
Hammr Guide
Release 3.5.1

UShareSoft

Mar 07, 2018

Contents

1 Introduction 3

2 Getting Started 5
2.1 Template Configuration File . 5
2.2 Installation . 6
2.3 Launching hammr . 9
2.4 Creating Your First Machine Image . 11

3 Authentication 17
3.1 Command-line Parameters . 17

4 Using a Credential File 19

5 Command-Line 21
5.1 account . 21
5.2 bundle . 22
5.3 format . 22
5.4 image . 23
5.5 os . 23
5.6 quota . 24
5.7 scan . 24
5.8 template . 25

6 You Account 29
6.1 Operating Systems . 29
6.2 Quotas . 30
6.3 Setting Your Cloud Accounts . 31

7 Creating and Managing Templates 33
7.1 Creating a Template . 33
7.2 Validating Your Template . 34
7.3 Adding Packages to Your Template . 34
7.4 Searching for Packages . 35
7.5 Understanding Package Updates . 35
7.6 Package Dependencies and Updates . 36
7.7 Using Advanced Partitioning . 39

i

8 Building and Publishing Machine Images 47
8.1 Building a Machine Image . 47
8.2 Listing the Images Generated . 48
8.3 Publishing a Machine Image . 48
8.4 Downloading a Machine Image . 50

9 Importing and Exporting 51
9.1 Exporting a Template . 51
9.2 Importing a Template . 52

10 Templates Specification 55
10.1 Stack . 55
10.2 Builders . 93

11 Migrating a Live System 147
11.1 Updating a Template Before Migrating . 148

ii

Hammr Guide, Release 3.5.1

This guide contains a complete reference of all features provided by hammr. If you are completely new to hammr,
we recommend that you read the Introduction and walk through the Getting Started section which guides you through
how to create your first template, generate a machine image and publish it to a target cloud environment.

Any questions or comments, please get in touch by using the mailing list.

Contents:

Contents 1

https://groups.google.com/forum/#!forum/hammr

Hammr Guide, Release 3.5.1

2 Contents

CHAPTER 1

Introduction

Hammr is an open source tool for creating machine images for different environments from a single configuration file,
or migrating live systems from one environment to another. Hammr is a lightweight client-side tool based on Python,
and can be installed on all major operating systems.

A machine image contains a set of operating system packages and other 3rd party software required to run a particular
service. Once a machine image is created, it can be used to provision one or more identical running instances. The
format of the machine image varies depending on whether you want to run your service on a physical machine (e.g
ISO) a virtual datacenter (e.g OVF for VMware vCenter) or cloud environment (e.g. AMI for Amazon EC2).

Hammr can be used as part of your “DevOps tool chain” and in conjunction with other tools such as Jenkins, Chef,
Puppet and SaltStack, allowing you to easily build your machine images and maintain your live running instances.
Hammr also has migration capabilities, allowing you to scan a live system, generate a machine image for a different
environment as well as export it back to a configuration file for sharing.

3

Hammr Guide, Release 3.5.1

4 Chapter 1. Introduction

CHAPTER 2

Getting Started

Hammr is a client command-line tool for a UForge Server. A UForge server can be deployed onsite in your own
datacenter, or provided in SaaS by a growing number of hosting providers and UShareSoft.

If you don’t have your own UForge Server, you can get a free online account here from UShareSoft. Once you have
signed up for an account, hammr uses your account to create and manage templates; build machine images; or migrate
live systems from one environment to another.

2.1 Template Configuration File

All machine images are created from a JSON configuration file, known as the template. Templates provide all the
information (os packages, software files, configuration) to describe the machine image you wish to build. This template
is used by hammr to create the template (in meta-data) into the UForge Server and build one or more identical machine
images. These images can then be registered to the respective environment ready for provisioning. Once a template
is created in the UForge Server, hammr can be used to track and apply package updates for the template. Hammr
can also export a template registered in the UForge Server to an archive that includes all the software and the original
template configuration file.

5

https://www.usharesoft.com/signup/signup.html

Hammr Guide, Release 3.5.1

2.2 Installation

To use hammr, you require to install it on the machine you wish to run it. Hammr is based on python, and is supported
all major operating systems. The easiest way to install hammr is using pip the widely used package management
system for installing and managing software packages written in python.

2.2.1 Installing pip

If you already have pip installed on your system, you can skip this step.

To install or upgrade pip, download get-pip.py

Now run the command:

$ python get-pip.py

For more information on installing pip, please refer to the official pip documentation: http://www.pip-installer.org/en/
latest/installing.html

2.2.2 Installing Hammr

Once pip has been installed, you can now install the hammr packages (note, you may have to run this command as
sudo or administrator). Please refer to the installation instructions depending upon your desktop type:

For Linux

First of all, you need to install extra packages on your system

Debian based system:

$ apt-get install python-dev gcc libxslt1-dev

Red-hat based system:

$ yum install gcc python-devel libxml2-devel libxslt-devel

Now, you are ready to install Hammr:

$ easy_install progressbar==2.3
$ pip install hammr

If you already have hammr installed and want to upgrade to the latest version you can run:

$ pip install --upgrade hammr

For Mac

For Mac users, you need to have XCode installed (or any other C compiler).

You can download the latest version of Xcode from the Apple developer website or get it using the Mac App Store

Run the following command:

6 Chapter 2. Getting Started

https://bootstrap.pypa.io/get-pip.py
http://www.pip-installer.org/en/latest/installing.html
http://www.pip-installer.org/en/latest/installing.html

Hammr Guide, Release 3.5.1

$ xcode-select --install
$ sudo easy_install pip
$ sudo easy_install readline
$ sudo easy_install progressbar==2.3
$ sudo pip install hammr

If you already have hammr installed and want to upgrade to the latest version you can run:

$ pip install --upgrade hammr

For Windows

For Windows users, first install Python 2.7, which can be found here. Download the msi file, and install Python
2.7 by executing the msi file. In the instructions below, we assume that the installation path for Python 2.7 is
C:\Python27.

