) Some Person, 2013
-- Someone Else, 2014
-- ...

but not as:

-- | ...
-- Copyright: (c) Some Person, 2013
-- Someone Else, 2014
-- ...

since the Someone needs to be indented more than the Copyright.

Whether new lines and other formatting in multiline fields is preserved depends on the field type. For example, new
lines in the Copyright field are preserved, but new lines in the Description field are not; leading whitespace is
not preserved in either1. Please note that we do not enforce the format for any of the fields and the established formats
are just a convention.

3.3.1 Fields of the Module Description

The Module field specifies the current module name. Since the module name can be inferred automatically from the
source file, it doesn’t affect the output of any of the backends. But you might want to include it for any other tools that
might be parsing these comments without the help of GHC.

The Description field accepts some short text which outlines the general purpose of the module. If you’re gener-
ating HTML, it will show up next to the module link in the module index.

The Copyright, License, Maintainer and Stability fields should be obvious. An alternative spelling for
the License field is accepted as Licence but the output will always prefer License.

The Portability field has seen varied use by different library authors. Some people put down things like operating
system constraints there while others put down which GHC extensions are used in the module. Note that you might
want to consider using the show-extensions module flag for the latter (see Module Attributes).

1 Technically, whitespace and newlines in the Description field are preserved verbatim by the HTML backend, but because most browsers
collapse whitespace in HTML, they don’t render as such. But other backends may render this whitespace.

3.3. The Module Description 19

Haddock Documentation, Release 1.0

Finally, a module may contain a documentation comment before the module header, in which case this comment is
interpreted by Haddock as an overall description of the module itself, and placed in a section entitled Description
in the documentation for the module. All the usual Haddock Markup is valid in this comment.

3.4 Controlling the Documentation Structure

Haddock produces interface documentation that lists only the entities actually exported by the module. If there is no
export list then all entities defined by the module are exported.

The documentation for a module will include all entities exported by that module, even if they were re-exported from
another module. The only exception is when Haddock can’t see the declaration for the re-exported entity, perhaps
because it isn’t part of the batch of modules currently being processed.

To Haddock the export list has even more significance than just specifying the entities to be included in the documenta-
tion. It also specifies the order that entities will be listed in the generated documentation. This leaves the programmer
free to implement functions in any order he/she pleases, and indeed in any module he/she pleases, but still specify the
order that the functions should be documented in the export list. Indeed, many programmers already do this: the export
list is often used as a kind of ad-hoc interface documentation, with headings, groups of functions, type signatures and
declarations in comments.

In the next section we give examples illustrating most of the structural markup features. After the examples we go
into more detail explaining the related markup, namely Section Headings, (Named) Chunks of Documentation, and
Re-Exporting an Entire Module.

3.4.1 Documentation Structure Examples

We now give several examples that produce similar results and illustrate most of the structural markup features. The
first two examples use an export list, but the third example does not.

The first example, using an export list with Section Headings and inline section descriptions:

module Image
(-- * Image importers
--
-- | There is a "smart" importer, 'readImage', that determines
-- the image format from the file extension, and several
-- "dumb" format-specific importers that decode the file as
-- the specified type.
readImage

, readPngImage
, readGifImage
, ...
-- * Image exporters
-- ...

) where

import Image.Types (Image)

-- | Read an image, guessing the format from the file name.
readImage :: FilePath -> IO Image
readImage = ...

-- | Read a GIF.
readGifImage :: FilePath -> IO Image
readGifImage = ...

(continues on next page)

20 Chapter 3. Documentation and Markup

Haddock Documentation, Release 1.0

(continued from previous page)

-- | Read a PNG.
readPngImage :: FilePath -> IO Image
readPngImage = ...

...

Note that the order of the entities readPngImage and readGifImage in the export list is different from the order
of the actual declarations farther down; the order in the export list is the order used in the generated docs. Also, the
imported Image type itself is not re-exported, so it will not be included in the rendered docs (see Hyperlinking and
Re-Exported Entities).

The second example, using an export list with a section description defined elsewhere (the $imageImporters; see
(Named) Chunks of Documentation):

module Image
(-- * Image importers
--
-- $imageImporters
readImage

, readPngImage
, readGifImage
, ...
-- * Image exporters
-- ...

