
Hanabython Documentation
Release 0.1.12

François Durand

Jun 27, 2019

Contents:

1 Hanabython 1
1.1 Features . 1
1.2 Credits . 1

2 Installation 3
2.1 Stable release . 3
2.2 From sources . 3

3 Usage 5
3.1 Import . 5
3.2 Getting started (in a terminal) . 5
3.3 Getting started (in a notebook) . 5

4 Reference 7
4.1 Manipulation of strings . 7
4.2 Colors . 9
4.3 Configuration . 11
4.4 Clues . 18
4.5 Cards . 19
4.6 Hands . 22
4.7 Draw Pile . 24
4.8 Discard Pile . 26
4.9 Board . 30
4.10 Actions . 32
4.11 Players . 33
4.12 Game . 47

5 Contributing 57
5.1 Types of Contributions . 57
5.2 Get Started! . 58
5.3 Pull Request Guidelines . 59
5.4 Tips . 59
5.5 Deploying . 59

6 Credits 61
6.1 Development Lead . 61
6.2 Contributors . 61

i

7 History 63
7.1 0.1.12 (2019-06-27) . 63
7.2 0.1.11 (2019-06-27) . 63
7.3 0.1.10 (2018-02-26) . 63
7.4 0.1.9 (2018-02-26) . 63

8 Indices and tables 65

Index 67

ii

CHAPTER 1

Hanabython

A Python implementation of Hanabi, a game by Antoine Bauza

• Free software: GNU General Public License v3

• Documentation: https://hanabython.readthedocs.io.

1.1 Features

• TODO

1.2 Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

1

https://pypi.python.org/pypi/hanabython
https://travis-ci.org/francois-durand/hanabython
https://hanabython.readthedocs.io/en/latest/?badge=latest
https://hanabython.readthedocs.io
https://github.com/audreyr/cookiecutter
https://github.com/audreyr/cookiecutter-pypackage

Hanabython Documentation, Release 0.1.12

2 Chapter 1. Hanabython

CHAPTER 2

Installation

2.1 Stable release

To install Hanabython, run this command in your terminal:

$ pip install hanabython

This is the preferred method to install Hanabython, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

2.2 From sources

The sources for Hanabython can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/francois-durand/hanabython

Or download the tarball:

$ curl -OL https://github.com/francois-durand/hanabython/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

3

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/francois-durand/hanabython
https://github.com/francois-durand/hanabython/tarball/master

Hanabython Documentation, Release 0.1.12

4 Chapter 2. Installation

CHAPTER 3

Usage

3.1 Import

To use Hanabython in a project:

import hanabython

3.2 Getting started (in a terminal)

from hanabython import Game, PlayerHumanText
Game(players=[

PlayerHumanText('Antoine'),
PlayerHumanText('Donald X'),
PlayerHumanText('Uwe')

]).play()

3.3 Getting started (in a notebook)

from hanabython import Game, PlayerHumanText
Game(players=[

PlayerHumanText('Antoine', ipython=True),
PlayerHumanText('Donald X', ipython=True),
PlayerHumanText('Uwe', ipython=True)

]).play();

5

Hanabython Documentation, Release 0.1.12

6 Chapter 3. Usage

CHAPTER 4

Reference

4.1 Manipulation of strings

class hanabython.StringAnsi
An ANSI escape code that modifies the printing aspect.

BLUE = '\x1b[94m'

BROWN = '\x1b[33m'

CYAN = '\x1b[96m'

GREEN = '\x1b[32m'

MAGENTA = '\x1b[35m'

RED = '\x1b[31m'

RESET = '\x1b[0;0m'
This escape code is special: it is used to return to default aspect.

STYLE_BOLD = '\x1b[1m'

STYLE_REVERSE_VIDEO = '\x1b[7m'

STYLE_UNDERLINE = '\x1b[4m'

WHITE = ''
This should be white on black background, and vice-versa.

YELLOW = '\x1b[93m'

hanabython.str_from_iterable(l: Iterable[T_co])→ str
Convert an iterable to a simple string.

There are two differences with the standard implementation of str:

1. No brackets.

7

Hanabython Documentation, Release 0.1.12

2. For each item of the iterable, str_from_iterable uses str(item), whereas str uses
repr(item).

Parameters l – an iterable.

Returns a simple string.

>>> print(str_from_iterable(['a', 'b', 'c']))
a b c
>>> print(['a', 'b', 'c'])
['a', 'b', 'c']

hanabython.title(s: str, width: int)→ str
Format a string as a title.

Parameters

• s – the string

• width – the total width of the final layout (in number of characters).

Returns the string formatted as a title.

>>> title(s='Title', width=20)
'****** Title *******'
>>> title(s='A not-too-long title', width=20)
'A not-too-long title'
>>> title(s='A title that is really too long', width=20)
'A title that is r...'

hanabython.uncolor(s: str)→ str
Remove ANSI escape codes from the string.

Parameters s (string) – a string.

Returns the same string without its ANSI escape codes.

>>> from hanabython import StringAnsi
>>> s = (StringAnsi.RED + "Hanabi" + StringAnsi.RESET + ', a game by '
... + StringAnsi.BLUE + 'Antoine Bauza' + StringAnsi.RESET)
>>> uncolor(s)
'Hanabi, a game by Antoine Bauza'

class hanabython.Colored
An object with a colored string representation.

>>> from hanabython import StringAnsi
>>> class MyClass(Colored):
... def colored(self):
... return StringAnsi.RED + 'some text' + StringAnsi.RESET
>>> my_object = MyClass()
>>> my_object.colored()
'\x1b[31msome text\x1b[0;0m'
>>> str(my_object)
'some text'
>>> repr(my_object)
'<MyClass: some text>'

colored()→ str
Colored version of __str__().

8 Chapter 4. Reference

Hanabython Documentation, Release 0.1.12

In the subclasses, the principle is to override only this method. __str__() is automatically defined as
the uncolored version of the same string, and __repr__() as the same with the class name added.

Of course, it is also possible to override __str__() and/or __repr__() if a different behavior is
desired.

Returns a string representing the object, possibly with ANSI escape codes to add colors and
style.

Return type str

test_str()→ None
Test the string representations of the object.

Print the results of __repr__(), __str__() and colored().

4.2 Colors

class hanabython.Color(name: str, symbol: str, print_color: str)
A color in Hanabi.

Parameters

• name – The full name of the color. In a game, two distinct colors must have different names.

• symbol – The short name of the color. For standard colors (defined as constants in
Colors), it is always 1 character, and no two standard colors have the same symbol. For
user-defined colors, it is recommended to do the same, but not necessary.

• print_color – an ANSI escape code that modifies the printing color. See
StringAnsi.

>>> brown = Color(name='Brown', symbol='N', print_color=StringAnsi.BROWN)
>>> brown.name
'Brown'
>>> brown.symbol
'N'
>>> brown.print_color
'\x1b[33m'

color_str(o: object)→ str
Convert an object to a colored string.

Parameters o – any object.

Returns the __str__ of this object, with an ANSI color-modifying escape code at the begin-
ning and its cancellation at the end.

>>> brown = Color(name='Brown', symbol='N',
... print_color=StringAnsi.BROWN)
>>> brown.color_str('some text')
'\x1b[33msome text\x1b[0;0m'
>>> brown.color_str(42)
'\x1b[33m42\x1b[0;0m'

colored()→ str
Colored version of __str__().

In the subclasses, the principle is to override only this method. __str__() is automatically defined as
the uncolored version of the same string, and __repr__() as the same with the class name added.

4.2. Colors 9

Hanabython Documentation, Release 0.1.12

Of course, it is also possible to override __str__() and/or __repr__() if a different behavior is
desired.

Returns a string representing the object, possibly with ANSI escape codes to add colors and
style.

Return type str

is_cluable

Returns whether this color can be used for clues. For a normal color, it is True. This is different
in ColorMulticolor and ColorColorless.

match(clue_color: hanabython.Modules.Color.Color)→ bool
React to a color clue.

Parameters clue_color – the color of the clue.

Returns whether a card of the current color should react to a clue of color clue_color.
A normal color matches simply if the color of the clue is the same. This is different in
ColorMulticolor and ColorColorless.

>>> brown = Color(name='Brown', symbol='N',
... print_color=StringAnsi.BROWN)
>>> pink = Color(name='Pink', symbol='P',
... print_color=StringAnsi.MAGENTA)
>>> brown.match(clue_color=brown)
True
>>> brown.match(clue_color=pink)
False

class hanabython.ColorMulticolor(name: str, symbol: str, print_color: str)

is_cluable

Returns False. It is not allowed to give “multicolor” as a clue.

match(clue_color: hanabython.Modules.Color.Color)→ bool
Multicolor matches any color clue.

>>> multicolor = ColorMulticolor(name='Multicolor', symbol='M',
... print_color=StringAnsi.MAGENTA)
>>> brown = Color(name='Brown', symbol='N',
... print_color=StringAnsi.BROWN)
>>> multicolor.match(clue_color=brown)
True

class hanabython.ColorColorless(name: str, symbol: str, print_color: str)

is_cluable

Returns False. It is not allowed to give “colorless” as a clue.

match(clue_color: hanabython.Modules.Color.Color)→ bool
Colorless matches no color clue.

>>> colorless = ColorColorless(name='Colorless', symbol='C',
... print_color=StringAnsi.MAGENTA)
>>> brown = Color(name='Brown', symbol='N',
... print_color=StringAnsi.BROWN)

(continues on next page)

10 Chapter 4. Reference

Hanabython Documentation, Release 0.1.12

(continued from previous page)

>>> colorless.match(clue_color=brown)
False

class hanabython.Colors
Standard colors in Hanabi.

BLUE = <Color: B>

COLORLESS = <ColorColorless: C>
Use this for the colorless cards. As of now, it is brown but the display color might change in future
implementations.

GREEN = <Color: G>

MULTICOLOR = <ColorMulticolor: M>
Use this for multicolor cards. As of now, it is cyan but the display color might change in future implemen-
tations.

RED = <Color: R>

SIXTH = <Color: P>
Use this for the sixth color. As of now, it is pink but the display color might change in future implementa-
tions.

WHITE = <Color: W>

YELLOW = <Color: Y>

classmethod from_symbol(s: str)→ hanabython.Modules.Color.Color
Find one of the standard colors from its symbol.

Returns the corresponding color.

>>> color = Colors.from_symbol('B')
>>> print(color.name)
Blue

4.3 Configuration

class hanabython.ConfigurationColorContents(contents: Iterable[int], name: str = None)
The contents of a color in a deck of Hanabi.

This is essentially a list, stating the number of copies for each card. For example, [3, 2, 2, 2, 1] means there are
3 ones, 2 twos, etc. Each integer in this list must be strictly positive.

Parameters

• contents – an iterable used to create the list.

• name – the name of the configuration. Can be None (default value). Should not be capital-
ized (e.g. “my favorite configuration” and not “My favorite configuration”).

>>> cfg = ConfigurationColorContents.NORMAL
>>> print(cfg.name)
normal
>>> print(cfg)
normal
>>> print(list(cfg))

(continues on next page)

4.3. Configuration 11

Hanabython Documentation, Release 0.1.12

(continued from previous page)

[3, 2, 2, 2, 1]
>>> cfg = ConfigurationColorContents([3, 2, 1])
>>> print(cfg.name)
None
>>> print(cfg)
[3, 2, 1]

NORMAL = <ConfigurationColorContents: normal>
Normal contents of a color (3 2 2 2 1).

SHORT = <ConfigurationColorContents: short>
Contents of a short color (1 1 1 1 1).

colored()→ str
Colored version of __str__().

In the subclasses, the principle is to override only this method. __str__() is automatically defined as
the uncolored version of the same string, and __repr__() as the same with the class name added.

Of course, it is also possible to override __str__() and/or __repr__() if a different behavior is
desired.

Returns a string representing the object, possibly with ANSI escape codes to add colors and
style.

Return type str

class hanabython.ConfigurationDeck(contents: Iterable[Tuple[hanabython.Modules.Color.Color,
hanabython.Modules.ConfigurationColorContents.ConfigurationColorContents]],
name: str = None)

The contents of the deck for a game of Hanabi.

This is essentially an OrderedDict. To each Color in the deck, it associates the contents of the color, an object
of class ConfigurationColorContents.

The order of the colors is important: it will be used in many occasions (including for display).

Parameters

• contents – the iterable used to construct the ordered dictionary. Typically it is an
OrderedDict or a list of pairs (color, contents).

• name – the name of the configuration. Can be None (default value). Should not be capital-
ized (e.g. “my favorite configuration” and not “My favorite configuration”).

>>> cfg = ConfigurationDeck.NORMAL
>>> print(cfg.name)
normal
>>> print(cfg)
normal
>>> cfg = ConfigurationDeck(
... contents=[
... (Colors.BLUE, ConfigurationColorContents.NORMAL),
... (Colors.RED, ConfigurationColorContents([3, 2, 1]))
...]
...)
>>> print(cfg.name)
None
>>> print(cfg)
B normal, R [3, 2, 1]

12 Chapter 4. Reference

Hanabython Documentation, Release 0.1.12

EIGHT_COLORS = <ConfigurationDeck: with sixth color, multicolor and colorless (10 cards each)>
Deck with 8 colors (6 colors + multicolor + colorless, all of 10 cards).

NORMAL = <ConfigurationDeck: normal>
Normal deck (5 colors of 10 cards).

W_MULTICOLOR = <ConfigurationDeck: with normal multicolor (10 cards)>
Deck with long multicolor (5 colors of 10 cards + 1 multi of 10 cards).

W_MULTICOLOR_SHORT = <ConfigurationDeck: with short multicolor (5 cards)>
Deck with short multicolor (5 colors of 10 cards + 1 multi of 5 cards).

W_SIXTH = <ConfigurationDeck: with normal sixth color (10 cards)>
Deck with long sixth color (6 colors of 10 cards).

W_SIXTH_SHORT = <ConfigurationDeck: with short sixth color (5 cards)>
Deck with short sixth color (5 colors of 10 cards + 1 color of 5 cards).

colored()→ str
Colored version of __str__().

In the subclasses, the principle is to override only this method. __str__() is automatically defined as
the uncolored version of the same string, and __repr__() as the same with the class name added.

