
haps Documentation

Piotr Karkut

Feb 04, 2022

Contents:

1 Features 3

2 Installation 5

3 Contribute 7

4 Changelog 9
4.1 1.1.1 (2018-07-27) . 9
4.2 1.1.0 (2018-07-26) . 9
4.3 1.0.5 (2018-07-12) . 9
4.4 1.0.4 (2018-06-30) . 9

5 Support 11

6 License 13
6.1 QuickStart . 13
6.2 Profiles . 18
6.3 API . 19
6.4 Scopes . 23
6.5 Exceptions . 23

7 Indices and tables 25

Index 27

i

ii

haps Documentation

Haps [𝜒aps] is a simple DI library, with IoC container included. It is written in pure Python with no external depen-
dencies.

Look how easy it is to use:

from haps import Container as IoC, Inject, inject

import interfaces
from my_application.core import IDatabase, IUserService

class MyApp:
db: IDatabase = Inject() # dependency as a property

@inject # or passed to the constructor
def __init__(self, user_service: IUserService) -> None:

self.user_service = user_service

IoC.autodiscover('my_application') # find all interfaces and implementations

if __name__ == '__main__':
app = MyApp()
assert isinstance(app.db, IDatabase)
assert isinstance(app.user_service, IUserService)

Contents: 1

haps Documentation

2 Contents:

CHAPTER 1

Features

• IoC container

• No XML/JSON/YAML - pure python configuration

• No dependencies

• Based on the Python 3.6+ annotation system

3

haps Documentation

4 Chapter 1. Features

CHAPTER 2

Installation

Install haps by running:

pip install haps

5

haps Documentation

6 Chapter 2. Installation

CHAPTER 3

Contribute

• Issue Tracker: github.com/ekiro/haps/issues

• Source Code: github.com/ekiro/haps

7

haps Documentation

8 Chapter 3. Contribute

CHAPTER 4

Changelog

4.1 1.1.1 (2018-07-27)

• Fix bug with optional arguments for functions decorated with @inject

4.2 1.1.0 (2018-07-26)

• Add configuration module

• Add application class and runner

• Add profiles

• Minor fixes

4.3 1.0.5 (2018-07-12)

• @egg decorator can be used without function invocation

4.4 1.0.4 (2018-06-30)

• Add support for python 3.7

• Fix autodiscover sample

9

haps Documentation

10 Chapter 4. Changelog

CHAPTER 5

Support

If you are having issues, ask a question on projects issue tracker.

11

haps Documentation

12 Chapter 5. Support

CHAPTER 6

License

The project is licensed under the MIT license.

6.1 QuickStart

Here’s a simple tutorial on how to write your first application using haps. Assuming you have already created an
environment with python 3.6+ and haps installed, you can start writing some juicy code.

6.1.1 Application layout

Since haps doesn’t enforce any project/code design (you can use it even as an addition to your existing Django or flask
application!), this is just an example layout. You are going to create a simple user registration system.

quickstart/
setup.py
user_module/

app.py
core

implementations/
__init__.py
db.py
others.py

__init__.py
interfaces.py

__init__.py

6.1.2 Interfaces

Let’s start with creating some interfaces, so we can keep our code clean and readable:

13

haps Documentation

quickstart/user_module/core/interfaces.py
from haps import base

@base
class IUserService:

def create_user(self, username: str) -> bool:
raise NotImplementedError

def delete_user(self, username: str) -> bool:
raise NotImplementedError

@base
class IDatabase:

def add_object(self, bucket: str, name: str, data: dict) -> bool:
raise NotImplementedError

def delete_object(self, bucket: str, name) -> bool:
raise NotImplementedError

@base
class IMailer:

def send(self, email: str, message: str) -> None:
raise NotImplementedError

There are three interfaces:

• IUserService: High-level interface with methods to create and delete users

• IDatabase: Low-level data repository

• IMailer: One-method interface for mailing integration

You need to tell haps about your interfaces by using @base class decorator, so it can resolve dependencies correctly.