) where

import Image.Types (Image)

-- $imageImporters
--
-- There is a "smart" importer, 'readImage', that determines the
-- image format from the file extension, and several "dumb"
-- format-specific importers that decode the file as the specified
-- type.

-- | Read an image, guessing the format from the file name.
readImage :: FilePath -> IO Image
readImage = ...

-- | Read a GIF.
readGifImage :: FilePath -> IO Image
readGifImage = ...

-- | Read a PNG.
readPngImage :: FilePath -> IO Image
readPngImage = ...

...

This produces the same rendered docs as the first example, but the source code itself is arguably more readable, since
the documentation for the group of importer functions is closer to their definitions.

The third example, without an export list:

module Image where

(continues on next page)

3.4. Controlling the Documentation Structure 21

Haddock Documentation, Release 1.0

(continued from previous page)

import Image.Types (Image)

-- * Image importers
--
-- $imageImporters
--
-- There is a "smart" importer, 'readImage', that determines the
-- image format from the file extension, and several "dumb"
-- format-specific importers that decode the file as the specified
-- type.

-- | Read an image, guessing the format from the file name.
readImage :: FilePath -> IO Image
readImage = ...

-- | Read a GIF.
readGifImage :: FilePath -> IO Image
readGifImage = ...

-- | Read a PNG.
readPngImage :: FilePath -> IO Image
readPngImage = ...

...

-- * Image exporters
-- ...

Note that the section headers (e.g. -- * Image importers) now appear in the module body itself, and that the
section documentation is still given using (Named) Chunks of Documentation. Unlike in the first example when using
an export list, the named chunk syntax $imageImporters must be used for the section documentation; attempting
to use the -- | ... syntax to document the image importers here will wrongly associate the documentation chunk
with the next definition!

3.4.2 Section Headings

You can insert headings and sub-headings in the documentation by including annotations at the appropriate point in
the export list, or in the module body directly when not using an export list.

For example:

module Foo (
-- * Classes
C(..),
-- * Types
-- ** A data type
T,
-- ** A record
R,
-- * Some functions
f, g
) where

Headings are introduced with the syntax -- *, -- ** and so on, where the number of *s indicates the level of the
heading (section, sub-section, sub-sub-section, etc.).

22 Chapter 3. Documentation and Markup

Haddock Documentation, Release 1.0

If you use section headings, then Haddock will generate a table of contents at the top of the module documentation for
you.

By default, when generating HTML documentation Haddock will create an anchor to each section of the form #g:n,
where n is an integer that might change as you add new section headings. If you want to create stable links, you can
add an explicit anchor (see Anchors) after the section heading:

module Foo (
-- * Classes #classes#
C(..)

) where

This will create an HTML anchor #g:classes to the section.

The alternative style of placing the commas at the beginning of each line is also supported, e.g.:

module Foo (
-- * Classes
C(..)

-- * Types
-- ** A data type
, T
-- ** A record
, R
-- * Some functions
, f
, g
) where

When not using an export list, you may insert section headers in the module body. Such section headers associate with
all entities declared up until the next section header. For example:

module Foo where

-- * Classes
class C a where ...

-- * Types
-- ** A data type
data T = ...

-- ** A record
data R = ...

-- * Some functions
f :: ...
f = ...
g :: ...
g = ...

3.4.3 Re-Exporting an Entire Module

Haskell allows you to re-export the entire contents of a module (or at least, everything currently in scope that was
imported from a given module) by listing it in the export list:

module A (
module B,

(continues on next page)

3.4. Controlling the Documentation Structure 23

Haddock Documentation, Release 1.0

(continued from previous page)

module C
) where

What will the Haddock-generated documentation for this module look like? Well, it depends on how the modules B
and C are imported. If they are imported wholly and without any hiding qualifiers, then the documentation will just
contain a cross-reference to the documentation for B and C.

However, if the modules are not completely re-exported, for example:

module A (
module B,
module C

) where

import B hiding (f)
import C (a, b)

then Haddock behaves as if the set of entities re-exported from B and C had been listed explicitly in the export list.

The exception to this rule is when the re-exported module is declared with the hide attribute (see Module Attributes),
in which case the module is never cross-referenced; the contents are always expanded in place in the re-exporting
module.