Of course, it is also possible to override __str__() and/or __repr__() if a different behavior is
desired.

Returns a string representing the object, possibly with ANSI escape codes to add colors and
style.

Return type str

copy()→ hanabython.Modules.ConfigurationDeck.ConfigurationDeck
Copy the deck configuration.

Returns a copy of this deck configuration. You can modify the copy without modifying the
original. However, it is not a deep copy, (most of time, it would not be useful).

>>> cfg = ConfigurationDeck.NORMAL.copy()
>>> cfg.name = None
>>> del(cfg[Colors.WHITE], cfg[Colors.YELLOW])
>>> print(cfg)
B normal, G normal, R normal
>>> print(ConfigurationDeck.NORMAL[Colors.WHITE])
normal

static normal_plus(contents: Iterable[Tuple[hanabython.Modules.Color.Color, han-
abython.Modules.ConfigurationColorContents.ConfigurationColorContents]],
name: str = None)→ hanabython.Modules.ConfigurationDeck.ConfigurationDeck

Shortcut to define a deck configuration from the normal one.

Parameters

• contents – the additional contents (typically multicolor, etc.)

• name – the name of the configuration.

Returns the new configuration.

>>> cfg = ConfigurationDeck.normal_plus(contents=[
... (Colors.SIXTH, ConfigurationColorContents.NORMAL),
... (Colors.MULTICOLOR, ConfigurationColorContents.SHORT)
...])

(continues on next page)

4.3. Configuration 13

Hanabython Documentation, Release 0.1.12

(continued from previous page)

>>> print(cfg)
B normal, G normal, R normal, W normal, Y normal, P normal, M short

class hanabython.ConfigurationEmptyClueRule(i: int, name: str)
A rule for “empty clues” in Hanabi.

An empty clue is a clue that corresponds to 0 cards in the hand of the concerned partner.

This class does not implement the rules themselves: they are hardcoded in the class Game.

Parameters

• i – a unique identifier of the rule.

• name – the name of the configuration. Should not be capitalized (e.g. “my favorite config-
uration” and not “My favorite configuration”).

>>> cfg = ConfigurationEmptyClueRule.FORBIDDEN
>>> print(cfg)
empty clues are forbidden
>>> print(cfg==ConfigurationEmptyClueRule.FORBIDDEN)
True
>>> print(cfg==ConfigurationEmptyClueRule.ALLOWED)
False

ALLOWED = <ConfigurationEmptyClueRule: empty clues are allowed>

FORBIDDEN = <ConfigurationEmptyClueRule: empty clues are forbidden>

colored()→ str
Colored version of __str__().

In the subclasses, the principle is to override only this method. __str__() is automatically defined as
the uncolored version of the same string, and __repr__() as the same with the class name added.

Of course, it is also possible to override __str__() and/or __repr__() if a different behavior is
desired.

Returns a string representing the object, possibly with ANSI escape codes to add colors and
style.

Return type str

class hanabython.ConfigurationEndRule(i: int, name: str)
A rule for the end of game in Hanabi.

This class does not implement the rules themselves: they are hardcoded in the class Game.

Parameters

• i – a unique identifier of the rule.

• name – the name of the configuration. Should not be capitalized (e.g. “my favorite config-
uration” and not “My favorite configuration”), except if it is seen as a title (e.g. “Crowning
Piece”).

>>> cfg = ConfigurationEndRule.NORMAL
>>> print(cfg)
normal
>>> print(cfg==ConfigurationEndRule.NORMAL)
True

(continues on next page)

14 Chapter 4. Reference

Hanabython Documentation, Release 0.1.12

(continued from previous page)

>>> print(cfg==ConfigurationEndRule.CROWNING_PIECE)
False

CROWNING_PIECE = <ConfigurationEndRule: Crowning Piece>
“Crowning piece” variant for the end of game. The game stops when a player starts her turn with no card
in hand.

NORMAL = <ConfigurationEndRule: normal>
Default rule for the end of game. When a player draws the last card, all players play one last time (her
included).

colored()→ str
Colored version of __str__().

In the subclasses, the principle is to override only this method. __str__() is automatically defined as
the uncolored version of the same string, and __repr__() as the same with the class name added.

Of course, it is also possible to override __str__() and/or __repr__() if a different behavior is
desired.

Returns a string representing the object, possibly with ANSI escape codes to add colors and
style.

Return type str

class hanabython.ConfigurationHandSize(f: Callable[[int], int], name: str = None)
A rule for the initial size of the players’ hands.

Parameters

• f – a callable that, to a number of players, associates a number of cards.

• name – the name of the configuration. Can be None (default value). Should not be capital-
ized (e.g. “my favorite configuration” and not “My favorite configuration”).

>>> cfg = ConfigurationHandSize.NORMAL
>>> print(cfg)
normal
>>> cfg = ConfigurationHandSize(f=lambda n: 9 - n)
>>> print(cfg)
7 for 2p, 6 for 3p, 5 for 4p, 4 for 5p

NORMAL = <ConfigurationHandSize: normal>
Normal rule for hand size (5 for 3- players, 4 for 4+ players).

VARIANT_6_3 = <ConfigurationHandSize: experimental (6 for 2 players, 3 for 5 players)>
Experimental variant for hand size (6 for 2 players, 3 for 5+ players).

colored()→ str
Colored version of __str__().

In the subclasses, the principle is to override only this method. __str__() is automatically defined as
the uncolored version of the same string, and __repr__() as the same with the class name added.

Of course, it is also possible to override __str__() and/or __repr__() if a different behavior is
desired.

Returns a string representing the object, possibly with ANSI escape codes to add colors and
style.

Return type str

4.3. Configuration 15

Hanabython Documentation, Release 0.1.12

class hanabython.Configuration(deck: hanabython.Modules.ConfigurationDeck.ConfigurationDeck
= <ConfigurationDeck: normal>, n_clues: int
= 8, n_misfires: int = 3, hand_size_rule: han-
abython.Modules.ConfigurationHandSize.ConfigurationHandSize
= <ConfigurationHandSize: normal>, empty_clue_rule: han-
abython.Modules.ConfigurationEmptyClueRule.ConfigurationEmptyClueRule
= <ConfigurationEmptyClueRule: empty
clues are forbidden>, end_rule: han-
abython.Modules.ConfigurationEndRule.ConfigurationEndRule
= <ConfigurationEndRule: normal>, name: str = None)

A configuration for a game of Hanabi.

Parameters

• deck – the configuration of the deck.

• n_clues – the number of clue chips that players have.

• n_misfires – the number of misfire chips that players have. If n_misfires misfire
chips are used, then the game is lost immediately (it is not a final warning but really the end
of the game).

• hand_size_rule – the rule used for the initial size of the hands.

• empty_clue_rule – the rule used about empty clues.

• end_rule – the rule used to determine when then game is finished.

• name – the name of the configuration. Can be None (default value). Should not be capital-
ized (e.g. “my favorite configuration” and not “My favorite configuration”).

Variables

• colors (list) – a list of Color objects. It is the list of keys of deck.

• n_colors (int) – the number of colors.

• highest (OrderedDict) – For each color from colors, it gives the number on the
highest card in that color.

• n_values (int) – the number on the highest card in the whole deck.

• values (list) – the list of possible values (from 1 to n_values).

• deck_array (np.array) – a numpy array of size n_colors * n_values. Each row
represents the distribution of cards in a color. Typically, a row is [3, 2, 2, 2, 1], meaning that
there are 3 ones, 2 twos, etc. Please note that column 0 corresponds to card value 1, etc.

• n_cards (int) – the total number of cards in the deck (50 in the standard configuration).

• max_score (int) – the maximum possible score (25 in the standard configuration).

>>> cfg = Configuration.W_MULTICOLOR_SHORT
>>> print(cfg.name)
with short multicolor (5 cards)
>>> print(cfg)
Deck: with short multicolor (5 cards).
Number of clues: 8.
Number of misfires: 3.
Clues rule: empty clues are forbidden.
End rule: normal.
>>> print(cfg.hand_size_rule)
normal

(continues on next page)

16 Chapter 4. Reference

Hanabython Documentation, Release 0.1.12

(continued from previous page)

>>> print(cfg.colors)
[<Color: B>, <Color: G>, <Color: R>, <Color: W>, <Color: Y>, <ColorMulticolor: M>]
>>> print(cfg.n_colors)
6
>>> print(cfg.highest)
OrderedDict([(<Color: B>, 5), (<Color: G>, 5), (<Color: R>, 5), (<Color: W>, 5), (
→˓<Color: Y>, 5), (<ColorMulticolor: M>, 5)])
>>> print(cfg.n_values)
5
>>> print(cfg.values)
[1, 2, 3, 4, 5]
>>> print(cfg.deck_array)
[[3 2 2 2 1]
[3 2 2 2 1]
[3 2 2 2 1]
[3 2 2 2 1]
[3 2 2 2 1]
[1 1 1 1 1]]

>>> print(cfg.n_cards)
55
>>> print(cfg.max_score)
30

Design a configuration manually:

>>> from hanabython import (ConfigurationDeck, ConfigurationColorContents,
... ConfigurationEmptyClueRule)
>>> cfg = Configuration(
... deck=ConfigurationDeck(contents=[
... (Colors.BLUE, ConfigurationColorContents([3, 2, 1, 1])),
... (Colors.RED, ConfigurationColorContents([2, 1])),
...]),
... n_clues=4,
... n_misfires=1,
... hand_size_rule=ConfigurationHandSize.VARIANT_6_3,
... empty_clue_rule=ConfigurationEmptyClueRule.ALLOWED,
... end_rule=ConfigurationEndRule.CROWNING_PIECE
...)
>>> print(cfg)
Deck: B [3, 2, 1, 1], R [2, 1].
Number of clues: 4.
Number of misfires: 1.
Clues rule: empty clues are allowed.
End rule: Crowning Piece.

EIGHT_COLORS = <Configuration: with sixth color, multicolor and colorless (10 cards each)>

STANDARD = <Configuration: standard>

W_MULTICOLOR = <Configuration: with normal multicolor (10 cards)>

W_MULTICOLOR_SHORT = <Configuration: with short multicolor (5 cards)>

W_SIXTH = <Configuration: with normal sixth color (10 cards)>

W_SIXTH_SHORT = <Configuration: with short sixth color (5 cards)>

colored()→ str
Colored version of __str__().

4.3. Configuration 17

Hanabython Documentation, Release 0.1.12

In the subclasses, the principle is to override only this method. __str__() is automatically defined as
the uncolored version of the same string, and __repr__() as the same with the class name added.

Of course, it is also possible to override __str__() and/or __repr__() if a different behavior is
desired.

Returns a string representing the object, possibly with ANSI escape codes to add colors and
style.

Return type str

i_from_c(c: hanabython.Modules.Color.Color)→ int
Finds index from a color (for example in deck_array).

Parameters c – a color.

Returns the corresponding index.

>>> Configuration.STANDARD.i_from_c(Colors.BLUE)
0

i_from_v(v: int)→ int
Finds index from a value (for example in deck_array).

Parameters v – the value (typically 1 to 5).

Returns the corresponding index (typically 0 to 4).

>>> Configuration.STANDARD.i_from_v(1)
0

4.4 Clues

class hanabython.Clue(x: Union[int, hanabython.Modules.Color.Color])
A clue.

Parameters x – the clue (value or color).

Variables category (int) – can be either Clue.VALUE or Clue.COLOR.

>>> clue = Clue(1)
>>> print(clue)
1
>>> clue.category == Clue.VALUE
True
>>> clue = Clue(Colors.RED)
>>> print(clue)
R
>>> clue.category == Clue.COLOR
True

COLOR = 1
Category for a clue by color.

VALUE = 0
Category for a clue by value.

colored()→ str
Colored version of __str__().

18 Chapter 4. Reference

Hanabython Documentation, Release 0.1.12

In the subclasses, the principle is to override only this method. __str__() is automatically defined as
the uncolored version of the same string, and __repr__() as the same with the class name added.

Of course, it is also possible to override __str__() and/or __repr__() if a different behavior is
desired.

Returns a string representing the object, possibly with ANSI escape codes to add colors and
style.

Return type str

4.5 Cards

class hanabython.Card(*args, **kwargs)
A card of Hanabi.

Parameters

• c (Color) – the color of the card.

• v (int) – the value of the card (usually between 1 and 5).

• s (str) – a short string representing the card. Must use one of the standard colors, cf.
Color.from_symbol().

You can provide either c and v, or s. The constructor accepts several types of syntax, as illustrated below.

>>> my_card = Card(c=Colors.BLUE, v=3)
>>> print(my_card)
B3
>>> my_card = Card(Colors.BLUE, 3)
>>> print(my_card)
B3
>>> my_card = Card(3, Colors.BLUE)
>>> print(my_card)
B3
>>> my_card = Card(s='B3')
>>> print(my_card)
B3
>>> my_card = Card('B3')
>>> print(my_card)
B3
>>> my_card = Card(s='3B')
>>> print(my_card)
B3
>>> my_card = Card('3B')
>>> print(my_card)
B3

N.B.: the string input works even if the v has several digits.

>>> my_card = Card('B42')
>>> print(my_card)
B42
>>> my_card = Card('51M')
>>> print(my_card)
M51

4.5. Cards 19

Hanabython Documentation, Release 0.1.12

colored()→ str
Colored version of __str__().

In the subclasses, the principle is to override only this method. __str__() is automatically defined as
the uncolored version of the same string, and __repr__() as the same with the class name added.

Of course, it is also possible to override __str__() and/or __repr__() if a different behavior is
desired.

Returns a string representing the object, possibly with ANSI escape codes to add colors and
style.

Return type str

match(clue: hanabython.Modules.Clue.Clue)→ bool
React to a clue.

Parameters clue – the clue.

Returns whether the card should be pointed when giving this clue.

>>> from hanabython import Colors
>>> card_blue = Card('B3')
>>> card_blue.match(Clue(Colors.BLUE))
True
>>> card_blue.match(Clue(Colors.RED))
False
>>> card_blue.match(Clue(3))
True
>>> card_blue.match(Clue(4))
False
>>> card_multi = Card('M3')
>>> card_multi.match(Clue(Colors.BLUE))
True
>>> card_colorless = Card('C3')
>>> card_colorless.match(Clue(Colors.BLUE))
False

class hanabython.CardPublic(cfg: hanabython.Modules.Configuration.Configuration)
The “public” part of a card.