Note: Be aware that you don’t have to create a fully-featured interface, instead you can just define a base type, that’s
enough for haps:

@base
class IUserService:

pass

However, it’s a good practice to do so.

6.1.3 Implementations

Every interface should have at least one implementation. So, we will start with UserService and Mailer implementa-
tion.

quickstart/user_module/core/implementations/others.py
from haps import egg, Inject

from user_module.core.interfaces import IDatabase, IMailer, IUserService

(continues on next page)

14 Chapter 6. License

haps Documentation

(continued from previous page)

@egg
class DummyMailer(IMailer):

def send(self, email: str, message: str) -> None:
print(f'Mail to {email}: {message}')

@egg
class UserService(IUserService):

db: IDatabase = Inject()
mailer: IMailer = Inject()

_bucket = 'users'

def create_user(self, username: str) -> bool:
email = f'{username}@my-service.com'
created = self.db.add_object(self._bucket, username, {

'email': email
})
if created:

self.mailer.send(email, f'Hello {username}!')
return created

def delete_user(self, username: str) -> bool:
return self.db.delete_object(self._bucket, username)

There are two classes, and the first one is quite simple, it inherits from IMailer and implements its only method
send. The only new thing here is the @egg decorator. You can use it to tell haps about any callable (a class is also
a callable) that returns the implementation of a base type. Now you can probably guess how haps can resolve right
dependencies - it looks into inheritance chain.

The UserService implementation is a way more interesting. Besides the parts we’ve already seen in the
DummyMailer implementation, it uses the Inject descriptor to provide dependencies. Yes, it’s that simple. You
only need to define class-level field Inject with proper annotation, and haps will take care of everything else. It
means creating and binding the proper instance.

Warning: With this method, the instance of an injected class, e.g., DummyMailer, is created (or fetched from the
container) at the time of first property access, and then is assigned to the current UserService instance.

So:

us = UserService()
assert us.mailer is us.mailer # it's always true
but
assert us.mailer is UserService().mailer # not necessarily
(but it can, as you will see later)

Now let’s move to our repository. We need to implement some data storage for our project. For now, it’ll be in-
memory storage, but, thanks to haps, you can quickly switch between many implementations. Creation of the database
repository may be more complicated, so we’ll use a factory function.

quickstart/user_module/core/implementations/db.py
from collections import defaultdict

(continues on next page)

6.1. QuickStart 15

https://docs.python.org/3.6/howto/descriptor.html

haps Documentation

(continued from previous page)

from haps import egg, scope, SINGLETON_SCOPE

from user_module.core.interfaces import IDatabase

class InMemoryDb(IDatabase):
storage: dict

def __init__(self):
self.storage = defaultdict(dict)

def add_object(self, bucket: str, name: str, data: dict) -> bool:
if name in self.storage[bucket]:

return False
else:

self.storage[bucket][name] = data
return True

def delete_object(self, bucket: str, name) -> bool:
try:

del self.storage[bucket][name]
except KeyError:

return False
else:

return True

@egg
@scope(SINGLETON_SCOPE)
def database_factory() -> IDatabase:

db = InMemoryDb()
Maybe do some stuff, like reading configuration
or create some kind of db-session.
return db

InMemoryDb is a simple implementation of IDatabase that uses defaultdict to store users. It could be file-based
storage or even SQL storage. However, notice there’s no @egg decorator on this implementation. Instead, we’ve
created a function decorated with it which have IDatabase declared as the return type.

In this case, when injecting, haps calls database_factory function and injects the result.

Warning: Be aware that haps by design WILL NOT validate function output in any way. So if your function
returns a type that’s not compatible with declared one, it could lead to hard to catch errors.

6.1.4 Scope

As you can see in the previous file, database_factory function is also decorated with scope decorator.

A scope in haps determines object life-cycle. The default scope is INSTANCE_SCOPE, and you don’t have to declare
it explicitly. There are also two scopes that ships with haps, SINGLETON_SCOPE, and THREAD_SCOPE. You can
also create your own scopes. You can read about scopes in another chapter, but for the clarity: SINGLETON_SCOPE
means that haps creates only one instance, and injects the same object every time. On the other hand, dependencies
with INSTANCE_SCOPE (which is default), are instantiated on every injection.