3.4.4 (Named) Chunks of Documentation

It is often desirable to include a chunk of documentation which is not attached to any particular Haskell declaration,
for example, when giving summary documentation for a group of related definitions (see Documentation Structure
Examples). In addition to including such documentation chunks at the top of the file, as part of the The Module
Description, you can also associate them with Section Headings.

There are several ways to associate documentation chunks with section headings, depending on whether you are using
an export list or not:

• The documentation can be included in the export list directly, by preceding it with a -- |. For example:

module Foo (
-- * A section heading

-- | Some documentation not attached to a particular Haskell entity
...

) where

In this case the chunk is not “named”.

• If the documentation is large and placing it inline in the export list might bloat the export list and obscure the
structure, then it can be given a name and placed out of line in the body of the module. This is achieved with a
special form of documentation annotation -- $, which we call a named chunk:

module Foo (
-- * A section heading

-- $doc
...

) where

-- $doc

(continues on next page)

24 Chapter 3. Documentation and Markup

Haddock Documentation, Release 1.0

(continued from previous page)

-- Here is a large chunk of documentation which may be referred to by
-- the name $doc.

The documentation chunk is given a name of your choice (here doc), which is the sequence of alphanumeric
characters directly after the -- $, and it may be referred to by the same name in the export list. Note that
named chunks must come after any imports in the module body.

• If you aren’t using an export list, then your only choice is to use a named chunk with the -- $ syntax. For
example:

module Foo where

-- * A section heading
--
-- $doc
-- Here is a large chunk of documentation which may be referred to by
-- the name $doc.

Just like with entity declarations when not using an export list, named chunks of documentation are associ-
ated with the preceding section header here, or with the implicit top-level documentation section if there is no
preceding section header.

Warning: the form used in the first bullet above, where the chunk is not named, does not work when you aren’t
using an export list. For example:

module Foo where

-- * A section heading
--
-- | Some documentation not attached to a particular Haskell entity

-- | The fooifier.
foo :: ...

will result in Some documentation not ... being attached to the next entity declaration, here foo, in
addition to any other documentation that next entity already has!

3.5 Hyperlinking and Re-Exported Entities

When Haddock renders a type in the generated documentation, it hyperlinks all the type constructors and class names
in that type to their respective definitions. But for a given type constructor or class there may be several modules re-
exporting it, and therefore several modules whose documentation contains the definition of that type or class (possibly
including the current module!) so which one do we link to?

Let’s look at an example. Suppose we have three modules A, B and C defined as follows:

module A (T) where
data T a = C a

module B (f) where
import A
f :: T Int -> Int
f (C i) = i

(continues on next page)

3.5. Hyperlinking and Re-Exported Entities 25

Haddock Documentation, Release 1.0

(continued from previous page)

module C (T, f) where
import A
import B

Module A exports a datatype T. Module B imports A and exports a function f whose type refers to T. Also, both T and
f are re-exported from module C.

Haddock takes the view that each entity has a home module; that is, the module that the library designer would most
like to direct the user to, to find the documentation for that entity. So, Haddock makes all links to an entity point to the
home module. The one exception is when the entity is also exported by the current module: Haddock makes a local
link if it can.

How is the home module for an entity determined? Haddock uses the following rules:

• If modules A and B both export the entity, and module A imports (directly or indirectly) module B, then B is
preferred.

• A module with the hide attribute is never chosen as the home.

• A module with the not-home attribute is only chosen if there are no other modules to choose.

If multiple modules fit the criteria, then one is chosen at random. If no modules fit the criteria (because the candidates
are all hidden), then Haddock will issue a warning for each reference to an entity without a home.

In the example above, module A is chosen as the home for T because it does not import any other module that exports
T. The link from f’s type in module B will therefore point to A.T. However, C also exports T and f, and the link from
f’s type in C will therefore point locally to C.T.

3.6 Module Attributes

Certain attributes may be specified for each module which affect the way that Haddock generates documentation for
that module. Attributes are specified in a comma-separated list in an {-# OPTIONS_HADDOCK ... #-} pragma
at the top of the module, either before or after the module description. For example:

{-# OPTIONS_HADDOCK hide, prune #-}

-- |Module description
module A where
...

The options and module description can be in either order.

