
Handel Documentation
Release 0.23.2

David Woodruff

Dec 20, 2018

Getting Started

1 Introduction 3

2 Handel vs. CloudFormation 5

3 Installation 13

4 Creating Your First Handel App 15

5 CLI Reference 21

6 Handel File 23

7 Account Config File 25

8 Service Dependencies 27

9 Consuming Service Dependencies 29

10 Service Events 31

11 Accessing Application Secrets 33

12 Tagging 37

13 Deleting an Environment 39

14 Using Extensions 41

15 Alexa Skill Kit 45

16 AI Services 47

17 Amazon MQ 51

18 API Access 53

19 API Gateway 57

20 Aurora (RDS) 67

i

21 Aurora Serverless 71

22 CodeDeploy 75

23 Beanstalk 81

24 CloudWatch Events 87

25 DynamoDB 91

26 ECS (Elastic Container Service) 97

27 ECS Fargate 105

28 EFS (Elastic File System) 113

29 Elasticsearch 115

30 IoT 119

31 KMS (Key Management Service) 123

32 Lambda 127

33 Memcached (ElastiCache) 131

34 MySQL (RDS) 135

35 Neptune 139

36 PostgreSQL (RDS) 143

37 Redis (ElastiCache) 147

38 Route 53 Hosted Zone 151

39 S3 (Simple Storage Service) 155

40 S3 Static Site 159

41 SES (Simple Email Service) 163

42 SNS (Simple Notification Service) 165

43 SQS (Simple Queue Service) 169

44 Step Functions 173

45 Handel Deployment Logs 177

46 Writing Extensions 179

ii

Handel Documentation, Release 0.23.2

Handel is a library that orchestrates your AWS deployments so you don’t have to.

Handel is built on top of CloudFormation with an aim towards easier AWS provisioning and deployments. You give
Handel a configuration file (the Handel file) telling it what services you want in your application, and it wires them
together for you.

Here’s an example Handel file defining a Beanstalk application to be deployed with an SQS queue and S3 bucket:

version: 1

name: my-first-handel-app

environments:
dev:
webapp:

type: beanstalk
path_to_code: .
solution_stack: 64bit Amazon Linux 2017.09 v4.4.5 running Node.js
dependencies:
- bucket
- queue

bucket:
type: s3

queue:
type: sqs

From this Handel file, Handel creates the appropriate CloudFormation templates for you, including taking care of all
the tricky security bits to make the services be able to talk to each other.

Getting Started 1

Handel Documentation, Release 0.23.2

2 Getting Started

CHAPTER 1

Introduction

Handel is a CLI tool that will help you more easily deploy your application to AWS. You specify a declarative file in
your application called handel.yml, and Handel will deploy your application to AWS for you.

Handel runs on top of CloudFormation. It automatically creates CloudFormation templates from your Handel file, and
deploys your applications in a secure fashion, providing a vastly easier experience than using vanilla CloudFormation.

1.1 Why does Handel exist?

Handel runs on top of CloudFormation, so why not use CloudFormation directly?

The main answer is that using CloudFormation comes with a very steep learning curve. The main difficulty comes not
in learning the configuration language itself, but much more in the interactions required between resources with IAM
roles and EC2 security groups.

By running on top of CloudFormation, Handel provides the following benefits:

• Automatic security wiring, freeing you from having to worry about EC2 security groups and IAM roles.

• Much simpler interface to configuring an application. A 400-line CloudFormation template can be configured
in more like 30-40 lines. See Handel vs. CloudFormation for an example of this.

By using Handel, you get to retain the benefits of CloudFormation with less work!

1.2 What AWS services are supported?

See the Supported Services section for information on which AWS services you can currently use with Handel.

1.3 How can I deploy an application with Handel?

First, see the Installation section to install Handel.

3

Handel Documentation, Release 0.23.2

After you’ve installed Handel, see the Creating Your First Handel App page for a tutorial on creating a simple app and
deploying it with Handel.

4 Chapter 1. Introduction

CHAPTER 2

Handel vs. CloudFormation

CloudFormation is one of the most commonly used methods for automatically deploying applications to AWS. In fact,
Handel uses CloudFormation under the hood to do your deployments. This page compares using vanilla CloudForma-
tion and the Handel library.

2.1 CloudFormation

CloudFormation is one of the most popular ways to deploy applications to AWS. It is an extremely flexible tool that
allows you great control over how you wire up applications. That flexibility comes at the cost of complexity. You need
to learn quite a bit before you can ever deploy your first production-quality application.

Here is an example CloudFormation template that creates a Beanstalk server and wires it up with an S3 bucket, a
DynamoDB table, and an SQS queue:

AWSTemplateFormatVersion: '2010-09-09'
Description: Beanstalk application with SQS queue, S3 bucket, and DynamoDB table

Resources:
Queue:
Type: AWS::SQS::Queue
Properties:

DelaySeconds: 0
MaximumMessageSize: 262144
MessageRetentionPeriod: 345600
QueueName: dsw88-testapp-dev-queue-sqs
ReceiveMessageWaitTimeSeconds: 0
VisibilityTimeout: 30

Table:
Type: "AWS::DynamoDB::Table"
Properties:

AttributeDefinitions:
- AttributeName: MyPartitionKey

(continues on next page)

5

Handel Documentation, Release 0.23.2

(continued from previous page)

AttributeType: S
KeySchema:
- AttributeName: MyPartitionKey

KeyType: HASH
ProvisionedThroughput:

ReadCapacityUnits: 1
WriteCapacityUnits: 1

TableName: dsw88-testapp-dev-table-dynamodb

Bucket:
Type: "AWS::S3::Bucket"
Properties:

BucketName: dsw88-testapp-dev-bucket-s3
VersioningConfiguration:

Status: Enabled

BeanstalkRole:
Type: AWS::IAM::Role
Properties:

AssumeRolePolicyDocument:
Version: '2012-10-17'
Statement:
- Sid: ''
Effect: Allow
Principal:
Service: ec2.amazonaws.com

Action: sts:AssumeRole
Path: /services/
RoleName: dsw88-testapp-dev-webapp-beanstalk

BeanstalkPolicy:
Type: AWS::IAM::Policy
Properties:

PolicyDocument:
Version: '2012-10-17'
Statement:
- Effect: Allow
Action:
- s3:ListBucket
Resource:
- arn:aws:s3:::dsw88-testapp-dev-bucket-s3

- Effect: Allow
Action:
- s3:PutObject
- s3:GetObject
- s3:DeleteObject
Resource:
- arn:aws:s3:::dsw88-testapp-dev-bucket-s3/*

- Effect: Allow
Action:
- sqs:ChangeMessageVisibility
- sqs:ChangeMessageVisibilityBatch
- sqs:DeleteMessage
- sqs:DeleteMessageBatch
- sqs:GetQueueAttributes
- sqs:GetQueueUrl
- sqs:ListDeadLetterSourceQueues

(continues on next page)

6 Chapter 2. Handel vs. CloudFormation

Handel Documentation, Release 0.23.2

(continued from previous page)

- sqs:ListQueues
- sqs:PurgeQueue
- sqs:ReceiveMessage
- sqs:SendMessage
- sqs:SendMessageBatch
Resource:
- arn:aws:sqs:us-west-2:111111111111:dsw88-testapp-dev-queue-sqs

- Sid: DyanmoDBAccessT7eFcR52BF7VnlQF
Effect: Allow
Action:
- dynamodb:BatchGetItem
- dynamodb:BatchWriteItem
- dynamodb:DeleteItem
- dynamodb:DescribeLimits
- dynamodb:DescribeReservedCapacity
- dynamodb:DescribeReservedCapacityOfferings
- dynamodb:DescribeStream
- dynamodb:DescribeTable
- dynamodb:GetItem
- dynamodb:GetRecords
- dynamodb:GetShardIterator
- dynamodb:ListStreams
- dynamodb:PutItem
- dynamodb:Query
- dynamodb:Scan
- dynamodb:UpdateItem
Resource:
- arn:aws:dynamodb:us-west-2:111111111111:table/dsw88-testapp-dev-table-

→˓dynamodb
- Sid: BucketAccess
Action:
- s3:Get*
- s3:List*
- s3:PutObject
Effect: Allow
Resource:
- arn:aws:s3:::elasticbeanstalk-*
- arn:aws:s3:::elasticbeanstalk-*/*

- Sid: XRayAccess
Action:
- xray:PutTraceSegments
- xray:PutTelemetryRecords
Effect: Allow
Resource: "*"

- Sid: CloudWatchLogsAccess
Action:
- logs:PutLogEvents
- logs:CreateLogStream
Effect: Allow
Resource:
- arn:aws:logs:*:*:log-group:/aws/elasticbeanstalk*

- Sid: ECSAccess
Effect: Allow
Action:
- ecs:Poll
- ecs:StartTask
- ecs:StopTask

(continues on next page)

2.1. CloudFormation 7

Handel Documentation, Release 0.23.2

(continued from previous page)

- ecs:DiscoverPollEndpoint
- ecs:StartTelemetrySession
- ecs:RegisterContainerInstance
- ecs:DeregisterContainerInstance
- ecs:DescribeContainerInstances
- ecs:Submit*
- ecs:DescribeTasks
Resource: "*"

PolicyName: dsw88-testapp-dev-webapp-beanstalk
Roles:
- !Ref BeanstalkRole

InstanceProfile:
Type: AWS::IAM::InstanceProfile
Properties:

Path: "/services/"
Roles:
- !Ref BeanstalkRole

BeanstalkSecurityGroup:
Type: "AWS::EC2::SecurityGroup"
Properties:

GroupDescription: dsw88-testapp-dev-webapp-beanstalk
VpcId: vpc-aaaaaaaa
SecurityGroupIngress:
- IpProtocol: tcp

FromPort: '22'
ToPort: '22'
SourceSecurityGroupId: sg-44444444

SecurityGroupEgress:
- IpProtocol: tcp

FromPort: '0'
ToPort: '65335'
CidrIp: 0.0.0.0/0

Tags:
- Key: Name

Value: dsw88-testapp-dev-webapp-beanstalk

BeanstalkIngressToSelf:
Type: AWS::EC2::SecurityGroupIngress
Properties:

GroupId:
Ref: BeanstalkSecurityGroup

IpProtocol: tcp
FromPort: '0'
ToPort: '65335'
SourceSecurityGroupId:

Ref: BeanstalkSecurityGroup

Application:
Type: AWS::ElasticBeanstalk::Application
Properties:

ApplicationName: dsw88-testapp-dev-webapp-beanstalk
Description: Application for dsw88-testapp-dev-webapp-beanstalk

ApplicationVersion:
Type: AWS::ElasticBeanstalk::ApplicationVersion

(continues on next page)

8 Chapter 2. Handel vs. CloudFormation

Handel Documentation, Release 0.23.2

(continued from previous page)

Properties:
ApplicationName: !Ref Application
Description: Application version for dsw88-testapp-dev-webapp-beanstalk
SourceBundle:

S3Bucket: beanstalk-us-west-2-111111111111
S3Key: dsw88-testapp/dev/webapp/beanstalk-deployable-SOME_GUID.zip

ConfigurationTemplate:
DependsOn:
- Queue
- Table
- Bucket
- BeanstalkSecurityGroup
- InstanceProfile
Type: AWS::ElasticBeanstalk::ConfigurationTemplate
Properties:

ApplicationName: !Ref Application
Description: Configuration template for dsw88-testapp-dev-webapp-beanstalk
OptionSettings:
- Namespace: aws:autoscaling:launchconfiguration

OptionName: IamInstanceProfile
Value: !Ref InstanceProfile

- Namespace: aws:autoscaling:asg
OptionName: MinSize
Value: 1

- Namespace: aws:autoscaling:asg
OptionName: MaxSize
Value: 1

- Namespace: aws:autoscaling:launchconfiguration
OptionName: InstanceType
Value: t2.micro

- Namespace: aws:autoscaling:launchconfiguration
OptionName: SecurityGroups
Value: !Ref BeanstalkSecurityGroup

- Namespace: aws:autoscaling:updatepolicy:rollingupdate
OptionName: RollingUpdateEnabled
Value: true

- Namespace: aws:ec2:vpc
OptionName: VPCId
Value: vpc-aaaaaaaa

- Namespace: aws:ec2:vpc
OptionName: Subnets
Value: subnet-ffffffff,subnet-77777777

- Namespace: aws:ec2:vpc
OptionName: ELBSubnets
Value: subnet-22222222,subnet-66666666

- Namespace: aws:ec2:vpc
OptionName: DBSubnets
Value: subnet-eeeeeeee,subnet-cccccccc

- Namespace: aws:ec2:vpc
OptionName: AssociatePublicIpAddress
Value: false

- Namespace: aws:elasticbeanstalk:application:environment
OptionName: MY_INJECTED_VAR
Value: myValue

SolutionStackName: 64bit Amazon Linux 2016.09 v4.0.1 running Node.js

(continues on next page)

2.1. CloudFormation 9

Handel Documentation, Release 0.23.2

(continued from previous page)

Environment:
Type: "AWS::ElasticBeanstalk::Environment"
Properties:

ApplicationName: !Ref Application
Description: environment for dsw88-testapp-dev-webapp-beanstalk
TemplateName: !Ref ConfigurationTemplate
VersionLabel: !Ref ApplicationVersion
Tags:
- Key: Name

Value: dsw88-testapp-dev-webapp-beanstalk

Outputs:
BucketName:
Description: The endpoint URL of the beanstalk environment
Value:

Fn::GetAtt:
- Environment
- EndpointURL

2.2 Handel

Handel is a deployment library that runs on top of CloudFormation. The services you specify in Handel are turned
into CloudFormation templates that are created on your behalf.

Because of this approach, Handel frees you from having to worry about the detail of CloudFormation, as well as
security services such as IAM and VPC. This simplicity comes at the cost of lack of flexibility in some cases. For
example, when wiring up permissions between a Beanstalk app and an S3 bucket, you don’t get to choose what
permissions exactly will be applied. Handel will apply what it considers to be reasonable and secure permissions.

Here is an example Handel file that creates the same set of resources (Beanstalk, S3, DynamoDB, and SQS) as the
CloudFormation template above:

version: 1

name: dsw88-testapp

environments:
dev:
webapp:

type: beanstalk
path_to_code: .
solution_stack: 64bit Amazon Linux 2016.09 v4.0.1 running Node.js
instance_type: t2.micro
health_check_url: /
min_instances: 1
max_instances: 1
environment_variables:

MY_INJECTED_VAR: myValue
dependencies:
- bucket
- queue
- table

bucket:
type: s3

(continues on next page)

10 Chapter 2. Handel vs. CloudFormation

Handel Documentation, Release 0.23.2

(continued from previous page)

queue:
type: sqs

table:
type: dynamodb
partition_key:

name: MyPartionKey
type: String

provisioned_throughput:
read_capcity_units: 1
write_capacity_units: 1

Note the greatly reduced file size, as well as the lack of any IAM or VPC configuration details.

2.2. Handel 11

Handel Documentation, Release 0.23.2

12 Chapter 2. Handel vs. CloudFormation

CHAPTER 3

Installation

Handel is a CLI tool written in Node.js. In order to install it, you will first need Node.js installed on your machine.

3.1 Installing Node.js

The easiest way to install Node.js is to download the compiled binaries from the Node.js website. Handel requires
Node.js version 6.x or greater in order to run.

Once you have completed the installation on your machine, you can verify it by running these commands:

node --version
npm --version

The above commands should show you the versions of Node and NPM, respectively.

3.2 Installing Handel

Once you have Node.js installed, you can use the NPM package manager that is bundled with Node.js to install Handel:

npm install -g handel

When the above commands complete successfully, you should be able to run the Handel CLI to deploy your applica-
tion.

3.3 Next Steps

See the Creating Your First Handel App section for a tutorial on deploying a simple Node.js application to AWS using
Handel.

13

https://nodejs.org/en/

Handel Documentation, Release 0.23.2

14 Chapter 3. Installation

CHAPTER 4

Creating Your First Handel App

This page contains a tutorial for writing a simple Node.js “Hello World!” app and deploying it to AWS with the Handel
tool.

Important: Before going through this tutorial, make sure you have installed Handel on your machine as shown in
the Installation section.

4.1 Tutorial

This tutorial contains the following steps:

1. Write the app

2. Create your Handel file

3. Deploy using Handel

4. Delete the created app

Follow along with each of these steps in the sections below in order to complete the tutorial.

4.1.1 Write the app

We first need to create an app that you can run. We’re going to use Node.js to create an Express web service that will
run in ElasticBeanstalk.

First create a directory for your application code:

mkdir my-first-handel-app
cd my-first-handel-app

Since it’s a Node.js application, the first thing you’ll need is a package.json file that specifies information about your
app, including its dependncies. Create a file named package.json with the following contents:

15

https://nodejs.org/en/
https://expressjs.com/
https://aws.amazon.com/elasticbeanstalk/
https://docs.npmjs.com/files/package.json

Handel Documentation, Release 0.23.2

{
"name": "my-first-handel-app",
"version": "0.0.1",
"author": "David Woodruff",
"dependencies": {

"express": "^4.15.2"
}

}

Now that you’ve got your package.json, install your dependencies from NPM:

npm install

Next, create a file called app.js with the following contents:

var app = require('express')();

app.get('/', function(req, res) {
res.send("Hello World!");

});

var port = process.env.PORT || 3000;
app.listen(port, function () {

console.log('Server running at http://127.0.0.1:' + port + '/');
});

Note: The above app code uses Express to set up a web server that has a single route “/”. That route just responds
with the string “Hello World!”.

Test your app by starting it up:

node app.js

Once it’s started up, you should be able to go to http://localhost:3000/ to see it working. You should see a page that
says “Hello World!” on it.

4.1.2 Create your Handel file

Now that you’ve got a working app, you need to create a Handel file specifying how you want your app deployed.
Create a file called handel.yml with the following contents:

version: 1

name: my-first-handel-app # This is a string you choose for the name of your app.

environments:
dev: # This is the name of your single environment you specify.
webapp: # This is the name of your single service inside your 'dev' environment.

type: beanstalk # Every Handel service requires a 'type' parameter
path_to_code: . # This contains the path to the directory where your code lives

→˓that should be sent to Beanstalk
solution_stack: 64bit Amazon Linux 2018.03 v4.5.0 running Node.js # This

→˓specifies which Beanstalk 'solution stack' should be used for the app.

16 Chapter 4. Creating Your First Handel App

http://localhost:3000

Handel Documentation, Release 0.23.2

Note: See the Handel File section for full details on how the Handel file is structured.

Note: We only specified the required parameters for Beanstalk. There are others that have defaults if you don’t
specify them. See the Beanstalk service documentation for full information on all the different parameters for the
service.

4.1.3 Deploy using Handel

Important: In order to run Handel to deploy your app, you must be logged into your AWS account on the command
line. You can do this by setting your AWS access keys using the AWS CLI.

See Configuring the AWS CLI for help on doing this once you’ve installed the AWS CLI.

If you work for an organization that uses federated logins through something like ADFS, then you’ll have a different
process for logging in on the command-line. In this case, ask your organization how they login to AWS on the
command-line.

Now that you’ve written your app, created your Handel file, and obtained your account config file, you can run Handel
to deploy:

handel deploy -c default-us-east-1 -e dev

Note: In the above command, the following arguments are provided:

• The -c parameter specifies which Account Config File to use. Specifying default-us-east-1 here tells Handel you
don’t have one and just want to use the default VPC AWS provides in the us-east-1 region.

• The -e parameter is a comma-separated string list that specifies which environments from your Handel file you
want to deploy

Once you’ve executed that command, Handel should start up and deploy your application. You can sign into the AWS
Console and go to the “ElasticBeanstalk” service to see your deployed application.

4.1.4 Delete the created app

Since this was a tutorial using a Hello World app, we want to delete it now that we’re done with it. To delete your app,
run the following command:

handel delete -c default-us-east-1 -e dev

When you execute the above command, it will show you something like this confirmation prompt:

!!
WARNING: YOU ARE ABOUT TO DELETE YOUR HANDEL ENVIRONMENT 'dev'!
!!

If you choose to delete this environment, you will lose all data stored in the
→˓environment!

(continues on next page)

4.1. Tutorial 17

https://aws.amazon.com/cli/
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

Handel Documentation, Release 0.23.2

(continued from previous page)

In particular, you will lose all data in the following:

* Databases

* Caches

* S3 Buckets

* EFS Mounts

PLEASE REVIEW this environment thoroughly, as you are responsible for all data loss
→˓associated with an accidental deletion.
PLEASE BACKUP your data sources before deleting this environment just to be safe.

? Enter 'yes' to delete your environment. Handel will refuse to delete the
→˓environment with any other answer:

Type yes and hit Enter, and Handel will proceed to delete the environment.

Congratulations, you’ve finished the tutorial!

4.2 Next Steps

Now that you’ve deployed a simple app using Handel, where do you go next?

4.2.1 Learn more about Handel

Read through the following documents in the Handel Basics section:

• Handel File

• Service Dependencies

• Consuming Service Dependencies

• Service Events

Those documents will give you more information on the design and usage of Handel, particularly how you can use
Handel’s dependencies to wire services together.

4.2.2 Learn how to configure the different service types

Once you understand Handel’s basic configuration, see the Supported Services section, which contains information
about the different services you can deploy using Handel. Each service page in that section will give the following
information:

• How to configure the service in your Handel file.

• How to consume the service in other services (if applicable).

• How to produce events to other services (if applicable).

18 Chapter 4. Creating Your First Handel App

Handel Documentation, Release 0.23.2

4.2.3 Set up a continuous delivery pipeline

Handel can run anywhere, from your laptop to a build server. The recommended way to run Handel is inside a
Continuous Delivery pipeline. There are many options available on the market, and AWS provides the CodePipeline
service for creating these pipelines.

Handel provides a companion tool, called Handel-CodePipeline, that helps you easily create these CodePipelines
running Handel for your deploy.

4.2. Next Steps 19

https://en.wikipedia.org/wiki/Continuous_delivery
http://handel-codepipeline.readthedocs.io

Handel Documentation, Release 0.23.2

20 Chapter 4. Creating Your First Handel App

CHAPTER 5

CLI Reference

The Handel command-line interface should be run in a directory with a handel.yml file.

It defines three commands: check, deploy, and delete

5.1 handel check

Validates that a given Handel configuration is valid.

Note that this does not validate against account-level settings, such as Requiring Tags.

5.1.1 Parameters

handel check does not accept parameters.

5.2 handel deploy

Validates and deploys the resources in a given environment.

21

Handel Documentation, Release 0.23.2

5.2.1 Parameters

Parameter Type Re-
quired

De-
fault

Description

-c <value> string Yes Path to account config or base64 encoded JSON string
of config

-e <env>[,<env>] comma-separated
list

Yes List of environments from the handelfile to deploy.

-d boolean (present or
not present)

No false If set, turns on debug-level logging.

-t
<key>=<value>[,<key>=<value>]

comma-separated
list of key-value
pairs

No List of tags to apply to all resources in the handelfile.
These override any static tags set in the handelfile.

5.3 handel delete

Deletes all resources in a given environment.

5.3.1 Parameters

Parameter Type Re-
quired

De-
fault

Description

-c <value> string Yes Path to account config or base64 encoded JSON
string of config

-e
<env>[,<env>]

comma-separated list Yes List of environments from the handelfile to delete.