16 Chapter 6. License

haps Documentation

6.1.5 Run the code!

Now we have configured our interfaces and dependencies, and we’re ready to run our application:

quickstart/user_module/app.py
from haps import Container as IoC, inject

from user_module.core.interfaces import IUserService

class UserModule:
@inject
def __init__(self, user_service: IUserService) -> None:

self.user_service = user_service

def register_user(self, username: str) -> None:
if self.user_service.create_user(username):

print(f'User {username} created!')
else:

print(f'User {username} already exists!')

def delete_user(self, username: str) -> None:
if self.user_service.delete_user(username):

print(f'User {username} deleted!')
else:

print(f'User {username} does not exists!')

IoC.autodiscover(['user_module.core'])

if __name__ == '__main__':
um = UserModule()
um.register_user('Kiro')
um.register_user('John')
um.register_user('Kiro')
um.delete_user('Kiro')
um.delete_user('Kiro')
another_um_instance = UserModule()
another_um_instance.register_user('John')

The main class UserModule takes IUserService in the constructor, and thanks to the @inject decorator, haps
will create and pass UserService instance to it.

After that, we have to call autodiscover method from haps, which scans all modules under given path and con-
figures all dependencies.

Running our application should give following output:

Mail to Kiro@my-service.com: Hello Kiro!
User Kiro created!
Mail to John@my-service.com: Hello John!
User John created!
User Kiro already exists!
User Kiro deleted!
User Kiro does not exists!
User John already exists!

6.1. QuickStart 17

haps Documentation

6.2 Profiles

Haps allows you to attach dependencies to configuration profile. It helps with development, testing, and some other
stuff. You can set active profiles using Configuration.

6.2.1 Example

One of many good use cases for profiles is mailing. Imagine you have to implement mailer class. Your production
environment uses AWS SES, stage uses an internal SMTP system, on your local env every mail is printed to stdout,
and mailer for tests do nothing. You may ask, how to implement this without nasty ifs? Well, it’s quite easy with
profiles:

from haps import base, egg

@base
class IMailer

def send(self, to: str, message: str) -> None:
raise NotImplementedError

@egg(profile='production')
class SESMailer(IMailer):

def send(self, to: str, message: str) -> None:
SES implementation

@egg(profile='stage')
class SMTPMailer(IMailer):

def send(self, to: str, message: str) -> None:
SMTP implementation

@egg(profile='tests')
class DummyMailer(IMailer):

def send(self, to: str, message: str) -> None:
pass

@egg # missing profile means default
class LogMailer(IMailer):

def send(self, to: str, message: str) -> None:
print(f"Mail to {to}: {message})

And that’s it. Now you only need to run your app with HAPS_PROFILES=production (or any other pro-
file) and haps will choose proper dependency. You can set more than one profile separating them by a comma:
HAPS_PROFILES=stage,local-static,sqlite

If there is more than one egg for the given profiles list, the order decides about priority. e.g. for
HAPS_PROFILES=tests,production the DummyMailer class is chosen.

Profiles can be configured programmatically, before Container configuration:

from haps import PROFILES
from haps.config import Configuration

(continues on next page)

18 Chapter 6. License

haps Documentation

(continued from previous page)

Configuration().set(PROFILES, ('tests', 'tmp-static', 'sqlite'))
Container config / autodiscover

Note: Profiles that are set directly by Configuration overrides profiles from the environment variable.

6.3 API

6.3.1 Container

class haps.Container
Dependency Injection container class

Container is a heart of haps. For now, its implemented as a singleton that can only be used after one-time configuration.

from haps import Container

Container.autodiscover(['my.package']) # configuration, once in the app lifetime
Container().some_method() # Call method on the instance

That means, you can create instances of classes that use injections, only after haps is properly configured.

classmethod Container.autodiscover(module_paths: List[str], subclass: Op-
tional[haps.container.Container] = None)→ None

Load all modules automatically and find bases and eggs.