The following attributes are currently understood by Haddock:

hide Omit this module from the generated documentation, but nevertheless propagate definitions and documentation
from within this module to modules that re-export those definitions.

prune Omit definitions that have no documentation annotations from the generated documentation.

not-home Indicates that the current module should not be considered to be the home module for each entity it
exports, unless that entity is not exported from any other module. See Hyperlinking and Re-Exported Entities
for more details.

show-extensions Indicates that we should render the extensions used in this module in the resulting documen-
tation. This will only render if the output format supports it. If Language is set, it will be shown as well and
all the extensions implied by it won’t. All enabled extensions will be rendered, including those implied by their
more powerful versions.

26 Chapter 3. Documentation and Markup

Haddock Documentation, Release 1.0

print-explicit-runtime-reps Print type variables that have kind RuntimeRep. By default, these are
defaulted to LiftedRep so that end users don’t have to see the underlying levity polymorphism. This flag is
analogous to GHC’s -fprint-explicit-runtime-reps flag.

3.7 Markup

Haddock understands certain textual cues inside documentation annotations that tell it how to render the documenta-
tion. The cues (or “markup”) have been designed to be simple and mnemonic in ASCII so the programmer doesn’t
have to deal with heavyweight annotations when editing documentation comments.

3.7.1 Paragraphs

One or more blank lines separates two paragraphs in a documentation comment.

3.7.2 Special Characters

The following characters have special meanings in documentation comments: \, /, ', `, ", @, <, $, #. To insert a
literal occurrence of one of these special characters, precede it with a backslash (\).

Additionally, the character > has a special meaning at the beginning of a line, and the following characters have special
meanings at the beginning of a paragraph: *, -. These characters can also be escaped using \.

Furthermore, the character sequence >>> has a special meaning at the beginning of a line. To escape it, just prefix the
characters in the sequence with a backslash.

3.7.3 Character References

Although Haskell source files may contain any character from the Unicode character set, the encoding of these charac-
ters as bytes varies between systems. Consequently, only source files restricted to the ASCII character set are portable.
Other characters may be specified in character and string literals using Haskell character escapes. To represent such
characters in documentation comments, Haddock supports SGML-style numeric character references of the forms
&#D; and &#xH; where D and H are decimal and hexadecimal numbers denoting a code position in Unicode (or ISO
10646). For example, the references λ, λ and λ all represent the lower-case letter lambda.

3.7.4 Code Blocks

Displayed blocks of code are indicated by surrounding a paragraph with @...@ or by preceding each line of a para-
graph with > (we often call these “bird tracks”). For example:

-- | This documentation includes two blocks of code:
--
-- @
-- f x = x + x
-- @
--
-- > g x = x * 42

There is an important difference between the two forms of code block: in the bird-track form, the text to the right of the
‘>’ is interpreted literally, whereas the @...@ form interprets markup as normal inside the code block. In particular,
/ is markup for italics, and so e.g. @x / y / z@ renders as x followed by italic y with no slashes, followed by z.

3.7. Markup 27

Haddock Documentation, Release 1.0

3.7.5 Examples

Haddock has markup support for examples of interaction with a read-eval-print loop (REPL). An example is intro-
duced with >>> followed by an expression followed by zero or more result lines:

-- | Two examples are given below:
--
-- >>> fib 10
-- 55
--
-- >>> putStrLn "foo\nbar"
-- foo
-- bar

Result lines that only contain the string <BLANKLINE> are rendered as blank lines in the generated documentation.

3.7.6 Properties

Haddock provides markup for properties:

-- | Addition is commutative:
--
-- prop> a + b = b + a

This allows third-party applications to extract and verify them.

3.7.7 Hyperlinked Identifiers

Referring to a Haskell identifier, whether it be a type, class, constructor, or function, is done by surrounding it with a
combination of single quotes and backticks. For example:

-- | This module defines the type 'T'.

`T` is also ok. 'T` and `T' are accepted but less common.

If there is an entity T in scope in the current module, then the documentation will hyperlink the reference in the text to
the definition of T (if the output format supports hyperlinking, of course; in a printed format it might instead insert a
page reference to the definition).

It is also possible to refer to entities that are not in scope in the current module, by giving the full qualified name of
the entity:

-- | The identifier 'M.T' is not in scope

If M.T is not otherwise in scope, then Haddock will simply emit a link pointing to the entity T exported from module
M (without checking to see whether either M or M.T exist).