-d boolean (present or not
present)

No false If set, turns on debug-level logging.

-y boolean (present or not
present)

No false If set, Handel will not prompt for confirmation of
the delete action.

22 Chapter 5. CLI Reference

CHAPTER 6

Handel File

In order to provide Handel with the information it needs to deploy your services, you must create a YAML configura-
tion file for your application. This file must be named handel.yml. This page contains information on the structure of
that file.

6.1 Terminology

Handel uses the following terminology in the context of the Handel file:

Application In Handel, an application is a logical container for of all the resources specified in your Handel file. This
application is composed of one or more environments.

Environment An environment is a collection of one or more AWS services that form a single unit intended for
use together. This construct allows you to have multiple instances of your application running in different
configurations.

Many applications, for example, have a ‘dev’ environment for testing new changes, and a ‘prod’ environment
for the actual production application that end-users hit. There are many other possible environments that an
application may define.

Each environment you specify constitutes a single instance of your application configured in a certain way.

Service In an environment, a service is a single Handel service that is deployed via a CloudFormation stack. This
service takes configuration parameters to determine how to deploy it. It can also reference other services in your
environment that it depends on at runtime. Handel will auto-wire these services together for you and inject their
information into your application.

6.2 Handel File Specification

The Handel file is a YAML file that must conform to the following specification:

23

Handel Documentation, Release 0.23.2

version: 1

name: <name of the app being deployed>

tags:
tag-name: value

environments:
<environment_name>:
<service_name>:

type: <service_type>
<service_param>: <param_value>
dependencies:
- <service name>

6.2.1 Handel File Explanation

name The name field is the top-level namespace for your application. This field is used in the naming of virtually all
your AWS resources that Handel creates.

<environment_name> The <environment_name> key is a string you provide to specify the name of an environment.
You can have multiple environments in your Handel application. This environment field is used in the naming
of virtually all your AWS resources that Handel creates.

<service_name> The <service_name> key is a string you provide to specify the name of a Handel service inside an
environment. You can have multiple services in an environment. This service field is used in the naming of
virtually all your AWS resources that Handel creates.

dependencies In a given Handel service, you can use the ‘dependencies’ field to specify other services in your envi-
ronment with which your service needs to communicate.

Note: Not all AWS services can depend on all other AWS services. You will get an error if you try to depend
on a service that is not consumable by your service.*

6.2.2 Limits

The following limits exist on names in the Handel file:

Element Length Limit Allowed Characters
name 30 characters Alphanumeric (a-Z, 0-9) and dashes (-)
<environment_name> 10 characters Alphanumeric (a-Z, 0-9) and dashes (-)
<service_name> 20 characters Alphanumeric (a-Z, 0-9) and dashes (-)

There may be other service-specific limits. See Supported Services for information on service-specific limits.

24 Chapter 6. Handel File

CHAPTER 7

Account Config File

Handel requires two pieces of information in order to deploy your application:

• Your handel.yml file that contains your service specification

• Account configuration information that contains items like VPCs and subnets to use when deploying applica-
tions.

You can either choose to let Handel just use the AWS default VPC, or you can provide it with an Account Config File
that contains the information about your own custom VPC to use.

Important: If you’re running Handel inside a company or organization AWS account, it is likely your company has
already set up VPCs how they want them. In this case, get your platform/network group to help you configure this
account config file for your VPC.

7.1 Using the AWS default VPC

If you’re using Handel in a personal AWS account, it’s likely that you don’t want to have to set up a VPC and create
your own account config file. In this case, Handel can just use the default VPC that AWS provides. You tell Handel to
use these defaults in this way:

handel deploy -c default-us-east-1 -e dev

Notice that in the -c parameter, we are passing the string default-us-east-1, which tells Handel to use the default VPC
in the us-east-1 region.

Note: To use a default VPC, specify it with the following pattern:

default-<region>

25

Handel Documentation, Release 0.23.2

The <region> parameter is the name of the AWS region, such as us-east-1 or us-west-2, where you want to run your
app.

7.2 Using Handel at a company or organization

It is best if someone with a knowledge of the account-level network configuration creates this account configuration
file. This file can then be shared by all services that deploy in that account.

If you’re using Handel in a company or organization account, talk to your platform/network group that administers the
VPCs in your account. They can help you know what values to put in your account config file.

7.3 Account Config File Specification

The account config file is a YAML file that must contain the following information:

account_id: <string> # Required. The numeric ID of your AWS account.
region: <string> # Required. The region, such as 'us-west-2' that your VPC resides in.
vpc: <string> # Required. The ID of your VPC in which to deploy your applications.
public_subnets: # Required. A list of one or more subnet IDs from your VPC where you
→˓want to deploy publicly available resources.
- <string>
private_subnets: # Required. A list of one or more subnet IDs from your VPC where you
→˓want to deploy private resources.
- <string>
data_subnets: # Required. A list of one or more subnet IDs from your VPC where you
→˓want to deploy databases (such as RDS and ElastiCache)
- <string>
ssh_bastion_sg: <string> # The ID of the security group you
elasticache_subnet_group: <string> # The name of the ElastiCache subnet group to use
→˓when deploying ElastiCache clusters.
rds_subnet_group: <string> # The name of the RDS subnet group to use when deploying
→˓RDS clusters.
required_tags: # Optional. Allows an organization to enforce rules about tagging
→˓resources. This is a list of tag names that must be set on each Handel application
→˓or resource.
- <string>
handel_resource_tags: # Optional. Sets tags to be applied to any generic resources,
→˓such as lambda functions, that Handel uses internally.
<key>: <value>
<key>: <value>

Important: Be sure to put quotes around the *account_id* field in your account config file!

If you dont, YAML will treat it as a number. This can cause problems if your account ID starts with a 0, because the
JavaScript YAML parser that Handel uses will parse it as an octal number, resulting in a totally different account ID.

26 Chapter 7. Account Config File

CHAPTER 8

Service Dependencies

One of the key features of Handel is being able to configure an AWS service such as Beanstalk to depend on another
AWS service such as DynamoDB. Rather than having to figure out the security interactions between the two, Handel
will auto-wire the services together for you.

8.1 Specifying Dependencies

To specify a dependency on a service, add a ‘dependencies’ list in your service definition with the list values being the
service names of the services you wish to consume. The following example shows a Beanstalk service specifying a
dependency on an SQS queue:

version: 1

name: beanstalk-example

environments:
dev:
webapp:

type: beanstalk
path_to_code: .
solution_stack: 64bit Amazon Linux 2016.09 v4.0.1 running Node.js
instance_type: t2.micro
health_check_url: /
min_instances: 1
max_instances: 1
dependencies:
- queue

queue:
type: sqs

Important: Notice that the item in the dependencies list called queue is referring to the service name specified for

27

Handel Documentation, Release 0.23.2

the SQS queue.

See Consuming Service Dependencies for information about how your consuming app (such as Beanstalk) can get the
information it needs to talk to your service dependency (such as SQS).

28 Chapter 8. Service Dependencies

CHAPTER 9

Consuming Service Dependencies

When you specify a dependency on a service using Service Dependencies, that service is auto-wired to your appli-
cation. This page contains information about how you can consume those injected dependencies in your application
code to actually communicate with these services.

When Handel wires services together securely, it will inject environment variables into the consuming service for each
service that it depends on. These environment variables provide information about the created service that tell you
information such as where to find the service and how to communicate with it.

The following Handel file defines a Beanstalk service that depends on an SQS queue:

version: 1

name: beanstalk-example

environments:
dev:
webapp:

type: beanstalk
path_to_code: .
solution_stack: 64bit Amazon Linux 2016.09 v4.0.1 running Node.js
instance_type: t2.micro
health_check_url: /
min_instances: 1
max_instances: 1
dependencies:
- my-queue

my-queue:
type: sqs

Handel will inject environment variables in the Beanstalk application for the SQS queue, such as the queue’s ARN,
name, and URL. You can read these environment variables when you are writing code to communicate with the queue.

29

Handel Documentation, Release 0.23.2

9.1 Environment Variable Names

Every environment variable injected by Handel for service dependencies has a common structure.

This environment variable name consists of the dependency’s name (as defined in the Handel file), followed by the
name of the value being injected.

<SERVICE_NAME>_<VALUE_NAME>

In the above example, the referencing Beanstalk application would need to use the following name to get the URL of
the SQS Queue:

MY_QUEUE_QUEUE_URL

Note: All Handel injected environment variables will be all upper-cased, with dashes converted to underscores.

9.2 Parameter Store Prefix

Handel puts auto-generated credentials and other secrets in the EC2 Parameter Store, and it wires up your applications
to allow you to access these secrets.

Each parameter Handel puts in the parameter store has a common prefix, which is defined by the following structure:

<app_name>.<environment_name>

You can use the Common Injected Environment Variables to obtain the value of this prefix.

9.3 Common Injected Environment Variables

In addition to environment variables injected by services your applications consume, Handel will inject a common set
of environment variables to all applications:

Environment Variable Description
HANDEL_APP_NAME This is the value of the name field from your Handel file. It is the name of your

application.
HAN-
DEL_ENVIRONMENT_NAME

This is the value of the <environment> field from your Handel file. It is the name
of the environment the current service is a part of.

HAN-
DEL_SERVICE_NAME

This is the value of the <service_name> field from your Handel file. It is the name
of the currently deployed service.

HAN-
DEL_PARAMETER_STORE_PREFIX

This is the prefix used for secrets stored in Parameter Store.

HAN-
DEL_REGION_NAME

This is the value of the <region_name> field from your Handel file, or the current
region if the region id not specified.

30 Chapter 9. Consuming Service Dependencies

CHAPTER 10

Service Events

Many AWS services are able to send events to other AWS services. For example, the S3 service can send events about
file changes in a bucket to another service such as Lambda.

Handel allows you to specify event consumers for a particular service in your Handel file. Handel will then perform
the appropriate wiring on both services to configure the producer service to send events to the consumer service.

10.1 Specifying Service Events

To configure service events on a particular Handel service, add an event_consumers list in your producer service
definition. This list contains information about the services that will be consuming events from that producer service.

The following example shows an SNS topic specifying producing events to an SQS queue:

version: 1

name: sns-events-example

environments:
dev:
topic:

type: sns
event_consumers:
- service_name: queue

queue:
type: sqs

When you specify event consumers in your producer service, you don’t need to specify anything on the consumer
services. They will be automatically wired appropriately to the producer service in which you specified them as
consumers.

Note: Not all services may produce events, and not all services may consume events. You will get an error if you try

31

Handel Documentation, Release 0.23.2

to specify a producer or consumer service that don’t support events.

32 Chapter 10. Service Events

CHAPTER 11

Accessing Application Secrets

Many applications have a need to securely store and access secrets. These secrets include things like database pass-
words, encryption keys, etc. This page contains information about how you can store and access these secrets in your
application when using Handel.

Warning: Do not pass these secrets into your application as environment variables in your Handel file. Since you
commit your Handel file to source control, any credentials you put in there would be compromised to anyone who
can see your source code.

Handel provides a different mechanism for passing secrets to your application, as explained in this document.

11.1 Application Secrets in Handel

Handel uses the EC2 Systems Manager Parameter Store for secrets storage. This service provides a key/value store
where you can securely store secrets in a named parameter. You can then call the AWS API from your application to
obtain these secrets.

Handel automatically wires up access to the Parameter Store in your applications, granting you access to get parameters
whose names start with a particular path. Handel wires up permissions for parameters with the following path:

/<appName>/<environmentName>/

To see a concrete illustration of this, consider the following example Handel file, which defines a single Lambda:

version: 1

name: my-lambda-app

environments:
dev:
function:

(continues on next page)

33

https://aws.amazon.com/ec2/systems-manager/parameter-store/

Handel Documentation, Release 0.23.2

(continued from previous page)

type: lambda
path_to_code: .
handler: app.handler
runtime: nodejs6.10

This Lambda, when deployed, will be able to access any EC2 Parameter Store parameters under the path “/my-lambda-
app/dev/”. Thus, the parameter /my-lambda-app/dev/somesecret would be available to this application, but
the /some-other-app/dev/somesecret parameter would not, because it is not included in the same path.

Note: As a convenience, Handel injects an environment variable called HANDEL_PARAMETER_STORE_PATH into
your application. This variable contains the pre-built /<appName>/<environmentName>/ path so that you
don’t have to build it yourself.

Warning: Previously Handel wired permmissions based on a prefix like: <appName>.<environmentName>
This functionality is being deprecated in favor of paths. As a convenience, Handel still wires the permissions
and injects an environment variable called HANDEL_PARAMETER_STORE_PREFIX into your application. This
variable contains the pre-built <appName>.<environmentName> prefix so that you don’t have to build it
yourself. Please only use prefix if required. Otherwise Path is preferred. More info can be found Here

11.1.1 Global Parameters

It is a common desire to share some parameters globally with all apps living in an account. To support this, Handel also
grants your application permission to access a special global namespace of parameters that start with the following
prefix:

handel.global

Parameters that start with this prefix are available to any app deployed using Handel in the account and region that
you’re running in.

Warning: Any parameter you put here WILL be available to any other user of Handel in the account. Don’t put
secrets in this namespace that belong to just your app!

11.2 Adding a Parameter to the Parameter Store

See the Walkthrough in the AWS documentation for an example of how to add your parameters.

Important: When you add your parameter, remember to start the name of the parameter with your application name
from your Handel file.

34 Chapter 11. Accessing Application Secrets

https://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-paramstore-su-organize.html
http://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-paramstore-walk.html

Handel Documentation, Release 0.23.2

11.3 Getting Parameters from the Parameter Store

Once you’ve added a parameter to the Parameter Store with the proper prefix, your deployed application should be
able to access it. See the example of CLI access for the get-parameters call in the Walkthrough for information on how
to do this.

The example in the walkthrough shows an example using the CLI, but you can use the AWS language SDKs with the
getParameters call in a similar manner. See the documentation of the SDK you are using for examples.

11.3. Getting Parameters from the Parameter Store 35

http://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-paramstore-walk.html

Handel Documentation, Release 0.23.2

36 Chapter 11. Accessing Application Secrets

CHAPTER 12

Tagging

Most AWS services support the tagging of resources. You can use tags to apply arbitrary metadata to AWS resources.
This metadata is available with the resources, and can be used for a variety of purposes. Here are some examples of
what you can use tags for:

• Generating cost-utilization reports.

• Providing information about teams developing the product such as contact information.

• Specifying which resources may be automatically shut down or terminated by an external script.

AWS services have limits on the total number of tags that may be applied to each service. As of January 2018, most
services have a limit of 50 tags.

12.1 Application Tags

In your handel.yml file, you can specify tags that apply to all supported resources in the stack, as well as the underlying
Cloudformation stacks. You can specify these tags using a top-level ‘tags’ object:

version: 1

name: <name of the app being deployed>

tags:
your-tag: value
another-tag: another value
technical-owner: Joe Developer <joe_developer@example.com>
business-owner: Jill Manager <jill_manager@example.com>

environments:
...

37

https://aws.amazon.com/answers/account-management/aws-tagging-strategies/
https://aws.amazon.com/blogs/security/now-organize-your-aws-resources-by-using-up-to-50-tags-per-resource/

Handel Documentation, Release 0.23.2

12.2 Resource Tags

On resources that support it, Handel allows you to specify tags for that resource. It will make the appropriate calls on
your behalf to tag the resources it creates with whatever tags you choose to apply.

Resource-level tags will override any application-level tags with the same name.

Resource-level tags are defined by the following schema:

environments:
my-service:
type: foo-service
tags:

yourtag: value
another-tag: another value

12.2.1 Tagging Unsupported Resources

Attention: Some AWS resource types do not support tagging. In these cases, any related, taggable resources will
be tagged, as will the Cloudformation stack that Handel uses to provision the resources.

If AWS adds tagging support to any of these services, the next Handel deploy should result in tags automatically
being applied to the resources by Cloudformation.

Example: ECS does not currently support tagging Task Definitions. Handel will, however, tag any Application
Load Balancers that are provisioned to service that ECS configuration, as well as the Cloudformation stack that
provisioned them.

12.3 Default Tags

In addition to the ones you specify yourself, Handel will automatically apply the following tags to your AWS resources:

• app - This will contain the value from the name field in your Handel file, which is the name of your overall
application.

• env - This will contain the value of the <environment_name> that your service is a part of.

See Handel File Explanation for a refresher on where these automatically applied values fit in your Handel file.

12.4 Requiring Tags

Some organizations may wish to enforce a specific resource tagging scheme. For example, in addition to Handel’s app
and env tags, they may wish to require that all resource have a technical-owner and business-owner tag.

Tag requirements can be configured in the Account Config File. If a user attempts to deploy an application that does
not define the required tags either at the application level or the resource level, the deployment will fail.

38 Chapter 12. Tagging

CHAPTER 13

Deleting an Environment

Once you’ve created an application using Handel, you may decide to delete one or more of your environments. This
document tells how to delete your environments.

Danger: If you delete an environment, it will delete all data in your environment!

Please review the data in an environment carefully before deleting it! Handel just helps you create and delete your
resources, you are responsible for making sure you don’t delete resources you care about.

Execute Handel’s delete lifecycle at the command line. Here is an example of deleting an environment:

Make sure to replace the *-c* and *-e* flags in the below command with the correct
→˓values for your application.
handel delete -c default-us-east-1 -e dev

When you execute that command, Handel will show you a big warning message like the following:

!!
WARNING: YOU ARE ABOUT TO DELETE YOUR HANDEL ENVIRONMENT 'dev'!
!!

If you choose to delete this environment, you will lose all data stored in the
→˓environment!

In particular, you will lose all data in the following:

* Databases

* Caches

* S3 Buckets

* EFS Mounts

PLEASE REVIEW this environment thoroughly, as you are responsible for all data loss
→˓associated with an accidental deletion.
PLEASE BACKUP your data sources before deleting this environment just to be safe.

(continues on next page)

39

Handel Documentation, Release 0.23.2

(continued from previous page)

? Enter 'yes' to delete your environment. Handel will refuse to delete the
→˓environment with any other answer:

Type yes at the prompt to delete the environment. Handel will then proceed to delete the environment.

40 Chapter 13. Deleting an Environment

CHAPTER 14

Using Extensions

Handel provides an API for writing extensions to provide additional service types other than the official service types
provided by Handel. Organizations can use this to implement service types that are highly customized to their particu-
lar use cases. These custom service types can retain the same ease-of-configuration and automatic service wiring that
Handel provides.

Danger: Extensions are inherently dangerous!

Handel needs to run with administrator permissions, so extensions can potentially harm your account in many
ways. Handel cannot validate what an extension is doing, so by using an extension you are running untrusted code.

DO NOT run an extension unless you trust the source and have validated what actions it performs.

14.1 Using an Extension

Once you’ve found an extension that you want to use, you’ll need to specify the extension to be loaded in your Handel
file. You can then use the service types that extension provides.

In this section, we’ll use the sns-handel-extension as an example. Handel already ships with an SNS service type, so
this extension is really only useful as an example of how to consume extensions.

14.1.1 Load the Extension

To use an extension, first configure it to be loaded in your Handel file:

version: 1

name: sns-ext-example

extensions:
sns: sns-handel-extension

41

https://www.npmjs.com/package/sns-handel-extension

Handel Documentation, Release 0.23.2

The extensions section contains an object of one or more extensions you want Handel to load when you execute the
project. The key is a short name that you can choose. You will use this short name when referencing the extension’s
service types. The value is the name of the NPM package containing the Handel extension.

Important: Since extensions are defined in your Handel file, that means they will only be loaded for that project and
not globally for all projects.

If you have another project that is using Handel, you can use the same extension by configuring the extensions section
in that Handel file to load the extension as well.

14.1.2 Use Extension Service Types

Once you have loaded the extensions that you’ll be using, you can reference the service types contained in them:

version: 1

name: sns-ext-example

extensions:
sns: sns-handel-extension

environments:
dev:
task:

type: sns::sns

Note from the example above that when using extension services you must use the syntax <extension-
Name>::<serviceType>. In the above case we named our extension sns and the service type we are using in that
extension is also called sns, which is why the resulting type you specify is sns::sns

Note: You can know what service types an extension contains, as well as how to configure each service type, by
looking at the documentation provided by the extension.

14.2 Specifying an Extension Version

By default, Handel will grab the latest version of the specified extension from NPM. If you wish to specify a version
or range of versions, you can use the syntax from the package.json spec:

version: 1

name: sns-ext-example

extensions:
sns: sns-handel-extension@^0.1.0

environments:
dev:
task:

type: sns::sns

42 Chapter 14. Using Extensions

https://docs.npmjs.com/files/package.json#dependencies

Handel Documentation, Release 0.23.2

This will cause Handel to fetch the latest 0.1.x version of the sns-handel-extension. For more about how these rules
work, see the documentation on NPM’s implementation of semantic versioning

14.3 Local Extensions

You may find yourself wanting to implement something that Handel doesn’t support, but isn’t widely reusable. While
it is usually best to contribute an extension to the wider Handel ecosystem, there are cases where that is not appropriate.

Handel leverages NPM’s support for local paths allows you to create ‘local extensions’ - extensions which live inside
of your project.

You’ll need to follow the guide to Writing Extensions, and put your extension source code in a subdirectory of your
project: we recommend inside of a directory called .local-handel-extensions, but you can name it anything you like.

Let’s say you’ve implemented an extension in .local-handel-extensions/fancy-extension. You can now use it like this:

version: 1

name: local-extension-example

extensions:
fancy: file:.local-handel-extensions/fancy-extension

environments:
dev:
fancy:

type: fancy:superfancy

Note: Handel will ensure that all production dependencies listed in your local extension’s package.json are installed,
but will not perform any build steps for you (like transpiling from Typescript).

You will need to ensure that any such build steps are carried out before running handel.

14.4 Other Extension Sources

Handel also supports installing extensions from GitHub, GitLab, Bitbucket, and Git repositories.

The values for these sources must be prefixed by their type (“github:”, “gitlab:”, “bitbucket:”, “git:”) and follow the
format specified in the npm install documentation.

version: 1

name: local-extension-example

extensions:
my-github-extension: github:myorg/myrepo#my-optional-branch-specifier
my-bitbucket-extension: bitbucket:myuser/myrepo
my-gitlab-extension: gitlab:myorg/myrepo
my-git-extension: git:git+https://my-server.com/my-repo.git

14.3. Local Extensions 43

https://docs.npmjs.com/misc/semver
https://docs.npmjs.com/files/package.json#local-paths
https://docs.npmjs.com/cli/install

Handel Documentation, Release 0.23.2

44 Chapter 14. Using Extensions

CHAPTER 15

Alexa Skill Kit

This document contains information about the Alexa Skill kit service supported in Handel. This Handel service
provisions a Alexa Skill kit permission, which is used to integrate with Lambda to invoke them.

Note: This service does not currently support resource tagging.

15.1 Parameters

Parameter Type Required Default Description
type string Yes This must always be alexaskillkit for this service type.

15.2 Example Handel Files

15.2.1 Example Lambda Config

This Handel file shows a Alexa Skill kit service being configured, producing to a Lambda:

version: 1

name: my-alexaskill-lambda

environments:
dev:
function:

type: lambda
path_to_code: .
handler: app.handler

(continues on next page)

45

Handel Documentation, Release 0.23.2

(continued from previous page)

runtime: nodejs6.10
alexaskill:

type: alexaskillkit
event_consumers:
- service_name: function

15.3 Depending on this service

The Alexa Skill Kit service cannot be referenced as a dependency for another Handel service. This service is intended
to be used as a producer of events for other services.