An object of this class represents what is known by all players, including the owner of the card.

Parameters cfg – the configuration of the game.

Variables

• can_be_c (np.array) – a coefficient is True iff the card can be of the corresponding
color.

• can_be_v (np.array) – a coefficient is True iff the card can be of the corresponding
value.

• yes_clued_c (np.array) – a coefficient is True iff the card was explicitly clued as the
corresponding color and it can be of this color (this precision is important for multicolor).

• yes_clued_v (np.array) – a coefficient is True iff the card was explicitly clued as
value v.

>>> from hanabython import Configuration
>>> card = CardPublic(Configuration.EIGHT_COLORS)
>>> print(card)
BGRWYPMC 12345

20 Chapter 4. Reference

Hanabython Documentation, Release 0.1.12

colored()→ str
Colored version of __str__().

In the subclasses, the principle is to override only this method. __str__() is automatically defined as
the uncolored version of the same string, and __repr__() as the same with the class name added.

Of course, it is also possible to override __str__() and/or __repr__() if a different behavior is
desired.

Returns a string representing the object, possibly with ANSI escape codes to add colors and
style.

Return type str

match(clue: hanabython.Modules.Clue.Clue, b: bool)→ None
React to a clue.

Updates the internal variables of the card.

Parameters

• clue – the clue.

• b – whether the card matches or not.

>>> from hanabython import Configuration
>>> cfg = Configuration.EIGHT_COLORS
>>> card = CardPublic(cfg)
>>> print(card)
BGRWYPMC 12345
>>> card.match(clue=Clue(Colors.RED), b=False)
>>> print(card) #doctest: +NORMALIZE_WHITESPACE
BGWYPC 12345
>>> card.match(clue=Clue(Colors.BLUE), b=True)
>>> print(card) #doctest: +NORMALIZE_WHITESPACE
B 12345

Let us try with the clues in the opposite order:

>>> from hanabython import Configuration
>>> card = CardPublic(Configuration.EIGHT_COLORS)
>>> print(card)
BGRWYPMC 12345
>>> card.match(clue=Clue(Colors.BLUE), b=True)
>>> print(card) #doctest: +NORMALIZE_WHITESPACE
BM 12345
>>> card.match(clue=Clue(Colors.RED), b=False)
>>> print(card) #doctest: +NORMALIZE_WHITESPACE
B 12345

Now with clues by value:

>>> from hanabython import Configuration
>>> card = CardPublic(Configuration.EIGHT_COLORS)
>>> print(card)
BGRWYPMC 12345
>>> card.match(clue=Clue(3), b=False)
>>> print(card) #doctest: +NORMALIZE_WHITESPACE
BGRWYPMC 1245
>>> card.match(clue=Clue(5), b=True)

(continues on next page)

4.5. Cards 21

Hanabython Documentation, Release 0.1.12

(continued from previous page)

>>> print(card) #doctest: +NORMALIZE_WHITESPACE
BGRWYPMC 5

4.6 Hands

class hanabython.Hand(source: Iterable[Union[hanabython.Modules.Card.Card, str]] = None)
The hand of a player.

We use the same convention as in Board Game Arena: newest cards are on the left (i.e. at the beginning of the
list) and oldest cards are on the right (i.e. at the end of the list).

Basically, a Hand is a list of Card objects. It can be constructed as such, or using a list of strings which will be
automatically converted to cards.

Parameters source – an iterable used to construct the hand. N.B.: this parameter is mostly used
for examples and tests. In contrast, at the beginning of a game, the hand should be initialized
with no cards, because cards will be given one by one to the players during the initial dealing of
hands.

>>> hand = Hand([Card('Y3'), Card('M1'), Card('B2'), Card('R4')])
>>> print(hand)
Y3 M1 B2 R4
>>> hand = Hand(['Y3', 'M1', 'B2', 'R4'])
>>> print(hand)
Y3 M1 B2 R4

colored()→ str
Colored version of __str__().

In the subclasses, the principle is to override only this method. __str__() is automatically defined as
the uncolored version of the same string, and __repr__() as the same with the class name added.

Of course, it is also possible to override __str__() and/or __repr__() if a different behavior is
desired.

Returns a string representing the object, possibly with ANSI escape codes to add colors and
style.

Return type str

give(k: int)→ hanabython.Modules.Card.Card
Give a card.

Parameters k – the position of the card in the hand (0 = newest).

Returns the card given.

>>> hand = Hand(['Y3', 'B1', 'M1', 'B2', 'R4'])
>>> card = hand.give(1)
>>> print(card)
B1
>>> print(hand)
Y3 M1 B2 R4

match(clue: hanabython.Modules.Clue.Clue)→ List[bool]
React to a clue.

Parameters clue – the clue.

22 Chapter 4. Reference

Hanabython Documentation, Release 0.1.12

Returns a list of booleans. The i-th coefficient is True iff the i-th card of the hand matches the
clue given.

>>> hand = Hand(['G2', 'Y3', 'M1', 'B2', 'R4'])
>>> hand.match(Clue(Colors.RED))
[False, False, True, False, True]
>>> hand.match(Clue(2))
[True, False, False, True, False]

receive(card: hanabython.Modules.Card.Card)→ None
Receive a card.

Parameters card – the card received.

The card is added on the left, i.e. at the beginning of the list.

>>> hand = Hand(['Y3', 'M1', 'B2', 'R4'])
>>> hand.receive(Card('G2'))
>>> print(hand)
G2 Y3 M1 B2 R4

class hanabython.HandPublic(cfg: hanabython.Modules.Configuration.Configuration, n_cards: int
= 0)

The “public” part of a hand.

An object of this class represents what is known by all players, including the owner of the hand.

We use the same convention as in Board Game Arena: newest cards are on the left (i.e. at the beginning of the
list) and oldest cards are on the right (i.e. at the end of the list).

Basically, a HandPublic is a list of CardPublic objects.

Parameters

• cfg – the configuration of the game.

• n_cards – the number of cards in the hand. N.B.: this parameter is mostly used for
examples and tests. In contrast, at the beginning of a game, the hand should be initialized
with 0 cards, because cards will be given one by one to the players during the initial dealing
of hands.

>>> hand = HandPublic(cfg=Configuration.STANDARD, n_cards=4)
>>> print(hand)
BGRWY 12345, BGRWY 12345, BGRWY 12345, BGRWY 12345

colored()→ str
Colored version of __str__().

In the subclasses, the principle is to override only this method. __str__() is automatically defined as
the uncolored version of the same string, and __repr__() as the same with the class name added.

Of course, it is also possible to override __str__() and/or __repr__() if a different behavior is
desired.

Returns a string representing the object, possibly with ANSI escape codes to add colors and
style.

Return type str

give(k: int)→ None
Give a card.

Parameters k – the position of the card in the hand (0 = newest).

4.6. Hands 23

Hanabython Documentation, Release 0.1.12

The card is simply suppressed from the hand.

>>> hand = HandPublic(cfg=Configuration.STANDARD, n_cards=4)
>>> hand.match(clue=Clue(5), bool_list=[False, True, False, False])
>>> hand.match(clue=Clue(4), bool_list=[True, False, False, False])
>>> print(hand) #doctest: +NORMALIZE_WHITESPACE
BGRWY 4 , BGRWY 5 , BGRWY 123 , BGRWY 123
>>> hand.give(1)
>>> print(hand) #doctest: +NORMALIZE_WHITESPACE
BGRWY 4 , BGRWY 123 , BGRWY 123

match(clue: hanabython.Modules.Clue.Clue, bool_list: List[bool])
React to a clue

Parameters

• clue – the clue.

• bool_list – a list of booleans. The i-th coefficient is True iff the i-th card of the hand
matches the clue given.

Updates the internal variables of the hand.

>>> hand = HandPublic(cfg=Configuration.STANDARD, n_cards=4)
>>> hand.match(clue=Clue(3), bool_list=[False, True, False, False])
>>> print(hand) #doctest: +NORMALIZE_WHITESPACE
BGRWY 1245 , BGRWY 3 , BGRWY 1245 , BGRWY 1245
>>> hand.match(clue=Clue(Colors.RED),
... bool_list=[False, True, False, False])
>>> print(hand) #doctest: +NORMALIZE_WHITESPACE
BGWY 1245 , R3 , BGWY 1245 , BGWY 1245

receive()→ None
Receive a card.

An unknown card is added on the left, i.e. at the beginning of the list.

>>> hand = HandPublic(cfg=Configuration.STANDARD, n_cards=4)
>>> hand.match(clue=Clue(5), bool_list=[True, True, False, False])
>>> print(hand) #doctest: +NORMALIZE_WHITESPACE
BGRWY 5 , BGRWY 5 , BGRWY 1234 , BGRWY 1234
>>> hand.receive()
>>> print(hand) #doctest: +NORMALIZE_WHITESPACE
BGRWY 12345, BGRWY 5 , BGRWY 5 , BGRWY 1234 , BGRWY 1234

4.7 Draw Pile

class hanabython.DrawPile(cfg: hanabython.Modules.Configuration.Configuration)
The draw pile of a game of Hanabi.

Parameters cfg – the configuration of the game.

At initialization, the draw pile is generated with the parameters in cfg, then it is shuffled.

Basically, a DrawPile is a list of cards. The top of the pile, where cards are drawn, is represented by the end of
the list (not that we care much, but it could have an influence someday in some not-yet-implemented non-official
variants).

24 Chapter 4. Reference

Hanabython Documentation, Release 0.1.12

>>> from hanabython import Configuration
>>> draw_pile = DrawPile(Configuration.STANDARD)

colored()→ str
Colored version of __str__().

In the subclasses, the principle is to override only this method. __str__() is automatically defined as
the uncolored version of the same string, and __repr__() as the same with the class name added.

Of course, it is also possible to override __str__() and/or __repr__() if a different behavior is
desired.

Returns a string representing the object, possibly with ANSI escape codes to add colors and
style.

Return type str

give()→ Optional[hanabython.Modules.Card.Card]
Give the card from the top of pile.

Returns the card drawn. If the pile is empty, return None.

>>> from hanabython import Configuration
>>> draw_pile = DrawPile(cfg=Configuration.STANDARD)
>>> card = draw_pile.give()
>>> type(card)
<class 'hanabython.Modules.Card.Card'>
>>> while draw_pile.n_cards >= 1:
... _ = draw_pile.give()
>>> print(draw_pile.give())
None

n_cards
Number of cards in the pile.

Returns the number of cards.

>>> from hanabython import Configuration
>>> draw_pile = DrawPile(Configuration.STANDARD)
>>> draw_pile.n_cards
50

class hanabython.DrawPilePublic(cfg: hanabython.Modules.Configuration.Configuration)
The public part of a draw pile.

An object of this class represents what is known by all players. In the normal version of the game and all official
variants, it is only the number of cards left.

Parameters cfg – the configuration of the game.

>>> from hanabython import Configuration
>>> draw_pile = DrawPilePublic(cfg=Configuration.STANDARD)
>>> print(draw_pile)
50 cards left

colored()→ str
Colored version of __str__().

In the subclasses, the principle is to override only this method. __str__() is automatically defined as
the uncolored version of the same string, and __repr__() as the same with the class name added.

4.7. Draw Pile 25

Hanabython Documentation, Release 0.1.12

Of course, it is also possible to override __str__() and/or __repr__() if a different behavior is
desired.

Returns a string representing the object, possibly with ANSI escape codes to add colors and
style.

Return type str

give()→ None
Give the card from the top of pile.

Updates the internal variables of the pile.

>>> from hanabython import Configuration
>>> draw_pile = DrawPilePublic(cfg=Configuration.STANDARD)
>>> print(draw_pile)
50 cards left
>>> while draw_pile.n_cards >= 2:
... draw_pile.give()
>>> print(draw_pile)
1 card left
>>> draw_pile.give()
>>> print(draw_pile)
No card left

4.8 Discard Pile

class hanabython.DiscardPile(cfg: hanabython.Modules.Configuration.Configuration)
The discard pile in a game of Hanabi.

Parameters cfg – the configuration of the game.

Variables

• chronological (list) – a list a cards discarded, by chronological order.

• array (np.array) – each row represents a color, each column a card value. The coeffi-
cient is the number of copies of this card in the discard pile.

• not_discarded (np.array) – is equal to Configuration.deck_array -
array. Number of copies left for each card (including everything except the discard pile:
the draw pile, the players’ hand and the board).

• scorable (np.array) – each row represents a color, each column a card value. The
coefficient is True it is possible to have a such card on the board at the end of the game
(whether it is already on the board or not). For example, if the two G4’s are discarded, then
G4 and G5 are not “scorable”. Note that a 1 always is considered “scorable”, whether it is
on the board or not.

>>> from hanabython import Configuration
>>> discard_pile = DiscardPile(Configuration.STANDARD)
>>> print(discard_pile)
No card discarded yet

Check that scorable cards are counted correctly with unusual configurations:

26 Chapter 4. Reference

Hanabython Documentation, Release 0.1.12

>>> from hanabython import (Configuration, ConfigurationDeck,
... Colors, ConfigurationColorContents)
>>> discard_pile = DiscardPile(Configuration(
... deck=ConfigurationDeck(contents=[
... (Colors.BLUE, ConfigurationColorContents([3, 2, 1, 1])),
... (Colors.RED, ConfigurationColorContents([2, 1])),
...])
...))
>>> print(discard_pile)
No card discarded yet
>>> print(discard_pile.array)
[[0 0 0 0]
[0 0 0 0]]

>>> print(discard_pile.not_discarded)
[[3 2 1 1]
[2 1 0 0]]

>>> print(discard_pile.scorable)
[[True True True True]
[True True False False]]

>>> print(discard_pile.max_score_possible)
6

colored()→ str
Colored version of __str__().

In the subclasses, the principle is to override only this method. __str__() is automatically defined as
the uncolored version of the same string, and __repr__() as the same with the class name added.

Of course, it is also possible to override __str__() and/or __repr__() if a different behavior is
desired.

Returns a string representing the object, possibly with ANSI escape codes to add colors and
style.