Parameters

• module_paths – List of paths that should be discovered

• subclass – Optional Container subclass that should be used

static Container.configure(config: List[haps.container.Egg], subclass: Op-
tional[haps.container.Container] = None)→ None

Configure haps manually, an alternative to autodiscover()

Parameters

• config – List of configured Eggs

• subclass – Optional Container subclass that should be used

Container.get_object(base_: Type[T], qualifier: str = None)→ T
Get instance directly from the container.

If the qualifier is not None, proper method to create/retrieve instance is used.

Parameters

• base – base of this object

• qualifier – optional qualifier

Returns object instance

Container.register_scope(name: str, scope_class: Type[haps.scopes.Scope])→ None
Register new scopes which should be subclasses of Scope

6.3. API 19

haps Documentation

Parameters

• name – Name of new scopes

• scope_class – Class of new scopes

6.3.2 Egg

class haps.Egg(base_: Optional[Type], type_: Type, qualifier: Optional[str], egg_: Callable, profile: str
= None)

Configuration primitive. Can be used to configure haps manually.

Egg.__init__(base_: Optional[Type], type_: Type, qualifier: Optional[str], egg_: Callable, profile: str =
None)→ None

Parameters

• base – base of dependency, used to retrieve object

• type – type of dependency (for functions it’s a return type)

• qualifier – extra qualifier for dependency. Can be used to register more than one type
for one base.

• egg – any callable that returns an instance of dependency, can be a class or a function

• profile – dependency profile name

6.3.3 Injection

class haps.Inject(qualifier: str = None)
A descriptor for injecting dependencies as properties

class SomeClass:
my_dep: DepType = Inject()

Important: Dependency is injected (created/fetched) at the moment of accessing the attribute, not at the
moment of instance creation. So, even if you create an instance of SomeClass, the instance of DepType may
never be created.

haps.inject(fun: Callable)→ Callable
A decorator for injection dependencies into functions/methods, based on their type annotations.

class SomeClass:
@inject
def __init__(self, my_dep: DepType) -> None:

self.my_dep = my_dep

Important: On the opposite to Inject, dependency is injected at the moment of method invocation. In case
of decorating __init__, dependency is injected when SomeClass instance is created.

Parameters fun – callable with annotated parameters

Returns decorated callable

20 Chapter 6. License

haps Documentation

6.3.4 Dependencies

haps.base(cls: T)→ T
A class decorator that marks class as a base type.

Parameters cls – Some base type

Returns Not modified cls

haps.egg(qualifier: Union[str, Type] = ”, profile: str = None)
A function that returns a decorator (or acts like a decorator) that marks class or function as a source of base.

If a class is decorated, it should inherit from base type.

If a function is decorated, it declared return type should inherit from some base type, or it should be the base
type.

@egg
class DepImpl(DepType):

pass

@egg(profile='test')
class TestDepImpl(DepType):

pass

@egg(qualifier='special_dep')
def dep_factory() -> DepType:

return SomeDepImpl()

Parameters

• qualifier – extra qualifier for dependency. Can be used to register more than one type
for one base. If non-string argument is passed, it’ll act like a decorator.

• profile – An optional profile within this dependency should be used

Returns decorator

haps.scope(scope_type: str)→ Callable
A function that returns decorator that set scopes to some class/function

@egg()
@scopes(SINGLETON_SCOPE)
class DepImpl:

pass

Parameters scope_type – Which scope should be used

Returns

6.3.5 Configuration

class haps.config.Configuration
Configuration container, a simple object to manage application config variables. Variables can be set manually,
from the environment, or resolved via custom function.

Configuration.get_var(var_name: str, default: Optional[Any] = <object object>)→ Any
Get a config variable. If a variable is not set, a resolver is not set, and no default is given
UnknownConfigVariable is raised.

6.3. API 21

haps Documentation

Parameters

• var_name – Name of variable

• default – Default value

Returns Value of config variable

classmethod Configuration.resolver(var_name: str)→ function
Variable resolver decorator. Function or method decorated with it is used to resolve the config variable.

Note: Variable is resolved only once. Next gets are returned from the cache.