15.4 Events produced by this service

The Alexa Skill Kit service currently produces events for the following service types:

• Lambda

15.5 Events consumed by this service

The Alexa Skill Kit service does not consume events from other Handel services.

46 Chapter 15. Alexa Skill Kit

CHAPTER 16

AI Services

This document contains information about the AI Services provisioner supported in Handel. This Handel service
allows you to access to services such as Rekognition in your application.

This service does not create any AWS resources since the AI services are consumed via an HTTP API. Even though
you don’t have provisioned resources, you still pay for each API call made to the AWS AI services.

16.1 Service Limitations

16.1.1 No Rekognition Streams Support

This service doesn’t support Rekognition’s Kinesis video stream processors.

16.2 Parameters

Pa-
ram-
eter

Type Re-
quired

De-
fault

Description

type string Yes This must always be aiservices for this service type.
ai_servicesList<string>Yes A list of one or more AWS AI services for which to add permissions. See

Supported Service Access below for the list of services you can specify.

16.2.1 Supported Service Access

The following AWS services are supported in the aws_services element:

• rekognition

• polly

47

Handel Documentation, Release 0.23.2

• comprehend

• translate

• transcribe

16.3 Rekognition

16.3.1 Collection Restrictions

Rekognition calls can be broken up into two general categories:

• Those dealing with individual images

• Those dealing with collections of persisted images

The individual image operations are stateless: In order to get the same results you must have the same image. The
image collections are NOT stateless; they persist information about images you have added to the collection pre-
viously. For example, if you create a collection and add an image to it, the faces from that image will be indexed.
Future calls to the collection will be able to derive information about individuals from the stored information in the
collection.

Because of this, Handel restricts your use of collections to those named with a particular prefix:

<appName>-<environmentName>

You may create, modify, and delete collections for any collections whose name starts with the above prefix. You may
not use any other collections outside this namespace. This helps prevent other applcations in the same AWS account
from accessing collections to which they are not authorized.

If you want to use objects from a S3 bucket, see S3 Object Access

16.4 Polly

Polly calls can be generated from text files to form audio files. Each language has multiple voices to choose from,
which can be specified in your configuration.

With 3000 or less characters, you can listen, download, or save immediately. For up to 100,000 characters your task
must be saved to an S3 bucket.

Polly also restricts lexicon use to those with a particular prefix:

<appName>-<environmentName>

If you want to use objects from a S3 bucket, see S3 Object Access

16.5 Comprehend

AWS Comprehend examines text to perform a variety of functions. It can detect the dominant language of a document,
entities, key phrases, sentiments (if a document is posative, negative, neutral, or mixed), syntax, and topic modeling.

There are no restrictions on the comprehend service.

If you want to use objects from a S3 bucket, see S3 Object Access

48 Chapter 16. AI Services

Handel Documentation, Release 0.23.2

16.6 Translate

Amazon Translate translates documents from the following twelve languages in to english, and from English into these
languages:

Arabic

Chinese (Simplifed)

Chinese (Traditional)

Czech

French

Greman

Italian

Japanese

Potuguese

Russian

Spanish

Turkish

AWS Translate does not currently have support for S3 or file uploads

16.7 Transcribe

AWS Transcribe recognizes speech in audio files, and turns that into text. It pulls an audio file from a S3 bucket,
and thus you will need S3 Object Access. The output text file will be stored in the same S3 bucket. When these are
delivered, they may contain customer content.

A file must be in one of the following formats:

MP3 Mp4 FLAC WAV

Your file also must be less than two hours in length. For the best results, use FLAC or WAV.

16.8 S3 Object Access

If you want to use objects from S3 rather than passing in bytes directly to the API calls, you must make sure your
caller has permissions to the bucket.

Important: Rekognition will use the permissions from the role of the caller, so your application will need to have
permissions to the S3 bucket it is telling Rekognition to look in.

Here is an example Handel file showing what is required to make this happen:

version: 1

name: my-apigateway-app

(continues on next page)

16.6. Translate 49

Handel Documentation, Release 0.23.2

(continued from previous page)

environments:
dev:
app:

type: apigateway
path_to_code: .
lambda_runtime: nodejs6.10
handler_function: index.handler
dependencies:
- aiaccess
- bucket # This is the important part

aiaccess:
type: aiservices
ai_services:
- rekognition

bucket:
type: s3

Notice that your API Gateway service in the above example needs to have a dependency on the bucket service. It can
then tell Rekognition to look at objects in that bucket, because it has access to the bucket.

16.9 Depending on this service

You can reference this service as a dependency in other services. It does not export any environment variables. Instead,
it will just add a policy on the dependent service to allow access to the services you listed.

16.10 Events produced by this service

The AI Services provisioner does not produce events for other Handel services to consume.

16.11 Events consumed by this service

The AI Services provisioner does not consume events from other Handel services.

50 Chapter 16. AI Services

CHAPTER 17

Amazon MQ

This document contains information about the Amazon MQ provisioner supported in Handel. This Handel service
allows you to provision an ActiveMQ broker in AWS.

Warning: This provisioner is new and should be considered in beta. It is subject to breaking changes until this
beta label is removed.

17.1 Service Limitations

17.1.1 No Custom Configuration Support

This service doesn’t support providing a custom ActiveMQ configuration yet.

17.2 Parameters

Param-
eter

Type Re-
quired

De-
fault

Description

type string Yes This must always be amazonmq for this service type.
in-
stance_type

string No mq.t2.microThe Amazon MQ EC2 instance type that you wish to use for your broker.
See Amazon MQ Pricing for details on the allowed instance types.

multi_az booleanNo false Whether or not you want to deploy your broker in multi-AZ high availability
mode.

gen-
eral_logging

booleanNo false Whether or not you want general logging to be enabled for your broker.

au-
dit_logging

booleanNo false Whether or not you want audit logging to be enabled for your broker.

51

https://aws.amazon.com/amazon-mq/pricing/

Handel Documentation, Release 0.23.2

17.3 Depending on this service

The Amazon MQ service outputs the following environment variables:

Environment Variable Description
<SERVICE_NAME>_BROKER_ID The ID of the created broker.

See Environment Variable Names for information about how the service name is included in the environment variable
name.

17.4 Events produced by this service

The Amazon MQ provisioner does not produce AWS events for other Handel services to consume.

17.5 Events consumed by this service

The Amazon MQ provisioner does not consume AWS events from other Handel services.

52 Chapter 17. Amazon MQ

CHAPTER 18

API Access

This document contains information about the API Access service supported in Handel. This Handel service allows
you to add read-only access to AWS services in your application.

This service does not provision any AWS resources, it just serves to add additional permissions onto your applications.

Note: This service won’t grant you permissions to publish to topics, read from data stores, etc. The permissions this
service grants are read-only on the service level.

As an example of how you would use this service, you may want to run a Lambda that inspects your EC2 instances to
audit them for certain characteristics. You can use this apiaccess service to grant that read-only access to EC2 to give
you that information.

Since this service provides limited read-only access, in the EC2 example you would not be able to do things like start
instances, create AMIs, etc.

Note: This service does not currently support resource tagging.

18.1 Parameters

Pa-
rame-
ter

Type Re-
quired

De-
fault

Description

type string Yes This must always be apiaccess for this service type.
aws_servicesList<string>Yes A list of one or more AWS services for which to add permissions. See Sup-

ported Service Access below for the list of services you can specify.

53

Handel Documentation, Release 0.23.2

18.1.1 Supported Service Access

The following AWS services are supported in the aws_services element:

• beanstalk

• cloudformation

• cloudwatchevents

• codebuild

• codepipeline

• dynamodb

• ec2

• ecs

• efs

• elasticache

• lambda

• loadbalancing

• organizations

• rds

• route53

• s3

• sns

• sqs

• ssm

18.2 Example Handel File

This Handel file shows an API Gateway service being configured with API access to the Organizations service

version: 1

name: my-apigateway-app

environments:
dev:
app:

type: apigateway
path_to_code: .
lambda_runtime: nodejs6.10
handler_function: index.handler

orgsaccess:
type: apiaccess
aws_services:
- organizations

54 Chapter 18. API Access

Handel Documentation, Release 0.23.2

18.3 Depending on this service

You can reference this service as a dependency in other services. It does not export any environment variables. Instead,
it will just add a policy on the dependent service to allow read access to the services you listed.

18.4 Events produced by this service

The API Access service does not produce events for other Handel services to consume.

18.5 Events consumed by this service

The API Access service does not consume events from other Handel services.

18.3. Depending on this service 55

Handel Documentation, Release 0.23.2

56 Chapter 18. API Access

CHAPTER 19

API Gateway

This document contains information about the API Gateway service supported in Handel. This Handel service provi-
sions resources such as API Gateway and Lambda to provide a serverless HTTP application.

19.1 Service Limitations

19.1.1 No Authorizer Lambdas

This service doesn’t yet support specifying authorizer lambdas.

19.1.2 No Regional Endpoints

This service currently supports only edge-optimized API Gateways.

57

Handel Documentation, Release 0.23.2

19.2 Parameters

Pa-
rame-
ter

Type Re-
quired

De-
fault

Description

type string Yes This must always be apigateway for this service type.
proxy Proxy

Passthrough
No Specify this section if you want a simple proxy passthrough, where

all routes are directed to the same Lambda. You must specify either
the swagger or proxy section, but not both.

swag-
ger

Swagger
Configura-
tion

No Specify this section if you want to configure your API from a Swag-
ger document. You must specify either the swagger or proxy section,
but not both.

de-
scrip-
tion

string No Handel-
created
API

The configuration description of your Lambda function.

bi-
nary_media_types

array No A sequence (array) of BinaryMediaType strings. Note The handel
will do the ‘/’ to ‘~1’ character escaping for you.

vpc boolean No false If true, your Lambdas will be deployed inside your account’s VPC.
cus-
tom_domains

Array of Cus-
tom Domain
Mappings

No An array of custom domains to map to this API Gateway instance.

tags Resource
Tags

No Any tags you want to apply to your API Gateway app.

19.2.1 Custom Domain Mappings

Note: This service does not currently support sharing custom domains between API Gateway instances using Base
Path Mappings. At this time, you can only map one API Gateway to one custom domain, with no path mapping.

API Gateway allows for mapping gateways to one or more custom domains. These custom domains are always served
via HTTPS.

The Custom Domains section is defined by the following schema:

custom_domains:
- dns_name: <string> # The DNS name for the API Gateway. Must be a valid DNS name.
https_certificate: <arn> # The Amazon Certificate Manager certificate to use. This

→˓certificate must be in the us-east-1 region.

See DNS Records for more information on how DNS records will be created.

19.2.2 Lambda Warmup

One of the challenges with servicing API requests with AWS Lambda is cold start times. Luckily, there are well-
established patterns for reducing the impact of cold starts. One of these is to use CloudWatch scheduled events to
make sure that there is always at least one instance of a lambda function warm and ready to service requests.

While the way one configures the warmup settings varies between Proxy and Swagger-based configuration, the basics
are the same.

58 Chapter 19. API Gateway

http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-payload-encodings-configure-with-control-service-api.html#api-gateway-payload-encodings-pass-binary-as-is
https://read.acloud.guru/how-to-keep-your-lambda-functions-warm-9d7e1aa6e2f0
https://read.acloud.guru/how-to-keep-your-lambda-functions-warm-9d7e1aa6e2f0

Handel Documentation, Release 0.23.2

Parameters

Pa-
ram-
eter

Type Re-
quired

De-
fault

Description

sched-
ule

string Yes How often to send a warm up event. Either a rate or a cron expression. See
CloudWatch for valid values.

http_pathsArray
of
strings

No Can contain up to 5 entries. If specified, instead of sending a CloudWatch Event
body, a simulated API Gateway GET event will be dispatched to each the pro-
vided paths.

By default, this will send a Cloudwatch scheduled event to the Lambda on the specified schedule. The event body
looks like this:

{
"version": "0",
"id": "53dc4d37-cffa-4f76-80c9-8b7d4a4d2eaa",
"detail-type": "Scheduled Event",
"source": "aws.events",
"account": "123456789012",
"time": "2015-10-08T16:53:06Z",
"region": "us-east-1",
"resources": [
"arn:aws:events:us-east-1:123456789012:rule/my-scheduled-rule"

],
"detail": {}

}

In many cases, it is easier to simulate an API Gateway Proxy event instead of forcing the function to be able to
consume multiple types of events. If you set one or more values for the http_paths array, instead of sending the default
scheduled event body, an API Gateway Proxy event will be sent for each listed path. A maximum of 5 different paths
may be specified for each function. These requests will always be GET requests and will not include any form of
authentication information or custom headers. They will include a header called ‘X-Lambda-Warmup’ with a value
matching the specified path.

19.2.3 Proxy Passthrough

Note: If you specify the proxy section, you may not specify the swagger section.

You specify the proxy section when you want a single Lambda function that handles all requests from all paths. Use
this option when you only have a single route, or you want to handle routing in your code via a library.

The Proxy Passthrough section is defined by the following schema:

proxy:
path_to_code: <string> # The path to the directory or artifact where your code

→˓resides.
runtime: <string> # The `Lambda runtime <http://docs.aws.amazon.com/lambda/latest/

→˓dg/API_CreateFunction.html#SSS-CreateFunction-request-Runtime>`_ to use for your
→˓handler function.
handler: <string> # The function to call (such as index.handler) in your deployable

→˓code when invoking the Lambda. This is the Lambda-equivalent of your ‘main’ method.

(continues on next page)

19.2. Parameters 59

https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/ScheduledEvents.html

Handel Documentation, Release 0.23.2

(continued from previous page)

memory: <number> # The amount of memory (in MB) to provision for the runtime.
→˓Default: 128
timeout: <number> # The timeout to use for your Lambda function. Any functions that

→˓go over this timeout will be killed. Default: 5
warmup: # Optional. :ref:`apigateway-lambda-warmup`
schedule: rate(5 minutes)
http_paths:
- /ping

environment_variables: # A set of key/value pairs to set as environment variables
→˓on your API.

<STRING>: <string>

19.2.4 Swagger Configuration

Note: If you specify the swagger section, you may not specify the proxy section.

You specify the swagger section when you want to have your API defined by a Swagger document that is serviced by
one or more Lambda functions in any combination.

The Swagger section is defined by the following schema:

swagger: <string> # The path to the Swagger file in your repository

19.2.5 Lambda Swagger Extensions

For the most part, the Swagger document you provide in the swagger section is just a regular Swagger document,
specifying the API paths you want your app to use. If you’re using Lambdas to service your API Gateway resources,
Handel makes use of certain Swagger extensions in your Swagger document so that it can create and wire your
Lambdas for you.

Consider the following Swagger document:

{
"swagger": "2.0",
"info": {
"title": "my-cool-app",
"description": "Test Swagger API",
"version:": "1.0"

},
"paths": {
"/": {

"get": {
"responses": {
"200": {}

},
"x-lambda-function": "my-function-1"

}
}

},
"x-lambda-functions": {
"my-function-1": {

"runtime": "nodejs6.10",

(continues on next page)

60 Chapter 19. API Gateway

Handel Documentation, Release 0.23.2

(continued from previous page)

"handler": "index.handler",
"memory": "128",
"path_to_code": "./function1"
"warmup": {

"schedule": "rate(5 minutes)",
"http_paths": ["/"]

}
}

}
}

Notice that this is just a vanilla Swagger document for the most part. It does have some Handel-provided extensions,
however. Notice that the Swagger document contains an x-lambda-functions section. This section contains a list of
elements that define Lambda configurations. For each item in this list, Handel will create a Lambda function for you.
These objects are defined by the following schema:

{
"path_to_code": <string>, // The path to the directory or artifact where your code

→˓resides.
"runtime": <string>, // The Lambda runtime (such as nodejs6.10) to use for your

→˓handler function.
"handler": <string>, // The function to call (such as index.handler) in your

→˓deployable code when invoking the Lambda. This is the Lambda-equivalent of your
→˓‘main’ method.
"memory": <number>, // The amount of memory (in MB) to provision for the runtime.

→˓Default: 128,
"timeout": <number>, // The timeout to use for your Lambda function. Any functions

→˓that go over this timeout will be killed. Default: 5
"warmup": { // The :ref:`apigateway-lambda-warmup` configuration
"schedule": "rate(5 minutes)",
"http_paths": [

"<string>" // Path relative to the API Gateway root to invoke on the schedule.
]

},
"environment_variables": { // A set of key/value pairs to set as environment

→˓variables on your API.
<ENV_NAME>: <env value>

}
}

Also notice that the paths in your document have an x-lambda-function element. This element tells Handel which
Lambda function from the x-lambda-functions section you want that API path to be serviced by.

The above example just shows the easy Lambda proxy functionality in API Gateway. This will effectively pass all
requests through to your Lambda without modification. If you want to use API Gateway’s integration functionality
to have more complex transformations before sending requests to your Lambda, you can use Handel to do this. Just
provide the regular Amazon x-amazon-apigateway-integration value in your Swagger file:

{
"swagger": "2.0",
"info": {
"version": "2016-09-12T23:19:28Z",
"title": "MyAPI"

},
"basePath": "/test",
"schemes": [

(continues on next page)

19.2. Parameters 61

Handel Documentation, Release 0.23.2

(continued from previous page)

"https"
],
"paths": {
"/{myparam}": {

"get": {
"produces": [
"application/json"

],
"responses": {},
"x-lambda-function": "my-function-1"
"x-amazon-apigateway-integration": {
"requestTemplates": {
"application/json": "#set ($root=$input.path('$')) { \"stage\": \"$root.

→˓name\", \"user-id\": \"$root.key\" }",
"application/xml": "#set ($root=$input.path('$')) <stage>$root.name</

→˓stage> "
},
"requestParameters": {
"integration.request.path.myparam": "method.request.querystring.version",
"integration.request.querystring.provider": "method.request.querystring.

→˓vendor"
},
"cacheNamespace": "cache namespace",
"cacheKeyParameters": [],
"responses": {
"2\\d{2}": {
"statusCode": "200",
"responseParameters": {
"method.response.header.requestId": "integration.response.header.cid"

},
"responseTemplates": {
"application/json": "#set ($root=$input.path('$')) { \"stage\": \"

→˓$root.name\", \"user-id\": \"$root.key\" }",
"application/xml": "#set ($root=$input.path('$')) <stage>$root.name</

→˓stage> "
}

},
"302": {
"statusCode": "302",
"responseParameters": {
"method.response.header.Location": "integration.response.body.

→˓redirect.url"
}

},
"default": {
"statusCode": "400",
"responseParameters": {
"method.response.header.test-method-response-header": "'static value'"

}
}

}
}

}
}

}
"x-lambda-functions": {
"my-function-1": {

(continues on next page)

62 Chapter 19. API Gateway

Handel Documentation, Release 0.23.2

(continued from previous page)

"runtime": "nodejs6.10",
"handler": "index.handler",
"memory": "128",
"path_to_code": "./function1"

}
}

}

Notice that the above example has omitted the Lambda-specific properties in the integration object, such as uri. Handel
will still create and wire the Lambdas for you.

19.2.6 HTTP Passthrough Swagger Extensions

In addition to servicing your API methods with Lambdas, you can configure API Gateway to just do an HTTP
passthrough to some other HTTP endpoint, be it an AWS EC2 server or something else outside of AWS entirely.

Handel supports this with another swagger extension, called x-http-passthrough-url that you configure on your re-
source methods. Here’s an example:

{
"swagger": "2.0",
"info": {
"title": "my-cool-app",
"description": "Test Swagger API",
"version:": "1.0"

},
"paths": {
"/": {

"get": {
"responses": {
"200": {}

},
"x-http-passthrough-url": "https://my.cool.fake.url.com"

}
}

}
}

The above Swagger document will route GET on the “/” path to “https://my.cool.fake.url.com”. All request headers,
parameters, and body will be passed through directly to the given URL, and the response from the URL will be passed
through API Gateway without modification.

If you need to use path params with the HTTP passthrough, you can use the x-http-passthrough-path-params Swagger
extension to map the path parameters from the API Gateway request to the HTTP backend request. Here’s an example
Swagger document doing this:

{
"swagger": "2.0",
"info": {
"title": "my-cool-app",
"description": "Test Swagger API",
"version:": "1.0"

},
"paths": {
"/user/{name}": {

(continues on next page)

19.2. Parameters 63

https://my.cool.fake.url.com

Handel Documentation, Release 0.23.2

(continued from previous page)

"get": {
"responses": {
"200": {}

},
"x-http-passthrough-url": "https://my.cool.fake.url.com/{person}",
"x-http-passthrough-path-params": {
"name": "person"

}
}

}
}

}

The above example shows mapping the “name” path parameter in the API Gateway request to the “person” path
parameter in the backend request.

19.3 Example Handel File

19.3.1 Simple Proxy Passthrough

This Handel file shows an API Gateway service being configured, where all your requests on all paths go to a single
Lambda function:

version: 1

name: my-apigateway-app

environments:
dev:
app:

type: apigateway
proxy:

path_to_code: .
runtime: nodejs6.10
handler: index.handler
memory: 256
timeout: 5
environment_variables:
MY_FIRST_VAR: my_first_value
MY_SECOND_VAR: my_second_value

19.3.2 Swagger Configuration

This Handel file shows an API Gateway service being configured, where your API definition is defined by a Swagger
file:

version: 1

name: my-apigateway-app

environments:
dev:

(continues on next page)

64 Chapter 19. API Gateway

Handel Documentation, Release 0.23.2

(continued from previous page)

app:
type: apigateway
swagger: ./swagger.json

The above file assumes a Swagger file called swagger.json is present in the same directory as the Handel file. Here is
an example Swagger file:

{
"swagger": "2.0",
"info": {
"title": "my-cool-app",
"description": "Test Swagger API",
"version:": "1.0"

},
"paths": {
"/": {

"get": {
"responses": {
"200": {}

},
"x-lambda-function": "my-function-1"

}
},
"/test1": {

"get": {
"responses": {
"200": {}

},
"x-lambda-function": "my-function-2"

}
}

},
"x-lambda-functions": {
"my-function-1": {

"runtime": "nodejs6.10",
"handler": "index.handler",
"memory": "128",
"path_to_code": "./function1"

},
"my-function-2": {

"runtime": "nodejs6.10",
"handler": "index.handler",
"memory": "256",
"path_to_code": "./function2"

}
}

}

19.4 Depending on this service

The API Gateway service cannot be referenced as a dependency for another Handel service

19.4. Depending on this service 65

Handel Documentation, Release 0.23.2

19.5 Events produced by this service

The API Gateway service does not produce events for other Handel services to consume.

19.6 Events consumed by this service

The API Gateway service does not consume events from other Handel services.

66 Chapter 19. API Gateway

CHAPTER 20

Aurora (RDS)

This page contains information about using the Aurora service in Handel. This service provides an Aurora cluster
(MySQL or PostgreSQL) via the RDS service.

20.1 Service Limitations

20.1.1 No Option Group Support

This service doesn’t allow you to specify any custom options in an option group. It does allow you specify custom
parameters in a parameter group, however.