Once Python 2.7 is installed, run the command:

c:\Python27> .\Scripts\easy_install.exe hammr

If your Windows does not have a compilation environment, pycrypto installation may fail. You can install a
pycrypto windows binary with this command (change your python version if needed):

c:\Python27> .\Scripts\easy_install.exe http://www.voidspace.org.uk/downloads/
→˓pycrypto26/pycrypto-2.6.win32-py2.7.exe

If you already have hammr installed and want to upgrade to the latest version you can run:

c:\Python27\Scripts> easy_install.exe --upgrade hammr

Add Python and hammr to system path: Go to “My Computer > (right click) Properties > Advanced System Settings
> Environment Variables”

You will get this configuration window:

2.2. Installation 7

https://www.python.org/downloads/

Hammr Guide, Release 3.5.1

In System Variables, search for the Path variable and click Edit. Add the following at the end (replace
C:\Python27 with your Python installation path if it differs):

;C:\Python27;C:\Python27\Scripts;

From Source

Hammr has a dependency to uforge_python_sdk. First, you need to install it:

$ pip install uforge_python_sdk

or download sources from pypi: https://pypi.python.org/pypi/uforge_python_sdk

Go to the source directory where the setup.py file is located. To compile and install, run (as sudo):

$ python setup.py build; sudo python setup.py install

Now clone the Hammr git repository to get all the source files. Next go to the source directory where the setup.py
file is located. To compile and install, run (as sudo):

$ python setup.py build; sudo python setup.py install

This will automatically create the hammr executable and install it properly on your system.

8 Chapter 2. Getting Started

https://pypi.python.org/pypi/uforge_python_sdk

Hammr Guide, Release 3.5.1

Verifying the Installation

After completing the installation process, to verify that the installation was successful and hammr is available to use,
open up a new terminal window and run the command:

$ hammr -v
hammr version '0.2.0'

2.3 Launching hammr

Hammr is a command-line tool, allowing you to specify commands that get executed by hammr. Each command may
have one or more sub-commands and optional parameters. Hammr provides inbuilt help. To list all the main options,
use the -h, --help flags or TAB.

$ hammr -h
usage: hammr [-h] [-a URL] [-u USER] [-p PASSWORD] [-v] [cmds [cmds ...]]
To get more information on a sub-command, use the -h, --help flags or TAB for more
→˓information

$ hammr template -h
==
Template help
==
build | Builds a machine image from the template
clone | Clones the template. The clone is copying the meta-
→˓data of the template
create | Create a new template and save to the UForge server
delete | Deletes an existing template
export | Exports a template by creating an archive (compressed
→˓tar file)
help | List available commands with "help" or detailed help
→˓with "help cmd".
import | Creates a template from an archive
list | Displays all the created templates
validate | Validates the syntax of a template configuration file

2.3.1 Modes

There are three different modes when launching hammr:

• Classic command-line: used in shell scripts or via a terminal

• Interactive mode: where hammr is launched once, providing you a prompt to execute hammr commands

• Batch mode: allowing hammr to execute a series of commands from a file

When using the classic mode, the command hammr is used, followed by a command, sub-command and any options.
For example:

$ hammr os list --url https://uforge.usharesoft.com/api -u username -p password

To enter interactive mode, launch the hammr command on its own. This provides a prompt, allowing you to enter
commands and sub-commands the same way as you would in classic mode.

2.3. Launching hammr 9

Hammr Guide, Release 3.5.1

To use batch mode, create a file containing the list of commands you wish to launch in sequence and then provide this
file to hammr via the batch command. For example if you wanted to list all the operating system available to you in
batch mode, firstly create a file with the commands to launch, in this case os list:

$ vi batchfile
os list

Launch hammr providing the batch file:

$ hammr batch --file batchfile --url https://uforge.usharesoft.com/api -u username -p
→˓password
os list
Getting distributions for [root] ...
+-----+--------+---------+--------------+---------------------+-----------------+
| Id | Name | Version | Architecture | Release Date | Profiles |
+=====+========+=========+==============+=====================+=================+
121	CentOS	6.4	x86_64	2013-03-01 14:01:26	Server No X
					Server
					Minimal
+-----+--------+---------+--------------+---------------------+-----------------+					
87	Ubuntu	12.04	x86_64	2012-02-24 19:04:45	Minimal Desktop
					Server
					Minimal
+-----+--------+---------+--------------+---------------------+-----------------+

2.3.2 Authentication

Communication between hammr and the UForge server is done via HTTPS. To send requests to the UForge server,
hammr requires the following information:

• UForge Server URL endpoint

• Your account user name

• Your password

This information can be passed to hammr either from command-line options or from a file.

2.3.3 Command-line Parameters

Authentication information can be passed to hammr via command-line options. These options are:

• -a or --url: the UForge Server URL endpoint. If the URL uses HTTPS, then the connection will be done
securely (recommended), otherwise connection will be done via HTTP

• -u or --user: the user name to use for authentication

• -p or --password: the password to use for authentication

For example

$ hammr os list --url https://uforge.usharesoft.com/api -u username -p password

These parameters need to be passed each time you wish to use the command-line.

10 Chapter 2. Getting Started

Hammr Guide, Release 3.5.1

2.3.4 Using a Credential File

Rather than passing the authentication information as part of the command-line, you can instead store this information
in a credential file (credentials.json) that will be used every time hammr is launched. Hammr searches for this
file in a sub-directory named .hammr located in the home directory of the user launching hammr.

To use a credential file, go to the .hammr sub-directory and create the file credentials.json.

$ cd ~/.hammr
$ vi credentials.json

Add the authentication and UForge URL endpoint to this file, using the following format:

{
"user" : "root",
"password" : "password",
"url" : "http://10.1.2.24/ufws-3.3",
"acceptAutoSigned": false

}

As this file contains security information, it is recommended to change the permissions on this file, so only you can
read or write to it:

$ chmod 600 credentials.json

Now every time hammr is launched, you no longer need to provide the authentication information as part of the
command-line. Hammr will automatically use the information contained in this file.

Note: The key acceptAutoSigned is to accept or not auto-signed SSL certificates. Default value is false.

2.4 Creating Your First Machine Image

Now that hammr is installed, lets build our first machine image. Hammr can be used to build machine images con-
taining pretty much any software for many different environments – from a trusty ISO image for physical machine
deployments; to virtual and cloud environments.