Return type str

colored_as_array()→ str
Colored version of str_as_array().

colored_compact_chronological()→ str
Colored version of str_compact_chronological().

colored_compact_factorized()→ str
Colored version of str_multi_line_compact().

colored_compact_ordered()→ str
Colored version of str_compact_ordered().

colored_multi_line()→ str
Colored version of str_multi_line().

colored_multi_line_compact()→ str
Colored version of str_multi_line_compact().

list_reordered
List of discarded cards, ordered by color and value.

Returns the list of discarded cards, by lexicographic order. The order on the colors is the one
specified in cfg.

4.8. Discard Pile 27

Hanabython Documentation, Release 0.1.12

>>> from hanabython import Configuration
>>> discard_pile = DiscardPile(Configuration.STANDARD)
>>> discard_pile.receive(Card('B3'))
>>> discard_pile.receive(Card('R4'))
>>> discard_pile.receive(Card('B1'))
>>> discard_pile.list_reordered
[<Card: B1>, <Card: B3>, <Card: R4>]

max_score_possible
Maximum possible score, considering the discard pile.

Returns the maximum score that is still possible.

receive(card)→ None
Receive a card.

Parameters card – the card discarded.

Update the internal variables of the discard pile.

>>> from hanabython import Configuration
>>> discard_pile = DiscardPile(Configuration.STANDARD)
>>> discard_pile.receive(Card('B3'))
>>> discard_pile.receive(Card('B2'))
>>> discard_pile.receive(Card('B3'))
>>> print(discard_pile)
B2 B3 B3
>>> print(discard_pile.not_discarded)
[[3 1 0 2 1]
[3 2 2 2 1]
[3 2 2 2 1]
[3 2 2 2 1]
[3 2 2 2 1]]

>>> print(discard_pile.scorable)
[[True True False False False]
[True True True True True]
[True True True True True]
[True True True True True]
[True True True True True]]

>>> print(discard_pile.max_score_possible)
22

str_as_array()→ str
Convert to string in an array-style layout.

Returns a representation of the discard pile.

>>> from hanabython import Configuration
>>> discard_pile = DiscardPile(Configuration.STANDARD)
>>> discard_pile.receive(Card('B3'))
>>> discard_pile.receive(Card('R4'))
>>> discard_pile.receive(Card('B1'))
>>> print(discard_pile.str_as_array())

1 2 3 4 5
B [1 0 1 0 0]
G [0 0 0 0 0]
R [0 0 0 1 0]
W [0 0 0 0 0]
Y [0 0 0 0 0]

28 Chapter 4. Reference

Hanabython Documentation, Release 0.1.12

str_compact_chronological()→ str
Convert to string in a list-style layout, by chronological order.

Returns a representation of the discard pile.

>>> from hanabython import Configuration
>>> discard_pile = DiscardPile(Configuration.STANDARD)
>>> discard_pile.receive(Card('B3'))
>>> discard_pile.receive(Card('R4'))
>>> discard_pile.receive(Card('B1'))
>>> print(discard_pile.str_compact_chronological())
B3 R4 B1

str_compact_factorized()→ str
Convert to nice string.

Returns a representation of the discard pile.

>>> from hanabython import Configuration
>>> discard_pile = DiscardPile(Configuration.STANDARD)
>>> discard_pile.receive(Card('B3'))
>>> discard_pile.receive(Card('R4'))
>>> discard_pile.receive(Card('B1'))
>>> print(discard_pile.str_compact_factorized())
B 1 3 R 4

str_compact_ordered()→ str
Convert to string in a list-style layout, ordered by color and value.

Returns a representation of the discard pile.

>>> from hanabython import Configuration
>>> discard_pile = DiscardPile(Configuration.STANDARD)
>>> discard_pile.receive(Card('B3'))
>>> discard_pile.receive(Card('R4'))
>>> discard_pile.receive(Card('B1'))
>>> print(discard_pile.str_compact_ordered())
B1 B3 R4

str_multi_line()→ str
Convert to nice string.

Returns a representation of the discard pile.

>>> from hanabython import Configuration
>>> discard_pile = DiscardPile(Configuration.STANDARD)
>>> discard_pile.receive(Card('B3'))
>>> discard_pile.receive(Card('R4'))
>>> discard_pile.receive(Card('B1'))
>>> print(discard_pile.str_multi_line())
B1 B3
-
R4
-
-

str_multi_line_compact()→ str
Convert to nice string.

4.8. Discard Pile 29

Hanabython Documentation, Release 0.1.12

Returns a representation of the discard pile. As of now, it is the one used for the standard method
__str__() (this behavior might be modified in the future).

>>> from hanabython import Configuration
>>> discard_pile = DiscardPile(Configuration.STANDARD)
>>> discard_pile.receive(Card('B3'))
>>> discard_pile.receive(Card('R4'))
>>> discard_pile.receive(Card('B1'))
>>> print(discard_pile.str_multi_line_compact())
B1 B3
R4

4.9 Board

class hanabython.Board(cfg: hanabython.Modules.Configuration.Configuration)
The board (cards successfully played) in a game of Hanabi.

Parameters cfg – the configuration of the game.

Variables altitude (np.array) – indicates the highest card played in each color. E.g. with
color c of index i, altitude[i] is the value of the highest card played in color c. The
correspondence between colors and indexes is the one provided by cfg.

>>> from hanabython import Configuration
>>> board = Board(Configuration.STANDARD)
>>> print(board.altitude)
[0 0 0 0 0]

colored()→ str
Colored version of __str__().

In the subclasses, the principle is to override only this method. __str__() is automatically defined as
the uncolored version of the same string, and __repr__() as the same with the class name added.

Of course, it is also possible to override __str__() and/or __repr__() if a different behavior is
desired.

Returns a string representing the object, possibly with ANSI escape codes to add colors and
style.

Return type str

colored_compact()→ str
Colored version of str_compact().

colored_fixed_space()→ str
Colored version of str_fixed_space().

colored_multi_line()→ str
Colored version of str_multi_line().

colored_multi_line_compact()→ str
Colored version of str_multi_line_compact().

score
The current score.

Returns the sum of the altitudes reached in all colors.

30 Chapter 4. Reference

Hanabython Documentation, Release 0.1.12

>>> from hanabython import Configuration
>>> cfg = Configuration.STANDARD
>>> board = Board(cfg)
>>> for s in ['G1', 'G2', 'Y1', 'Y2', 'Y3', 'Y4', 'Y5']:
... _ = board.try_to_play(Card(s))
>>> print(board.score)
7

str_compact()→ str
Convert to string in “compact” layout.

Returns a representation of the board.

>>> from hanabython import Configuration
>>> board = Board(Configuration.STANDARD)
>>> for s in ['G1', 'G2', 'Y1', 'Y2', 'Y3', 'Y4', 'Y5']:
... _ = board.try_to_play(Card(s))
>>> print(board.str_compact())
G1 G2 Y1 Y2 Y3 Y4 Y5

str_fixed_space()→ str
Convert to string in “fixed-space” layout.

Returns a representation of the board.

>>> from hanabython import Configuration
>>> board = Board(Configuration.STANDARD)
>>> for s in ['G1', 'G2', 'Y1', 'Y2', 'Y3', 'Y4', 'Y5']:
... _ = board.try_to_play(Card(s))
>>> print(board.str_fixed_space())
B - G 1 2 R - W - Y 1 2 3 4 5

str_multi_line()→ str
Convert to string in “multi-line” layout.

Returns a representation of the board.

>>> from hanabython import Configuration
>>> board = Board(Configuration.STANDARD)
>>> for s in ['G1', 'G2', 'Y1', 'Y2', 'Y3', 'Y4', 'Y5']:
... _ = board.try_to_play(Card(s))
>>> print(board.str_multi_line())
-
G1 G2
-
-
Y1 Y2 Y3 Y4 Y5

str_multi_line_compact()→ str
Convert to string in “compact multi-line” layout.

Returns a representation of the board.

>>> from hanabython import Configuration
>>> board = Board(Configuration.STANDARD)
>>> for s in ['G1', 'G2', 'Y1', 'Y2', 'Y3', 'Y4', 'Y5']:
... _ = board.try_to_play(Card(s))
>>> print(board.str_multi_line_compact())

(continues on next page)

4.9. Board 31

Hanabython Documentation, Release 0.1.12

(continued from previous page)

G1 G2
Y1 Y2 Y3 Y4 Y5

try_to_play(card: hanabython.Modules.Card.Card)→ bool
Try to play a card on the board.

Parameters card – the card.

Returns True if the card is successfully played on the board, False otherwise (i.e. if it leads to a
misfire).

>>> from hanabython import Configuration, Card
>>> board = Board(Configuration.STANDARD)
>>> for s in ['B1', 'B2', 'Y1', 'Y3', 'B1']:
... board.try_to_play(Card(s))
True
True
True
False
False
>>> print(board.str_compact())
B1 B2 Y1

4.10 Actions

class hanabython.Action(category: int)
An action performed by a player (Throw, Play a card, Clue or Forfeit).

In the end-user interfaces (including methods colored), “throw” should be called “discard” and “play a card”
can be called “play” (to be consistent with the official rules). In the code however, we prefer to use “throw”
(to distinguish from other forms of discards, for example after a misfire) and “play a card” (to distinguish from
simply playing in general).

Parameters category – can be Action.THROW , Action.PLAY_CARD, Action.CLUE or
Action.FORFEIT.

Generally, only subclasses are instantiated. Cf. ActionThrow, ActionPlayCard, ActionClue and
ActionForfeit.

CATEGORIES = {0, 1, 2, 3}
Possibles categories of action.

CLUE = 2

FORFEIT = 3

PLAY_CARD = 1

THROW = 0

class hanabython.ActionClue(i: int, clue: hanabython.Modules.Clue.Clue)
An action of a player: give a clue.

Parameters

• i – the relative position of the concerned player (i.e. 1 for next player, 2 for second next
player, etc.).

• clue – the clue.

32 Chapter 4. Reference

Hanabython Documentation, Release 0.1.12

>>> from hanabython import Colors
>>> action = ActionClue(i=1, clue=Clue(2))
>>> print(action)
Clue 2 to player in relative position 1
>>> action = ActionClue(i=2, clue=Clue(Colors.BLUE))
>>> print(action)
Clue B to player in relative position 2

colored()→ str
Colored version of __str__().

In the subclasses, the principle is to override only this method. __str__() is automatically defined as
the uncolored version of the same string, and __repr__() as the same with the class name added.

Of course, it is also possible to override __str__() and/or __repr__() if a different behavior is
desired.

Returns a string representing the object, possibly with ANSI escape codes to add colors and
style.

Return type str

class hanabython.ActionForfeit
An action of a player: forfeit (lose the game immediately).

>>> action = ActionForfeit()
>>> print(action)
Forfeit

colored()→ str
Colored version of __str__().

In the subclasses, the principle is to override only this method. __str__() is automatically defined as
the uncolored version of the same string, and __repr__() as the same with the class name added.

Of course, it is also possible to override __str__() and/or __repr__() if a different behavior is
desired.

Returns a string representing the object, possibly with ANSI escape codes to add colors and
style.

Return type str

4.11 Players

class hanabython.Player(name: str)
A player for Hanabi.

Parameters name – the name of the player.

To define a subclass, the only real requirement is to implement the function choose_action().

>>> antoine = Player('Antoine')
>>> print(antoine)
Antoine

choose_action()→ hanabython.Modules.Action.Action
Choose an action.

4.11. Players 33

Hanabython Documentation, Release 0.1.12

Returns the action chosen by the player.

colored()→ str
Colored version of __str__().

In the subclasses, the principle is to override only this method. __str__() is automatically defined as
the uncolored version of the same string, and __repr__() as the same with the class name added.

Of course, it is also possible to override __str__() and/or __repr__() if a different behavior is
desired.

Returns a string representing the object, possibly with ANSI escape codes to add colors and
style.

Return type str

receive_action_illegal(s: str)→ None
Receive a message: the action chosen is illegal.

Parameters s – a message explaining why the action is illegal.

receive_action_legal()→ None
Receive a message: the action chosen is legal.

receive_begin_dealing()→ None
Receive a message: the initial dealing of hands begins.

receive_end_dealing()→ None
Receive a message: the initial dealing of hands is over.

The hands themselves are not communicated in this message. Drawing cards, including for the initial
hands, is always handled by receive_i_draw() or receive_partner_draws().

receive_game_exhausted(score: int)→ None
Receive a message: the game is over and is neither really lost (misfires, forfeit) nor a total victory (maximal
score). Typically, this happens a bit after the deck ran out of cards (it depends on the end-of-game rule that
is used).

Parameters score – the final score.

receive_i_draw()→ None
Receive a message: this player tries to draw a card.

A card is actually drawn only if the draw pile is not empty.

receive_init(cfg: hanabython.Modules.Configuration.Configuration, player_names: List[str]) →
None

Receive a message: the game starts.

Parameters

• cfg – the configuration of the game.

• player_names – the names of the players, rotated so that this player corresponds to
index 0.

receive_lose(score: int)→ None
Receive a message: the game is lost (misfires or forfeit).

Parameters score – the final score (0 in that case).

receive_partner_draws(i_active: int, card: hanabython.Modules.Card.Card)→ None
Receive a message: another player tries to draw a card.

A card is actually drawn only if the draw pile is not empty.

34 Chapter 4. Reference

Hanabython Documentation, Release 0.1.12

Parameters

• i_active – the position of the player who draws (relatively to this player).

• card – the card drawn.

receive_remaining_turns(remaining_turns: int)→ None
Receive a message: the number of remaining turns is now known.

This happens with the normal rule for end of game: as soon as the discard pile is empty, we know how
many turns are left. N.B.: the word “turn” means that one player gets to play (not all of them).

Parameters remaining_turns – the number of turns left.

receive_someone_clues(i_active: int, i_clued: int, clue: hanabython.Modules.Clue.Clue,
bool_list: List[bool])→ None

Receive a message: a player gives a clue to another one.

It is not necessary to check whether this action is legal: the Game will only send this message when it is
the case.

Parameters

• i_active – the position of the player who gives the clue (relatively to this player).

• i_clued – the position of the player who receives the clue (relatively to this player).

• clue – the clue.