20.1.2 No Update Support

This service intentionally does not support updates. Once a database is created, certain updates to the database will
cause a new database to be created and the old one deleted. In an effort to avoid unwanted data loss, we don’t update
this service automatically. You can still modify the database and parameter group manually in the AWS console.

Warning: Make sure you know what you’re doing when you modify your RDS database in the AWS Console.
Certain actions will cause database downtime, and some may even cause the database to be recreated.

67

Handel Documentation, Release 0.23.2

20.2 Parameters

Pa-
rame-
ter

Type Re-
quired

Default Description

type string Yes This must always be aurora for this service type.
engine string Yes The Aurora engine you wish to use. Allowed values: ‘mysql’, ‘post-

gresql’
ver-
sion

string Yes The version of MySQL or PostgreSQL you wish to run. Allowed
values for MySQL: ‘5.7.12’. Allowed values for PostgreSQL:
‘9.6.3’.

database_namestring Yes The name of your database in your Aurora cluster.
de-
scrip-
tion

string No The description on the resources created for the cluster

in-
stance_type

string No db.t2.small
for MySQL,
db.r4.large for
PostgreSQL.

The size of database instance to run. Not all database instance types
are supported for Aurora.

clus-
ter_size

num-
ber

No 1 The number of instances (including the primary) to run in your clus-
ter.

clus-
ter_parameters

map<string,
string>

No A list of key/value Aurora cluster parameter group pairs to configure
your cluster. You will need to look in the AWS Console to see the
list of available cluster parameters for Aurora.

in-
stance_parameters

map<string,
string>

No A list of key/value Aurora instance parameter group pairs to config-
ure the instances in your cluster. You will need to look in the AWS
Console to see the list of available instance parameters for Aurora.

tags Re-
source
Tags

No Any tags you wish to apply to this Aurora instance.

Warning: Be aware that Aurora clusters can be very expensive. A cluster with 3 db.r4.2xlarge instances in it will
cost about about $2,500/month. Make sure you check how much you will be paying!

You can use the excellent EC2Instances.info site to easily see pricing information for RDS databases. Remember
that you pay the full price for each instance in your cluster.

20.3 Example Handel File

version: 1

name: aurora-test

environments:
dev:
database:

type: aurora
engine: mysql
version: 5.7.12

(continues on next page)

68 Chapter 20. Aurora (RDS)

http://www.ec2instances.info/rds/

Handel Documentation, Release 0.23.2

(continued from previous page)

database_name: MyDb
instance_type: db.t2.medium
cluster_size: 3
cluster_parameters: # This is where you can set parameters that configure the

→˓cluster as a whole
character_set_database: utf8mb4

instance_parameters: # This is where you can set parameters that apply to
→˓each instance.

autocommit: 1
tags:

some: tag

20.4 Depending on this service

The Aurora service outputs the following environment variables:

Environment Variable Description
<SERVICE_NAME>_CLUSTER_ENDPOINT The address that you should use for writes to the database.
<SERVICE_NAME>_READ_ENDPOINT The address that you should use for reads to the database.
<SERVICE_NAME>_PORT The port on which the Aurora cluster instances are listening.
<SERVICE_NAME>_DATABASE_NAME The name of the database in your Aurora cluster.

See Environment Variable Names for information about how the service name is included in the environment variable
name.

In addition, the Aurora service puts the following credentials into the EC2 parameter store:

Parameter Name Description
<parameter_prefix>.<service_name>.db_username The username for your database user.
<parameter_prefix>.<service_name>.db_password The password for your database user.

Note: The <parameter_prefix> section of the parameter name is a consistent prefix applied to all parameters injected
by services in the EC2 Parameter Store. See Parameter Store Prefix for information about the structure of this prefix.

The <service_name> section of the parameter name should be replaced by the service name you gave your database
in your Handel file.

20.5 Events produced by this service

The Aurora service does not produce events for other Handel services to consume.

20.6 Events consumed by this service

The Aurora service does not consume events from other Handel services.

20.4. Depending on this service 69

Handel Documentation, Release 0.23.2

70 Chapter 20. Aurora (RDS)

CHAPTER 21

Aurora Serverless

This page contains information about using the Aurora Serverless service in Handel. This service provides a “server-
less” instance of Aurora (MySQL).

Warning: Aurora Serverless is not appropriate for all workloads. Review the Use Cases before choosing this
service.

21.1 Service Limitations

21.1.1 No Option Group Support

This service doesn’t allow you to specify any custom options in an option group. It does allow you specify custom
parameters in a parameter group, however.

21.1.2 No Update Support

This service intentionally does not support updates. Once a database is created, certain updates to the database will
cause a new database to be created and the old one deleted. In an effort to avoid unwanted data loss, we don’t update
this service automatically. You can still modify the database and parameter group manually in the AWS console.

Warning: Make sure you know what you’re doing when you modify your RDS database in the AWS Console.
Certain actions will cause database downtime, and some may even cause the database to be recreated.

71

https://aws.amazon.com/rds/aurora/serverless/#Use_Cases

Handel Documentation, Release 0.23.2

21.2 Parameters

Pa-
rame-
ter

Type Re-
quired

De-
fault

Description

type string Yes This must always be aurora-serverless for this service type.
engine string Yes The Aurora engine you wish to use. Allowed values: ‘mysql’
version string Yes The version of MySQL you wish to run. Allowed values for MySQL:

‘5.6.10a’
database_namestring Yes The name of your database in your Aurora cluster.
de-
scrip-
tion

string No The description on the resources created for the cluster

scaling Scaling
Configu-
ration

No Cluster capacity scaling configuration

clus-
ter_parameters

map<string,
string>

No A list of key/value Aurora cluster parameter group pairs to configure your
cluster. You will need to look in the AWS Console to see the list of available
cluster parameters for Aurora.

tags Resource
Tags

No Any tags you wish to apply to this Aurora instance.

21.2.1 Scaling Configuration

The scaling section is defined by the following schema:

Parameter Type Re-
quired

Default Description

auto_pause boolean No true Whether to automatically pause this database if it
has been idle for a specified time.

sec-
onds_until_auto_pause

number No 300 (5
minutes)

How long the database must be idle before it can
be paused.

min_capacity One of 2, 4, 8, 16, 32,
64, 128, or 256

No 2 The minimum capacity (in Aurora Compute
Units)

max_capacity One of 2, 4, 8, 16, 32,
64, 128, or 256

No 64 The maximum capacity (in Aurora Compute
Units)

21.3 Example Handel File

version: 1

name: aurora-serverless-test

environments:
dev:
database:

type: aurora-serverless
engine: mysql
version: 5.6.10a

(continues on next page)

72 Chapter 21. Aurora Serverless

Handel Documentation, Release 0.23.2

(continued from previous page)

database_name: MyDb
scaling:

min_capacity: 2
max_capacity: 16
auto_pause: true
seconds_until_auto_pause: 600 # 10 minutes

cluster_parameters: # This is where you can set parameters that configure the
→˓cluster as a whole

character_set_database: utf8mb4
tags:

some: tag

21.4 Depending on this service

The Aurora Serverless service outputs the following environment variables:

Environment Variable Description
<SERVICE_NAME>_CLUSTER_ENDPOINT The address that you should use for writes to the database.
<SERVICE_NAME>_READ_ENDPOINT The address that you should use for reads to the database.
<SERVICE_NAME>_PORT The port on which the Aurora cluster instances are listening.
<SERVICE_NAME>_DATABASE_NAME The name of the database in your Aurora cluster.

See Environment Variable Names for information about how the service name is included in the environment variable
name.

In addition, the Aurora service puts the following credentials into the EC2 parameter store:

Parameter Name Description
<parameter_prefix>.<service_name>.db_username The username for your database user.
<parameter_prefix>.<service_name>.db_password The password for your database user.

Note: The <parameter_prefix> section of the parameter name is a consistent prefix applied to all parameters injected
by services in the EC2 Parameter Store. See Parameter Store Prefix for information about the structure of this prefix.

The <service_name> section of the parameter name should be replaced by the service name you gave your database
in your Handel file.

Note: Aurora Serverless does not actually differentiate between read endpoints and write endpoints, like Aurora does.
However, a common use case for Aurora Serverless is to run non-production workloads and to run the production
workloads using provisioned Aurora. In order to make this use case simpler, the Aurora-Serverless Handel service
mimics the variables set by the provisioned Aurora service.

21.5 Events produced by this service

The Aurora service does not produce events for other Handel services to consume.

21.4. Depending on this service 73

Handel Documentation, Release 0.23.2

21.6 Events consumed by this service

The Aurora service does not consume events from other Handel services.

74 Chapter 21. Aurora Serverless

CHAPTER 22

CodeDeploy

This document contains information about the CodeDeploy service supported in Handel. This Handel service provi-
sions an autoscaling group running CodeDeploy. You can install arbitrary software on these instances using CodeDe-
ploy’s appspec.yml file.

Important: CodeDeploy is far less managed than other compute services like Lambda, ECS Fargate, and Elastic
Beanstalk. You are responsible for all configuration on the EC2 instances. Please see the CodeDeploy Documentation
for details on this service,

22.1 Service Limitations

22.1.1 No Windows Support

This service currently doesn’t allow you to provision Windows instances to use with CodeDeploy.

22.1.2 No Single Instance Support

This service doesn’t support using CodeDeploy in a single-instance configuration. It only supports using auto-scaling
groups, although you can use an auto-scaling group with a min/max of 1, which gets you a single instance.

75

https://aws.amazon.com/codedeploy/
https://docs.aws.amazon.com/codedeploy/latest/userguide/reference-appspec-file.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html

Handel Documentation, Release 0.23.2

22.2 Parameters

Parameter Type Re-
quired

De-
fault

Description

type string Yes This must always be codedeploy for this service type.
path_to_code string Yes The location of the directory you want to upload to CodeDeploy. You

must have your appspec.yml file at the root of this directory!
os string Yes The type of OS to use with CodeDeploy. Currently the only sup-

ported value is linux.
in-
stance_type

string No t2.microThe EC2 instance type on which your application will run.

key_name string No None The name of the EC2 keypair to use for SSH access to the instances.
auto_scaling AutoScal-

ing
No The configuration to use for scaling up and down

routing Routing No The Routing element details what kind of routing you want to your
CodeDeploy service (if any)

environ-
ment_variables

Environ-
mentVari-
ables

No Any user-specified environment variables to inject in the application.

tags Resource
Tags

No Any tags you want to apply to your CodeDeploy resources.

22.2.1 AutoScaling

The auto_scaling section is defined by the following schema:

auto_scaling: # Optional
min_instances: <integer> # Optional. Default: 1
max_instances: <integer> # Optional. Default: 1
scaling_policies: # Optional
- type: <up|down>
adjustment:

type: <string> # Optional. Default: 'ChangeInCapacity'.
value: <number> # Required
cooldown: <number> # Optional. Default: 300.

alarm:
namespace: <string> # Optional. Default: 'AWS/EC2'
dimensions: # Optional. Default: Your auto-scaling group dimensions.

<string>: <string>
metric_name: <string> # Required
statistic: <string> # Optional. Default: 'Average'
comparison_operator: <string> # Required
threshold: <number> # Required
period: <number> # Optional. Default: 300
evaluation_periods: <number> # Optional. Default: 5

Tip: Auto-scaling in AWS is based off the CloudWatch service. Configuring auto-scaling can be a bit daunting at
first if you haven’t used CloudWatch metrics or alarms.

See the below Example Handel Files section for some examples of configuring auto-scaling.

76 Chapter 22. CodeDeploy

Handel Documentation, Release 0.23.2

22.2.2 EnvironmentVariables

The EnvironmentVariables element is defined by the following schema:

environment_variables:
<YOUR_ENV_NAME>: <your_env_value>

<YOUR_ENV_NAME> is a string that will be the name of the injected environment variable. <your_env_value> is
its value. You may specify an arbitrary number of environment variables in this section.

22.2.3 Routing

The Routing element is defined by the following schema:

routing:
type: <http|https>
https_certificate: <string> # Required if you select https as the routing type
dns_names:
- <string> # Optional

The dns_names section creates one or more dns names that point to this load balancer. See DNS Records for more.

22.3 Example Handel Files

22.3.1 Simple CodeDeploy Service

This Handel file shows the simplest possible CodeDeploy service. It doesn’t have a load balancer to route requests to
it, and it doesn’t use auto-scaling.

version: 1

name: codedeploy-example

environments:
dev:
webapp:

type: codedeploy
path_to_code: .
os: linux

22.3.2 CodeDeploy With Load Balancer

This Handel file shows a CodeDeploy service with a load balancer configured in front of it:

version: 1

name: codedeploy-example

environments:
dev:
webapp:

type: codedeploy

(continues on next page)

22.3. Example Handel Files 77

Handel Documentation, Release 0.23.2

(continued from previous page)

path_to_code: .
os: linux
routing:

type: https
https_certificate: your-certificate-id-here
dns_names: # Optional
- mydnsname.myfakedomain.com

22.3.3 CodeDeploy With Auto-Scaling

This Handel file shows a CodeDeploy service with a load balancer and auto scaling policies configured:

version: 1

name: codedeploy-test

environments:
dev:
webapp:

type: codedeploy
path_to_code: .
os: linux
auto_scaling:

min_instances: 1
max_instances: 4
scaling_policies:
- type: up
adjustment:

value: 1
cooldown: 60

alarm:
metric_name: CPUUtilization
comparison_operator: GreaterThanThreshold
threshold: 70
period: 60

- type: down
adjustment:
value: 1
cooldown: 60

alarm:
metric_name: CPUUtilization
comparison_operator: LessThanThreshold
threshold: 30
period: 60

routing:
type: https
https_certificate: your-certificate-id-here
dns_names:
- mydnsname.myfakedomain.com

22.4 Depending on this service

The CodeDeploy service cannot be referenced as a dependency for another Handel service.

78 Chapter 22. CodeDeploy

Handel Documentation, Release 0.23.2

22.5 Events produced by this service

The CodeDeploy service does not produce events for other Handel services to consume.

22.6 Events consumed by this service

The CodeDeploy service does not consume events from other Handel services.

22.5. Events produced by this service 79

Handel Documentation, Release 0.23.2

80 Chapter 22. CodeDeploy

CHAPTER 23

Beanstalk

This document contains information about the Beanstalk service supported in Handel. This Handel service provisions
an Elastic Beanstalk application, which consists of an auto-scaling group fronted by an Elastic Load Balancer.

23.1 Service Limitations

23.1.1 No WAR support

This Handel Beanstalk service does not yet support Java WAR stack types. Support is planned to be added in the near
future.

23.1.2 Limited Tagging Support

Attention: CloudFormation doesn’t allow Beanstalk tags to be modified after initial environment creation.
Beanstalk just recently added support for updating tags, but CloudFormation doesn’t yet support that feature change
for Beanstalk.

Until this support is added, if you try to modify your tags element after your environment is created, your Cloud-
Formation stack will fail to update.

81

Handel Documentation, Release 0.23.2

23.2 Parameters

Pa-
ram-
eter

Type Re-
quired

De-
fault

Description

type string Yes This must always be beanstalk for this service type.
path_to_codestring Yes The location of your code to upload to Beanstalk. This can be a directory (which

will be zipped up) or a single file (such as a deployable Java WAR file). If this
points to a directory containing a Dockerrun.aws.json file or points to a Docker-
run.aws.json file then the following Dockerrun.aws.json Replacement Tags will be
substituted.

solu-
tion_stack

string Yes The ElasticBeanstalk solution stack you wish to use. This determines what AMI
your application runs on. See Elastic Beanstalk Supported Platforms for the list of
solution stacks.

de-
scrip-
tion

string No Ap-
pli-
ca-
tion.

The description of the application.

key_namestring No None The name of the EC2 keypair to use for SSH access to the instance.
auto_scalingAu-

toScal-
ing

No The configuration to use for scaling up and down

in-
stance_type

string No t2.microThe EC2 instance type on which your application will run.

health_check_urlstring No / The URL the ELB should use to check the health of your application.
rout-
ing

Rout-
ing

No The Routing element details what kind of routing you want to your Beanstalk ser-
vice

envi-
ron-
ment_variables

Envi-
ron-
ment-
Vari-
ables

No Any user-specified environment variables to inject in the application.

tags Re-
source
Tags

No Any tags you want to apply to your Beanstalk environment

23.3 Dockerrun.aws.json Replacement Tags

Tag Description
<aws_account_id> The account_id from the account config file specified at deployment.
<aws_region> The region from the account config file specified at deployment.
<handel_app_name> The name of the Handel application
<handel_environment_name> The name of the Handel environment that the deployed service is contained in.
<handel_service_name> The name of the Handel service being deployed.

23.3.1 AutoScaling

The auto_scaling section is defined by the following schema:

82 Chapter 23. Beanstalk

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/concepts.platforms.html

Handel Documentation, Release 0.23.2

auto_scaling: # Optional
min_instances: <integer> # Optional. Default: 1
max_instances: <integer> # Optional. Default: 1
scaling_policies: # Optional
- type: <up|down>
adjustment:

type: <string> # Optional. Default: 'ChangeInCapacity'.
value: <number> # Required
cooldown: <number> # Optional. Default: 300.

alarm:
namespace: <string> # Optional. Default: 'AWS/EC2'
dimensions: # Optional. Default: Your auto-scaling group dimensions.

<string>: <string>
metric_name: <string> # Required
statistic: <string> # Optional. Default: 'Average'
comparison_operator: <string> # Required
threshold: <number> # Required
period: <number> # Optional. Default: 300
evaluation_periods: <number> # Optional. Default: 5

Tip: Auto-scaling in AWS is based off the CloudWatch service. Configuring auto-scaling can be a bit daunting at
first if you haven’t used CloudWatch metrics or alarms.

See the below Example Handel Files section for some examples of configuring auto-scaling.

23.3.2 EnvironmentVariables

The EnvironmentVariables element is defined by the following schema:

environment_variables:
<YOUR_ENV_NAME>: <your_env_value>

<YOUR_ENV_NAME> is a string that will be the name of the injected environment variable. <your_env_value> is
its value. You may specify an arbitrary number of environment variables in this section.

23.3.3 Routing

The Routing element is defined by the following schema:

routing:
type: <http|https>
https_certificate: <string> # Required if you select https as the routing type
dns_names:
- <string> # Optional

The dns_names section creates one or more dns names that point to this load balancer. See DNS Records for more.

23.3. Dockerrun.aws.json Replacement Tags 83

Handel Documentation, Release 0.23.2

23.4 Example Handel Files

23.4.1 Simple Beanstalk Service

This Handel file shows a simply-configured Beanstalk service with most of the defaults intact:

version: 1

name: my-beanstalk-app

environments:
dev:
webapp:

type: beanstalk
path_to_code: .
solution_stack: 64bit Amazon Linux 2016.09 v4.0.1 running Node.js
environment_variables:

MY_INJECTED_VAR: myValue

23.4.2 Auto-Scaling On Service CPU Utilization

This Handel file shows a Beanstalk service auto-scaling on its own CPU Utilization metric. Note that in the alarm
section you can leave off things like namespace and dimensions and it will default to your Beanstalk service for those
values:

version: 1

name: beanstalk-example

environments:
dev:
webapp:

type: beanstalk
path_to_code: .
solution_stack: 64bit Amazon Linux 2017.03 v4.1.0 running Node.js
auto_scaling:

min_instances: 1
max_instances: 2
scaling_policies:
- type: up
adjustment:

value: 1
cooldown: 60

alarm:
metric_name: CPUUtilization
comparison_operator: GreaterThanThreshold
threshold: 70
period: 60

- type: down
adjustment:
value: 1
cooldown: 60

alarm:
metric_name: CPUUtilization
comparison_operator: LessThanThreshold

(continues on next page)

84 Chapter 23. Beanstalk

Handel Documentation, Release 0.23.2

(continued from previous page)

threshold: 30
period: 60

23.4.3 Auto-Scaling On Queue Size

This Handel file shows a Beanstalk service scaling off the size of a queue it consumes:

version: 1

name: my-beanstalk-app

environments:
dev:
webapp:

type: beanstalk
path_to_code: .
solution_stack: 64bit Amazon Linux 2017.03 v4.1.0 running Node.js
auto_scaling:

min_instances: 1
max_instances: 2
scaling_policies:
- type: up
adjustment:

value: 1
alarm:

namespace: AWS/SQS
dimensions:
QueueName: my-beanstalk-app-dev-queue-sqs

metric_name: ApproximateNumberOfMessagesVisible
comparison_operator: GreaterThanThreshold
threshold: 2000

- type: down
adjustment:
value: 1

alarm:
namespace: AWS/SQS
dimensions:
QueueName: my-beanstalk-appe-dev-queue-sqs

metric_name: ApproximateNumberOfMessagesVisible
comparison_operator: LessThanThreshold
threshold: 100

dependencies:
- queue

queue:
type: sqs

23.5 Depending on this service

The Beanstalk service cannot be referenced as a dependency for another Handel service.

23.5. Depending on this service 85

Handel Documentation, Release 0.23.2

23.6 Events produced by this service

The Beanstalk service does not produce events for other Handel services to consume.

23.7 Events consumed by this service

The Beanstalk service does not consume events from other Handel services.

86 Chapter 23. Beanstalk

CHAPTER 24

CloudWatch Events

This document contains information about the CloudWatch Events service supported in Handel. This Handel service
provisions a CloudWatch Events rule, which can then be integrated with services like Lambda to invoke them when
events fire.

Important: This service only offers limited tagging support. Cloudwatch events will not be tagged, but the Cloud-
formation stack used to create them will be. See Tagging Unsupported Resources.

24.1 Parameters

Pa-
ram-
eter

Type Re-
quired

Default Description

type string Yes This must always be cloudwatchevent for this service type.
de-
scrip-
tion

string No Handel-
created
rule.

The event description.

sched-
ule

string No The cron or rate string specifying the schedule on which to fire the event.
See the Scheduled Events document for information on the syntax of these
schedule expressions.

event_patternobject No The list of event patterns on which to fire the event. In this field you just
specify an Event Pattern in YAML syntax.

state string No enabled What state the rule should be in. Allowed values: ‘enabled’, ‘disabled’
tags Re-

source
Tags

No Tags to be applied to the Cloudformation stack which provisions this re-
source.

87

http://docs.aws.amazon.com/AmazonCloudWatch/latest/events/ScheduledEvents.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/events/CloudWatchEventsandEventPatterns.html

Handel Documentation, Release 0.23.2

24.2 Example Handel Files

24.2.1 Scheduled Lambda

This Handel file shows a CloudWatch Events service being configured, producing to a Lambda on a schedule:

version: 1

name: my-scheduled-lambda

environments:
dev:
function:

type: lambda
path_to_code: .
handler: app.handler
runtime: nodejs6.10

schedule:
type: cloudwatchevent
schedule: rate(1 minute)
event_consumers:
- service_name: function

event_input: '{"some": "param"}'

24.2.2 EBS Events Lambda

This Handel file shows a CloudWatch Events service being configured, producing to a Lambda when an EBS volume
is created:

version: 1

name: my-event-lambda

environments:
dev:
function:

type: lambda
path_to_code: .
handler: app.handler
runtime: nodejs6.10

schedule:
type: cloudwatchevent
event_pattern:

source:
- aws.ec2
detail-type:
- EBS Volume Notification
detail:
event:
- createVolume

event_consumers:
- service_name: function

88 Chapter 24. CloudWatch Events

Handel Documentation, Release 0.23.2

24.3 Depending on this service

The CloudWatch Events service cannot be referenced as a dependency for another Handel service. This service is
intended to be used as a producer of events for other services.