In this example we are going to create a nginx machine image for Amazon EC2 based on Ubuntu 12.04 (64 bit).

Note: To go through this tutorial, you are going to need an AWS account. If you don’t have one, create a free account
here. If you do not wish to create an AWS account, then you can still follow the tutorial, as creating machine images
for other environments follows the same basic principles.

There are three phases when creating your machine image:

• Defining the contents of the machine image in a template configuration file

• Generating the machine image from the template to the required environment, in our case Amazon EC2.

• Publishing and registering the image in AWS, ready to provision one or more machine instances from the
machine image

The rest of this section highlights these steps to create your first machine image.

2.4. Creating Your First Machine Image 11

http://aws.amazon.com/free/

Hammr Guide, Release 3.5.1

2.4.1 Creating the Template

A configuration file, named the template, defines the contents of the machine image and any credential information
required to generate and publish the image to the target environment.

Lets create a template for the nginx machine image. Create a file nginx-template.json with the following
content:

{
"stack": {

"name": "nginx",
"version": "1.0",
"os": {

"name": "Ubuntu",
"version": "12.04",
"arch": "x86_64",
"profile": "Minimal",
"pkgs": [{

"name": "nginx"
}]

},
"installation": {

"diskSize": 12288
}

}
}

A couple of things to point out at this stage. The stack section defines the content of the machine you want to build.
There are many sub-sections (see the Stack glossary), the:

• os: defines the operating system you want to use (in this case Ubuntu 12.04 64bit); the profile type (minimal);
and any specific packages to install (nginx)

• installation: defines lower level installation parameters. In this example a disk size of 8GB

Now lets create the template using hammr. First lets validate that the configuration file does not have any syntax
errors or missing mandatory values, by using the command template validate and passing in our template file
nginx-template.json.

$ hammr template validate --file nginx-template.json
Validating the template file [/Users/james/nginx-template.json] ...
OK: Syntax of template file [/Users/james/nginx-template.json] is ok

Now run the command template create.

$ hammr template create --file nginx-template.json
Validating the template file [/Users/james/nginx-template.json] ...
OK: Syntax of template file [/Users/james/nginx-template.json] is ok
Creating template from temporary [/var/folders/f6/8kljm7cx3h7fvb26tq18kw4m0000gn/T/
→˓hammr-15888/archive.tar.gz] archive ...
100%|###|
OK: Template create: DONE
Template URI: users/root/appliances/898
Template Id : 898

This takes the information in the stack section of the template configuration file and stores this in the UForge server.

You can display all the templates created by using template list.

12 Chapter 2. Getting Started

Hammr Guide, Release 3.5.1

$ hammr template list
to do, add output:
+-----+----------------------+---------+---------------------+---------------------+--
→˓-------------------+--------+---------+-----+--------+
| Id | Name | Version | OS | Created |
→˓ Last modified | # Imgs | Updates | Imp | Shared |
+=====+======================+=========+=====================+=====================+=====================+========+=========+=====+========+
683 | nginx | 1.0 | Ubuntu 12.04 x86_64 | 2014-05-02 13:59:25 |
→˓2014-05-02 13:59:27 | 0 | 0 | | |
+-----+----------------------+---------+---------------------+---------------------+--
→˓-------------------+--------+---------+-----+--------+
Found 1 templates

You can create one or more machine images from this template.

2.4.2 Building a Machine Image

Once a template has been created, you can create a machine image from it. You can build as many machine images
as you like for different platforms and environments. The result will be near identical machine images every time you
build from the template. There will be minor differences depending upon the target platform. For example, building an
Amazon EC2 image will automatically include the mandatory Amazon libraries required by EC2 to correctly provision
an instance, while for OpenStack or VMware vCloud Director, these libraries are not required.

To build a machine image, you need to add the builders section to your file. The builder section provides
mandatory parameters to build (and for some environments register) the machine image. Each target environment
requires different builders parameters. Refer to the documentation for more information.

For security reasons, it is recommended not to add any cloud account information into the template file. Hammr
provides various mechanisms to provide this cloud account information. The method we will use in this tutorial will
be to register the cloud account information to the UForge server, then reference the cloud account tag name in the
template. So create a file aws-account.json and add the following content:

{
"accounts": [
{

"type": "ami",
"name": "My AWS Account",
"accountNumber": "111122223333",
"x509PrivateKey": "/home/joris/accounts/aws/pk509.pem",
"x509Cert": "/home/joris/accounts/aws/cert509.pem",
"accessKey": "AAAABBBBCCCCDDDDEEEE",
"secretAccessKey": "aaaa1111bbbb2222cccc3333dddd4444eeee5555"

}
]

}

To create the cloud account, use the command account create

$ hammr account create --file aws-account.json
Validating the template file [aws-account.json] ...
OK: Syntax of template file [aws-account.json] is ok
Create account for 'ami'...
OK: Account create successfully for [ami]

Once the cloud account is created, we can safely reference the cloud credentials in all the template files by using the
account name, in this example: James AWS Account

2.4. Creating Your First Machine Image 13

Hammr Guide, Release 3.5.1

Lets now use this account to build a machine image for Amazon EC2. Open up the file nginx-template.json,
and provide the following content:

{
"stack": {
"name": "nginx",
"version": "1.0",
"os": {
"name": "Ubuntu",
"version": "12.04",
"arch": "x86_64",
"profile": "Minimal",
"pkgs": [
{
"name": "iotop"

}
]

},
"installation": {

"diskSize": 12288
}

},
"builders": [
{

"type": "ami",
"account": {

"name": "My AWS Account"
},
"installation": {

"diskSize": 10240
},
"region": "eu-west-1",
"s3bucket": "mybucketname"

}
]

}

You will notice that the new builders section includes the account name created earlier as well as the region
and bucket where you will register the machine image.

To build the machine image, use the command template build.

$ hammr template build --file nginx-template.json
Validating the template file [nginx-template.json] ...
OK: Syntax of template file [nginx-template.json] is ok
Generating 'ami' image (1/1)
|>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>| 100%: Done, created on ... |<<<<<<<<<<<<<<<<<<<<<<
→˓<<<<<<<<<<|
OK: Generation 'ami' ok
Image URI: users/root/appliances/21/images/47
Image Id : 47

2.4.3 Publishing and Registering the Machine Image

Once the machine image is generated, you can upload and register the machine image to the target environment, in
this case AWS.