Since values and types live in different namespaces in Haskell, it is possible for a reference such as 'X' to be ambigu-
ous. In such a case, Haddock defaults to pointing to the type. The ambiguity can be overcome by explicitly specifying
a namespace, by way of a v (for value) or t (for type) immediately before the link:

-- | An implicit reference to 'X', the type constructor
-- An explicit reference to v'X', the data constructor
-- An explicit reference to t'X', the type constructor
data X = X

28 Chapter 3. Documentation and Markup

Haddock Documentation, Release 1.0

To make life easier for documentation writers, a quoted identifier is only interpreted as such if the quotes surround a
lexically valid Haskell identifier. This means, for example, that it normally isn’t necessary to escape the single quote
when used as an apostrophe:

-- | I don't have to escape my apostrophes; great, isn't it?

Nothing special is needed to hyperlink identifiers which contain apostrophes themselves: to hyperlink foo' one
would simply type 'foo''. Hyperlinking operators works in exactly the same way.

-- | A prefix operator @'(++)'@ and an infix identifier @'`elem`'@.

3.7.8 Emphasis, Bold and Monospaced Styled Text

Text can be emphasized, made bold (strong) or monospaced (typewriter font) by surrounding it with slashes, double-
underscores or at-symbols:

-- | This is /emphasized text/, __bold text__ and @monospaced text@.

Note that those styled texts must be kept on the same line:

-- | Styles /do not work
-- | when continuing on the next line/

Other markup is valid inside emphasized, bold and monospaced text.

Frequent special cases:

• To have a forward slash inside of emphasis, just escape it: /fo\/o/.

• There’s no need to escape a single underscore if you need it bold:
__This_text_with_underscores_is_bold__.

• @'f' a b@ will hyperlink the identifier f inside the code fragment.

• @__FILE__@ will render FILE in bold with no underscores, which may not be what you had in mind.

3.7.9 Linking to Modules

Linking to a module is done by surrounding the module name with double quotes:

-- | This is a reference to the "Foo" module.

A basic check is done on the syntax of the header name to ensure that it is valid before turning it into a link but unlike
with identifiers, whether the module is in scope isn’t checked and will always be turned into a link.

It is also possible to specify alternate text for the generated link using syntax analogous to that used for URLs:

-- | This is a reference to [the main module]("Module.Main").

3.7.10 Itemized and Enumerated Lists

A bulleted item is represented by preceding a paragraph with either “*” or “-”. A sequence of bulleted paragraphs is
rendered as an itemized list in the generated documentation, e.g.:

3.7. Markup 29

Haddock Documentation, Release 1.0

-- | This is a bulleted list:
--
-- * first item
--
-- * second item

An enumerated list is similar, except each paragraph must be preceded by either “(n)” or “n.” where n is any integer.
e.g.

-- | This is an enumerated list:
--
-- (1) first item
--
-- 2. second item

Lists of the same type don’t have to be separated by a newline:

-- | This is an enumerated list:
--
-- (1) first item
-- 2. second item
--
-- This is a bulleted list:
--
-- * first item
-- * second item

You can have more than one line of content in a list element:

-- |
-- * first item
-- and more content for the first item
-- * second item
-- and more content for the second item

You can even nest whole paragraphs inside of list elements. The rules are 4 spaces for each indentation level. You’re
required to use a newline before such nested paragraphs:

{-|

* Beginning of list
This belongs to the list above!

> nested
> bird
> tracks

* Next list
More of the indented list.

* Deeper

@
even code blocks work
@

* Deeper

(continues on next page)

30 Chapter 3. Documentation and Markup

Haddock Documentation, Release 1.0

(continued from previous page)

1. Even deeper!
2. No newline separation even in indented lists.

-}

The indentation of the first list item is honoured. That is, in the following example the items are on the same level.
Before Haddock 2.16.1, the second item would have been nested under the first item which was unexpected.

{-|

* foo

* bar
-}

3.7.11 Definition Lists

Definition lists are written as follows:

-- | This is a definition list:
--
-- [@foo@]: The description of @foo@.
--
-- [@bar@]: The description of @bar@.

To produce output something like this:

foo The description of foo.

bar The description of bar.

Each paragraph should be preceded by the “definition term” enclosed in square brackets and followed by a colon.
Other markup operators may be used freely within the definition term. You can escape] with a backslash as usual.