24.4 Events produced by this service

The CloudWatch Events service currently produces events for the following services types:

• Lambda

24.5 Events consumed by this service

The CloudWatch Events service does not consume events from other Handel services.

24.3. Depending on this service 89

Handel Documentation, Release 0.23.2

90 Chapter 24. CloudWatch Events

CHAPTER 25

DynamoDB

This page contains information about using DynamoDB service supported in Handel. This service provisions a Dy-
namoDB table for use by other AWS services.

25.1 Service Limitations

25.1.1 No Update Support

This service intentionally does not support updates. Once a table is created, certain updates to the table will cause a
new one to be created and the old one deleted. In an effort to avoid unwanted data loss, we don’t update this service
automatically.

91

Handel Documentation, Release 0.23.2

25.2 Parameters

Pa-
rame-
ter

Type Re-
quired

Default Description

type string Yes This must always be dynamodb for this service type.
ta-
ble_name

string No ‘<app name>-
<environment>-
<service
name>-
dynamodb’

Sets the name of the Dynamod table to be created.

parti-
tion_key

Parti-
tion-
Key

Yes The ParitionKey element details how you want your partition key
specified.

sort_key SortKey No None The SortKey element details how you want your sort key specified.
Unlike partition_key, sort_key is not required.

provi-
sioned_throughput

Provi-
sionedThrough-
put

No 1 for read and
write

The ProvisionedThroughput element details how much provisioned
IOPS you want on your table for reads and writes.

ttl_attributestring No None Configures the attribute to use for DynamoDB TTL and auto-
expiration.

lo-
cal_indexes

Lo-
calIn-
dexes

No You can configure local secondary indexes for fast queries on a dif-
ferent sort key within the same partition key.

stream_view_typestring No When present, the stream view type element indicates that a dy-
namodb stream will be used and specifies what information is
written to the stream. Options are KEYS_ONLY, NEW_IMAGE,
OLD_IMAGE and NEW_AND_OLD_IMAGES.

global_indexesGlob-
alIn-
dexes

No You can configure global secondary indexes for fast queries on other
partition and sort keys in addition to the ones on your table.

tags Re-
source
Tags

No Any tags you want to apply to your Dynamo Table

25.2.1 PartitionKey

The PartitionKey element tells how to configure your partition key in DynamoDB. It has the following schema:

partition_key:
name: <key_name>
type: <String|Number>

25.2.2 SortKey

The SortKey element tells how to configure your sort key in DynamoDB. It has the following schema:

sort_key:
name: <key_name>
type: <String|Number>

92 Chapter 25. DynamoDB

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/TTL.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/TTL.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_StreamSpecification.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html

Handel Documentation, Release 0.23.2

25.2.3 ProvisionedThroughput

The ProvisionedThroughput element tells many IOPS to provision for your table for reads and writes. It has the
following schema:

provisioned_throughput:
read_capacity_units: <number or range> # Required
write_capacity_units: <number or range> # Required
read_target_utilization: <percentage> # Default: 70 (if autoscaling is enabled)
write_target_utilization: <percentage> # Default: 70 (if autoscaling is enabled)

Autoscaling Throughput

If a range (ex: 1-10) is provided to read_capacity_units or write_capacity_units, an autoscaling rule will be cre-
ated with the min and max values from the range and target utilization as specified by read_target_utilization and
write_target_utilization.

The following configuration will cause the read capacity to be automatically scaled between 10 and 100, with a target
usage of 50%. The write capacity will scale between 1-10, with a target usage of 70% (the default).

provisioned_throughput:
read_capacity_units: 10-100
write_capacity_units: 1-10
read_target_utilization: 50

25.2.4 LocalIndexes

The LocalIndexes element allows you to configure local secondary indexes on your table for alternate query methods.
It has the following schema:

local_indexes:
- name: <string> # Required

sort_key: # Required
name: <string>
type: <String|Number>

attributes_to_copy: # Required
- <string>

25.2.5 GlobalIndexes

The GlobalIndexes element allows you to configure global secondary indexes on your table for alternate query meth-
ods. It allows you to specify a different partition key than the main table. It has the following schema:

global_indexes:
- name: <string> # Required

partition_key: # Required
name: <string>
type: <String|Number>

sort_key: # Optional
name: <string>
type: <String|Number>

attributes_to_copy: # Optional. If not specified, will default to ALL
- <string>

(continues on next page)

25.2. Parameters 93

Handel Documentation, Release 0.23.2

(continued from previous page)

provisioned_throughput: # Optional
read_capacity_units: <number or range> # Required
write_capacity_units: <number or range> # Required
read_target_utilization: <percentage> # Default: Matches table config
write_target_utilization: <percentage> # Default: Matches table config

The provisioned throughput configuration for Global Secondary Indexes matches that for the table. If the provisioned
throughput is not configured for the index, the table’s configuration will be used, including any autoscaling configura-
tion.

Warning: Be aware that using Global Secondary Indexes can greatly increase your cost. When you use global
indexes, you are effectively creating a new table. This will increase your cost by the amount required for storage
and allocated IOPS for the global index.

25.3 Example Handel File

version: 1

name: my-ecs-app

environments:
dev:
webapp:

type: dynamodb
partition_key: # Required, NOT updateable

name: MyPartionKey
type: String

sort_key:
name: MySortKey
type: Number

provisioned_throughput:
read_capacity_units: 1-20 #Autoscale reads, but not writes
write_capacity_units: 6

tags:
name: my-dynamodb-tag

25.4 Depending on this service

The DynamoDB service outputs the following environment variables:

Environment Variable Description
<SERVICE_NAME>_TABLE_NAME The name of the created DynamoDB table
<SERVICE_NAME>_TABLE_ARN The ARN of the created DynamoDB table

See Environment Variable Names for information about how the service name is included in the environment variable
name.

94 Chapter 25. DynamoDB

Handel Documentation, Release 0.23.2

25.5 DynamoDB Streams

A DynamoDB Stream sends an event to a lambda function when data in the table changes. To configure a stream,
include the stream_view_type element in your handel file and declare your lambda function as an event_consumer
with the following syntax:

event_consumers:
- service_name: <string> # Required. The service name of the lambda function
batch_size: <number> # Optional. Default: 100

25.5.1 BatchSize

The largest number of records that AWS Lambda will retrieve from your event source at the time of invoking your
function. Your function receives an event with all the retrieved records. The default is 100 records.

25.6 Events produced by this service

The DynamoDB service currently produces events for the following services types:

• Lambda

25.7 Events consumed by this service

The DynamoDB service does not consume events from other Handel services.

25.5. DynamoDB Streams 95

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html
https://handel.readthedocs.io/en/latest/handel-basics/service-events.html

Handel Documentation, Release 0.23.2

96 Chapter 25. DynamoDB

CHAPTER 26

ECS (Elastic Container Service)

This page contains information about the ECS service supported in Handel. This Handel service provisions your
application code as an ECS Service, with included supporting infrastructure such as load balancers and auto-scaling
groups.

26.1 Service Limitations

26.1.1 One service per cluster

This service uses a model of one ECS service per ECS cluster. It does not support the model of one large cluster with
multiple services running on it.

26.1.2 Unsupported ECS task features

This service currently does not support the following ECS task features:

• User-specified volumes from the EC2 host. You can specify services such as EFS that will mount a volume in
your container for you, however.

• Extra networking items such as manually specifying DNS Servers, DNS Search Domains, and extra hosts in the
/etc/hosts file

• Task definition options such as specifying an entry point, command, or working directory. These options are
available in your Dockerfile and can be specified there.

Important: This service only offers limited tagging support. ECS resources will not be tagged, but any load bal-
ancers, EC2 instances, and the Cloudformation stack used to create them will be. See Tagging Unsupported Resources.

97

Handel Documentation, Release 0.23.2

26.2 Parameters

Parameter Type Re-
quired

De-
fault

Description

type string Yes This must always be ecs for this service type.
containers Con-

tainers
Yes This section allows you to configure one or more containers that will

make up your service.
auto_scaling Au-

toScal-
ing

Yes This section contains information about scaling your tasks up and
down.

cluster Cluster No This section contains items used to configure your ECS cluster of
EC2 instances.

load_balancer Load-
Bal-
ancer

No If your task needs routing from a load balancer, this section can be
used to configure the load balancer’s options.

logging string No en-
abled

Turns CloudWatch logging on or off. Must be either “enabled” or
“disabled”. See Logging for more.

log_retention_in_daysnumber No 0 Configures the log retention duration for CloudWatch logs. If set to
0, logs are kept indefinitely.

tags Re-
source
Tags

No This section allows you to specify any tags you wish to apply to your
ECS service.

26.2.1 Containers

The containers section is defined by the following schema:

containers:
- name: <string> # Required

image_name: <string> # Optional
port_mappings: # Optional, required if you specify 'routing'
- <integer>
max_mb: <integer> # Optional. Default: 128
cpu_units: <integer> # Optional. Default: 100
links: # Optional
- <string> # Each value in the list should be the "name" field of another container

→˓in your containers list
routing: # Optional
base_path: <string> # Required
health_check_path: <string> # Optional. Default: /

environment_variables: # Optional
<string>: <string>

Note: You may currently only specify the routing section in a single container. Attempting to add routing to multiple
containers in a single service will result in an error. This is due to a current limitation in the integration between
Application Load Balancers (ALB) and ECS that only allows you to attach an ALB to a single container in your task.

98 Chapter 26. ECS (Elastic Container Service)

Handel Documentation, Release 0.23.2

Container Image Names

In each container, you may specify an optional image_name. If you want to pull a public image from somewhere like
DockerHub, just reference the image name:

dsw88/my-cool-image

If you want to reference an image in your AWS account’s EC2 Container Registry (ECR), reference it like this:

The <account> piece will be replaced with your account's long ECR repository name
<account>/my-cool-image

If you don’t specify an image_name, Handel will automatically choose an image name for you based on your Handel
naming information. It will use the following image naming pattern:

<appName>-<serviceName>-<containerName>:<environmentName>

For example, if you don’t specify an image_name in the below Example Handel Files, the two images ECS looks for
would be named the following:

my-ecs-app-webapp-mywebapp:dev
my-ecs-app-webapp-myothercontainer:dev

26.2.2 AutoScaling

The auto_scaling section is defined by the following schema:

auto_scaling:
min_tasks: <integer> # Required
max_tasks: <integer> # Required
scaling_policies: # Optional
- type: <up|down> # Required
adjustment: # Required

value: <number> # Required
type: <string> # Optional. Default: 'ChangeInCapacity'. See http://docs.aws.

→˓amazon.com/ApplicationAutoScaling/latest/APIReference/API_
→˓StepScalingPolicyConfiguration.html for allowed values

cooldown: <number> # Optional. Default: 300.
alarm: # Required

metric_name: <string> # Required
comparison_operator: <string> # Required. See http://docs.aws.amazon.com/

→˓AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-
→˓alarms-comparisonoperator for allowed values.

threshold: <number> # Required
namespace: <string> # Optional. Default: 'AWS/ECS'
dimensions: # Optional. Default: Your ECS service dimensions

<string>: <string>
period: <number> # Optional. Default: 300
evaluation_periods: <number> # Optional. Default: 5

Tip: Auto-scaling in AWS is based off the CloudWatch service. Configuring auto-scaling can be a bit daunting at
first if you haven’t used CloudWatch metrics or alarms.

See the below Example Handel Files section for some examples of configuring auto-scaling.

26.2. Parameters 99

Handel Documentation, Release 0.23.2

Note: If you don’t wish to configure auto scaling for your containers, just set min_tasks = max_tasks and don’t
configure any scaling_policies.

26.2.3 Cluster

The cluster section is defined by the following schema:

cluster:
key_name: <string> # Optional. The name of the EC2 keypair to use for SSH access.

→˓Default: none
instance_type: <string> # Optional. The type of EC2 instances to use in the cluster.

→˓ Default: t2.micro

26.2.4 LoadBalancer

The load_balancer section is defined by the following schema:

load_balancer:
type: <string> # Required. Allowed values: `http`, `https`.
timeout: <integer> # Optional. The connection timeout on the load balancer
https_certificate: <string> # Required if type=https. The ID of the ACM certificate

→˓to use on the load balancer.
dns_names:
- <string> # Optional.
health_check_grace_period: <integer> # Optional. Default: 15. The period of time,

→˓in seconds, that the Amazon ECS service scheduler ignores unhealthy Elastic Load
→˓Balancing target health checks after a task has first started.

The dns_names section creates one or more dns names that point to this load balancer. See DNS Records for more.

26.2.5 Logging

If logging is enabled, a CloudWatch log group will be created, with a name like ecs/<appName>-<environmentName>-
<serviceName>. Each container in the container configuration will have a log prefix matching its name. The retention
time for the log group is set with log_retention_in_days, and defaults to keeping the logs indefinitely.

26.3 Example Handel Files

26.3.1 Simplest Possible ECS Service

This Handel file shows an ECS service with only the required parameters:

version: 1

name: my-ecs-app

environments:
dev:

(continues on next page)

100 Chapter 26. ECS (Elastic Container Service)

Handel Documentation, Release 0.23.2

(continued from previous page)

webapp:
type: ecs
auto_scaling:

min_tasks: 1
max_tasks: 1

containers:
- name: mywebapp

26.3.2 Web Service

This Handel file shows an ECS service configured with HTTP routing to it via a load balancer:

version: 1

name: my-ecs-app

environments:
dev:
webapp:

type: ecs
auto_scaling:

min_tasks: 1
max_tasks: 1

load_balancer:
type: http

containers:
- name: mywebapp

port_mappings:
- 5000
routing:
base_path: /mypath
health_check_path: /

26.3.3 Multiple Containers

This Handel file shows an ECS service with two containers being configured:

version: 1

name: my-ecs-app

environments:
dev:
webapp:

type: ecs
cluster:

key_name: mykey
auto_scaling:

min_tasks: 1
max_tasks: 1

load_balancer:
type: http
timeout: 120

(continues on next page)

26.3. Example Handel Files 101

Handel Documentation, Release 0.23.2

(continued from previous page)

tags:
mytag: myvalue

containers:
- name: mywebapp

port_mappings:
- 5000
max_mb: 256
cpu_units: 200
environment_variables:
MY_VAR: myvalue

routing:
base_path: /mypath
health_check_path: /

- name: myothercontainer
max_mb: 256

26.3.4 Auto-Scaling On Service CPU Utilization

This Handel file shows an ECS service auto-scaling on its own CPU Utilization metric. Note that in the alarm section
you can leave off things like namespace and dimensions and it will default to your ECS service for those values:

version: 1

name: my-ecs-app

environments:
dev:
webapp:

type: ecs
auto_scaling:

min_tasks: 1
max_tasks: 11
scaling_policies:
- type: up
adjustment:

value: 5
alarm:

metric_name: CPUUtilization
comparison_operator: GreaterThanThreshold
threshold: 70

- type: down
adjustment:
value: 5

alarm:
metric_name: CPUUtilization
comparison_operator: LessThanThreshold
threshold: 30

load_balancer:
type: http

containers:
- name: ecstest

port_mappings:
- 5000
routing:
base_path: /mypath

102 Chapter 26. ECS (Elastic Container Service)

Handel Documentation, Release 0.23.2

26.3.5 Auto-Scaling On Queue Size

This Handel file shows an ECS service scaling off the size of a queue it consumes:

version: 1

name: my-ecs-app

environments:
dev:
webapp:

type: ecs
auto_scaling:

min_tasks: 1
max_tasks: 11
scaling_policies:
- type: up
adjustment:

value: 5
alarm:

namespace: AWS/SQS
dimensions:
QueueName: my-ecs-app-dev-queue-sqs

metric_name: ApproximateNumberOfMessagesVisible
comparison_operator: GreaterThanThreshold
threshold: 2000

- type: down
adjustment:
value: 5

alarm:
namespace: AWS/SQS
dimensions:
QueueName: my-ecs-app-dev-queue-sqs

metric_name: ApproximateNumberOfMessagesVisible
comparison_operator: LessThanThreshold
threshold: 100

load_balancer:
type: http

containers:
- name: ecstest

port_mappings:
- 5000
routing:
base_path: /mypath

dependencies:
- queue

queue:
type: sqs

26.4 Depending on this service

The ECS service cannot be referenced as a dependency for another Handel service

26.4. Depending on this service 103

Handel Documentation, Release 0.23.2

26.5 Events produced by this service

The ECS service does not produce events for other Handel services to consume.

26.6 Events consumed by this service

The ECS service does not consume events from other Handel services.

104 Chapter 26. ECS (Elastic Container Service)

CHAPTER 27

ECS Fargate

This page contains information about the ECS Fargate service supported in Handel. This Handel service provisions
your application code as an ECS Fargate Service, with included supporting infrastructure such as load balancers and
service auto-scaling groups.

Note: As of February 1, 2017, the AWS Fargate service available in the us-east-1 region.

27.1 Service Limitations

27.1.1 No EFS Support

Right now you can’t consume EFS services as dependencies in this service.

27.1.2 Unsupported ECS task features

This service currently does not support the following ECS task features:

• User-specified volumes from the EC2 host. You can specify services such as EFS that will mount a volume in
your container for you, however.

• Extra networking items such as manually specifying DNS Servers, DNS Search Domains, and extra hosts in the
/etc/hosts file

• Task definition options such as specifying an entry point, command, or working directory. These options are
available in your Dockerfile and can be specified there.

Important: This service only offers limited tagging support. ECS resources will not be tagged, but any load balancers
and the Cloudformation stack used to create them will be. See Tagging Unsupported Resources.

105

Handel Documentation, Release 0.23.2

27.2 Parameters

Parameter Type Re-
quired

De-
fault

Description

type string Yes This must always be ecs-fargate for this service type.’
max_mb integer No 512 The max total MB for all containers in your service. Valid values can

be found here
cpu_units integer No 256 The max CPU units to use for all containers in your service. Valid

values can be found here
containers Con-

tainers
Yes This section allows you to configure one or more containers that will

make up your service.
auto_scaling Au-

toScal-
ing

Yes This section contains information about scaling your tasks up and
down.

load_balancer Load-
Bal-
ancer

No If your task needs routing from a load balancer, this section can be
used to configure the load balancer’s options.

logging string No en-
abled

Turns CloudWatch logging on or off. Must be either “enabled” or
“disabled”. See Logging for more.

log_retention_in_daysnumber No 30 Configures the log retention duration for CloudWatch logs.
tags Re-

source
Tags

No This section allows you to specify any tags you wish to apply to your
ECS service.

27.2.1 Containers

The containers section is defined by the following schema:

containers:
- name: <string> # Required

image_name: <string> # Optional
port_mappings: # Optional, required if you specify 'routing'
- <integer>
links: # Optional
- <string> # Each value in the list should be the "name" field of another container

→˓in your containers list
routing: # Optional
base_path: <string> # Required
health_check_path: <string> # Optional. Default: /

environment_variables: # Optional
<string>: <string>

Note: You may currently only specify the routing section in a single container. Attempting to add routing to multiple
containers in a single service will result in an error. This is due to a current limitation in the integration between
Application Load Balancers (ALB) and ECS that only allows you to attach an ALB to a single container in your task.

Container Image Names

In each container, you may specify an optional image_name. If you want to pull a public image from somewhere like
DockerHub, just reference the image name:

106 Chapter 27. ECS Fargate

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ecs-taskdefinition.html#cfn-ecs-taskdefinition-memory
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ecs-taskdefinition.html#cfn-ecs-taskdefinition-cpuhttps://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ecs-taskdefinition.html

Handel Documentation, Release 0.23.2

dsw88/my-cool-image

If you want to reference an image in your AWS account’s EC2 Container Registry (ECR), reference it like this:

The <account> piece will be replaced with your account's long ECR repository name
<account>/my-cool-image

If you don’t specify an image_name, Handel will automatically choose an image name for you based on your Handel
naming information. It will use the following image naming pattern:

<appName>-<serviceName>-<containerName>:<environmentName>

For example, if you don’t specify an image_name in the below Example Handel Files, the two images ECS looks for
would be named the following:

my-ecs-app-webapp-mywebapp:dev
my-ecs-app-webapp-myothercontainer:dev

27.2.2 AutoScaling

The auto_scaling section is defined by the following schema:

auto_scaling:
min_tasks: <integer> # Required
max_tasks: <integer> # Required
scaling_policies: # Optional
- type: <up|down>
adjustment:

type: <string> # Optional. Default: 'ChangeInCapacity'. See http://docs.aws.
→˓amazon.com/ApplicationAutoScaling/latest/APIReference/API_
→˓StepScalingPolicyConfiguration.html for allowed values

value: <number> # Required
cooldown: <number> # Optional. Default: 300.

alarm:
namespace: <string> # Optional. Default: 'AWS/ECS'
dimensions: # Optional. Default: Your ECS service dimensions

<string>: <string>
metric_name: <string> # Required
comparison_operator: <string> # Required. See http://docs.aws.amazon.com/

→˓AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html#cfn-cloudwatch-
→˓alarms-comparisonoperator for allowed values.

threshold: <number> # Required
period: <number> # Optional. Default: 300
evaluation_periods: <number> # Optional. Default: 5

Tip: Auto-scaling in AWS is based off the CloudWatch service. Configuring auto-scaling can be a bit daunting at
first if you haven’t used CloudWatch metrics or alarms.

See the below Example Handel Files section for some examples of configuring auto-scaling.

Note: If you don’t wish to configure auto scaling for your containers, just set min_tasks = max_tasks and don’t
configure any scaling_policies.

27.2. Parameters 107

Handel Documentation, Release 0.23.2

27.2.3 LoadBalancer

The load_balancer section is defined by the following schema:

load_balancer:
type: <string> # Required. Allowed values: `http`, `https`.
timeout: <integer> # Optional. The connection timeout on the load balancer
https_certificate: <string> # Required if type=https. The ID of the ACM certificate

→˓to use on the load balancer.
dns_names:
- <string> # Optional.
health_check_grace_period: <integer> # Optional. Default: 15. The period of time,

→˓in seconds, that the Amazon ECS service scheduler ignores unhealthy Elastic Load
→˓Balancing target health checks after a task has first started.

The dns_names section creates one or more dns names that point to this load balancer. See DNS Records for more.

27.2.4 Logging

If logging is enabled, a CloudWatch log group will be created, with a name like fargate/<appName>-
<environmentName>-<serviceName>. Each container in the container configuration will have a log prefix matching
its name. The retention time for the log group is set with log_retention_in_days, and defaults to keeping the logs
indefinitely.