14 Chapter 2. Getting Started

Hammr Guide, Release 3.5.1

Warning: The image uploaded will be stored in AWS S3 storage. AWS does not charge you for any inbound
data, however they will charge you for the storage used.

To get the id of the machine image generated, use the command image list

$ hammr image list
Getting all images and publications for [root] ...
Images:
+------+---------------+---------+------+-----------+---------------------+------+----
→˓--------+-------------------+
| Id | Name | Version | Rev. | Format | Created | Size |
→˓Compressed | Generation Status |
+======+===============+=========+======+===========+=====================+======+============+===================+
| 1042 | generation | 1.0 | 1 | kvm | 2014-05-21 09:29:36 | 0B | X
→˓ | Done |
+------+---------------+---------+------+-----------+---------------------+------+----
→˓--------+-------------------+
| 981 | wordpress | 1.0 | 1 | vbox | 2014-05-19 17:08:06 | 0B | X
→˓ | Canceled |
+------+---------------+---------+------+-----------+---------------------+------+----
→˓--------+-------------------+
| 960 | nginx-muppets | 1.0 | 1 | vbox | 2014-05-15 13:33:43 | 0B | X
→˓ | Done |
+------+---------------+---------+------+-----------+---------------------+------+----
→˓--------+-------------------+

Found 3 images
No publication available

Now use the command publish to start the registration process

$ hammr image publish --id <the id> --file nginx-template.json
Validating the template file [/tmp/centOS.json] ...
OK: Syntax of template file [/tmp/centOS.json] is ok
Publishing 'ami' image (1/1)
|>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>| 100%: Done, published o... |<<<<<<<<<<<<<<<<<<<<<
→˓<<<<<<<<<<<<<|
OK: Publication to 'amazon' is ok
Cloud ID : ami-25aa6752

2.4.4 Next Steps

And thats it! You have just built and published your first machine image with hammr. You should now have a grasp
of the basics of hammr; how to create a template; use it to generate a machine image and publish it to the target
environment ready for provisioning.

You should now be ready to start using hammr in real world scenarios. For more detailed information of hammr and
the features it provides, please use the documentation section.

Any questions or comments, please get in touch by using the mailing list. If you find any bugs, please post them on
the issue tracker in GitHub.

2.4. Creating Your First Machine Image 15

https://groups.google.com/forum/#!forum/hammr
https://github.com/usharesoft/hammr/issues

Hammr Guide, Release 3.5.1

16 Chapter 2. Getting Started

CHAPTER 3

Authentication

Communication between hammr and the UForge server is done via HTTPS. To send requests to the UForge server,
hammr needs the following information:

• UForge Server URL endpoint

• Your account user name

• Your password

This information can be passed to hammr either from command-line options or from a file.

3.1 Command-line Parameters

Authentication information can be passed to hammr via command-line options. These options are:

• -a or --url: the UForge Server URL endpoint. If the URL uses HTTPS, then the connection will be done
securely (recommended), otherwise connection will be done via HTTP

• -u or --user: the user name to use for authentication

• -p or --password: the password to use for authentication

For example

$ hammr os list --url https://uforge.usharesoft.com/api -u username -p password

These parameters need to be passed each time you want to use the command-line.

17

Hammr Guide, Release 3.5.1

18 Chapter 3. Authentication

CHAPTER 4

Using a Credential File

Rather than passing the authentication information as part of the command-line, you can instead store this information
in a credential file (credentials.json) that will be used every time hammr is launched. Hammr searches for this
file in a sub-directory named .hammr located in the home directory of the user launching hammr.

To use a credential file, go to the .hammr sub-directory and create the file credentials.json.

$ cd ~/.hammr
$ vi credentials.json

Add the authentication and UForge URL endpoint to this file, using the following format:

{
"user" : "root",
"password" : "password",
"url" : "https://uforge.usharesoft.com/api"

}

As this file contains security information, it is recommended to change the permissions on this file so that only you
can read or write to it:

$ chmod 600 credentials.json

Now every time hammr is launched, you no longer need to provide the authentication information as part of the
command-line. Hammr will automatically use the information contained in this file.

19

Hammr Guide, Release 3.5.1

20 Chapter 4. Using a Credential File

CHAPTER 5

Command-Line

Hammr is launched by using the main command-line tool hammr. The hammr tool can be launched with other
commands, sub-commands and options. The usage for the tool, can be shown by running hammr with the
help options -h or --help:

$ hammr --help
usage: hammr [-h] [-a URL] [-u USER] [-p PASSWORD] [-v] [cmds [cmds ...]]

The global options are:

• -h, --help: displays the usage

• -a URL, --url URL: the UForge server URL endpoint to use

• -u USER, --user USER: the user name used to authenticate to the UForge server

• -p PASSWORD, --password PASSWORD: the password used to authenticate to the UForge server

• -v: displays the current version of the hammr tool

Hammr communicates with a UForge server instance, requiring authentication information as part of this authentica-
tion. The authentication information may be passed to hammr via the global options, however, there are other ways to
pass this information. For more information, please refer to Authentication section of the documentation.

Below provides a list of the available commands:

5.1 account

Manages all of your different cloud accounts used when either building or publishing machine images. The usage is:

usage: hammr account [sub-command] [options]

21

Hammr Guide, Release 3.5.1

5.1.1 Sub Commands

create sub-command

Creates a new cloud account. The options are:

• --file (mandatory): json file providing the cloud account parameters

delete sub-command

Deletes an existing cloud account. The options are:

• --id (mandatory): the ID of the cloud account to delete

list sub-command

Displays all the cloud accounts for the user.

5.2 bundle

Manages all the bundles that have been registered in UForge. A bundle is group of software that is uploaded during
the creation of a template. The usage is:

usage: hammr bundle [sub-command] [options]

5.2.1 Sub Commands

delete sub-command

Deletes an existing bundle. The options are:

• --id (mandatory): the ID of the bundle to delete

list sub-command

Lists all the bundles that have been registered in the UForge server.