• bool_list – a list of boolean that indicates what cards match the clue given.

receive_someone_forfeits(i_active: int)→ None
Receive a message: a player forfeits.

Parameters i_active – the position of the player who forfeits (relatively to this player).

receive_someone_plays_card(i_active: int, k: int, card: hanabython.Modules.Card.Card) →
None

Receive a message: a player tries to play a card on the board.

This can be a success or a misfire.

Parameters

• i_active – the position of the player who plays the card (relatively to this player).

• k – position of the card in the hand.

• card – the card played.

receive_someone_throws(i_active: int, k: int, card: hanabython.Modules.Card.Card)→ None
Receive a message: a player throws (discards a card willingly).

It is not necessary to check whether this action is legal: the Game will only send this message when it is
the case.

Parameters

• i_active – the position of the player who throws (relatively to this player).

• k – position of the card in the hand.

• card – the card thrown.

receive_turn_begin()→ None
Receive a message: the turn of the player begins.

4.11. Players 35

Hanabython Documentation, Release 0.1.12

receive_turn_finished()→ None
Receive a message: the turn of the player is finished.

receive_win(score: int)→ None
Receive a message: the game is won (total victory).

Parameters score – the final score.

class hanabython.PlayerPuppet(name, speak=False)
A player for Hanabi that serves only for testing purposes.

Parameters speak – if True, then each time this player receives a message, she prints a acknowl-
edgement.

Variables next_action (Action) – this variable makes it possible to control this player’s ac-
tion.

>>> from hanabython import ActionThrow
>>> antoine = PlayerPuppet('Antoine', speak=True)
>>> antoine.next_action = ActionThrow(k=4)
>>> _ = antoine.choose_action()
Antoine: Choose an action
Antoine: action = Discard card in position 5

choose_action()→ hanabython.Modules.Action.Action

Returns the value of next_action

receive_action_illegal(s: str)→ None
Receive a message: the action chosen is illegal.

Parameters s – a message explaining why the action is illegal.

receive_action_legal()→ None
Receive a message: the action chosen is legal.

receive_begin_dealing()→ None
Receive a message: the initial dealing of hands begins.

receive_end_dealing()→ None
Receive a message: the initial dealing of hands is over.

The hands themselves are not communicated in this message. Drawing cards, including for the initial
hands, is always handled by receive_i_draw() or receive_partner_draws().

receive_game_exhausted(score: int)→ None
Receive a message: the game is over and is neither really lost (misfires, forfeit) nor a total victory (maximal
score). Typically, this happens a bit after the deck ran out of cards (it depends on the end-of-game rule that
is used).

Parameters score – the final score.

receive_i_draw()→ None
Receive a message: this player tries to draw a card.

A card is actually drawn only if the draw pile is not empty.

receive_init(cfg: hanabython.Modules.Configuration.Configuration, player_names: List[str]) →
None

Receive a message: the game starts.

Parameters

• cfg – the configuration of the game.

36 Chapter 4. Reference

Hanabython Documentation, Release 0.1.12

• player_names – the names of the players, rotated so that this player corresponds to
index 0.

receive_lose(score: int)→ None
Receive a message: the game is lost (misfires or forfeit).

Parameters score – the final score (0 in that case).

receive_partner_draws(i_active: int, card: hanabython.Modules.Card.Card)→ None
Receive a message: another player tries to draw a card.

A card is actually drawn only if the draw pile is not empty.

Parameters

• i_active – the position of the player who draws (relatively to this player).

• card – the card drawn.

receive_remaining_turns(remaining_turns: int)→ None
Receive a message: the number of remaining turns is now known.

This happens with the normal rule for end of game: as soon as the discard pile is empty, we know how
many turns are left. N.B.: the word “turn” means that one player gets to play (not all of them).

Parameters remaining_turns – the number of turns left.

receive_someone_clues(i_active: int, i_clued: int, clue: hanabython.Modules.Clue.Clue,
bool_list: List[bool])→ None

Receive a message: a player gives a clue to another one.

It is not necessary to check whether this action is legal: the Game will only send this message when it is
the case.

Parameters

• i_active – the position of the player who gives the clue (relatively to this player).

• i_clued – the position of the player who receives the clue (relatively to this player).

• clue – the clue.

• bool_list – a list of boolean that indicates what cards match the clue given.

receive_someone_forfeits(i_active: int)→ None
Receive a message: a player forfeits.

Parameters i_active – the position of the player who forfeits (relatively to this player).

receive_someone_plays_card(i_active: int, k: int, card: hanabython.Modules.Card.Card) →
None

Receive a message: a player tries to play a card on the board.

This can be a success or a misfire.

Parameters

• i_active – the position of the player who plays the card (relatively to this player).

• k – position of the card in the hand.

• card – the card played.

receive_someone_throws(i_active: int, k: int, card: hanabython.Modules.Card.Card)→ None
Receive a message: a player throws (discards a card willingly).

It is not necessary to check whether this action is legal: the Game will only send this message when it is
the case.

4.11. Players 37

Hanabython Documentation, Release 0.1.12

Parameters

• i_active – the position of the player who throws (relatively to this player).

• k – position of the card in the hand.

• card – the card thrown.

receive_turn_begin()→ None
Receive a message: the turn of the player begins.

receive_turn_finished()→ None
Receive a message: the turn of the player is finished.

receive_win(score: int)→ None
Receive a message: the game is won (total victory).

Parameters score – the final score.

class hanabython.PlayerBase(name: str)
A player for Hanabi with basic features.

This class is meant to serve as a mother class for most AIs and interface for human players. It provides all basic
features, such as keeping track of the number of cards in the draw pile, the cards in the other players’ hands, the
clues given, etc.

Note that all the variables are “personal” to this player: the Game does not share access to its internal variables
with the players.

Note also that most methods are not supposed to work before receive_init() is run at least once, which
initializes all the variables for a new game.

Parameters name (str) – the name of the player.

Variables

• player_names (list) – a list of strings, each with a player’s name. By convention, the
list is always rotated to that this player has position 0, the next player has position 1, etc.

• n_players (int) – the number of players.

• cfg (Configuration) – the configuration of the game.

• board (Board) – the board.

• draw_pile (DrawPilePublic) – the draw pile.

• discard_pile (DiscardPile) – the discard pile.

• n_clues (int) – the number of clues left.

• n_misfires (int) – the number of misfires (initially 0).

• hand_size (int) – the initial hand size.

• hands (list) – a list of Hand objects. The hand in position 0, corresponding to this
player, is never updated because the player does not know what she has.

• hands_public (list) – a list of HandPublic objects. This allow the player to keep
track, not only of her own clues, but also of the clues received by her partners.

• remaining_turns (int) – the number of remaining turns (once the draw pile is empty,
in the normal rule for end of game). As long as the draw pile contains cards, this variable is
None.

38 Chapter 4. Reference

Hanabython Documentation, Release 0.1.12

• recent_events (str) – things that happened “recently” (typically, since this player’s
last turn). Subclasses may typically print and/or empty this variable from time to time. Cf.
log().

• dealing_is_ongoing (bool) – True only during the initial dealing of hands. Avoid
useless verbose messages in recent events. Cf. log().

• display_width (int) – the width of the display on the terminal (in number of charac-
ters).

>>> antoine = PlayerBase(name='Antoine')

colored()→ str
Colored version of __str__().

In the subclasses, the principle is to override only this method. __str__() is automatically defined as
the uncolored version of the same string, and __repr__() as the same with the class name added.

Of course, it is also possible to override __str__() and/or __repr__() if a different behavior is
desired.

Returns a string representing the object, possibly with ANSI escape codes to add colors and
style.

Return type str

colored_hands()→ str
A string used to display the hands of all players.

Returns the string (whose width is usually display_width, except maybe in the end of game
when the hands are shorter).

>>> antoine = PlayerBase('Antoine')
>>> antoine.demo_game()
>>> from hanabython import uncolor
>>> print(uncolor(antoine.colored_hands())) #doctest: +NORMALIZE_WHITESPACE
Antoine
BGRWY 12345, BGRWY 2345 , BGRWY 1 , BGRWY 1 , BGRWY 2345
<BLANKLINE>
Donald X

Y2 , R1 , R3 , G3 , Y4
BGRWY 2345 , BGRWY 1 , BGRWY 2345 , BGRWY 2345 , BGRWY 2345
<BLANKLINE>
Uwe

G4 , B4 , W4 , G5 , W1
BGRWY 12345, BGRWY 12345, BGRWY 12345, BGRWY 12345, BGRWY 12345

demo_game()→ None
Mimic the beginning of a game.

This method is meant to be used for tests and examples.

>>> from hanabython import uncolor
>>> antoine = PlayerBase('Antoine')
>>> antoine.demo_game()
>>> print(uncolor(antoine.recent_events))
Configuration

Deck: normal.
Number of clues: 8.

(continues on next page)

4.11. Players 39

Hanabython Documentation, Release 0.1.12

(continued from previous page)

Number of misfires: 3.
Clues rule: empty clues are forbidden.
End rule: normal.
<BLANKLINE>
First moves

The game begins.
Antoine clues Donald X about 1.
Donald X clues Antoine about 1.
Uwe discards R3.
Uwe draws G4.
Antoine plays W1.
Antoine draws a card.
<BLANKLINE>

log(o: object)→ None
Log events for the player.

Parameters o – an object. The method adds str(o) to the variable recent_events, except
during the initial dealing of cards (to avoid useless messages about each card dealt). Do not
forget the end-of-line character when relevant (it is not added automatically).

This is for the player herself: it is used, in particular, in the subclass PlayerHumanText to inform the
player of the most recent events in a relatively user-friendly form.

N.B.: this is totally different from the use of the standard package logging, which is essentially used for
debugging purposes.

>>> antoine = PlayerBase('Antoine')
>>> antoine.log_init()
>>> antoine.log('Something happens.\n')
>>> antoine.dealing_is_ongoing = True
>>> antoine.log('Many useless messages.\n')
>>> antoine.dealing_is_ongoing = False
>>> antoine.log('Something else happens.\n')
>>> print(antoine.recent_events)
Something happens.
Something else happens.
<BLANKLINE>
>>> antoine.log_forget()
>>> antoine.log('Something new happens.')
>>> print(antoine.recent_events)
Something new happens.

log_forget()→ None
Forget old events (during the game).

Empties recent_events. In this base class, this method has the same implementation as
log_init(), but it could be different in some subclasses.

log_init()→ None
Initialize the log process (at the beginning of a game).

Empties recent_events.

receive_begin_dealing()→ None
The log is turned off to avoid having a message for each card dealt. Cf. log().

40 Chapter 4. Reference

Hanabython Documentation, Release 0.1.12

>>> antoine = PlayerBase('Antoine')
>>> antoine.receive_init(Configuration.STANDARD,
... player_names=['Antoine', 'Donald X'])
>>> antoine.receive_begin_dealing()
>>> antoine.dealing_is_ongoing
True
>>> antoine.receive_end_dealing()
>>> antoine.dealing_is_ongoing
False

receive_end_dealing()→ None
The log is turned back on. Cf. log() and receive_begin_dealing().

receive_game_exhausted(score: int)→ None
We just log the event for the player.

>>> antoine = PlayerBase('Antoine')
>>> antoine.receive_init(Configuration.STANDARD,
... player_names=['Antoine', 'Donald X'])
>>> antoine.log_forget()
>>> antoine.receive_game_exhausted(score=23)
>>> print(antoine.recent_events)
Antoine's team has reached the end of the game.
Score: 23.
<BLANKLINE>

receive_i_draw()→ None
If there are cards in the draw pile, a card is drawn. There is one card less in drawpile, and one more in
this player’s hand in hands_public.

>>> antoine = PlayerBase('Antoine')
>>> antoine.receive_init(Configuration.STANDARD,
... player_names=['Antoine', 'Donald X'])
>>> for _ in range(4):
... antoine.receive_i_draw()
>>> print(antoine.draw_pile)
46 cards left
>>> print(antoine.hands_public[0])
BGRWY 12345, BGRWY 12345, BGRWY 12345, BGRWY 12345

If there are no cards in the draw pile, nothing happens.

>>> antoine = PlayerBase('Antoine')
>>> antoine.receive_init(Configuration.STANDARD,
... player_names=['Antoine', 'Donald X'])
>>> for _ in range(50):
... antoine.receive_i_draw()
>>> len(antoine.hands_public[0])
50
>>> print(antoine.draw_pile)
No card left
>>> antoine.receive_i_draw()
>>> len(antoine.hands_public[0])
50
>>> print(antoine.draw_pile)
No card left

4.11. Players 41

Hanabython Documentation, Release 0.1.12

receive_init(cfg: hanabython.Modules.Configuration.Configuration, player_names: List[str]) →
None

Initialize all the instance variables for a new game.

>>> antoine = PlayerBase('Antoine')
>>> antoine.receive_init(Configuration.STANDARD,
... player_names=['Antoine', 'Donald X'])
>>> print(repr(antoine)) #doctest: +NORMALIZE_WHITESPACE
<PlayerBase:

************************** board **************************
B - G - R - W - Y -

*************************** cfg ***************************
Deck: normal.
Number of clues: 8.
Number of misfires: 3.
Clues rule: empty clues are forbidden.
End rule: normal.

******************* dealing_is_ongoing ********************
False

********************** discard_pile ***********************
No card discarded yet

********************** display_width **********************
63

************************ draw_pile ************************
50 cards left

************************ hand_size ************************
5

************************** hands **************************
[<Hand: >, <Hand: >]

********************** hands_public ***********************
[<HandPublic: >, <HandPublic: >]

************************* n_clues *************************
8

*********************** n_misfires ************************
0

************************ n_players ************************
2

************************** name ***************************
Antoine

********************** player_names ***********************
['Antoine', 'Donald X']

********************** recent_events **********************
Configuration

Deck: normal.
Number of clues: 8.
Number of misfires: 3.
Clues rule: empty clues are forbidden.
End rule: normal.
<BLANKLINE>

********************* remaining_turns *********************
None
>

receive_lose(score: int)→ None
We just log the event for the player.