Same rules about nesting and no newline separation as for bulleted and numbered lists apply.

3.7.12 URLs

A URL can be included in a documentation comment by surrounding it in angle brackets, for example:

<http://example.com>

If the output format supports it, the URL will be turned into a hyperlink when rendered.

If Haddock sees something that looks like a URL (such as something starting with http:// or ssh://) where the
URL markup is valid, it will automatically make it a hyperlink.

3.7.13 Links

Haddock supports Markdown syntax for inline links. A link consists of a link text and a URL. The link text is enclosed
in square brackets and followed by the URL enclosed in regular parentheses, for example:

[some link](http://example.com)

The link text is used as a description for the URL if the output format supports it.

3.7. Markup 31

Haddock Documentation, Release 1.0

3.7.14 Images

Haddock supports Markdown syntax for inline images. This resembles the syntax for links, but starts with an excla-
mation mark. An example looks like this:

![image description](pathtoimage.png)

If the output format supports it, the image will be rendered inside the documentation. The image description is used
as replacement text and/or an image title.

3.7.15 Mathematics / LaTeX

Haddock supports LaTeX syntax for rendering mathematical notation. The delimiters are \[...\] for displayed
mathematics and \(...\) for in-line mathematics. An example looks like this:

\[
f(a) = \frac{1}{2\pi i}\oint_\gamma \frac{f(z)}{z-a}\,\mathrm{d}z
\]

If the output format supports it, the mathematics will be rendered inside the documentation. For example, the HTML
backend will display the mathematics via MathJax.

3.7.16 Grid Tables

Inspired by reSTs grid tables, Haddock supports a complete table representation via grid-like “ASCII art”. Grid tables
are described with a visual grid made up of the characters “-”, “=”, “|”, and “+”. The hyphen (“-”) is used for horizontal
lines (row separators). The equals sign (“=”) may be used to separate optional header rows from the table body. The
vertical bar (“|”) is used for vertical lines (column separators). The plus sign (“+”) is used for intersections of horizontal
and vertical lines.

-- | This is a grid table:
--
-- +------------------------+------------+----------+----------+
-- | Header row, column 1 | Header 2 | Header 3 | Header 4 |
-- | (header rows optional) | | | |
-- +========================+============+==========+==========+
-- | body row 1, column 1 | column 2 | column 3 | column 4 |
-- +------------------------+------------+----------+----------+
-- | body row 2 | Cells may span columns. |
-- +------------------------+------------+---------------------+
-- | body row 3 | Cells may | \[|
-- +------------------------+ span rows. | f(n) = \sum_{i=1} |
-- | body row 4 | | \] |
-- +------------------------+------------+---------------------+

3.7.17 Anchors

Sometimes it is useful to be able to link to a point in the documentation which doesn’t correspond to a particular entity.
For that purpose, we allow anchors to be included in a documentation comment. The syntax is #label#, where label
is the name of the anchor. An anchor is invisible in the generated documentation.

To link to an anchor from elsewhere, use the syntax "module#label" where module is the module name contain-
ing the anchor, and label is the anchor label. The module does not have to be local, it can be imported via an interface.

32 Chapter 3. Documentation and Markup

https://www.mathjax.org

Haddock Documentation, Release 1.0

Please note that in Haddock versions 2.13.x and earlier, the syntax was "module\#label". It is considered depre-
cated and will be removed in the future.

3.7.18 Headings

Headings inside of comment documentation are possible by preceding them with a number of =s. From 1 to 6 are
accepted. Extra =s will be treated as belonging to the text of the heading. Note that it’s up to the output format to
decide how to render the different levels.

-- |
-- = Heading level 1 with some /emphasis/
-- Something underneath the heading.
--
-- == /Subheading/
-- More content.
--
-- === Subsubheading
-- Even more content.

Note that while headings have to start on a new paragraph, we allow paragraph-level content to follow these immedi-
ately.

-- |
-- = Heading level 1 with some __bold__
-- Something underneath the heading.
--
-- == /Subheading/
-- More content.
--
-- === Subsubheading
-- >>> examples are only allowed at the start of paragraphs

As of 2.15.1, there’s experimental (read: subject to change or get removed) support for collapsible headers: simply
wrap your existing header title in underscores, as per bold syntax. The collapsible section will stretch until the end of
the comment or until a header of equal or smaller number of =s.