5.3 format

Displays all the machine image formats the user has access to when building a machine image. The usage is:

usage: hammr format [sub-command]

5.3.1 Sub Commands

list sub-command

Displays all the machine image formats for the user.

22 Chapter 5. Command-Line

Hammr Guide, Release 3.5.1

5.4 image

Manages all of the machine images you have built and/or published. The usage is:

usage: hammr image [sub-command] [options]

5.4.1 Sub Commands

cancel sub-command

Cancels a machine image build or publish. The options are:

• --id (mandatory): the ID of the machine image to cancel

delete sub-command

Deletes a machine image or publish information. The options are:

• --id (mandatory): the ID of the machine image to delete

download sub-command

Downloads a machine image to the local filesystem. The options are:

• --id (mandatory): the ID of the machine image to delete

• --file (mandatory): the pathname where to store the machine image

list sub-command

Displays all the machine images built and publish information of those machine images to their respective target
platforms.

publish sub-command

Publish (upload and register) a built machine image to a target environment. The options are:

• --file (mandatory): json file providing the cloud account parameters required for upload and registration

5.5 os

Displays all the operating systems available to use when creating templates. The usage is:

usage: hammr os [sub-command] [options]

5.4. image 23

Hammr Guide, Release 3.5.1

5.5.1 Sub Commands

list sub-command

Displays all the operating systems available to use by the user.

search sub-command

Operating System package search.

• --id (mandatory): the ID of the OS

• --pkg (mandatory): Regular expression of the package:

– “string” : search all packages wich contains “string”

– “^string”: search all packages wich start with “string”

– “string$”: search all packages wich end with “string”

5.6 quota

Displays the current user quota for the user. This includes all of your different cloud accounts used when either
building or publishing machine images. The usage is:

usage: hammr quota [sub-command]

5.6.1 Sub Commands

list sub-command

Displays the user’s quota information.

5.7 scan

Manages all the scans executed on live systems. The usage is:

usage: hammr scan [sub-command] [options]

5.7.1 Sub Commands

build sub-command

Builds a machine image from a scan. The options are:

• --id (mandatory): the ID of the scan to generate the machine image from

• --file (mandatory): json file providing the builder parameters

24 Chapter 5. Command-Line

Hammr Guide, Release 3.5.1

delete sub-command

Deletes an existing scan. The options are:

• --id (mandatory): the ID of the scan to delete

import sub-command

Imports (or transforms) the scan to a template.

• --id (mandatory): the ID of the scan to import

• --name (mandatory): the name to use for the template created from the scan

• --version (mandatory): the version to use for the template created from the scan

list sub-command

Displays all the scans for the user.

run sub-command

Executes a deep scan of a running system.

• --ip (mandatory): the IP address or fully qualified hostname of the running system

• --scan-login (mandatory): the root user name (normally root)

• --name (mandatory): the scan name to use when creating the scan meta-data

• --scan-password (optional): the root password to authenticate to the running system

• --dir (optional): the directory where to install the uforge-scan.bin binary used to execute the deep scan

• --exclude (optional): a list of directories or files to exclude during the deep scan

5.8 template

Manages all the templates created by the user. The usage is:

usage: hammr template [sub-command] [options]

5.8.1 Sub Commands

build sub-command

Builds a machine image from the template. The options are:

• --file (mandatory): json file providing the builder parameters

5.8. template 25

Hammr Guide, Release 3.5.1

clone sub-command

Clones the template. The clone is copying the meta-data of the template. The options are:

• --id (mandatory): the ID of the template to clone

• --name (mandatory): the name to use for the new cloned template

• --version (mandatory): the version to use for the cloned template

create sub-command

Creates a new template and saves it to the UForge server. Hammr creates a tar.gz archive which includes the .json file
and binaries and imports it to UForge. The options are:

• --file (mandatory): json file containing the template content

• --archive-path (optional): path of where to store the archive (tar.gz) of the created template. If provided,
hammr creates an archive of the created template, equivalent to running template export

• --force (optional): force template creation (delete template/bundle if already exist)

• --rbundles (optional): if a bundle already exists, use it in the new template. Warning: this option ignore the
content of the bundle described in the template file

• --usemajor (optional): use distribution major version if exit

delete sub-command

Deletes an existing template. The options are:

• --id (mandatory): the ID of the template to delete

export sub-command

Exports a template by creating an archive (compressed tar file) that includes the json template configuration file. The
options are:

• --id (mandatory): the ID of the template to export

• --file (optional): destination path where to store the template configuration file on the local filesystem

import sub-command

Creates a template from an archive. The archive file must be a tar.gz (which includes the .json and binaries). The
options are:

• --file (mandatory): the path of the archive

• --force (optional): force template creation (delete template/bundle if already exist)

• --usemajor (optional): use distribution major version if exit

list sub-command

Displays all the created templates.

26 Chapter 5. Command-Line

Hammr Guide, Release 3.5.1

validate sub-command

Validates the syntax of a template configuration file. The options are:

• --file (mandatory): the json template configuration file

5.8. template 27

Hammr Guide, Release 3.5.1

28 Chapter 5. Command-Line

CHAPTER 6

You Account

As you discovered in the Introduction, hammr allows you to communicate with and use the UForge server to create,
build and publish machine images. Since you are communicating with UForge, a number of actions are managed by
your UForge Account, such as the operating systems you have access to, any quotas set (on the number of images you
can create, for example), as well as managing your cloud account. The following sections will help you use hammr to
access information from your UForge cloud account.

6.1 Operating Systems

Hammr allows you to create machine images for a number of OSes. The type of OS you want to use needs to be
defined in the os section of the configuration file, as described in.