27.3 Example Handel Files

27.3.1 Simplest Possible Fargate Service

This Handel file shows an ECS service with only the required parameters:

version: 1

name: my-fargate-app

environments:
dev:
webapp:

type: ecs-fargate
auto_scaling:

min_tasks: 1
max_tasks: 1

containers:
- name: mywebapp

27.3.2 Web Service

This Handel file shows a Fargate service configured with HTTP routing to it via a load balancer:

version: 1

name: my-fargate-app

(continues on next page)

108 Chapter 27. ECS Fargate

Handel Documentation, Release 0.23.2

(continued from previous page)

environments:
dev:
webapp:

type: ecs-fargate
auto_scaling:

min_tasks: 1
max_tasks: 1

load_balancer:
type: http

containers:
- name: mywebapp

port_mappings:
- 5000
routing:
base_path: /mypath
health_check_path: /

27.3.3 Multiple Containers

This Handel file shows a Fargate service with two containers being configured:

version: 1

name: my-fargate-app

environments:
dev:
webapp:

type: ecs-fargate
auto_scaling:

min_tasks: 1
max_tasks: 1

load_balancer:
type: http
timeout: 120

tags:
mytag: myvalue

containers:
- name: mywebapp

port_mappings:
- 5000
environment_variables:
MY_VAR: myvalue

routing:
base_path: /mypath
health_check_path: /

- name: myothercontainer

27.3.4 Auto-Scaling On Service CPU Utilization

This Handel file shows a Fargate service auto-scaling on its own CPU Utilization metric. Note that in the alarm section
you can leave off things like namespace and dimensions and it will default to your Fargate service for those values:

27.3. Example Handel Files 109

Handel Documentation, Release 0.23.2

version: 1

name: my-fargate-app

environments:
dev:
webapp:

type: ecs-fargate
auto_scaling:

min_tasks: 1
max_tasks: 11
scaling_policies:
- type: up
adjustment:

value: 5
alarm:

metric_name: CPUUtilization
comparison_operator: GreaterThanThreshold
threshold: 70

- type: down
adjustment:
value: 5

alarm:
metric_name: CPUUtilization
comparison_operator: LessThanThreshold
threshold: 30

load_balancer:
type: http

containers:
- name: fargatetest

port_mappings:
- 5000
routing:
base_path: /mypath

27.3.5 Auto-Scaling On Queue Size

This Handel file shows an ECS service scaling off the size of a queue it consumes:

version: 1

name: my-fargate-app

environments:
dev:
webapp:

type: ecs-fargate
auto_scaling:

min_tasks: 1
max_tasks: 11
scaling_policies:
- type: up
adjustment:

value: 5
alarm:

namespace: AWS/SQS
(continues on next page)

110 Chapter 27. ECS Fargate

Handel Documentation, Release 0.23.2

(continued from previous page)

dimensions:
QueueName: my-fargate-app-dev-queue-sqs

metric_name: ApproximateNumberOfMessagesVisible
comparison_operator: GreaterThanThreshold
threshold: 2000

- type: down
adjustment:
value: 5

alarm:
namespace: AWS/SQS
dimensions:
QueueName: my-fargate-app-dev-queue-sqs

metric_name: ApproximateNumberOfMessagesVisible
comparison_operator: LessThanThreshold
threshold: 100

load_balancer:
type: http

containers:
- name: fargatetest

port_mappings:
- 5000
routing:
base_path: /mypath

dependencies:
- queue

queue:
type: sqs

27.4 Depending on this service

The ECS Fargate service cannot be referenced as a dependency for another Handel service

27.5 Events produced by this service

The ECS Fargate service does not produce events for other Handel services to consume.

27.6 Events consumed by this service

The ECS Fargate service does not consume events from other Handel services.

27.4. Depending on this service 111

Handel Documentation, Release 0.23.2

112 Chapter 27. ECS Fargate

CHAPTER 28

EFS (Elastic File System)

This page contains information about using the EFS (Elastic File System) service in Handel. This service provides an
EFS mount for use by other compute services such as ElasticBeanstalk and ECS.

28.1 Service Limitations

28.1.1 No Update Support

This service intentionally does not support updates. Once a file system is created, updates to it (like changing the
performance mode) will cause a new file system to be created and the old one deleted. In an effort to avoid unwanted
data loss, we don’t update this service automatically.

28.2 Parameters

Parameter Type Re-
quired

Default Description

type string Yes This must always be efs for this service type.
perfor-
mance_mode

string No gen-
eral_purpose

What kind of performance for the EFS mount. Allowed val-
ues: general_purpose, max_io

tags Resource
Tags

No Any tags you wish to apply to this EFS mount.

28.3 Example Handel File

113

Handel Documentation, Release 0.23.2

version: 1

name: my-efs-app

environments:
dev:
webapp:

type: efs
performance_mode: general_purpose
tags:

mytag: myvalue

28.4 Depending on this service

The EFS service outputs the following environment variables:

Environment Variable Description
<SERVICE_NAME>_MOUNT_DIR The directory on the host where the EFS volume was mounted.

See Environment Variable Names for information about how the service name is included in the environment variable
name.

28.5 Events produced by this service

The EFS service does not produce events for other Handel services to consume.

28.6 Events consumed by this service

The EFS service does not consume events from other Handel services.

114 Chapter 28. EFS (Elastic File System)

CHAPTER 29

Elasticsearch

This page contains information about using the Elasticsearch service in Handel. This service provides an Amazon
ElasticSearch cluster.

Warning: This provisioner is new and should be considered in beta. It is subject to breaking changes until this
beta label is removed.

29.1 Service Limitations

29.1.1 No Zone Awareness Support

Currently Elasticsearch clusters are only deployed in a single Availability Zone (AZ), and there is no support for the
two-AZ zone awareness support.

29.1.2 No Kibana Support

While Kibana is deployed with the Elasticsearch cluster, there is currently no way for you to access it since the cluster
does not have wide-open security permissions and Cognito authentication isn’t supported.

115

Handel Documentation, Release 0.23.2

29.2 Parameters

Param-
eter

Type Re-
quired

Default Description

type string Yes This must always be elasticsearch for this service type.
version number Yes The version number of ElasticSearch to use. See Supported Elas-

ticsearch Versions for more details
in-
stance_type

string No t2.small.elasticsearchThe size of database instance to run. See Elasticsearch Pricing for
the allowed instance types.

in-
stance_count

number No 1 The number of instances to run in your cluster.

ebs EBS No This section is required if you specify an instance type that uses
EBS storage instead of the instance store.

mas-
ter_node

Mas-
terNode

No If you specify this section, you will configure a master node clus-
ter to handle cluster management operations.

tags Re-
source
Tags

No Any tags you wish to apply to this Elasticsearch cluster.

29.2.1 EBS

The ebs section is defined by the following schema:

ebs:
size_gb: <number> # Required. The size of the EBS disk in GB
provisioned_iops: <number> # Optional. The number of provisioned IOPS you want to

→˓dedicate to the EBS disk.

Important: Each instance type has different values for the allowed values of the size_gb parameter. See EBS Volume
Size Limits for the allowed values for each instance type

29.2.2 MasterNode

The master_node section is defined by the following schema:

master_node:
instance_type: <string> # Required
instance_count: <number> # Required

Note: Amazon recommends using master nodes to increase cluster stability. See Dedicated Master Nodes for their
recommendations.

29.3 IAM Authentication

Your ElasticSearch cluster requires IAM authentication to your Elasticsearch endpoint. This is done using AWS’
signature version 4 signing process. Each HTTP request to Elasticsearch must include the signature headers required

116 Chapter 29. Elasticsearch

https://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/what-is-amazon-elasticsearch-service.html#aes-choosing-version
https://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/what-is-amazon-elasticsearch-service.html#aes-choosing-version
https://aws.amazon.com/elasticsearch-service/pricing/
https://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/aes-limits.html#ebsresource
https://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/aes-limits.html#ebsresource
https://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/es-managedomains-dedicatedmasternodes.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

Handel Documentation, Release 0.23.2

by AWS to validate your IAM role identity.

See AWS’ Programmatic Indexing page for information about how perform this authentication in various languages.

29.4 Example Handel File

version: 1

name: elasticsearch-test

environments:
dev:
search:

type: elasticsearch
version: 6.2
instance_type: t2.small.elasticsearch
instance_count: 1
ebs:

size_gb: 10

29.5 Depending on this service

The Elasticsearch service outputs the following environment variables:

Environment Variable Description
<SERVICE_NAME>_DOMAIN_ENDPOINT The address that you should use to communicate with the cluster.
<SERVICE_NAME>_DOMAIN_NAME The name of your Elasticsearch domain.

See Environment Variable Names for information about how the service name is included in the environment variable
name.

29.6 Events produced by this service

The Elasticsearch service does not produce events for other Handel services to consume.

29.7 Events consumed by this service

The Elasticsearch service does not consume events from other Handel services.

29.4. Example Handel File 117

https://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/es-indexing-programmatic.html

Handel Documentation, Release 0.23.2

118 Chapter 29. Elasticsearch

CHAPTER 30

IoT

This document contains information about the IoT service supported in Handel. This Handel service currently provi-
sions IoT topic rules that can invoke things like Lambda functions.

30.1 Service Limitations

This Handel service is quite new, and as such doesn’t support all of IoT yet. In particular, the following are not
supported:

• Creating IoT Things.

• Creating IoT Certificates.

• Creating IoT Policies.

Important: This service only offers limited tagging support. IoT resources will not be tagged, but the Cloudformation
stack used to create them will be. See Tagging Unsupported Resources.

30.2 Parameters

Pa-
rame-
ter

Type Re-
quired

Default Description

type string Yes This must always be iot for this service type.
de-
scrip-
tion

string No AWS IoT rule created
by Handel

The description you would like to be applied to the IoT
rule.

tags Resource
Tags

No Tags to be applied to the Cloudformation stack which
provisions this resource.

119

Handel Documentation, Release 0.23.2

30.3 Example Handel File

The following example shows setting up an IoT topic rule to produce to a Lambda:

version: 1

name: my-topic-rule

environments:
dev:
topicrule:

type: iot
event_consumers:
- service_name: function

sql: "select * from 'something';"
function:

type: lambda
path_to_code: .
handler: index.handler
runtime: nodejs6.10

30.4 Depending on this service

The IoT service cannot currently be specified as a dependency by any other services. It is currently only functioning
as an event producer for other services such as Lambda.

30.5 Events produced by this service

The IoT service can produce events to the following service types:

• Lambda

30.5.1 Event consumer parameters

When specifying event consumers on the IoT service, you may specify the following parameters:

Param-
eter

Type Re-
quired

Default Description

ser-
vice_name

string Yes This is the name of the service in your Handel file to which
you would like to produce events.

sql string Yes This is where you specify the IoT-compatible SQL statement
that will cause your rule to fire.

descrip-
tion

string No AWS IoT rule cre-
ated by Handel.

The description for the topic rule payload.

rule_disabled:booleanNo false This defines whether the topic rule is currently enabled or
disabled.

120 Chapter 30. IoT

http://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-reference.html

Handel Documentation, Release 0.23.2

30.6 Events consumed by this service

The IoT service cannot currently consume events from other services.

30.6. Events consumed by this service 121

Handel Documentation, Release 0.23.2

122 Chapter 30. IoT

CHAPTER 31

KMS (Key Management Service)

This document contains information about the KMS service supported in Handel. This Handel service provisions a
KMS key and alias for use by your applications.

31.1 Service Limitations

This service currently does not allow creating disabled keys. It also uses IAM instead of custom Key Policies to control
access to the key, as key policies can easily make keys unmanageable.

While the AWS API allows for multiple aliases to point to a single key, this service matches the AWS Console in
enforcing a one-to-one relationship between keys.

Important: This service only offers limited tagging support. KMS Keys will not be tagged, but the Cloudformation
stack used to create them will be. See Tagging Unsupported Resources.

31.2 Parameters

This service takes the following parameters:

123

Handel Documentation, Release 0.23.2

Pa-
ram-
eter

Type Re-
quired

Default Description

type string Yes This must always be kms for this service type.
alias string No <app-

Name>/<environmentName>/<serviceName>
The name of the alias to create. This name must be unique
across the account and region in which the key is deployed.

auto_rotateboolean No true Whether to allow AWS to auto-rotate the underlying Mas-
ter Key.

tags Re-
source
Tags

No Tags to be applied to the Cloudformation stack which pro-
visions this resource.

31.3 Example Handel File

This Handel file shows a KMS key being configured:

version: 1

name: my-app

environments:
dev:
mykey:

type: kms
because we don't specify an alias, the alias will be my-app/dev/mykey (see

→˓above)
auto_rotate: true

31.4 Depending on this service

This service outputs the following environment variables:

Environment Variable Description
<SERVICE_NAME>_KEY_ID The id of the created key
<SERVICE_NAME>_KEY_ARN The ARN of the created key
<SERVICE_NAME>_ALIAS_NAME The name of the created alias
<SERVICE_NAME>_ALIAS_ARN The ARN of the created alias

See Environment Variable Names for information about how the service name is included in the environment variable
name.

31.5 Events produced by this service

The KMS service does not currently produce events for other Handel services. Support for producing events upon key
rotation is planned for the future.

124 Chapter 31. KMS (Key Management Service)

Handel Documentation, Release 0.23.2

31.6 Events consumed by this service

The KMS service does not consume events from other Handel services.

31.6. Events consumed by this service 125

Handel Documentation, Release 0.23.2

126 Chapter 31. KMS (Key Management Service)

CHAPTER 32

Lambda

This document contains information about the Lambda service supported in Handel. This Handel service provisions
an Lambda function. You can reference this function in other services as an event consumer, which will invoke the
function when events occur.

32.1 Service Limitations

The following Lambda features are not currently supported in this service:

• Encrypting environment variables with KMS keys

127

Handel Documentation, Release 0.23.2

32.2 Parameters

Param-
eter

Type Re-
quired

Default Description

type string Yes This must always be lambda for this service type.
path_to_codestring Yes The location of your code to upload to Lambda. This can be a directory

(which will be zipped up) or a single file (such as a deployable Java
WAR file or pre-existing zip file)

handler string Yes The handler function in your code that is the entry-point to the
Lambda.

runtime string Yes The Lambda runtime that will execute your code
descrip-
tion

string No Handel-
created
function

The configuration description of your function

memory number No 128 The amount of memory to allocate for your function
timeout number No 3 The timeout in seconds for your function. Max 300
vpc boolean No false If true, the lambda will be deployed inside your VPC. Inside your

VPC, it will be able to communicate with resources like RDS
databases and ElastiCache clusters.

environ-
ment_variables

Environ-
ment-
Vari-
ables

No Any environment variables you want to inject into your code.

tags Re-
source
Tags

No Any tags you want to apply to your Lambda

32.2.1 EnvironmentVariables

The EnvironmentVariables element is defined by the following schema:

environment_variables:
<YOUR_ENV_NAME>: <your_env_value>

<YOUR_ENV_NAME> is a string that will be the name of the injected environment variable. <your_env_value> is
its value. You may specify an arbitrary number of environment variables in this section.

32.3 Example Handel File

version: 1

name: my-lambda

environments:
dev:
webapp:

type: lambda
path_to_code: .
handler: index.handler
runtime: nodejs6.10

(continues on next page)

128 Chapter 32. Lambda

https://www.google.com/search?q=aws+lambda+zip+deployment+package
https://www.google.com/search?q=aws+lambda+handler
http://docs.aws.amazon.com/lambda/latest/dg/API_CreateFunction.html#SSS-CreateFunction-request-Runtime
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html#cfn-lambda-function-memorysize

Handel Documentation, Release 0.23.2

(continued from previous page)

environment_variables:
MY_ENV: myEnvValue

tags:
mytag: mytagvalue

32.4 Running a scheduled Lambda

To run a scheduled Lambda, you can use this service in conjunction with the CloudWatch Events service. See the
Scheduled Lambda on the CloudWatch Events service for details on how to do this.

32.5 Depending on this service

The Lambda service outputs the following environment variables:

Environment Variable Description
<SERVICE_NAME>_FUNCTION_NAME The name of the created Lambda function
<SERVICE_NAME>_FUCNTION_ARN The ARN of the created Lambda function

See Environment Variable Names for information about how the service name is included in the environment variable
name.

32.6 Events produced by this service

The Lambda service does not currently produce events for other Handel services to consume.

32.7 Events consumed by this service

The Lambda service can consume events from the following service types:

• Alexa Skill Kit

• CloudWatch Events

• DynamoDB

• IoT

• S3

• SNS

32.4. Running a scheduled Lambda 129

Handel Documentation, Release 0.23.2

130 Chapter 32. Lambda

CHAPTER 33

Memcached (ElastiCache)

This page contains information about using the Memcached service in Handel. This service provides a Memcached
cluster via the ElastiCache service.

33.1 Service Limitations

33.1.1 No Scheduled Maintenance Window Configuration

This service currently doesn’t allow you to change the maintenance window for your Memcached cluster.

33.1.2 No Snapshot Window Configuration

This service currently doesn’t allow you to change the snapshot window for your Memcached cluster.

33.1.3 No Restoration From Snapshot

This service currently doesn’t allow you to launch a cluster from a previous cluster snapshot.

131

Handel Documentation, Release 0.23.2

33.2 Parameters

Parame-
ter

Type Re-
quired

Default Description

type string Yes This must always be memcached for this service type.
in-
stance_type

string Yes The size of each Memcached instance in your cluster. See Choos-
ing Your Node Size for more details.

mem-
cached_version

string Yes The version of Memcached to run. See Comparing Memcached
Versions for a list of available versions.

descrip-
tion

string No Parameter
group for
cluster.

The parameter group description of your cluster.

node_count number No 1 The number of memcached nodes you want in your cluster.
cache_parametersMap<string,string>No Any cache parameters you wish for your Memcached cluster. See

Memcached Specific Parameters for the list of parameters you can
provide.

tags Re-
source
Tags

No Any tags you wish to apply to this Memcached cluster.

Warning: Note that having more than 1 node in your cluster will greatly increase your cost. Each node you add
to the cluster adds a full cache instance type node cost to your cluster cost.

For example, if you have a Memcached cluster of size 1, using a cache.m4.large instance, it will cost about
$112/month.

If you have that same cache.m4.large type, but with a cluster size of 4, it will cost about $448/month since you are
being charged for four full Memcached instances.

Be careful to calculate how much this service will cost you if you are using a cluster of more than 1 node.

33.3 Example Handel File

version: 1

name: my-memcached-cluster

environments:
dev:
cache:

type: memcached
instance_type: cache.m3.medium
memcached_version: 1.4.34
node_count: 1
cache_parameters:

cas_disabled: 1
tags:

mytag: myvalue

132 Chapter 33. Memcached (ElastiCache)

http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/CacheNodes.SelectSize.html
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/CacheNodes.SelectSize.html
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/SelectEngine.MemcachedVersions.html
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/SelectEngine.MemcachedVersions.html
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/ParameterGroups.Memcached.html

Handel Documentation, Release 0.23.2

33.4 Depending on this service

The Memcached service outputs the following environment variables:

Environment Variable Description
<SERVICE_NAME>_ADDRESS The DNS name of the Memcached configuration endpoint address.
<SERVICE_NAME>_PORT The port on which the Memcached cluster is listening.

See Environment Variable Names for information about how the service name is included in the environment variable
name.

33.5 Events produced by this service

The Memcached service does not produce events for other Handel services to consume.

33.6 Events consumed by this service

The Memcached service does not consume events from other Handel services.

33.4. Depending on this service 133

Handel Documentation, Release 0.23.2

134 Chapter 33. Memcached (ElastiCache)

CHAPTER 34

MySQL (RDS)

This page contains information about using the MySQL service in Handel. This service provides a MySQL database
via the RDS service.

34.1 Service Limitations

34.1.1 No Option Group Support

This service doesn’t allow you to specify any custom options in an option group. It does allow you specify custom
parameters in a parameter group, however.

34.1.2 No Update Support

This service intentionally does not support updates. Once a database is created, certain updates to the database will
cause a new database to be created and the old one deleted. In an effort to avoid unwanted data loss, we don’t update
this service automatically. You can still modify the database and parameter group manually in the AWS console.

Warning: Make sure you know what you’re doing when you modify your RDS database in the AWS Console.
Certain actions will cause database downtime, and some may even cause the database to be recreated.

135

Handel Documentation, Release 0.23.2

34.2 Parameters

Pa-
rame-
ter

Type Re-
quired

De-
fault

Description

type string Yes This must always be mysql for this service type.
mysql_versionstring Yes The version of MySQL you wish to run. See MySQL on Amazon RDS for

the list of supported versions.
database_namestring Yes The name of your database in your MySQL instance.
de-
scrip-
tion

string No Param-
eter
group.

The parameter group description.

in-
stance_type

string No db.t2.microThe size of database instance to run. See DB Instance Class for information
on choosing an instance type.

stor-
age_gb

number No 5 The number of Gigabytes (GB) of storage to allocate to your database.

stor-
age_type

string No stan-
dard

The type of storage to use, whether magnetic or SSD. Allowed values:
‘standard’, ‘gp2’.

multi_az boolean No false Whether or not the deployed database should be Multi-AZ. Note: Using
Multi-AZ increases the cost of your database.

db_parametersmap<string,
string>

No A list of key/value MySQL parameter group pairs to configure your
database. You will need to look in the AWS Console to see the list of
available parameters for MySQL.

tags Re-
source
Tags

No Any tags you wish to apply to this MySQL instance.

Warning: Be aware that large database instances are very expensive. The db.cr1.8xl instance type, for example,
costs about $3,400/month. Make sure you check how much you will be paying!

You can use the excellent EC2Instances.info site to easily see pricing information for RDS databases.

34.3 Example Handel File

version: 1

name: my-mysql-instance

environments:
dev:
database:

type: mysql
database_name: mydb
instance_type: db.t2.micro
storage_gb: 5
mysql_version: 5.6.27
storage_type: standard
db_parameters:

autocommit: 1

(continues on next page)

136 Chapter 34. MySQL (RDS)

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_MySQL.html#MySQL.Concepts.VersionMgmt
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html
http://www.ec2instances.info/rds/

Handel Documentation, Release 0.23.2

(continued from previous page)

tags:
mytag: myvalue

34.4 Depending on this service

The MySQL service outputs the following environment variables:

Environment Variable Description
<SERVICE_NAME>_ADDRESS The DNS name of the MySQL database address.
<SERVICE_NAME>_PORT The port on which the MySQL instance is listening.
<SERVICE_NAME>_DATABASE_NAME The name of the database in your MySQL instance.

See Environment Variable Names for information about how the service name is included in the environment variable
name.

In addition, the MySQL service puts the following credentials into the EC2 parameter store:

Parameter Name Description
<parameter_prefix>.<service_name>.db_username The username for your database user.
<parameter_prefix>.<service_name>.db_password The password for your database user.

Note: The <parameter_prefix> section of the parameter name is a consistent prefix applied to all parameters injected
by services in the EC2 Parameter Store. See Parameter Store Prefix for information about the structure of this prefix.

The <service_name> section of the parameter name should be replaced by the service name you gave your database
in your Handel file.

34.5 Events produced by this service

The MySQL service does not produce events for other Handel services to consume.

34.6 Events consumed by this service

The MySQL service does not consume events from other Handel services.

34.4. Depending on this service 137

Handel Documentation, Release 0.23.2

138 Chapter 34. MySQL (RDS)

CHAPTER 35

Neptune

This page contains information about using the Neptune service in Handel. This service provides a Neptune graph
database cluster.

Warning: This provisioner is new and should be considered in beta. It is subject to breaking changes until this
beta label is removed.

35.1 Service Limitations

35.1.1 No Update Support

This service intentionally does not support updates. Once a database is created, certain updates to the database will
cause a new database to be created and the old one deleted. In an effort to avoid unwanted data loss, we don’t update
this service automatically. You can still modify the database and parameter group manually in the AWS console.

Warning: Make sure you know what you’re doing when you modify your Neptune database in the AWS Console.
Certain actions will cause database downtime, and some may even cause the database to be recreated.