Parameters var_name – Variable name

Returns Function decorator

classmethod Configuration.env_resolver(var_name: str, env_name: str = None, default: Any
= <object object>)→ haps.config.Configuration

Method for configuring environment resolver.

Parameters

• var_name – Variable name

• env_name – An optional environment variable name. If not set haps looks for
HAPS_var_name

• default – Default value for variable. If it’s a callable, it is called before return. If not
provided UnknownConfigVariable is raised

Returns Configuration instance for easy chaining

classmethod Configuration.set(var_name: str, value: Any)→ haps.config.Configuration
Set the variable

Parameters

• var_name – Variable name

• value – Value of variable

Returns Configuration instance for easy chaining

class haps.config.Config(var_name: str = None, default=<object object>)
Descriptor providing config variables as a class properties.

class SomeClass:
my_var: VarType = Config()
custom_property_name: VarType = Config('var_name')

Config.__init__(var_name: str = None, default=<object object>)→ None

Parameters

• var_name – An optional variable name. If not set the property name is used.

• default – Default value for variable. If it’s a callable, it is called before return. If not
provided UnknownConfigVariable is raised

22 Chapter 6. License

haps Documentation

6.4 Scopes

A scope is a special object that controls dependency creation. It decides if new dependency instance should be created,
or some cached instance should be returned.

By default, there are two scopes registered in haps: InstanceScope and SingletonScope as haps.
INSTANCE_SCOPE and haps.SINGLETON_SCOPE. The haps.INSTANCE_SCOPE is used as a default.

You can register any other scope by calling haps.Container.register_scope(). New scopes should be a
subclass of haps.scopes.Scope.

class haps.scopes.Scope
Base scope class. Every custom scope should subclass this.

class haps.scopes.instance.InstanceScope
Dependencies within InstanceScope are created at every injection.

class haps.scopes.singleton.SingletonScope
Dependencies within SingletonScope are created only once in the application context.

class haps.scopes.thread.ThreadScope
Dependencies within ThreadScope are created only once in a thread context.

6.5 Exceptions

exception haps.exceptions.AlreadyConfigured

exception haps.exceptions.ConfigurationError

exception haps.exceptions.NotConfigured

exception haps.exceptions.UnknownDependency

exception haps.exceptions.UnknownScope

exception haps.exceptions.CallError

exception haps.exceptions.UnknownConfigVariable

6.4. Scopes 23

haps Documentation

24 Chapter 6. License

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

25

haps Documentation

26 Chapter 7. Indices and tables

Index

Symbols
__init__() (haps.Egg method), 20
__init__() (haps.config.Config method), 22

A
AlreadyConfigured, 23
autodiscover() (haps.Container class method), 19

B
base() (in module haps), 21

C
CallError, 23
Config (class in haps.config), 22
Configuration (class in haps.config), 21
ConfigurationError, 23
configure() (haps.Container static method), 19
Container (class in haps), 19

E
Egg (class in haps), 20
egg() (in module haps), 21
env_resolver() (haps.config.Configuration class

method), 22

G
get_object() (haps.Container method), 19
get_var() (haps.config.Configuration method), 21

I
Inject (class in haps), 20
inject() (in module haps), 20
InstanceScope (class in haps.scopes.instance), 23

N
NotConfigured, 23

R
register_scope() (haps.Container method), 19

resolver() (haps.config.Configuration class method),
22

S
Scope (class in haps.scopes), 23
scope() (in module haps), 21
set() (haps.config.Configuration class method), 22
SingletonScope (class in haps.scopes.singleton), 23

T
ThreadScope (class in haps.scopes.thread), 23

U
UnknownConfigVariable, 23
UnknownDependency, 23
UnknownScope, 23

27

	Features
	Installation
	Contribute
	Changelog
	1.1.1 (2018-07-27)
	1.1.0 (2018-07-26)
	1.0.5 (2018-07-12)
	1.0.4 (2018-06-30)

	Support
	License
	QuickStart
	Profiles
	API
	Scopes
	Exceptions

	Indices and tables
	Index