For a list of the OSes that can be added to your template, run os list, for example

$ hammr os list
Getting distributions for [root] ...
+-----+---------+--------------+--------------+---------------------+-----------------
→˓---------+
| Id | Name | Version | Architecture | Release Date |
→˓Profiles |
+=====+=========+==============+==============+=====================+==========================+
| 120 | CentOS | 6 | x86_64 | 2011-07-03 02:06:43 | Server
→˓ |
| | | | | | Minimal
→˓ |
| | | | | | Minimal Desktop
→˓ |
+-----+---------+--------------+--------------+---------------------+-----------------
→˓---------+
| 121 | CentOS | 6 | i386 | 2011-07-03 04:02:09 | Minimal
→˓ |
| | | | | | Server
→˓ |
| | | | | | Minimal Desktop
→˓ |

29

Hammr Guide, Release 3.5.1

+-----+---------+--------------+--------------+---------------------+-----------------
→˓---------+
| 122 | CentOS | 5 | x86_64 | 2008-06-19 13:56:25 | Minimal Desktop
→˓ |
| | | | | | Minimal
→˓ |
| | | | | | Server
→˓ |
+-----+---------+--------------+--------------+---------------------+-----------------
→˓---------+
| 123 | CentOS | 5 | i386 | 2008-06-19 14:01:21 | Minimal
→˓ |
| | | | | | Minimal Desktop
→˓ |
| | | | | | Server
→˓ |
+-----+---------+--------------+--------------+---------------------+-----------------
→˓---------+
| 42 | Debian | 6 | x86_64 | 2010-04-20 00:18:34 | Minimal Desktop
→˓ |
| | | | | | Server
→˓ |
| | | | | | Minimal
→˓ |
+-----+---------+--------------+--------------+---------------------+-----------------
→˓---------+
| 125 | Debian | 7 | x86_64 | 2012-11-05 11:17:46 | Minimal Desktop
→˓ |
| | | | | | Server
→˓ |
| | | | | | Minimal
→˓ |
+-----+---------+--------------+--------------+---------------------+-----------------
→˓---------+
| 124 | Debian | 7 | i386 | 2012-11-05 11:17:46 | Server
→˓ |
| | | | | | Minimal
→˓ |
| | | | | | Minimal Desktop
→˓ |
+-----+---------+--------------+--------------+---------------------+-----------------
→˓---------+
Found 7 distributions

6.2 Quotas

There are a number of quotas that can be set on a UForge account. For example, a free account has the following
limitations:

Quotas can be set for the following:

• Disk usage: diskusage in bytes (includes storage of bundle uploads, bootscripts, image generations, scans)

• Templates: number of templates created

• Generations: number of machine images generated

30 Chapter 6. You Account

Hammr Guide, Release 3.5.1

• Scans: number of scans for migration

To view the quotas that have been set on your account, run quota list:

$ hammr quota list
Getting quotas for [root] ...
Scans (25) --------------------UNLIMITED---------------------
Templates (26) --------------------UNLIMITED---------------------
Generations (72/100) ||||||||||||||||||||||||||||||||||||--------------
Disk usage (30GB) --------------------UNLIMITED---------------------

The output not only lists any quotas that are set, but it also shows you the limit you are at, even if your account is set
to unlimited.

6.3 Setting Your Cloud Accounts

For security reasons, it is recommended not to add any cloud account information into the template file. Hammr allows
you to register your cloud account information to the UForge server, then reference the cloud account tag name in the
template.

To do this, you need to create a JSON file which contains all the necessary cloud credentials. This will depend on your
cloud type. For more information, refer to the Builders section of the documentation.

Once this file is ready, you create the cloud account on UForge by running the command account create.

$ hammr account create --file aws-account.json
Validating the template file [aws-account.json] ...
OK: Syntax of template file [aws-account.json] is ok
Create account for 'ami'...
OK: Account create successfully for [ami]

Once the cloud account is created, you can safely reference the cloud credentials in all the template files by using the
account name.

6.3. Setting Your Cloud Accounts 31

Hammr Guide, Release 3.5.1

32 Chapter 6. You Account

CHAPTER 7

Creating and Managing Templates

If you have read the Introduction and gone through the step by step tutorial in the Getting Started section, you now have
an operational configuration template and have built an image. However, the example probably doesn’t match with the
type of machine image you want to create. This section will help you with the basics for creating and managing your
template, including how to manage package updates.

You should refer to the section for all the possible parameters you can add to define your template.

7.1 Creating a Template

A template is a configuration file which defines the machine image you want to build. The format of this file is simple
JSON. Note that the template can be saved locally or stored on a server, in which case hammr will access it via a URL.
For security reasons we recommend that you save your UForge credentials in a seperate credentials file, saved at the
same location as your template.

The mandatory values when creating a template are:

• name: the name of the template to create. You can easily make the name unique by using the timestamp
keyword (surrounded by curly brackets).

• version: the version of the template.

• os : the operating system details to use the in your images. You must include the OS family name, version and
architecture type. For more information regarding OS and package parameters, see Adding OSes and Packages
to Your Template

For more details about the various parameters you can set in your template to define the machine image you want to
create, refer to the Templates Specification section.

The following is an example of the minimum information needed in your configuration file to define a template. It
includes the name, version, a few installation parameter and the OS. This example describes a CentOS 6.4 32-bit
template.

{
"stack" : {

33

Hammr Guide, Release 3.5.1

"name" : "myTemplate",
"version" : "1.0",
"installation" : {
"internetSettings" : "dhcp",
"diskSize" : 12288,
"swapSize" : 512

},
"os" : {

"name" : "CentOS",
"version" : "6.4",
"arch" : "x86_64",
"profile" : "Minimal"

}
}

}

Once you have written and saved this minimal template you can then create the template using template create:

$ hammr template create --file <blueprint>.json
Validating the template file [/Users/james/nginx-template.json] ...
OK: Syntax of template file [/Users/james/nginx-template.json] is ok
Creating template from temporary [/var/folders/f6/8kljm7cx3h7fvb26tq18kw4m0000gn/T/
→˓hammr-15888/archive.tar.gz] archive ...
100%|###|
OK: Template create: DONE
Template URI: users/root/appliances/898
Template Id : 898

7.2 Validating Your Template

Once you have created and modified your template file, it is best practice to validate your template before you build or
publish it. In order to check that your template does not have any syntax errors or missing mandatory values, run the
command validate.

$ hammr validate --file <path/filename>.json
Validating the template file [/Users/james/nginx-template.json] ...
OK: Syntax of template file [/Users/james/nginx-template.json] is ok

If there are any errors, this command will tell you.

7.3 Adding Packages to Your Template

When defining your machine image you set the OS and profile. UForge automatically pulls in all the necessary
packages required for the chosen OS. You do not need to list them seperately. However, you may want to add other
packages to your machine image. These additional packages are listed in the pkgs section of your template.