>>> antoine = PlayerBase('Antoine')

(continues on next page)

42 Chapter 4. Reference

Hanabython Documentation, Release 0.1.12

(continued from previous page)

>>> antoine.receive_init(Configuration.STANDARD,
... player_names=['Antoine', 'Donald X'])
>>> antoine.log_forget()
>>> antoine.receive_lose(score=0)
>>> print(antoine.recent_events)
Antoine's team loses.
Score: 0.
<BLANKLINE>

receive_partner_draws(i_active: int, card: hanabython.Modules.Card.Card)→ None
If there are cards in the draw pile, a card is drawn. There is one card less in drawpile, one more in the
partner’s hand in hands_public, and the actual card is added in the partner’s hand in hands.

>>> antoine = PlayerBase('Antoine')
>>> antoine.receive_init(Configuration.STANDARD,
... player_names=['Antoine', 'Donald X'])
>>> for s in ['B1', 'G3', 'Y1', 'W1', 'R5']:
... antoine.receive_partner_draws(i_active=1, card=Card(s))
>>> print(antoine.draw_pile)
45 cards left
>>> print(antoine.hands[1])
R5 W1 Y1 G3 B1
>>> print(antoine.hands_public[1])
BGRWY 12345, BGRWY 12345, BGRWY 12345, BGRWY 12345, BGRWY 12345

If there are no cards in the draw pile, nothing happens.

>>> antoine = PlayerBase('Antoine')
>>> antoine.receive_init(Configuration.STANDARD,
... player_names=['Antoine', 'Donald X'])
>>> for _ in range(50):
... antoine.receive_partner_draws(i_active=1, card=Card('B1'))
>>> len(antoine.hands[1])
50
>>> len(antoine.hands_public[1])
50
>>> print(antoine.draw_pile)
No card left
>>> antoine.receive_i_draw()
>>> len(antoine.hands[1])
50
>>> len(antoine.hands_public[1])
50
>>> print(antoine.draw_pile)
No card left

receive_remaining_turns(remaining_turns: int)→ None
We update remaining_turns and log the event for the player.

>>> antoine = PlayerBase('Antoine')
>>> antoine.receive_init(Configuration.STANDARD,
... player_names=['Antoine', 'Donald X'])
>>> antoine.log_forget()
>>> antoine.receive_remaining_turns(remaining_turns=2)
>>> antoine.remaining_turns
2

(continues on next page)

4.11. Players 43

Hanabython Documentation, Release 0.1.12

(continued from previous page)

>>> print(antoine.recent_events)
2 turns remaining!
<BLANKLINE>

receive_someone_clues(i_active: int, i_clued: int, clue: hanabython.Modules.Clue.Clue,
bool_list: List[bool])→ None

We remove a clue chip, and we update the clued player’s hand in hands_public.

>>> antoine = PlayerBase('Antoine')
>>> antoine.receive_init(Configuration.STANDARD,
... player_names=['Antoine', 'Donald X'])
>>> for s in ['B1', 'G3', 'Y1', 'W1', 'R5']:
... antoine.receive_partner_draws(i_active=1, card=Card(s))
>>> print(antoine.hands[1])
R5 W1 Y1 G3 B1
>>> antoine.n_clues
8
>>> antoine.receive_someone_clues(
... i_active=0, i_clued=1, clue=Clue(1),
... bool_list=[False, True, True, False, True])
>>> print(antoine.hands_public[1]) #doctest: +NORMALIZE_WHITESPACE
BGRWY 2345 , BGRWY 1 , BGRWY 1 , BGRWY 2345 , BGRWY 1
>>> antoine.n_clues
7

receive_someone_forfeits(i_active: int)→ None
We just log the event for the player.

>>> antoine = PlayerBase('Antoine')
>>> antoine.receive_init(Configuration.STANDARD,
... player_names=['Antoine', 'Donald X'])
>>> antoine.log_forget()
>>> antoine.receive_someone_forfeits(i_active=1)
>>> print(antoine.recent_events)
Donald X forfeits.
<BLANKLINE>

receive_someone_plays_card(i_active: int, k: int, card: hanabython.Modules.Card.Card) →
None

If the action succeeds, the card goes on the board.

>>> antoine = PlayerBase('Antoine')
>>> antoine.receive_init(Configuration.STANDARD,
... player_names=['Antoine', 'Donald X'])
>>> for s in ['B1', 'G3', 'Y1', 'W1', 'R5']:
... antoine.receive_partner_draws(i_active=1, card=Card(s))
>>> print(antoine.hands[1])
R5 W1 Y1 G3 B1
>>> antoine.receive_someone_plays_card(i_active=1, k=1, card=Card('W1'))
>>> print(antoine.hands[1])
R5 Y1 G3 B1
>>> print(antoine.hands_public[1])
BGRWY 12345, BGRWY 12345, BGRWY 12345, BGRWY 12345
>>> print(antoine.board) #doctest: +NORMALIZE_WHITESPACE
B - G - R - W 1 Y -

If the action fails, the card goes in the discard pile and players get a misfire.

44 Chapter 4. Reference

Hanabython Documentation, Release 0.1.12

>>> antoine = PlayerBase('Antoine')
>>> antoine.receive_init(Configuration.STANDARD,
... player_names=['Antoine', 'Donald X'])
>>> for s in ['B1', 'G3', 'Y1', 'W1', 'R5']:
... antoine.receive_partner_draws(i_active=1, card=Card(s))
>>> print(antoine.hands[1])
R5 W1 Y1 G3 B1
>>> antoine.receive_someone_plays_card(i_active=1, k=0, card=Card('R5'))
>>> print(antoine.hands[1])
W1 Y1 G3 B1
>>> print(antoine.hands_public[1])
BGRWY 12345, BGRWY 12345, BGRWY 12345, BGRWY 12345
>>> print(antoine.board) #doctest: +NORMALIZE_WHITESPACE
B - G - R - W - Y -
>>> print(antoine.discard_pile)
R5
>>> antoine.n_misfires
1

receive_someone_throws(i_active: int, k: int, card: hanabython.Modules.Card.Card)→ None
The card goes in the discard pile, and players regain a clue chip.

>>> antoine = PlayerBase('Antoine')
>>> antoine.receive_init(Configuration.STANDARD,
... player_names=['Antoine', 'Donald X'])
>>> antoine.n_clues = 3
>>> for s in ['B1', 'G3', 'Y1', 'W1', 'R5']:
... antoine.receive_partner_draws(i_active=1, card=Card(s))
>>> print(antoine.hands[1])
R5 W1 Y1 G3 B1
>>> antoine.receive_someone_throws(i_active=1, k=4, card=Card('B1'))
>>> print(antoine.hands[1])
R5 W1 Y1 G3
>>> print(antoine.hands_public[1])
BGRWY 12345, BGRWY 12345, BGRWY 12345, BGRWY 12345
>>> print(antoine.discard_pile)
B1
>>> antoine.n_clues
4

receive_win(score: int)→ None
We just log the event for the player.

>>> antoine = PlayerBase('Antoine')
>>> antoine.receive_init(Configuration.STANDARD,
... player_names=['Antoine', 'Donald X'])
>>> antoine.log_forget()
>>> antoine.receive_win(score=25)
>>> print(antoine.recent_events)
Antoine's team wins!
Score: 25.
<BLANKLINE>

class hanabython.PlayerHumanText(name: str, ipython=False)
User interface for a human player in text mode (terminal or notebook).

Parameters ipython – use True when using the player in a notebook. This fixes a problem be-
tween clear_output and input.

4.11. Players 45

Hanabython Documentation, Release 0.1.12

>>> antoine = PlayerHumanText('Antoine', ipython=True)

choose_action()→ hanabython.Modules.Action.Action
The human player gets to choose an action.

receive_action_illegal(s: str)→ None
Receive a message: the action chosen is illegal.

Parameters s – a message explaining why the action is illegal.

receive_action_legal()→ None
We forget the previous events.

>>> from hanabython import Configuration
>>> antoine = PlayerHumanText('Antoine')
>>> antoine.receive_init(Configuration.STANDARD,
... player_names=['Antoine', 'Donald X'])
>>> antoine.log_forget()
>>> antoine.log('Donald does something.')
>>> antoine.recent_events
'Donald does something.'
>>> # Here, Antoine would choose his own action. Then...
>>> antoine.receive_action_legal()
>>> antoine.log("Antoine's action has such and such consequences.")
>>> antoine.recent_events
"Antoine's action has such and such consequences."

receive_game_exhausted(score: int)→ None
We print and forget the recent events.

>>> from hanabython import Configuration
>>> antoine = PlayerHumanText('Antoine')
>>> antoine.receive_init(Configuration.STANDARD,
... player_names=['Antoine', 'Donald X'])
>>> antoine.log_forget()
>>> antoine.receive_game_exhausted(score=23)
Antoine's team has reached the end of the game.
Score: 23.
<BLANKLINE>
>>> antoine.recent_events
''

receive_lose(score: int)→ None
We print and forget the recent (unfortunate) events.

>>> from hanabython import Configuration
>>> antoine = PlayerHumanText('Antoine')
>>> antoine.receive_init(Configuration.STANDARD,
... player_names=['Antoine', 'Donald X'])
>>> antoine.log_forget()
>>> antoine.receive_lose(score=0)
Antoine's team loses.
Score: 0.
<BLANKLINE>
>>> antoine.recent_events
''

receive_turn_begin()→ None
We pause, then we inform the player of the most recent events.

46 Chapter 4. Reference

Hanabython Documentation, Release 0.1.12

receive_turn_finished()→ None
We inform the player of the most recent events, i.e. the consequences of her actions. Then we pause
(unless this string was empty). Finally, we forget these recent events.

receive_win(score: int)→ None
We print and forget the recent (cheerful) events.

>>> from hanabython import Configuration
>>> antoine = PlayerHumanText('Antoine')
>>> antoine.receive_init(Configuration.STANDARD,
... player_names=['Antoine', 'Donald X'])
>>> antoine.log_forget()
>>> antoine.receive_win(score=25)
Antoine's team wins!
Score: 25.
<BLANKLINE>
>>> antoine.recent_events
''

4.12 Game

class hanabython.Game(players: List[hanabython.Modules.Player.Player], cfg: han-
abython.Modules.Configuration.Configuration = <Configuration: stan-
dard>)

A game of Hanabi.

Parameters

• cfg – the configuration.

• players – the list of players. They will play in this order, starting with the first player in
this list.

Variables

• n_players (int) – the number of players.

• board (Board) – the board.

• draw_pile (DrawPile) – the draw pile.

• discard_pile (DiscardPile) – the discard pile.

• n_clues (int) – the number of clue chips that players currently have.

• n_misfires (int) – the number of misfires chips that players currently have.

• hand_size (int) – the initial size of the hands.

• hands (list) – a list of Hand objects (in the same order as players).

• remaining_turns (int) – the number of remaining turns (once the draw pile is empty,
in the normal rule for end of game). As long as the draw pile contains cards, this variable is
None.

• b_lose (bool) – the game is lost.

• b_win (bool) – the game is won.

• i_active (int) – the index of the active player.

4.12. Game 47

Hanabython Documentation, Release 0.1.12

• active (Player) – the active player. It is automatically updated when i_active is
updated.

>>> game = Game(players=[PlayerHumanText('Antoine'),
... PlayerHumanText('Donald X')])

ATTEMPTS_BEFORE_FORFEIT = 100
Number of attempts that a player has to choose her action. If she provides illegal actions as many times,
she is automatically considered to forfeit (and this issues a warning).

check_game_exhausted()→ bool
Check if the game is exhausted.

Typically, the game end by exhaustion a bit after the deck ran out of cards (the exact moment depends on
the end-of-game rule that is used).

This method is called at the beginning of each player’s turn.

We do not check here whether the current score is equal to the maximum score still possible (considering
what is discarded), which would also end the game. This verification is done in play().

Returns True iff the game must end.

If the normal end-of-game rule is used, and remaining_turns is an integer: it is updated, then the
end-of-game condition is checked.

>>> game = Game(players=[PlayerPuppet('Antoine'),
... PlayerPuppet('Donald X'),
... PlayerPuppet('Uwe')])
>>> game.players[1].speak = True
>>> game.remaining_turns = 1
>>> # Here, previous player would play her turn.. Then...
>>> game.check_game_exhausted()
Donald X: The number of remaining turns is now known.
Donald X: remaining_turns = 0
True
>>> print(game.remaining_turns)
0

If the normal end-of-game rule is used, and remaining_turns is None: it is not updated (the final
countdown has not started).

>>> game = Game(players=[PlayerPuppet('Antoine'),
... PlayerPuppet('Donald X'),
... PlayerPuppet('Uwe')])
>>> game.players[1].speak = True
>>> game.check_game_exhausted()
False
>>> print(game.remaining_turns)
None

If “Crowning piece” rule is used: if the active player has no card in hand, the game is over.

>>> game = Game(
... players=[PlayerPuppet('Antoine'),
... PlayerPuppet('Donald X'),
... PlayerPuppet('Uwe')],
... cfg=Configuration(end_rule=ConfigurationEndRule.CROWNING_PIECE)
...)

(continues on next page)

48 Chapter 4. Reference

Hanabython Documentation, Release 0.1.12

(continued from previous page)

>>> game.players[1].speak = True
>>> game.i_active = 1
>>> game.check_game_exhausted()
True
>>> game.hands[1].receive(Card('B1'))
>>> game.check_game_exhausted()
False

colored()→ str
Colored version of __str__().

In the subclasses, the principle is to override only this method. __str__() is automatically defined as
the uncolored version of the same string, and __repr__() as the same with the class name added.

Of course, it is also possible to override __str__() and/or __repr__() if a different behavior is
desired.

Returns a string representing the object, possibly with ANSI escape codes to add colors and
style.

Return type str

deal()→ None
Deal the initial hands.

i_active should be -1 before dealing and will be -1 at the end (modulo the number of players).

>>> game = Game(players=[PlayerHumanText('Antoine'),
... PlayerHumanText('Donald X'),
... PlayerHumanText('Uwe')])
>>> game.i_active = -1
>>> game.deal()
>>> [len(hand) for hand in game.hands]
[5, 5, 5]
>>> game.i_active
2

draw()→ None
The active player draws a card.

• Draw a card and put it in hand (unless the discard pile is empty).