139

Handel Documentation, Release 0.23.2

35.2 Parameters

Pa-
rame-
ter

Type Re-
quired

De-
fault

Description

type string Yes This must always be neptune for this service type.
de-
scrip-
tion

string No The description on the resources created for the cluster

in-
stance_type

string No db.r4.largeThe size of database instance to run. See Neptune pricing for the allowed
instance types.

clus-
ter_size

num-
ber

No 1 The number of instances (including the primary) to run in your cluster.

iam_auth_enabledboolean No true Whether your Neptune cluster should have IAM authentication enabled.
NOTE: If you specify false, your Neptune instance will be writeable by anyone
inside your VPC.

clus-
ter_parameters

map<string,
string>

No A list of key/value Neptune cluster parameter group pairs to configure your
cluster. You will need to look in the AWS Console to see the list of available
cluster parameters for Neptune.

in-
stance_parameters

map<string,
string>

No A list of key/value Neptune instance parameter group pairs to configure the
instances in your cluster. You will need to look in the AWS Console to see the
list of available instance parameters for Neptune.

tags Re-
source
Tags

No Any tags you wish to apply to this Neptune cluster.

Warning: Be aware that Neptune clusters can be very expensive. A cluster with 3 db.r4.2xlarge instances in it
will cost about about $3,000/month. Make sure you check how much you will be paying!

35.3 Example Handel File

version: 1

name: neptune-test

environments:
dev:
database:

type: neptune
instance_type: db.r4.large
cluster_size: 3
cluster_parameters: # This is where you can set parameters that configure the

→˓cluster as a whole
neptune_enable_audit_log: 0

instance_parameters: # This is where you can set parameters that apply to each
→˓instance.

neptune_query_timeout: 120000
tags:

some: tag

140 Chapter 35. Neptune

https://aws.amazon.com/neptune/pricing/

Handel Documentation, Release 0.23.2

35.4 Depending on this service

The Neptune service outputs the following environment variables:

Environment Variable Description
<SERVICE_NAME>_CLUSTER_ENDPOINT The address that you should use for writes to the database.
<SERVICE_NAME>_READ_ENDPOINT The address that you should use for reads to the database.
<SERVICE_NAME>_PORT The port on which the Neptune cluster instances are listening.

See Environment Variable Names for information about how the service name is included in the environment variable
name.

35.5 Events produced by this service

The Neptune service does not produce events for other Handel services to consume.

35.6 Events consumed by this service

The Neptune service does not consume events from other Handel services.

35.4. Depending on this service 141

Handel Documentation, Release 0.23.2

142 Chapter 35. Neptune

CHAPTER 36

PostgreSQL (RDS)

This page contains information about using the PostgreSQL service in Handel. This service provides a PostgreSQL
database via the RDS service.

36.1 Service Limitations

36.1.1 No Option Group Support

This service doesn’t allow you to specify any custom options in an option group. It does allow you specify custom
parameters in a parameter group, however.

36.1.2 No Update Support

This service intentionally does not support updates. Once a database is created, certain updates to the database will
cause a new database to be created and the old one deleted. In an effort to avoid unwanted data loss, we don’t update
this service automatically. You can still modify the database and parameter group manually in the AWS console.

Warning: Make sure you know what you’re doing when you modify your RDS database in the AWS Console.
Certain actions will cause database downtime, and some may even cause the database to be recreated.

143

Handel Documentation, Release 0.23.2

36.2 Parameters

Pa-
rame-
ter

Type Re-
quired

De-
fault

Description

type string Yes This must always be postgresql for this service type.
database_namestring Yes The name of your database in your PostgreSQL instance.
post-
gres_version

string Yes The version of PostgreSQL you wish to run. See PostgreSQL on Amazon
RDS for the list of supported versions.

de-
scrip-
tion

string No Param-
eter
group.

The parameter group description.

in-
stance_type

string No db.t2.microThe size of database instance to run. See DB Instance Class for information
on choosing an instance type.

stor-
age_gb

number No 5 The number of Gigabytes (GB) of storage to allocate to your database.

stor-
age_type

string No stan-
dard

The type of storage to use, whether magnetic or SSD. Allowed values:
‘standard’, ‘gp2’.

multi_az boolean No false Whether or not the deployed database should be Multi-AZ. Note: Using
Multi-AZ increases the cost of your database.

db_parametersmap<string,
string>

No A list of key/value PostgreSQL parameter group pairs to configure your
database. You will need to look in the AWS Console to see the list of
available parameters for PostgreSQL.

tags Re-
source
Tags

No Any tags you wish to apply to this PostgreSQL instance.

Warning: Be aware that large database instances are very expensive. The db.cr1.8xl instance type, for example,
costs about $3,400/month. Make sure you check how much you will be paying!

You can use the excellent EC2Instances.info site to easily see pricing information for RDS databases.

36.3 Example Handel File

version: 1

name: my-postgres-instance

environments:
dev:
database:

type: postgresql
database_name: mydb
instance_type: db.t2.micro
storage_gb: 5
postgres_version: 9.6.2
storage_type: standard
db_parameters:

authentication_timeout: 600

(continues on next page)

144 Chapter 36. PostgreSQL (RDS)

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.DBVersions
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.DBVersions
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html
http://www.ec2instances.info/rds/

Handel Documentation, Release 0.23.2

(continued from previous page)

tags:
mytag: myvalue

36.4 Depending on this service

The PostgreSQL service outputs the following environment variables:

Environment Variable Description
<SERVICE_NAME>_ADDRESS The DNS name of the PostgreSQL database address.
<SERVICE_NAME>_PORT The port on which the PostgreSQL instance is listening.
<SERVICE_NAME>_DATABASE_NAME The name of the database in your PostgreSQL instance.

See Environment Variable Names for information about how the service name is included in the environment variable
name.

In addition, the PostgreSQL service puts the following credentials into the EC2 parameter store:

Parameter Name Description
<parameter_prefix>.<service_name>.db_username The username for your database user.
<parameter_prefix>.<service_name>.db_password The password for your database user.

Note: The <parameter_prefix> section of the parameter name is a consistent prefix applied to all parameters injected
by services in the EC2 Parameter Store. See Parameter Store Prefix for information about the structure of this prefix.

The <service_name> section of the parameter name should be replaced by the service name you gave your database
in your Handel file.

36.5 Events produced by this service

The PostgreSQL service does not produce events for other Handel services to consume.

36.6 Events consumed by this service

The PostgreSQL service does not consume events from other Handel services.

36.4. Depending on this service 145

Handel Documentation, Release 0.23.2

146 Chapter 36. PostgreSQL (RDS)

CHAPTER 37

Redis (ElastiCache)

This page contains information about using the Redis service in Handel. This service provides a Redis cluster via the
ElastiCache service.

37.1 Service Limitations

37.1.1 No Cluster Mode Support

This service currently does not support using Redis in cluster mode. It does support replication groups with a primary
node and 1 or more read replicas, but it doesn’t yet support Redis’ cluster mode sharding.

37.1.2 No Restoration From Snapshot

This service currently doesn’t allow you to launch a cluster from a previous cluster snapshot.

147

Handel Documentation, Release 0.23.2

37.2 Parameters

Pa-
rame-
ter

Type Re-
quired

De-
fault

Description

type string Yes This must always be redis for this service type.
in-
stance_type

string Yes The size of each Redis instance in your cluster. See Choosing Your Node Size
for more details.

re-
dis_version

string Yes The version of Redis to run. See Comparing Redis Versions for a list of
available versions.

de-
scrip-
tion

string No Pa-
ram-
eter
group.

The redis group description.

mainte-
nance_window

string No The weekly time range (in UTC) during which ElastiCache may peform
maintenance on the node group. For example, you can specify Sun:05:00-
Tue:09:00.

read_replicasnum-
ber

No 0 The number of read replicas you want to provision. Allowed values: 0-5.

snap-
shot_window

string No The daily time range (in UTC) during which ElastiCache will begin taking a
daily snapshot of your node group. For example, you can specify 05:00-09:00.
This feature is not available on the t2 and t1 instance types.

cache_parametersMap<string,string>No Any cache parameters you wish for your Redis cluster. See Redis Specific
Parameters for the list of parameters you can provide.

tags Re-
source
Tags

No Any tags you wish to apply to this Redis cluster.

Warning: If you use read replicas, be aware that it will greatly increase your cost. Each read replica you use adds
the full cost of another Redis node.

For example, if you have a single cache.m4.large Redis instance with no read replicas, it will cost about
$112/month.

If you have that same cache.m4.large type, but with 1 read replica, it will cost you double at about $224/month
since you are being charged for two full Redis instances.

Taken to its extreme, a cache.m4.large with 5 read replicas will cost about $673/month. Be careful to calculate
how much this service will cost you if you are using read replicas

37.3 Example Handel File

version: 1

name: my-redis-cluster

environments:
dev:
cache:

type: redis

(continues on next page)

148 Chapter 37. Redis (ElastiCache)

http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/CacheNodes.SelectSize.html
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/SelectEngine.RedisVersions.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/ParameterGroups.Redis.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/ParameterGroups.Redis.html

Handel Documentation, Release 0.23.2

(continued from previous page)

instance_type: cache.m3.medium
redis_version: 3.2.4
read_replicas: 1
cache_parameters:

activerehashing: 'no'
tags:

mytag: myvalue

37.4 Depending on this service

The Redis service outputs the following environment variables:

Environment Variable Description
<SERVICE_NAME>_ADDRESS The DNS name of the primary Redis node
<SERVICE_NAME>_PORT The port on which the primary Redis node is listening.

See Environment Variable Names for information about how the service name is included in the environment variable
name.

37.5 Events produced by this service

The Redis service does not produce events for other Handel services to consume.

37.6 Events consumed by this service

The Redis service does not consume events from other Handel services.

37.4. Depending on this service 149

Handel Documentation, Release 0.23.2

150 Chapter 37. Redis (ElastiCache)

CHAPTER 38

Route 53 Hosted Zone

This document contains information about the Route 53 Hosted Zone service supported in Handel. This Handel service
provisions a Route 53 Hosted Zone, in which you can create other DNS records.

38.1 Service Limitations

The following Route 53 features are not currently supported in this service:

• Domain Name Registration

38.2 Manual Steps

If you are creating a public zone as a subdomain of another domain (like myapp.mydomain.com), you must register it
with your DNS provider.

If you are using Handel for your work at a company or organization of some kind, they likely have a process for
registering these hosted zones with their DNS provider. Check with the networking groups in your organization to find
out how you can do this.

151

Handel Documentation, Release 0.23.2

38.3 Parameters

Pa-
rame-
ter

Type Re-
quired

De-
fault

Description

type string Yes This must always be route53zone for this service type.
name string Yes The DNS name for this hosted zone.
private boolean No false Whether or not this is a private zone. If it is a private zone, it is only

accessible by the VPC in your account config file.
tags Re-

source
Tags

No Any tags you want to apply to your Hosted Zone

38.4 Example Handel File

version: 1

name: my-dns

environments:
dev:
public-zone:

type: route53zone
name: mydomain.example.com
tags:

mytag: mytagvalue
private-zone:

type: route53zone
name: private.myapp # Doesn't have to have a normal top-level domain
private: true
tags:

mytag: mytagvalue

38.5 Depending on this service

This service outputs the following environment variables:

Environment Variable Description
<SER-
VICE_NAME>_ZONE_NAME

The DNS name of hosted zone.

<SERVICE_NAME>_ZONE_ID The id of the hosted zone
<SER-
VICE_NAME>_ZONE_NAME_SERVERS

A comma-delimited list of the name servers for this hosted zone. For example:
ns1.example.com,ns2.example.co.uk

See Environment Variable Names for information about how the service name is included in the environment variable
name.

152 Chapter 38. Route 53 Hosted Zone

Handel Documentation, Release 0.23.2

38.5.1 DNS Records

Certain supported services can create an alias record in this zone. The currently supported services are:

• API Gateway

• Beanstalk

• ECS

• ECS (Fargate)

• S3 Static Site

API Gateway, Beanstalk, ECS, and ECS (Fargate) can support multiple DNS entries.

See the individual service documentation for how to define the DNS names.

The DNS name must either match or be a subdomain of an existing Route 53 hosted zone name. If the hosted zone is
configured in the same Handel environment, you must declare it as a dependency of the service consuming it, so that
Handel can make sure that your resources are constructed in the right order.

version: 1

name: my-app

environments:
dev:
dns:

type: route53zone
name: myapp.example.com

private-dns:
type: route53zone
name: internal.myapp
private: true

beanstalk-app:
type: beanstalk
routing:

type: http
dns_names:
- beanstalk.mymapp.example.com

...
dependencies:

- dns
ecs-app:

type: ecs
load_balancer:

type: http
dns_names:
- ecs.myapp.example.com
- ecs.internal.myapp

...
dependencies:

- dns
- private-dns

another-beanstalk:
type: beanstalk
routing:

type: http
dns_names:

(continues on next page)

38.5. Depending on this service 153

Handel Documentation, Release 0.23.2

(continued from previous page)

- mysite.example.com # This requires that a hosted zone for mysite.example.
→˓com have already been configured.

...

38.6 Events produced by this service

The Route 53 Hosted Zone service does not currently produce events for other Handel services to consume.

38.7 Events consumed by this service

The Route 53 Hosted Zone service does not currently consume events from other Handle services.

154 Chapter 38. Route 53 Hosted Zone

CHAPTER 39

S3 (Simple Storage Service)

This document contains information about the S3 service supported in Handel. This Handel service provisions an S3
bucket for use by your applications.

Note: For static websites in S3, see the S3 Static Site service.

39.1 Service Limitations

This service currently only provisions a bare-bones S3 bucket for data storage. It does support versioning, but the
following other features are not currently supported:

• CORS configuration

• Bucket logging

• Cross-region replication

39.2 Parameters

This service takes the following parameters:

155

Handel Documentation, Release 0.23.2

Pa-
ram-
e-
ter

Type Re-
quired

Default Description

type string Yes This must always be s3 for this service type.
bucket_namestring No <appName>-

<environmentName>-
<serviceName>-
<serviceType>

The name of the bucket to create. This name must be globally unique across
all AWS accounts, so ‘myBucket’ will likely be taken. :)

bucket_aclstring No Warning: A canned access control list (ACL) that grants predefined per-
missions to the bucket. These are global permissions ie, PublicRead means
the bucket is open to the world. Allowed values: AuthenticatedRead,
AwsExecRead, BucketOwnerRead, BucketOwnerFullControl, LogDelivery-
Write, Private, PublicRead

ver-
sion-
ing

string No disabled Whether to enable versioning on the bucket. Allowed values: enabled,
disabled

log-
ging

string No disabled Whether to enable logging on the bucket. Allowed values: enabled, dis-
abled.

life-
cy-
cles

Life-
cy-
cles

No Lifecycle Policies to apply to the bucket. See AWS Docs for more info

tags Re-
source
Tags

No Any tags you want to apply to your S3 bucket

39.2.1 Lifecycles

A list of life cycle rules

lifecycles:
- name: <string> # Required
prefix: <string> # Optional
transitions: # Optional but one of transitions or version_transitions are required

- type: <ia, glacier, expiration> # type must be ia (Standard-IA infrequent
→˓Access), glacier, or expiration)

days: 30
version_transitions: # Optional but one of transitions or version_transitions are

→˓required, only days are supported
- type: <ia, glacier, expiration>

days: 30

Transitions are defined by the following:

Param-
eter

Type Re-
quired

De-
fault

Description

type string Yes None Type of transition must be one of ia(Standard Infrequent Access),
glacier, expiration (deletion)

days integer No None Number of days until transition must specify all transition as days or
dates not both

date ISO 8601
UTC

No None Date to transition in ISO 8602 UTC format must specify all transition
as days or dates not both

156 Chapter 39. S3 (Simple Storage Service)

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-s3-bucket-lifecycleconfig-rule.html

Handel Documentation, Release 0.23.2

More complex example:

lifecycles:
- name: ia30glacier365expire720
transitions:

- type: ia
days: 30

- type: expiration
days: 720

- type: glacier
days: 365

version_transitions:
- type: ia

days: 30
- type: expiration

days: 90

39.3 Example Handel File

39.3.1 Simple Bucket

This Handel file shows an S3 service being configured:

version: 1

name: my-s3-bucket

environments:
dev:
mybucket:

type: s3
Because we don't specify a bucket_name, the bucket will be named 'my-s3-

→˓bucket-dev-mybucket-s3' (see default in table above)
versioning: enabled

39.3.2 S3 Events

This Handel file shows an S3 service that is configured to send events to a Lambda function:

version: 1

name: test-s3-events

environments:
dev:
function:

type: lambda
path_to_code: .
handler: index.handler
runtime: python3.6

bucket:
type: s3
event_consumers:

(continues on next page)

39.3. Example Handel File 157

Handel Documentation, Release 0.23.2

(continued from previous page)

- service_name: function
bucket_events:
- s3:ObjectCreated:*
filters:
- name: prefix
value: somefolderprefix

Filters for Bucket Suffixes are also supported.

39.4 Depending on this service

This service outputs the following environment variables:

Environment Variable Description
<SER-
VICE_NAME>_BUCKET_NAME

The name of the created bucket

<SER-
VICE_NAME>_BUCKET_URL

The HTTPS URL of the created bucket

<SER-
VICE_NAME>_REGION_ENDPOINT

The domain of the S3 region endpoint, which you can use when configuring
your AWS SDK

See Environment Variable Names for information about how the service name is included in the environment variable
name.

39.5 Events produced by this service

The CloudWatch Events service currently produces events for the following services types:

• Lambda

• SNS

• SQS

39.6 Events consumed by this service

The S3 service does not consume events from other Handel services.

158 Chapter 39. S3 (Simple Storage Service)

CHAPTER 40

S3 Static Site

This document contains information about the S3 Static Site service supported in Handel. This Handel service sets up
an S3 bucket and CloudFront distribution for your static website.

Attention: This service requires you to have the external AWS CLI installed in order to use it. See the AWS
documentation for help on installing it.

If you are running Handel inside CodePipeline, you should already have the AWS CLI pre-installed.

40.1 Service Limitations

40.1.1 No CORS Support

This service doesn’t support configuring CORS support on the static site bucket. It just uses the default CORS config-
uration for S3 buckets:

• Origin: *

• Methods: GET

• Headers: Authorization

40.1.2 No Redirects Support

This service doesn’t yet support redirects (i.e. ‘www.mysite.com’ to ‘mysite.com’) to your static site bucket.

40.2 Parameters

This service takes the following parameters:

159

https://aws.amazon.com/cli/
https://aws.amazon.com/cli/

Handel Documentation, Release 0.23.2

Pa-
rame-
ter

Type Re-
quired

Default Description

type string Yes This must always be s3staticsite for this service type.
path_to_codestring Yes The path to the folder where your static website re-

sides. This will be uploaded to your S3 static site
bucket.

bucket_namestring No <appName>-
<environmentName>-
<serviceName>-
<serviceType>

The name of the bucket to create. This name must
be globally unique across all AWS accounts, so ‘my-
Bucket’ will likely be taken. :)

ver-
sion-
ing

string No disabled Whether to enable versioning on the bucket. Allowed
values: ‘enabled’, ‘disabled’

in-
dex_document

string No index.html The name of the file in S3 to serve as the index docu-
ment.

er-
ror_document

string No error.html The name of the file in S3 to serve as the error docu-
ment.

cloud-
front

Cloud-
Front
Configu-
ration

No Configuration for CloudFront. If not specified, Cloud-
Front is not enabled.

tags Resource
Tags

No Any tags you want to apply to your S3 bucket

40.2.1 CloudFront Configuration

The cloudfront section is defined by the following schema:

Parameter Type Re-
quired

Default Description

https_certificate string No The ID of an Amazon Certificate Manager certificate to use
for this site

mini-
mum_https_protocol

string No ‘TLSv1.2_2018’The minimum allowed HTTPS protocol version. Valid val-
ues are listed in the Cloudfront API Docs.

dns_names List<string> No The DNS names to use for the CloudFront distribution. See
DNS Records.

price_class string No all one of 100, 200, or all. See CloudFront Pricing.
logging en-

abled|disabled
No enabled Whether or not to log all calls to Cloudfront.

min_ttl TTL Val-
ues

No 0 Minimum time to cache objects in CloudFront

max_ttl TTL Val-
ues

No 1 year Maximum time to cache objects in CloudFront

default_ttl TTL Val-
ues

No 1 day Default time to cache objects in CloudFront

160 Chapter 40. S3 Static Site

https://docs.aws.amazon.com/cloudfront/latest/APIReference/API_ViewerCertificate.html
https://aws.amazon.com/cloudfront/pricing/

Handel Documentation, Release 0.23.2

TTL Values

min_ttl, max_ttl, and default_ttl control how often CloudFront will check the source bucket for updated objects. They
are specified in seconds. In the interest of readability, Handel also offers some duration shortcuts:

Alias Duration in seconds
second(s) 1
minute(s) 60
hour(s) 3600
day(s) 86400
year 31536000

So, writing this:

cloudfront_max_ttl: 2 days

is equivalent to:

cloudfront_max_ttl: 172800

40.3 Example Handel File

This Handel file shows an S3 Static Site service being configured:

version: 1

name: s3-static-website

environments:
dev:
site:

type: s3staticsite
path_to_code: ./_site/
versioning: enabled
index_document: index.html
error_document: error.html
cdn:

price_class: all
https_certificate: 6afbc85f-de0c-4ee9-b7d7-28b961eca135

tags:
mytag: myvalue

40.4 Depending on this service

The S3 Static Site service cannot be referenced as a dependency for another Handel service.

40.5 Events produced by this service

The S3 Static Site service does not produce events for other Handel services.

40.3. Example Handel File 161

Handel Documentation, Release 0.23.2

40.6 Events consumed by this service

The S3 Static Site service does not consume events from other Handel services.

162 Chapter 40. S3 Static Site

CHAPTER 41

SES (Simple Email Service)

This document contains information about the SES service supported in Handel. This Handel service verifies an email
address for use by your applications.

Note: This service does not currently support resource tagging.

41.1 Parameters

Parameter Type Required Default Description
type string Yes This must always be ses for this service type.
address string Yes The email address your applications will use.

Note: When Handel attempts to verify an email address through SES, AWS will send an email to the address with a
link to verify the address. Handel will not attempt to re-verify email addresses that have already been verified in the
same AWS account or are in a pending state (SES allows 24 hours before a verification fails). It will still wire up the
appropriate permissions to allow other Handel services to use successfully verified addresses.

Handel does not support verification of entire domains at this time.

Warning: To allow multiple applications to share an email address, Handel does not delete an SES identity upon
deletion of the Handel SES service.

41.2 Example Handel File

This Handel file shows an SES service being configured:

163

Handel Documentation, Release 0.23.2

version: 1

name: my-email-address

environments:
dev:
email:

type: ses
address: user@example.com

41.3 Depending on this service

This service outputs the following environment variables:

Environment Variable Description
<SERVICE_NAME>_EMAIL_ADDRESS The email address available through SES
<SERVICE_NAME>_IDENTITY_ARN The AWS ARN of the email identity

See Environment Variable Names for information about how the service name is included in the environment variable
name.

41.4 Events produced by this service

The SES service does not currently produce events for other Handel services.

41.5 Events consumed by this service

The SES service does not currently consume events from other Handel services.