-- |
-- === __Examples:__
-- >>> Some very long list of examples
--
-- ==== This still falls under the collapse
-- Some specialised examples
--
-- === This is does not go into the collapsable section.
-- More content.

3.7.19 Metadata

Since Haddock 2.16.0, some support for embedding metadata in the comments has started to appear. The use of such
data aims to standardise various community conventions in how such information is conveyed and to provide uniform
rendering.

3.7. Markup 33

Haddock Documentation, Release 1.0

Since

@since annotation can be used to convey information about when the function was introduced or when it has changed
in a way significant to the user. @since is a paragraph-level element. While multiple such annotations are not an
error, only the one to appear in the comment last will be used. @since has to be followed with a version number,
no further description is currently allowed. The meaning of this feature is subject to change in the future per user
feedback.

-- |
-- Some comment
--
-- @since 1.2.3

34 Chapter 3. Documentation and Markup

CHAPTER 4

Common Errors

4.1 parse error on input ‘-- | xxx’

This is probably caused by the -- | xxx comment not following a declaration. I.e. use -- xxx instead. See
Documenting a Top-Level Declaration.

4.2 parse error on input ‘-- $ xxx’

You’ve probably commented out code like:

f x
$ xxx

-- $ is a special syntax for named chunks, see (Named) Chunks of Documentation. You can fix this by escaping the
$:

-- \$ xxx

35

Haddock Documentation, Release 1.0

36 Chapter 4. Common Errors

CHAPTER 5

Haddocks of multiple components

Haddock supports building documentation of multiple components. First, one needs to build haddocks of all compo-
nents which can be done with:

cabal haddock --haddock-html \
--haddock-quickjump \
--haddock-option="--use-index=../doc-index.html" \
--haddock-option="--use-contents=../index.html" \
--haddock-option="--base-url=.." \
all

The new --base-url option will allow to access the static files from the main directory (in this example its the
relative ./.. directory). It will also prevent haddock from copying its static files to each of the documentation
folders, we’re only need a single copy of them where the --base-url option points to.

The second step requires to copy all the haddocks to a common directory, let’s say ./docs, this will depend on your
project and it might look like:

cp -r dist-newstyle/build/x86_64-linux/ghc-9.0.1/package-a-0.1.0.0/doc/html/package-a/
→˓ docs
cp -r dist-newstyle/build/x86_64-linux/ghc-9.0.1/package-b-0.1.0.0/doc/html/package-b/
→˓ docs

Note that you can also include documentation of other packages in this way, e.g. base, but you need to know where
it is hidden on your hard-drive.

To build html and js (quickjump) indexes one can now invoke haddock with:

haddock \
-o docs \
--quickjump --gen-index --gen-contents \
--read-interface=package-a,docs/package-a/package-a.haddock \
--read-interface=package-b,docs/package-b/package-b.haddock

Note: the PATH in --read-interface=PATH,... must be a relative url of a package it points to (relative to the
docs directory).

37

Haddock Documentation, Release 1.0

There’s an example project which shows how to do that posted here, which haddocks are served on github-pages.