• If the discard pile becomes empty, launch countdown for end of game by setting variable
remaining_turns to value n_players + 1. It will be decremented at the beginning of next
player’s turn (before testing the end-of-game condition). Cf. check_game_exhausted().

>>> game = Game(players=[PlayerHumanText('Antoine'),
... PlayerHumanText('Donald X'),
... PlayerHumanText('Uwe')])
>>> game.i_active = -1
>>> for _ in range(50):
... game.i_active += 1
... game.draw()
>>> [len(hand) for hand in game.hands]
[17, 17, 16]
>>> game.i_active += 1
>>> print(game.draw())
None

(continues on next page)

4.12. Game 49

Hanabython Documentation, Release 0.1.12

(continued from previous page)

>>> game.remaining_turns
4

execute_action(action: hanabython.Modules.Action.Action)→ bool
Execute the action (by the active player).

Parameters action – the action.

Returns True iff the action is legal. If not, it will be necessary to choose another action.

This method dispatches to the auxiliary methods execute_clue(), execute_forfeit(),
execute_play_card() and execute_throw(). Each of these methods has the responsability
to:

• Check if the action is legal,

• Inform the active player whether it is the case or not,

• Perform the action,

• Update the relevant variables, in particular b_lose and b_win.

• Inform all players of the result of the action,

• Make the active player draw a new card if necessary,

• Return the boolean stating whether the action is legal.

execute_clue(i_clued: int, clue: hanabython.Modules.Clue.Clue)→ bool
Execute the action: give a clue.

Parameters

• i_clued – the index of the player who receives the clue.

• clue – the clue.

Returns True iff the action is legal.

>>> import random
>>> random.seed(0)
>>> game = Game(players=[PlayerPuppet('Antoine'),
... PlayerPuppet('Donald X'),
... PlayerPuppet('Uwe')],
... cfg=Configuration.W_MULTICOLOR)
>>> game.i_active = -1
>>> game.deal()
>>> print(game.hands[2])
G2 W1 W1 B1 Y4
>>> game.players[1].speak = True
>>> game.i_active = 1
>>> game.n_clues = 0
>>> game.execute_clue(2, Clue(1))
Donald X: The action chosen is illegal.
Donald X: You cannot give a clue because you have do not have any clue chip.
False
>>> game.n_clues = 3
>>> game.execute_clue(1, Clue(1))
Donald X: The action chosen is illegal.
Donald X: You cannot give a clue to yourself.
False
>>> game.execute_clue(2, Clue(6))

(continues on next page)

50 Chapter 4. Reference

Hanabython Documentation, Release 0.1.12

(continued from previous page)

Donald X: The action chosen is illegal.
Donald X: This value does not exist: 6.
False
>>> game.execute_clue(2, Clue(Colors.COLORLESS))
Donald X: The action chosen is illegal.
Donald X: This color is not in the deck: C.
False
>>> game.execute_clue(2, Clue(Colors.MULTICOLOR))
Donald X: The action chosen is illegal.
Donald X: You cannot clue this color: M.
False
>>> game.execute_clue(2, Clue(3))
Donald X: The action chosen is illegal.
Donald X: You cannot give this clue because it does not correspond to any
→˓card.
False
>>> game.execute_clue(2, Clue(1))
Donald X: The action chosen is legal.
Donald X: A player gives a clue to another one.
Donald X: i_active = 0
Donald X: i_clued = 1
Donald X: clue = 1
Donald X: bool_list = [False, True, True, True, False]
True
>>> game.n_clues
2

execute_forfeit()→ bool
Execute the action: forfeit.

Returns True (meaning that this action is always legal).

>>> game = Game(players=[PlayerPuppet('Antoine'),
... PlayerPuppet('Donald X'),
... PlayerPuppet('Uwe')])
>>> game.players[1].speak = True
>>> game.i_active = 1
>>> is_legal = game.execute_forfeit()
Donald X: The action chosen is legal.
Donald X: A player forfeits.
Donald X: i_active = 0
>>> is_legal
True
>>> game.b_lose
True
>>> game.i_active = 2
>>> is_legal = game.execute_forfeit()
Donald X: A player forfeits.
Donald X: i_active = 1
>>> is_legal
True
>>> game.b_lose
True

execute_play_card(k: int)→ bool
Execute the action: try to play a card.

Parameters k – the index of the card in the active player’s hand.

4.12. Game 51

Hanabython Documentation, Release 0.1.12

Returns True (meaning that this action is always legal).

The action can fail, in the sense that it leads to a misfire, but it is legal anyway. If it leads to the last misfire,
then the players lose:

>>> import random
>>> random.seed(0)
>>> game = Game(players=[PlayerPuppet('Antoine'),
... PlayerPuppet('Donald X'),
... PlayerPuppet('Uwe')])
>>> game.i_active = -1
>>> game.deal()
>>> game.i_active = 2
>>> game.n_misfires = 2
>>> print(game.hands[2])
B4 W4 G5 W1 R3
>>> game.players[1].speak = True
>>> is_legal = game.execute_play_card(2)
Donald X: A player tries to play a card on the board.
Donald X: i_active = 1
Donald X: k = 2
Donald X: card = G5
>>> is_legal
True
>>> print(game.board) #doctest: +NORMALIZE_WHITESPACE
B - G - R - W - Y -
>>> print(game.discard_pile)
G5
>>> game.n_misfires
3
>>> game.b_lose
True

If the highest card in a color is played, then the players gain a clue:

>>> import random
>>> random.seed(0)
>>> game = Game(players=[PlayerPuppet('Antoine'),
... PlayerPuppet('Donald X'),
... PlayerPuppet('Uwe')])
>>> game.i_active = -1
>>> game.deal()
>>> for s in ['G1', 'G2', 'G3', 'G4']:
... _ = game.board.try_to_play(card=Card(s))
>>> game.n_clues = 3
>>> game.i_active = 2
>>> print(game.hands[2])
B4 W4 G5 W1 R3
>>> game.players[1].speak = True
>>> is_legal = game.execute_play_card(2)
Donald X: A player tries to play a card on the board.
Donald X: i_active = 1
Donald X: k = 2
Donald X: card = G5
Donald X: Another player tries to draw a card.
Donald X: i_active = 1
Donald X: card = G4
>>> is_legal

(continues on next page)

52 Chapter 4. Reference

Hanabython Documentation, Release 0.1.12

(continued from previous page)

True
>>> print(game.board) #doctest: +NORMALIZE_WHITESPACE
B - G 1 2 3 4 5 R - W - Y -
>>> game.n_clues
4

But players cannot gain a clue if they already have the maximum number of clues:

>>> import random
>>> random.seed(0)
>>> game = Game(players=[PlayerPuppet('Antoine'),
... PlayerPuppet('Donald X'),
... PlayerPuppet('Uwe')])
>>> game.i_active = -1
>>> game.deal()
>>> for s in ['G1', 'G2', 'G3', 'G4']:
... _ = game.board.try_to_play(card=Card(s))
>>> game.n_clues
8
>>> game.i_active = 2
>>> print(game.hands[2])
B4 W4 G5 W1 R3
>>> game.players[1].speak = True
>>> is_legal = game.execute_play_card(2)
Donald X: A player tries to play a card on the board.
Donald X: i_active = 1
Donald X: k = 2
Donald X: card = G5
Donald X: Another player tries to draw a card.
Donald X: i_active = 1
Donald X: card = G4
>>> is_legal
True
>>> print(game.board) #doctest: +NORMALIZE_WHITESPACE
B - G 1 2 3 4 5 R - W - Y -
>>> game.n_clues
8

If the card completes the board, then the players win the game.

>>> import random
>>> random.seed(0)
>>> game = Game(players=[PlayerPuppet('Antoine'),
... PlayerPuppet('Donald X'),
... PlayerPuppet('Uwe')])
>>> game.i_active = -1
>>> game.deal()
>>> for c in ['B', 'R', 'W', 'Y']:
... for v in range(1, 6):
... _ = game.board.try_to_play(card=Card(c + str(v)))
>>> for s in ['G1', 'G2', 'G3', 'G4']:
... _ = game.board.try_to_play(card=Card(s))
>>> game.i_active = 2
>>> print(game.hands[2])
B4 W4 G5 W1 R3
>>> game.players[1].speak = True
>>> _ = game.execute_play_card(2)

(continues on next page)

4.12. Game 53

Hanabython Documentation, Release 0.1.12

(continued from previous page)

Donald X: A player tries to play a card on the board.
Donald X: i_active = 1
Donald X: k = 2
Donald X: card = G5
>>> print(game.board) #doctest: +NORMALIZE_WHITESPACE
B 1 2 3 4 5 G 1 2 3 4 5 R 1 2 3 4 5 W 1 2 3 4 5 Y 1 2 3 4 5
>>> game.b_win
True

execute_throw(k: int)→ bool
Execute the action: throw (= discard willingly).

Parameters k – the index of the card in the active player’s hand.

Returns True iff the action is legal, i.e. except if players have all the clue chips.

>>> import random
>>> random.seed(0)
>>> game = Game(players=[PlayerPuppet('Antoine'),
... PlayerPuppet('Donald X'),
... PlayerPuppet('Uwe')])
>>> game.players[1].speak = True
>>> game.i_active = 1
>>> game.draw()
Donald X: This player tries to draw a card.
>>> is_legal = game.execute_throw(0)
Donald X: The action chosen is illegal.
Donald X: You cannot discard because you have all the clue chips.
>>> is_legal
False
>>> game.n_clues = 3
>>> game.i_active = 2
>>> game.draw()
Donald X: Another player tries to draw a card.
Donald X: i_active = 1
Donald X: card = Y4
>>> is_legal = game.execute_throw(0)
Donald X: A player throws (discards a card willingly).
Donald X: i_active = 1
Donald X: k = 0
Donald X: card = Y4
Donald X: Another player tries to draw a card.
Donald X: i_active = 1
Donald X: card = R3
>>> is_legal
True
>>> game.n_clues
4
>>> print(game.discard_pile)
Y4
>>> print(game.hands[2])
R3

game_exhausted()→ int
The game is exhausted.

Inform the players. The game is over and is neither really lost (misfires, forfeit) nor a total victory (maximal
score). Typically, this happens a bit after the deck ran out of cards (it depends on the end-of-game rule that

54 Chapter 4. Reference

Hanabython Documentation, Release 0.1.12

is used).

Returns the final score.

>>> game = Game(players=[PlayerPuppet('Antoine'),
... PlayerPuppet('Donald X'),
... PlayerPuppet('Uwe')])
>>> _ = game.board.try_to_play(Card('B1'))
>>> game.players[1].speak = True
>>> score = game.game_exhausted()
Donald X: The game is exhausted.
Donald X: score = 1
>>> score
1

i_active
Index of the active player.

Returns this index is automatically set modulo the number of players.

>>> game = Game(players=[PlayerHumanText('Antoine'),
... PlayerHumanText('Donald X'),
... PlayerHumanText('Uwe')])
>>> game.i_active = 2
>>> game.i_active += 1
>>> print(game.i_active)
0

lose()→ int
Lose the game (forfeit or too many misfires).

Inform the players.

Returns the final score, i.e. 0.

>>> game = Game(players=[PlayerPuppet('Antoine'),
... PlayerPuppet('Donald X'),
... PlayerPuppet('Uwe')])
>>> game.players[1].speak = True
>>> score = game.lose()
Donald X: The game is lost.
Donald X: score = 0
>>> score
0

play()→ int
Main method: play the game.

Note: it is only possible to “play” once with a Game object. If you want to launch a game with the same
player, it is necessary to define a new Game.

Returns the final score of the game.

rel(who: int, fro: int)→ int
Relative position of a player from the point of view of another one.

Parameters

• who – the player we talk about.

• fro – the player to whom we talk.

4.12. Game 55

Hanabython Documentation, Release 0.1.12

Returns the relative position of who from the point of view of fro, i.e. who - fro (modulo
n_players).

>>> game = Game(players=[PlayerHumanText('Antoine'),
... PlayerHumanText('Donald X'),
... PlayerHumanText('Uwe')])
>>> game.rel(who=1, fro=2)
2

win()→ int
Win the game (maximum score).

Inform the players.

Returns the final score.

>>> game = Game(players=[PlayerPuppet('Antoine'),
... PlayerPuppet('Donald X'),
... PlayerPuppet('Uwe')])
>>> for c in ['B', 'G', 'R', 'W', 'Y']:
... for v in range(1, 6):
... _ = game.board.try_to_play(card=Card(c + str(v)))
>>> game.players[1].speak = True
>>> score = game.win()
Donald X: The game is won.
Donald X: score = 25
>>> score
25

56 Chapter 4. Reference

CHAPTER 5

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

5.1 Types of Contributions

5.1.1 Report Bugs

Report bugs at https://github.com/francois-durand/hanabython/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

5.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

5.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

57

https://github.com/francois-durand/hanabython/issues

Hanabython Documentation, Release 0.1.12

5.1.4 Write Documentation

Hanabython could always use more documentation, whether as part of the official Hanabython docs, in docstrings, or
even on the web in blog posts, articles, and such.

5.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/francois-durand/hanabython/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

5.2 Get Started!

Ready to contribute? Here’s how to set up hanabython for local development.

1. Fork the hanabython repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/hanabython.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv hanabython
$ cd hanabython/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 hanabython tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

58 Chapter 5. Contributing

https://github.com/francois-durand/hanabython/issues

Hanabython Documentation, Release 0.1.12

5.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.7, 3.4, 3.5 and 3.6, and for PyPy. Check https://travis-ci.org/
francois-durand/hanabython/pull_requests and make sure that the tests pass for all supported Python versions.

5.4 Tips

To run a subset of tests:

$ python -m unittest tests.test_hanabython

5.5 Deploying

A reminder for the maintainers on how to deploy. Make sure all your changes are committed (including an entry in
HISTORY.rst). Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

5.3. Pull Request Guidelines 59

https://travis-ci.org/francois-durand/hanabython/pull_requests
https://travis-ci.org/francois-durand/hanabython/pull_requests

Hanabython Documentation, Release 0.1.12

60 Chapter 5. Contributing

CHAPTER 6

Credits

6.1 Development Lead

• François Durand <fradurand@gmail.com>

6.2 Contributors

None yet. Why not be the first?