164 Chapter 41. SES (Simple Email Service)

CHAPTER 42

SNS (Simple Notification Service)

This document contains information about the SNS service supported in Handel. This Handel service provisions an
SNS topic for use by your applications.

42.1 Service Limitations

Important: This service only offers limited tagging support. SNS Topics will not be tagged, but the Cloudformation
stack used to create them will be. See Tagging Unsupported Resources.

42.2 Parameters

Param-
eter

Type Re-
quired

De-
fault

Description

type string Yes This must always be sns for this service type.
sub-
scrip-
tions

Sub-
scrip-
tions

No An optional list of statically-defined subscriptions. You can also dynami-
cally add subscriptions in your application code.

tags Re-
source
Tags

No Tags to be applied to the Cloudformation stack which provisions this re-
source.

42.2.1 Subscriptions

The Subscription element is defined by the following schema:

165

Handel Documentation, Release 0.23.2

subscriptions:
- endpoint: <string>
protocol: <http|https|email|email-json|sms>

See the SNS subscription documentation for full details on configuring endpoints and protocols.

Note: Protocols sqs, application, and lambda are supported through Service Events.

42.3 Example Handel File

This Handel file shows an SNS service being configured:

version: 1

name: my-sns-topic

environments:
dev:
topic:

type: sns
subscriptions:

- endpoint: fake@example.com
protocol: email

42.4 Example Handel File

This Handel file shows an SNS Topic as a dependency to a Lambda Function

version: 1

name: my-lambda-sns-example
environments:

dev:
function:

type: lambda
path_to_code: .
handler: lambda_function.lambda_handler
runtime: python3.6
timeout: 180
dependencies:
- topic

topic:
type: sns
subscriptions:

- endpoint: fake@example.com
protocol: email

166 Chapter 42. SNS (Simple Notification Service)

http://docs.aws.amazon.com/sns/latest/api/API_Subscribe.html

Handel Documentation, Release 0.23.2

42.5 Depending on this service

This service outputs the following environment variables:

Environment Variable Description
<SERVICE_NAME>_TOPIC_ARN The AWS ARN of the created topic
<SERVICE_NAME>_TOPIC_NAME The name of the created topic

See Environment Variable Names for information about how the service name is included in the environment variable
name.

42.6 Events produced by this service

The SNS service currently produces events for the following services types:

• Lambda

• SQS

42.7 Events consumed by this service

The SNS service currently consumes events for the following service types:

• CloudWatch Events

• S3

42.5. Depending on this service 167

Handel Documentation, Release 0.23.2

168 Chapter 42. SNS (Simple Notification Service)

CHAPTER 43

SQS (Simple Queue Service)

This document contains information about the SQS service supported in Handel. This Handel service provisions an
SQS queue for use by your applications.

43.1 Service Limitations

Important: This service only offers limited tagging support. SNS Topics will not be tagged, but the Cloudformation
stack used to create them will be. See Tagging Unsupported Resources.

169

Handel Documentation, Release 0.23.2

43.2 Parameters

Parameter Type Re-
quired

De-
fault

Description

type string Yes This must always be sqs for this service type.
queue_type string No reg-

u-
lar

The type of queue to create. Allowed values are “regular” and “fifo”.

delay_seconds number No 0 The amount of time the queue delays delivery of messages.
con-
tent_based_deduplication

boolean No false Whether to enable content-based deduplication. This value only ap-
plies when the queue_type is “fifo”.

max_message_size number No 262144The max message size in bytes. Allowed values: 0 - 262144
mes-
sage_retention_period

number No 345600The amount of time in seconds to retain messages. Allowed values:
60 - 1209600

re-
ceive_message_wait_time_seconds

number No 0 The number of seconds ReceiveMessage will wait for messages to be
available. Allowed values: 0-20. See Amazon SQS Long Polling for
more information.

visibil-
ity_timeout

number No 30 The amount of time a message will be unavailable after it is delivered
from the queue. Allowed values: 0 - 43200

dead_letter_queue DeadLet-
terQueue

No If present, indicates that the queue will use a Dead-Letter Queue.

tags Re-
source
Tags

No Tags to be applied to the Cloudformation stack which provisions this
resource.

43.2.1 DeadLetterQueue

The dead_letter_queue section is defined by the following schema:

dead_letter_queue:
max_receive_count: <number> # Optional. Default: 3
delay_seconds: <number> # Optional. Default: 0
max_message_size: <number> # Optional. Default 1: queue max_message_size. Default

→˓2: 262144
message_retention_period: <number> # Optional. Default 1: queue message_retention_

→˓period. Default 2: 345600
receive_message_wait_time_seconds: <number> # Optional. Default 1: queue receive_

→˓message_wait_time_seconds. Default 2: 0
visibility_timeout: <number> # Optional. Default 1: queue visibility_timeout.

→˓Default 2: 30

If you want to use the default values, set dead_letter_queue to true:

dead_letter_queue: true

43.3 Example Handel Files

43.3.1 Simple Configuration

This Handel file shows a basic SQS service being configured:

170 Chapter 43. SQS (Simple Queue Service)

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-long-polling.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html

Handel Documentation, Release 0.23.2

version: 1

name: my-sqs-queue

environments:
dev:
queue:

type: sqs

43.3.2 Dead-Letter Queue

This Handel file shows an SQS service being configured with a Dead-Letter Queue:

version: 1

name: my-sqs-queue

environments:
dev:
queue:

type: sqs
queue_type: fifo
content_based_deduplication: true
delay_seconds: 2
max_message_size: 262140
message_retention_period: 345601
receive_message_wait_time_seconds: 3
visibility_timeout: 40
dead_letter_queue:

max_receive_count: 5
queue_type: fifo
content_based_deduplication: true
delay_seconds: 2
max_message_size: 262140
message_retention_period: 345601
receive_message_wait_time_seconds: 4
visibility_timeout: 40

43.3.3 Lambda Events

This Handel file shows an SQS service configured with events to Lambda enabled:

version: 1

name: my-sqs-queue

environments:
dev:
queue:

type: sqs
event_consumers:
- service_name: function

batch_size: 10
function:

(continues on next page)

43.3. Example Handel Files 171

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html

Handel Documentation, Release 0.23.2

(continued from previous page)

type: lambda
path_to_code: .
handler: index.handler
runtime: nodejs8.10

43.4 Depending on this service

The SQS service outputs the following environment variables:

Environment Variable Description
<SERVICE_NAME>_QUEUE_NAME The name of the created queue
<SERVICE_NAME>_QUEUE_URL The HTTPS URL of the created queue
<SERVICE_NAME>_QUEUE_ARN The AWS ARN of the created queue

If you have a Dead-Letter Queue, the SQS service also outputs the following environment variables:

Environment Variable Description
<SERVICE_NAME>_DEAD_LETTER_QUEUE_NAME The name of the created dead-letter queue
<SERVICE_NAME>_DEAD_LETTER_QUEUE_URL The HTTPS URL of the created dead-letter queue
<SERVICE_NAME>_DEAD_LETTER_QUEUE_ARN The AWS ARN of the created dead-letter queue

See Environment Variable Names for information about how the service name is included in the environment variable
name.

43.5 Events produced by this service

The SQS service produces events to the following service types:

• Lambda

You can configure events to Lambda using the event_consumers parameter in your SQS service:

event_consumers:
- service_name: <string> # Required. The service name of the lambda function
batch_size: <number> # Required. Allowed Values: 1-10

43.6 Events consumed by this service

The SQS service can currently consume events from the following Handel services:

• S3

• SNS

172 Chapter 43. SQS (Simple Queue Service)

CHAPTER 44

Step Functions

This document contains information about the Step Functions service supported in Handel. This Handel service
provisions Step Functions state machine resources to provide an application workflow.

44.1 Service Limitations

44.1.1 No Activities

This service does not yet support Step Functions activity resources. Task resources are limited to Lambda functions.

44.2 Parameters

Parame-
ter

Type Re-
quired

De-
fault

Description

type string Yes This must always be stepfunctions for this service
type.

definition State Machine Defini-
tion

Yes Path to file containing state machine definition.

44.2.1 State Machine Definition

For the most part, the definition file you provide in the definition section is in Amazon States Language. Instead of
providing an ARN in the ‘Resource’ field of a state, however, one should give the service name from the Handel file.

Note: For convenience, Handel supports both JSON and YAML formats for the definition file, where pure States
Language is based on JSON alone.

173

https://docs.aws.amazon.com/step-functions/latest/dg/concepts-amazon-states-language.html

Handel Documentation, Release 0.23.2

A definition file could look something like this:

StartAt: FooState
States:

FooState:
Type: Task
Resource: foo # service name
Next: BarState

BarState:
Type: Task
Resource: bar # service name
End: true

44.3 Example Handel File

version: 1

name: my-state-machine

environments:
prd:
foo:

type: lambda
path_to_code: foo/
handler: lambda_function.lambda_handler
runtime: python3.6

bar:
type: lambda
path_to_code: bar/
handler: lambda_function.lambda_handler
runtime: python3.6

machine:
type: step_functions
definition: state_machine.yml # definition file
dependencies:
- foo
- bar

44.4 Depending on this service

The Lambda service outputs the following environment variables:

Environment Variable Description
<SERVICE_NAME>_STATE_MACHINE_NAME The name of the created Step Functions state machine
<SERVICE_NAME>_STATE_MACHINE_ARN The ARN of the created Step Functions state machine

See Environment Variable Names for information about how the service name is included in the environment variable
name.

174 Chapter 44. Step Functions

Handel Documentation, Release 0.23.2

44.5 Events produced by this service

The Step Functions service does not produce events for other Handel services to consume.

44.6 Events consumed by this service

The Step Functions service does not consume events from other Handel services.

44.5. Events produced by this service 175

Handel Documentation, Release 0.23.2

176 Chapter 44. Step Functions

CHAPTER 45

Handel Deployment Logs

For internal use as well as an audit trail, Handel writes some information regarding the deployment and deletion of a
Handel environment to a DynamoDB table named: handel-deployment-logs.

45.1 Log Entry Structure

After every deployment and every deletion for each environment, Handel will put an entry into the handel-deployment-
logs DynamoDB table.

Field Key Type Description
AppName Partition

Key
String The application name being deployed/deleted

EnvAction Sort Key String A combination of EnvironmentName, Lifecycle and timestamp
Lifecycle String “deploy” or “delete”
Environment-
Name

String The environment that was deployed or deleted (i.e. “dev” or “prd”)

Deploy-
mentStartTime

Number The timestamp in milliseconds (since the epoc) of when the deploy-
ment/deletion was initiated

Deploy-
mentEndTime

Number The timestamp in milliseconds (since the epoc) of when the deploy-
ment/deletion finished

DeploymentSta-
tus

String “success” or “failure”

Deploy-
mentMessage

String Success or failure message

Application-
Tags

JSON
Object

A JSON representation of the application tags applied to each re-
source in the handel file

Environment-
Contents

JSON
Object

A JSON representation of the environment’s Handel services that
were deployed or deleted

Here’s an example deployment entry:

177

Handel Documentation, Release 0.23.2

{
"AppName": "test-app",
"EnvAction": "dev:deploy:1536357426736",
"Lifecycle": "deploy",
"EnvironmentName": "dev",
"DeploymentStartTime": 1536357268101,
"DeploymentEndTime": 1536357426736,
"DeploymentStatus": "success",
"DeploymentMessage": "Success",
"ApplicationTags": {

"app": "test-app",
"team": "The-Cool-Team"

},
"EnvironmentContents": {

"my-lambda": {
"type": "lambda",
"path_to_code": ".",
"handler": "index.handler",
"runtime": "nodejs6.10"
"dependencies": [

"my-db"
]

},
"my-db": {

"type": "mysql",
"database_name": "test_db",
"mysql_version": "5.6.27"

}
}

}

178 Chapter 45. Handel Deployment Logs

CHAPTER 46

Writing Extensions

This page contains information on how to write a custom Handel extension. You can use extensions to provide your
own customized service types that retain the same automatic dependency wiring as the built-in Handel services.

Note: If you’re looking for information on how to use a custom extension that someone else wrote, see the Using
Extensions page.

46.1 Introduction

Handel is written in TypeScript on the Node.js platform. Therefore, implementing a Handel extension involves creating
an NPM package.

Writing your extensions in TypeScript is highly recommended since the objects dealt with in the AWS world can be
very large and complex, and Handel passes a lot of information around between service provisioners.

46.2 Creating an Extension

You can use the provided Yeoman generator to create a working extension skeleton with a single service. You can then
use this skeleton to implement whatever you need in your extension.

First, install Yeoman and the generator:

npm install -g yo
npm install -g generator-handel-extension

Next, create a new directory and run the generator:

mkdir test-handel-extension
cd test-handel-extension
yo handel-extension

179

https://nodejs.org/en/
https://www.npmjs.com/

Handel Documentation, Release 0.23.2

Answer the questions the generator asks:

Welcome to the handel-extension generator!
? Extension name
? Extension description
? Service type name

It will then create the output files in your directory:

Creating the initial files for the extension
create package.json

identical .gitignore
create README.md
create tsconfig.json
create tslint.json
create src/extension.ts
create src/service.ts
create test/fake-account-config.ts
create test/service-test.ts

46.2.1 Building the Extension

Now that you have your extension created, you can build it and run the unit tests:

npm install
npm run build
npm test

All of these commands should work successfully on the initial extension skeleton code.

46.2.2 Testing the Extension

Once you have your extension skeleton created and built properly, you can write a Handel file and run Handel to test
the extension locally.

First, link your extension package so it is findable by Handel:

npm link

Next, create an example Handel file that will use your extension:

mkdir example
cd example
vim handel.yml

You can use something like the following as the contents of the Handel file:

version: 1

name: extension-test

extensions:
test: test-handel-extension # NPM package name is of format <extensionName>-handel-

→˓extensionj

(continues on next page)

180 Chapter 46. Writing Extensions

Handel Documentation, Release 0.23.2

(continued from previous page)

environments:
dev:
service:

type: test::test # Service type that was specified is 'test'

The above handel file assumes that you chose test as your extension name and test as your service name when running
the generator. If you specified something else you’ll have to modify the contents of this file.

Finally, you can run Handel with the –link-extensions flag enabled to allow it to find your extension locally rather than
from NPM:

handel deploy -c default-us-west-2 -e dev --link-extensions

46.2.3 Extension Support Package

If you look at the package.json file that was generated for your extension, you’ll notice that it includes the handel-
extension-support package as a dependency. This package contains useful functions that you can use when imple-
menting the different phase types in your deployers.

For example, it contains a methods to easily do things like the following:

• Create a security group in the preDeploy phase.

• Bind a security group to another with ingress rules

• Create and wait for a CloudFormation template

You should look at the methods offered by that package, because they will likely save you time and effort when
implementing your extension. See the package documentation for those details.

46.3 Extension Contract

Each Handel extension must expose a consistent interface that Handel can use to load and provision the service
deployers contained inside it.

The following TypeScript interface defines the contract for an extension:

export interface Extension {
loadHandelExtension(context: ExtensionContext): void | Promise<void>;

}

Your extension should use the passed-in ExtensionContext to add one or more service provisioners to it.

46.4 Service Provisioner Contract

A Handel extension is composed of one or more dervice deployers. Each service deployer must implement a particular
contract consisting of one or more phase types. The Handel framework will invoke these implemented phase types at
the appropriate time during deployment. Your job as an extension developer is to implement the phase types required
for your service, and then Handel will take care of calling them at the right time and feeding them the correct data they
need for deployment.

The following TypeScript interface defines the contract for a service deployer:

46.3. Extension Contract 181

https://www.npmjs.com/package/handel-extension-support

Handel Documentation, Release 0.23.2

export interface ServiceDeployer {
// --
// Required metadata for the provisioner
// --
providedEventType: ServiceEventType | null; // The type of event type this

→˓deployer provides (if any)
producedEventsSupportedTypes: ServiceEventType[]; // The types of event types

→˓that this deployer can produce to (if)
producedDeployOutputTypes: DeployOutputType[]; // The types of deploy output

→˓types this deployer produces to other deployers
consumedDeployOutputTypes: DeployOutputType[]; // The types of deploy output

→˓types this deployer can consume from other deployers
supportsTagging: boolean; // If true, indicates that a deployer supports tagging

→˓its resources. This is used to enforce tagging rules.

// --
// Phase types that hte provisioner supports
// --
/**
* Checks the given service configuration in the user's Handel file for required

→˓parameters and correctness.

* This provides a fail-fast mechanism for configuration errors before deploy is
→˓attempted.

*
* You should probably always implement this phase in every service deployer

*/
check?(serviceContext: ServiceContext<ServiceConfig>,

→˓dependenciesServiceContexts: Array<ServiceContext<ServiceConfig>>): string[];

/**
* Create resources needed for deployment that are also needed for dependency

→˓wiring

* with other services.

*
* Implement this phase if you'll be creating security groups for any of your

→˓resources

*
* Example AWS services that would need to implement this phase include Beanstalk

→˓and RDS.

*
* NOTE: If you implement preDeploy, you must implement getPreDeployContext as well

*/
preDeploy?(serviceContext: ServiceContext<ServiceConfig>): Promise

→˓<PreDeployContext>;

/**
* Get the PreDeploy context information without running preDeploy

*
* Return null if preDeploy has not been executed yet

*/
getPreDeployContext?(serviceContext: ServiceContext<ServiceConfig>): Promise

→˓<IPreDeployContext>;

/**
* Bind two resources from the preDeploy phase together by performing some wiring

→˓action on them. An example

* is to add an ingress rule from one security group onto another.

(continues on next page)

182 Chapter 46. Writing Extensions

Handel Documentation, Release 0.23.2

(continued from previous page)

*
* Bind is run from the perspective of the service being consumed, not the other

→˓way around. In other words, it

* is run on the dependency who is adding the ingress rule for the dependent
→˓service.

*
* Implement this phase if you'll be creating resources that need to add ingress

→˓rules for dependent services

* to talk to them

*
* Example AWS services that would need to implement this phase include RDS and EFS

*/
bind?(ownServiceContext: ServiceContext<ServiceConfig>, ownPreDeployContext:

→˓IPreDeployContext, dependentOfServiceContext: ServiceContext<ServiceConfig>,
→˓dependentOfPreDeployContext: IPreDeployContext): Promise<IBindContext>;

/**
* Deploy the resources contained in your service deployer.

*
* You are responsible for using the outputs in the dependenciesDeployContexts to

→˓wire up this service

* to those. For example, each one may return an IAM policiy that you should add
→˓to whatever role is

* created for your service.

*
* All this service's dependencies are guaranteed to be deployed before this phase

→˓gets called

*/
deploy?(ownServiceContext: ServiceContext<ServiceConfig>, ownPreDeployContext:

→˓IPreDeployContext, dependenciesDeployContexts: IDeployContext[]): Promise
→˓<IDeployContext>;

/**
* In this phase, this service should make any changes necessary to allow it to

→˓consume events from the given source

* For example, a Lambda consuming events from an SNS topic should add a Lambda
→˓Function Permission to itself to allow

* the SNS ARN to invoke it.

*
* This method will only be called if your service is listed as an event consumer

→˓in another service's configuration.

*/
consumeEvents?(ownServiceContext: ServiceContext<ServiceConfig>,

→˓ownDeployContext: IDeployContext, eventConsumerConfig: ServiceEventConsumer,
→˓producerServiceContext: ServiceContext<ServiceConfig>, producerDeployContext:
→˓IDeployContext): Promise<IConsumeEventsContext>;

/**
* In this phase, this service should make any changes necessary to allow it to

→˓produce events to the consumer service.

* For example, an S3 bucket producing events to a Lambda should add the event
→˓notifications to the S3 bucket for the

* Lambda.

*
* This method will only be called if your service has an event_consumers element

→˓in its configruation.

*/
(continues on next page)

46.4. Service Provisioner Contract 183

Handel Documentation, Release 0.23.2

(continued from previous page)

produceEvents?(ownServiceContext: ServiceContext<ServiceConfig>,
→˓ownDeployContext: IDeployContext, eventConsumerConfig: ServiceEventConsumer,
→˓consumerServiceContext: ServiceContext<ServiceConfig>, consumerDeployContext:
→˓IDeployContext): Promise<IProduceEventsContext>;

/**
* In this phase, the service should remove all resources created in the preDeploy

→˓phase.

*
* Implment this phase if you implemented the preDeploy phase!

*/
unPreDeploy?(ownServiceContext: ServiceContext<ServiceConfig>): Promise

→˓<IUnPreDeployContext>;

/**
* In this phase, the service should remove all bindings on preDeploy resources.

*/
unBind?(ownServiceContext: ServiceContext<ServiceConfig>): Promise<IUnBindContext>

→˓;

/**
* In this phase, the service should delete resources created during the deploy

→˓phase.

*
* Note that there are no 'unConsumeEvents' or 'unProduceEvents' phases. In most

→˓cases, deleting the

* service will automatically delete any event bindings the service itself has,
→˓but in some cases this phase will

* also need to manually remove event bindings. An example of this is CloudWatch
→˓Events, which requires that

* you remove all targets before you can delete the service.

*/
unDeploy?(ownServiceContext: ServiceContext<ServiceConfig>): Promise

→˓<IUnDeployContext>;
}

See the types in the handel-extension-api package for full details on the types passed as parameters to these phase type
methods.

46.5 Handel Lifecycles

The above service deployer contract gives information about the different kinds of phase types, but not when they are
invoked by the Handel framework.

The Handel tool supports multiple lifecycles. There are currently three lifecycles:

• Deploy - Deploys an application from a Handel file

• Delete - Deletes an environment in a Handel file

• Check - Checks the Handel file for errors

Each of these lifecycles runs through a pre-defined series of phases. The following sections explain the phase orders
used by each lifecycle.

184 Chapter 46. Writing Extensions

Handel Documentation, Release 0.23.2

46.5.1 Deploy Lifecycle

The Deploy lifecycle executes the following phases in order:

1. Check

2. PreDeploy

3. Bind

4. Deploy

5. ConsumeEvents

6. ProduceEvents

46.5.2 Delete Lifecycle

The Delete lifecycle executes the following phases in order:

1. UnDeploy

2. UnBind

3. UnPreDeploy

46.5.3 Check Lifecycle

The Check lifecycle executes the following phases in order:

1. Check

46.5. Handel Lifecycles 185

	Introduction
	Handel vs. CloudFormation
	Installation
	Creating Your First Handel App
	CLI Reference
	Handel File
	Account Config File
	Service Dependencies
	Consuming Service Dependencies
	Service Events
	Accessing Application Secrets
	Tagging
	Deleting an Environment
	Using Extensions
	Alexa Skill Kit
	AI Services
	Amazon MQ
	API Access
	API Gateway
	Aurora (RDS)
	Aurora Serverless
	CodeDeploy
	Beanstalk
	CloudWatch Events
	DynamoDB
	ECS (Elastic Container Service)
	ECS Fargate
	EFS (Elastic File System)
	Elasticsearch
	IoT
	KMS (Key Management Service)
	Lambda
	Memcached (ElastiCache)
	MySQL (RDS)
	Neptune
	PostgreSQL (RDS)
	Redis (ElastiCache)
	Route 53 Hosted Zone
	S3 (Simple Storage Service)
	S3 Static Site
	SES (Simple Email Service)
	SNS (Simple Notification Service)
	SQS (Simple Queue Service)
	Step Functions
	Handel Deployment Logs
	Writing Extensions