38 Chapter 5. Haddocks of multiple components

https://github.com/coot/haddock-example
https://coot.github.io/haddock-example

CHAPTER 6

Indices and tables

• genindex

• search

39

Haddock Documentation, Release 1.0

40 Chapter 6. Indices and tables

Index

Symbols
-base-url=<url>

command line option, 9
-built-in-themes

command line option, 11
-bypass-interface-version-check

command line option, 13
-comments-base=<url>

command line option, 10
-comments-entity=<url>

command line option, 10
-comments-module=<url>

command line option, 10
-compatible-interface-versions

command line option, 13
-css=<file>

command line option, 11
-dump-interface=<file>

command line option, 8
-gen-contents

command line option, 12
-gen-index

command line option, 12
-ghc-version

command line option, 12
-help

command line option, 12
-hide <module>

command line option, 12
-hoogle

command line option, 9
-html, -h

command line option, 8
-hyperlinked-source

command line option, 9
-interface-version

command line option, 13
-latex

command line option, 8

-latex-style=<style>
command line option, 9

-lib=<dir>
command line option, 7

-mathjax
command line option, 8

-no-tmp-comp-dir
command line option, 13

-no-warnings
command line option, 13

-odir=<dir>
command line option, 7

-optghc=<option>
command line option, 13

-package-name=<name>
command line option, 11

-package-version=<version>
command line option, 11

-print-ghc-libdir
command line option, 12

-print-ghc-path
command line option, 12

-print-missing-docs
command line option, 13

-prologue=<file>
command line option, 11

-qual=<mode>
command line option, 11

-read-interface=<file>
command line option, 7

-show <module>
command line option, 12

-show-all
command line option, 13

-show-extensions <module>
command line option, 13

-show-interface=<file>
command line option, 8

-since-qual=<mode>
command line option, 12

41

Haddock Documentation, Release 1.0

-source-base=<url>
command line option, 10

-source-css=<style>
command line option, 9

-source-entity-line=<url>
command line option, 10

-source-entity=<url>
command line option, 10

-source-module=<url>
command line option, 10

-source=<url>
command line option, 10

-theme=<path>
command line option, 11

-title=<title>
command line option, 11

-trace-args
command line option, 13

-use-contents=<url>
command line option, 12

-use-index=<url>
command line option, 12

-use-unicode
command line option, 11

-verbose
command line option, 12

-version
command line option, 12

-?
command line option, 12

-B <dir>
command line option, 7

-D <file>
command line option, 8

-S, -docbook
command line option, 9

-V
command line option, 12

-c <file>
command line option, 11

-i <file>
command line option, 7

-l <dir>
command line option, 7

-o <dir>
command line option, 7

-p <file>
command line option, 11

-q <mode>
command line option, 11

-s <url>
command line option, 10

-t <title>
command line option, 11

-v
command line option, 12

-w
command line option, 13

C
command line option

-base-url=<url>, 9
-built-in-themes, 11
-bypass-interface-version-check, 13
-comments-base=<url>, 10
-comments-entity=<url>, 10
-comments-module=<url>, 10
-compatible-interface-versions, 13
-css=<file>, 11
-dump-interface=<file>, 8
-gen-contents, 12
-gen-index, 12
-ghc-version, 12
-help, 12
-hide <module>, 12
-hoogle, 9
-html, -h, 8
-hyperlinked-source, 9
-interface-version, 13
-latex, 8
-latex-style=<style>, 9
-lib=<dir>, 7
-mathjax, 8
-no-tmp-comp-dir, 13
-no-warnings, 13
-odir=<dir>, 7
-optghc=<option>, 13
-package-name=<name>, 11
-package-version=<version>, 11
-print-ghc-libdir, 12
-print-ghc-path, 12
-print-missing-docs, 13
-prologue=<file>, 11
-qual=<mode>, 11
-read-interface=<file>, 7
-show <module>, 12
-show-all, 13
-show-extensions <module>, 13
-show-interface=<file>, 8
-since-qual=<mode>, 12
-source-base=<url>, 10
-source-css=<style>, 9
-source-entity-line=<url>, 10
-source-entity=<url>, 10
-source-module=<url>, 10
-source=<url>, 10
-theme=<path>, 11
-title=<title>, 11

42 Index

Haddock Documentation, Release 1.0

-trace-args, 13
-use-contents=<url>, 12
-use-index=<url>, 12
-use-unicode, 11
-verbose, 12
-version, 12
-?, 12
-B <dir>, 7
-D <file>, 8
-S, -docbook, 9
-V, 12
-c <file>, 11
-i <file>, 7
-l <dir>, 7
-o <dir>, 7
-p <file>, 11
-q <mode>, 11
-s <url>, 10
-t <title>, 11
-v, 12
-w, 13

Index 43

	Introduction
	Obtaining Haddock
	License
	Contributors
	Acknowledgements

	Invoking Haddock
	Using literate or pre-processed source
	Avoiding recompilation

	Documentation and Markup
	Documenting a Top-Level Declaration
	Documenting Parts of a Declaration
	The Module Description
	Controlling the Documentation Structure
	Hyperlinking and Re-Exported Entities
	Module Attributes
	Markup

	Common Errors
	parse error on input ‘-- | xxx’
	parse error on input ‘-- $ xxx’

	Haddocks of multiple components
	Indices and tables
	Index