Note: If the packages you choose to add to your template have any dependencies, all the required packages will be
added automatically. You do not have to search and list all the dependencies in your template.

The following is a basic example for a CentOS 6.4 32-bit template with package for iotop added.

34 Chapter 7. Creating and Managing Templates

Hammr Guide, Release 3.5.1

{
"os" : {

"name" : "CentOS",
"version" : "6.4",
"arch" : "x86_64",
"profile" : "Minimal"
"pkgs" : {

"name" : "iotop"
}

}
}

7.4 Searching for Packages

You can search for the available packages as follows:

$ hammr os search

When running a search you will need to specify the OS id and a search string.

$ hammr os search --id 121 --pkg ntpdate
Search package 'ntpdate' ...
for OS 'CentOS', version 6
+---------+---------+------+--------------+---------------------+------+
| Name | Version | Arch | Release | Build date | Size |
+=========+=========+======+==============+=====================+======+
| ntpdate | 4.2.4p8 | i686 | 3.el6.centos | 2013-02-22 11:22:14 | 56K |
+---------+---------+------+--------------+---------------------+------+
| ntpdate | 4.2.4p8 | i686 | 2.el6.centos | 2011-11-29 12:06:40 | 56K |
+---------+---------+------+--------------+---------------------+------+
| ntpdate | 4.2.4p8 | i686 | 2.el6 | 2010-08-25 01:51:27 | 56K |
+---------+---------+------+--------------+---------------------+------+
| ntpdate | 4.2.6p5 | i686 | 1.el6.centos | 2013-11-23 06:20:19 | 74K |
+---------+---------+------+--------------+---------------------+------+

Found 4 packages

To get the OS id, list the OS information by running:

$ hammr os list

7.5 Understanding Package Updates

A more complete example for adding CentOS is provided below. You will notice the following optional information
has been added:

• updateTo: This is the date up until which the packages should be updated

• profile: The OS profile. The options are listed under os list

{
"os" : {
"name" : "CentOS",

7.4. Searching for Packages 35

Hammr Guide, Release 3.5.1

"version" : "6.4",
"arch" : "x86_64",
"updateTo" : "01-30-2014",
"profile" : "Minimal",
"pkgs" : [{
"name" : "iotop"

},
{

"name" : "httpd",
"version" : "2.2.15",
"release" : "28.el6.centos",
"arch" : "x86_64"

}]
}

}

In the example above you can see that for the package httpd a specific version and release are specified. When no
version or release is specified, the latest release is used.

7.6 Package Dependencies and Updates

Hammr via the build mechanism calculates determines the complete list packages that require to be installed by
checking the dependencies of the packages you have listed in the os sub-section of the stack (via the profile and pkgs)
and any native packages listed in a bundle. Hammr also provides a mechanism to track any available updates on
these packages and allow you to update or roll-back your template.

7.6.1 What is a Dependency

A dependency is a piece of information in a software package that describes which other packages it requires to
function correctly. Many packages require operating system libraries as they provide common services that just about
every program uses (filesystem, network, memory etc).

For example, network applications typically depend on lower-level networking libraries provided by the operating
system. The principle behind package dependencies is to share software, allowing software developers to write and
maintain less code at a higher quality. Operating systems have thousands of packages.

In the world of virtualization and cloud computing, it is becoming imperative to strip down the number of operating
system packages to just the required packages to run a particular application. This process, known as JeOS (pro-
nounced “juice”) standing for “Just Enough Operating System” is a very painful manual process. So much so that
many operating system vendors now supply a core operating system ISO with the minimum set of packages required
to boot the system. The fun then begins as you manually install only the packages (and their dependencies) required
to run your application.

7.6.2 Calculating Package Dependencies

Package dependency checking occurs when you build (or generating) a new machine image. During the first phase of
generation, the backend UForge Server calculates automatically all the dependencies of each package in the os section
(profile and pkgs list) as well as any packages contained elsewhere in your stack (native packages declared in one or
more bundles).

All missing packages are automatically added. For each package added, this package’s dependencies are also checked.
This process continues until all the dependencies have been met. The end result is a complete dependency tree of all
the packages you require to run your application. All these packages are added to the machine image. Consequently

36 Chapter 7. Creating and Managing Templates

Hammr Guide, Release 3.5.1

don;t be surprised if the number of packages that are actually installed are larger than the packages lists in the stack
section of the template.

Each package has meta-data on what the package requires (that is, what the package depends on) and what it provides
in terms of functionality. This meta-data varies on the package type (RPM, DEB etc).

The dependency calculation is done using a specific moment in time. This date is determined by the updateTo
key in your stack. If this key does not exist, then the date the template was created (via the command template
create) is used. Chosen package versions and dependencies are calculated by ensuring that they are equal to or less
than this date. Let’s take an example. Imagine you create a new stack on June 17th 2013, 17:00 GMT+1, and you
choose package A, B and C. Packages A, B and C may have more than one version (updates added to the repository
due to bug fixing and or new features). The versions displayed for A, B and C will be dates of each of these packages
closest (but inferior) to our date.

7.6.3 Package Updates

As you probably know, packages evolve as bugs are fixed and new features are added. These new packages become
available in the operating system repository. The UForge Server uses an internal mechanism to check for any new
package update available in the repository, and, if found, adds the meta-data of this package to its own database. Using
this process, the UForge Server builds a history of the operating system, as it keeps references to the old packages that
are being replaced by the update.

These updates do not get taken into account for your current template when generating a new image. By calculating
packages by the same date ensures when you build your machine image, the same image is generated time after time.
This is due to always using the updateTo date (or the creation date) of the template in question.

Ok great, but what if you actually wanted to include these updates in the next generation? Well, it’s a simple matter of
updating the updateTo key of the stack section.

7.6. Package Dependencies and Updates 37

Hammr Guide, Release 3.5.1

{
"stack": {

"name": "CentOS Base Template",
"version": "6.4",
"description": "This is a CentOS core template.",
"os": {
"name": "CentOS",
"version": "6.4",
"arch": "x86_64",
"profile": "Minimal",
"updateTo": "2013-06-15"

}
}

}

In this case, UForge will notify you that three updates are available. Note, that for package B even if there is an
intermediary package (version 7.3), only the last one is taken into account.