61

mailto:fradurand@gmail.com

Hanabython Documentation, Release 0.1.12

62 Chapter 6. Credits

CHAPTER 7

History

7.1 0.1.12 (2019-06-27)

• Test release for PyPI deployment.

7.2 0.1.11 (2019-06-27)

• Test release for PyPI deployment.

7.3 0.1.10 (2018-02-26)

• Correct a display bug of white cards on some terminals.

7.4 0.1.9 (2018-02-26)

• Game engine.

• Text interface for a human player.

• Patch import problems from previous versions 0.1.*.

63

Hanabython Documentation, Release 0.1.12

64 Chapter 7. History

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

65

Hanabython Documentation, Release 0.1.12

66 Chapter 8. Indices and tables

Index

A
Action (class in hanabython), 32
ActionClue (class in hanabython), 32
ActionForfeit (class in hanabython), 33
ALLOWED (hanabython.ConfigurationEmptyClueRule at-

tribute), 14
ATTEMPTS_BEFORE_FORFEIT (hanabython.Game at-

tribute), 48

B
BLUE (hanabython.Colors attribute), 11
BLUE (hanabython.StringAnsi attribute), 7
Board (class in hanabython), 30
BROWN (hanabython.StringAnsi attribute), 7

C
Card (class in hanabython), 19
CardPublic (class in hanabython), 20
CATEGORIES (hanabython.Action attribute), 32
check_game_exhausted() (hanabython.Game

method), 48
choose_action() (hanabython.Player method), 33
choose_action() (hanabython.PlayerHumanText

method), 46
choose_action() (hanabython.PlayerPuppet

method), 36
Clue (class in hanabython), 18
CLUE (hanabython.Action attribute), 32
Color (class in hanabython), 9
COLOR (hanabython.Clue attribute), 18
color_str() (hanabython.Color method), 9
ColorColorless (class in hanabython), 10
Colored (class in hanabython), 8
colored() (hanabython.ActionClue method), 33
colored() (hanabython.ActionForfeit method), 33
colored() (hanabython.Board method), 30
colored() (hanabython.Card method), 19
colored() (hanabython.CardPublic method), 20
colored() (hanabython.Clue method), 18

colored() (hanabython.Color method), 9
colored() (hanabython.Colored method), 8
colored() (hanabython.Configuration method), 17
colored() (hanabython.ConfigurationColorContents

method), 12
colored() (hanabython.ConfigurationDeck method),

13
colored() (hanabython.ConfigurationEmptyClueRule

method), 14
colored() (hanabython.ConfigurationEndRule

method), 15
colored() (hanabython.ConfigurationHandSize

method), 15
colored() (hanabython.DiscardPile method), 27
colored() (hanabython.DrawPile method), 25
colored() (hanabython.DrawPilePublic method), 25
colored() (hanabython.Game method), 49
colored() (hanabython.Hand method), 22
colored() (hanabython.HandPublic method), 23
colored() (hanabython.Player method), 34
colored() (hanabython.PlayerBase method), 39
colored_as_array() (hanabython.DiscardPile

method), 27
colored_compact() (hanabython.Board method),

30
colored_compact_chronological() (han-

abython.DiscardPile method), 27
colored_compact_factorized() (han-

abython.DiscardPile method), 27
colored_compact_ordered() (han-

abython.DiscardPile method), 27
colored_fixed_space() (hanabython.Board

method), 30
colored_hands() (hanabython.PlayerBase method),

39
colored_multi_line() (hanabython.Board

method), 30
colored_multi_line() (hanabython.DiscardPile

method), 27
colored_multi_line_compact() (han-

67

Hanabython Documentation, Release 0.1.12

abython.Board method), 30
colored_multi_line_compact() (han-

abython.DiscardPile method), 27
COLORLESS (hanabython.Colors attribute), 11
ColorMulticolor (class in hanabython), 10
Colors (class in hanabython), 11
Configuration (class in hanabython), 15
ConfigurationColorContents (class in han-

abython), 11
ConfigurationDeck (class in hanabython), 12
ConfigurationEmptyClueRule (class in han-

abython), 14
ConfigurationEndRule (class in hanabython), 14
ConfigurationHandSize (class in hanabython), 15
copy() (hanabython.ConfigurationDeck method), 13
CROWNING_PIECE (hanabython.ConfigurationEndRule

attribute), 15
CYAN (hanabython.StringAnsi attribute), 7

D
deal() (hanabython.Game method), 49
demo_game() (hanabython.PlayerBase method), 39
DiscardPile (class in hanabython), 26
draw() (hanabython.Game method), 49
DrawPile (class in hanabython), 24
DrawPilePublic (class in hanabython), 25

E
EIGHT_COLORS (hanabython.Configuration attribute),

17
EIGHT_COLORS (hanabython.ConfigurationDeck at-

tribute), 12
execute_action() (hanabython.Game method), 50
execute_clue() (hanabython.Game method), 50
execute_forfeit() (hanabython.Game method),

51
execute_play_card() (hanabython.Game

method), 51
execute_throw() (hanabython.Game method), 54

F
FORBIDDEN (hanabython.ConfigurationEmptyClueRule

attribute), 14
FORFEIT (hanabython.Action attribute), 32
from_symbol() (hanabython.Colors class method),

11

G
Game (class in hanabython), 47
game_exhausted() (hanabython.Game method), 54
give() (hanabython.DrawPile method), 25
give() (hanabython.DrawPilePublic method), 26
give() (hanabython.Hand method), 22
give() (hanabython.HandPublic method), 23

GREEN (hanabython.Colors attribute), 11
GREEN (hanabython.StringAnsi attribute), 7

H
Hand (class in hanabython), 22
HandPublic (class in hanabython), 23

I
i_active (hanabython.Game attribute), 55
i_from_c() (hanabython.Configuration method), 18
i_from_v() (hanabython.Configuration method), 18
is_cluable (hanabython.Color attribute), 10
is_cluable (hanabython.ColorColorless attribute),

10
is_cluable (hanabython.ColorMulticolor attribute),

10

L
list_reordered (hanabython.DiscardPile attribute),

27
log() (hanabython.PlayerBase method), 40
log_forget() (hanabython.PlayerBase method), 40
log_init() (hanabython.PlayerBase method), 40
lose() (hanabython.Game method), 55

M
MAGENTA (hanabython.StringAnsi attribute), 7
match() (hanabython.Card method), 20
match() (hanabython.CardPublic method), 21
match() (hanabython.Color method), 10
match() (hanabython.ColorColorless method), 10
match() (hanabython.ColorMulticolor method), 10
match() (hanabython.Hand method), 22
match() (hanabython.HandPublic method), 24
max_score_possible (hanabython.DiscardPile at-

tribute), 28
MULTICOLOR (hanabython.Colors attribute), 11

N
n_cards (hanabython.DrawPile attribute), 25
NORMAL (hanabython.ConfigurationColorContents at-

tribute), 12
NORMAL (hanabython.ConfigurationDeck attribute), 13
NORMAL (hanabython.ConfigurationEndRule attribute),

15
NORMAL (hanabython.ConfigurationHandSize attribute),

15
normal_plus() (hanabython.ConfigurationDeck

static method), 13

P
play() (hanabython.Game method), 55
PLAY_CARD (hanabython.Action attribute), 32

68 Index

Hanabython Documentation, Release 0.1.12

Player (class in hanabython), 33
PlayerBase (class in hanabython), 38
PlayerHumanText (class in hanabython), 45
PlayerPuppet (class in hanabython), 36

R
receive() (hanabython.DiscardPile method), 28
receive() (hanabython.Hand method), 23
receive() (hanabython.HandPublic method), 24
receive_action_illegal() (hanabython.Player

method), 34
receive_action_illegal() (han-

abython.PlayerHumanText method), 46
receive_action_illegal() (han-

abython.PlayerPuppet method), 36
receive_action_legal() (hanabython.Player

method), 34
receive_action_legal() (han-

abython.PlayerHumanText method), 46
receive_action_legal() (han-

abython.PlayerPuppet method), 36
receive_begin_dealing() (hanabython.Player

method), 34
receive_begin_dealing() (han-

abython.PlayerBase method), 40
receive_begin_dealing() (han-

abython.PlayerPuppet method), 36
receive_end_dealing() (hanabython.Player

method), 34
receive_end_dealing() (hanabython.PlayerBase

method), 41
receive_end_dealing() (han-

abython.PlayerPuppet method), 36
receive_game_exhausted() (hanabython.Player

method), 34
receive_game_exhausted() (han-

abython.PlayerBase method), 41
receive_game_exhausted() (han-

abython.PlayerHumanText method), 46
receive_game_exhausted() (han-

abython.PlayerPuppet method), 36
receive_i_draw() (hanabython.Player method), 34
receive_i_draw() (hanabython.PlayerBase

method), 41
receive_i_draw() (hanabython.PlayerPuppet

method), 36
receive_init() (hanabython.Player method), 34
receive_init() (hanabython.PlayerBase method),

41
receive_init() (hanabython.PlayerPuppet

method), 36
receive_lose() (hanabython.Player method), 34
receive_lose() (hanabython.PlayerBase method),

42

receive_lose() (hanabython.PlayerHumanText
method), 46

receive_lose() (hanabython.PlayerPuppet
method), 37

receive_partner_draws() (hanabython.Player
method), 34

receive_partner_draws() (han-
abython.PlayerBase method), 43

receive_partner_draws() (han-
abython.PlayerPuppet method), 37

receive_remaining_turns() (han-
abython.Player method), 35

receive_remaining_turns() (han-
abython.PlayerBase method), 43

receive_remaining_turns() (han-
abython.PlayerPuppet method), 37

receive_someone_clues() (hanabython.Player
method), 35

receive_someone_clues() (han-
abython.PlayerBase method), 44

receive_someone_clues() (han-
abython.PlayerPuppet method), 37

receive_someone_forfeits() (han-
abython.Player method), 35

receive_someone_forfeits() (han-
abython.PlayerBase method), 44

receive_someone_forfeits() (han-
abython.PlayerPuppet method), 37

receive_someone_plays_card() (han-
abython.Player method), 35

receive_someone_plays_card() (han-
abython.PlayerBase method), 44

receive_someone_plays_card() (han-
abython.PlayerPuppet method), 37

receive_someone_throws() (hanabython.Player
method), 35

receive_someone_throws() (han-
abython.PlayerBase method), 45

receive_someone_throws() (han-
abython.PlayerPuppet method), 37

receive_turn_begin() (hanabython.Player
method), 35

receive_turn_begin() (han-
abython.PlayerHumanText method), 46

receive_turn_begin() (han-
abython.PlayerPuppet method), 38

receive_turn_finished() (hanabython.Player
method), 35

receive_turn_finished() (han-
abython.PlayerHumanText method), 47

receive_turn_finished() (han-
abython.PlayerPuppet method), 38

receive_win() (hanabython.Player method), 36
receive_win() (hanabython.PlayerBase method), 45

Index 69

Hanabython Documentation, Release 0.1.12

receive_win() (hanabython.PlayerHumanText
method), 47

receive_win() (hanabython.PlayerPuppet method),
38

RED (hanabython.Colors attribute), 11
RED (hanabython.StringAnsi attribute), 7
rel() (hanabython.Game method), 55
RESET (hanabython.StringAnsi attribute), 7

S
score (hanabython.Board attribute), 30
SHORT (hanabython.ConfigurationColorContents at-

tribute), 12
SIXTH (hanabython.Colors attribute), 11
STANDARD (hanabython.Configuration attribute), 17
str_as_array() (hanabython.DiscardPile method),

28
str_compact() (hanabython.Board method), 31
str_compact_chronological() (han-

abython.DiscardPile method), 28
str_compact_factorized() (han-

abython.DiscardPile method), 29
str_compact_ordered() (hanabython.DiscardPile

method), 29
str_fixed_space() (hanabython.Board method),

31
str_from_iterable() (in module hanabython), 7
str_multi_line() (hanabython.Board method), 31
str_multi_line() (hanabython.DiscardPile

method), 29
str_multi_line_compact() (hanabython.Board

method), 31
str_multi_line_compact() (han-

abython.DiscardPile method), 29
StringAnsi (class in hanabython), 7
STYLE_BOLD (hanabython.StringAnsi attribute), 7
STYLE_REVERSE_VIDEO (hanabython.StringAnsi at-

tribute), 7
STYLE_UNDERLINE (hanabython.StringAnsi attribute),

7

T
test_str() (hanabython.Colored method), 9
THROW (hanabython.Action attribute), 32
title() (in module hanabython), 8
try_to_play() (hanabython.Board method), 32

U
uncolor() (in module hanabython), 8

V
VALUE (hanabython.Clue attribute), 18
VARIANT_6_3 (hanabython.ConfigurationHandSize at-

tribute), 15

W
W_MULTICOLOR (hanabython.Configuration attribute),

17
W_MULTICOLOR (hanabython.ConfigurationDeck at-

tribute), 13
W_MULTICOLOR_SHORT (hanabython.Configuration

attribute), 17
W_MULTICOLOR_SHORT (han-

abython.ConfigurationDeck attribute), 13
W_SIXTH (hanabython.Configuration attribute), 17
W_SIXTH (hanabython.ConfigurationDeck attribute), 13
W_SIXTH_SHORT (hanabython.Configuration at-

tribute), 17
W_SIXTH_SHORT (hanabython.ConfigurationDeck at-

tribute), 13
WHITE (hanabython.Colors attribute), 11
WHITE (hanabython.StringAnsi attribute), 7
win() (hanabython.Game method), 56

Y
YELLOW (hanabython.Colors attribute), 11
YELLOW (hanabython.StringAnsi attribute), 7

70 Index

	Hanabython
	Features
	Credits

	Installation
	Stable release
	From sources

	Usage
	Import
	Getting started (in a terminal)
	Getting started (in a notebook)

	Reference
	Manipulation of strings
	Colors
	Configuration
	Clues
	Cards
	Hands
	Draw Pile
	Discard Pile
	Board
	Actions
	Players
	Game

	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines
	Tips
	Deploying

	Credits
	Development Lead
	Contributors

	History
	0.1.12 (2019-06-27)
	0.1.11 (2019-06-27)
	0.1.10 (2018-02-26)
	0.1.9 (2018-02-26)

	Indices and tables
	Index