7.6.4 Making a Package “Sticky”

Being able to roll-forward or roll-back the packages is all well and good, but what if we wanted to force a particular
version of a package to be part of the machine image?

Due to the current package version calculation being based on a particular date it is impossible to specify a particular
package version to be part of the generation, as depending upon the build date of the package, potentially an earlier or
more up to date version of the package may be chosen instead. To get around this issue, Hammr provides a mechanism
to enforce a particular package version. This is known as making a package “sticky”. To do this, specify the fullname
of the package, or its version, revision and architecture.

38 Chapter 7. Creating and Managing Templates

Hammr Guide, Release 3.5.1

For example:

{
"stack": {
"name": "CentOS Base Template",
"version": "6.4",
"description": "This is a CentOS core template.",
"os": {

"name": "CentOS",
"version": "6.4",
"arch": "x86_64",
"profile": "Minimal",
"updateTo": "2013-06-15",
"pkgs": [
{
"name": "php",
"version": "5.5.3",
"release": "23.el6_4",
"arch": "i686"

},
{
"name": "php-common",
"fullName": "php-common-5.5.3-23.el6_4-i686.rpm"

}
]

}
}

}

7.7 Using Advanced Partitioning

Hammr supports the ability to describe partitioning schemas as part of the stack used to build machine images. Parti-
tioning is the act of dividing one or more physical disks into logical sections with the goal to treat each physical disk
drive as if it were multiple disks.

Partitioning is used frequently in production systems. Benefits include:

• Isolating data from programs

• Keeping frequently used programs and data near each other

• Having cache and log files separate from other files. These can change size dynamically and rapidly, potentially
making a file system full.

• Having a separate area for operating system virtual memory swapping/paging

Warning: Some cloud platforms do not support all the features of partitioning, or limit the number of partitions
you may have in your machine image. When building a machine image for a particular cloud platform, hammr
will return an error if the partitioning table in the stack if the partitioning setup is not supported. This helps you
save time and effort down the road when an instance of the machine image does not boot.

The rest of this section, provides examples of:

7.7. Using Advanced Partitioning 39

Hammr Guide, Release 3.5.1

7.7.1 Disks

The first thing a partitioning table needs is to declare one or more disks that will be used to partition. Each disk
declared in the partitioning table has the name sd followed by a letter, starting at a, namely: 1st disk sda, 2nd disk
sdb and so on. A disk may have one of two types, either MSDOS or LVM and provide a total disk size available. LVM
disks cannot have any physical partitions, however can be used in logical volumes (we will touch on this subject later).

The example below describes 1 disk of 20GB.

{
"installation": {
"partitioning": {

"disks": [
{
"name": "sda",
"type": "msdos",
"size": 20480

}
]

}
}

}

Example

The following example describes 2 disks of 20GB each.

{
"installation": {
"partitioning": {

"disks": [
{
"name": "sda",
"type": "msdos",
"size": 20480

},
{
"name": "sdb",
"type": "msdos",
"size": 20480

}
]

}
}

}

7.7.2 Physical Partitions

Each disk declared may be partitioned, i.e. the act of dividing the physical disk into logical sections with the goal to
treat one physical disk drive as if it were multiple disks. These are called physical partitions.

Note: A disk may have a maximum of 4 physical partitions.

40 Chapter 7. Creating and Managing Templates

Hammr Guide, Release 3.5.1

Each physical partition has a unique number: 1,2,3 and 4; declare a filesystem type and size. All filesystem types with
the exception of lvm2, extended and linux-swap require a mount point. LVM physical partitions are used in
logical volumes (which will be covered later).

Example

The following example shows 3 physical partitions of a disk: /boot, swap, and /space.

{
"partitioning": {

"disks": [
{
"name": "sda",
"type": "msdos",
"size": 20480,
"partitions": [
{
"number": 1,
"fstype": "ext3",
"size": 2048,
"mountPoint": "/boot"

},
{
"number": 2,
"fstype": "linux-swap",
"size": 1024

},
{
"number": 3,
"fstype": "ext3",
"size": 17408,
"label": "space",
"mountPoint": "/space"

}
]

}
]

}
}

Note: Note: In a partitioning table, at least one partition must be the /boot partition. In the above example this is
one of the physical partitions. Furthermore, the sum of the physical partition sizes must be smaller or equal to the disk
size.

7.7. Using Advanced Partitioning 41

Hammr Guide, Release 3.5.1

7.7.3 Logical Partitions

Due to the restriction of only having 4 physical partitions for disk, you can further partition a physical partition. This
is known as logical partitioning. To partition a physical partition, use the filesystem type extended.

Note: You can only use the extended filesystem ONCE for a disk i.e. you can only partition one physical partition
in a disk. When using extended you cannot declare a mount point or label. These will be ignored by hammr.

Like a physical partition, each logical partition has a unique number starting at 5: 5,6,7,8 etc; declare a filesystem type
and size. You cannot further partition a logical partition (extended filesystem type cannot be used). There is no limit
to the number of logical partitions you may have, however the sum of the logical partitions cannot exceed the size of
the physical partition.

Example

The following example shows 3 physical partitions of a disk, where the last physical partition has 3 logical partitions
: /space, /home and /tmp.

{
"partitioning": {

"disks": [
{
"name": "sda",
"type": "msdos",
"size": 20480,
"partitions": [
{
"number": 1,
"fstype": "ext3",
"size": 2048,
"mountPoint": "/boot"

},
{
"number": 2,
"fstype": "linux-swap",
"size": 1024

},
{
"number": 3,
"fstype": "Extended",
"size": 17408,
"partitions": [
{

42 Chapter 7. Creating and Managing Templates

Hammr Guide, Release 3.5.1

"number": 5,
"fstype": "ext3",
"size": 8192,
"mountPoint": "/space",
"label": "space"

},
{
"number": 6,
"fstype": "ext3",
"size": 8192,
"mountPoint": "/home",
"label": "home"

},
{
"number": 7,
"fstype": "ext3",
"size": 1024,
"mountPoint": "/tmp",
"label": "tmp"

}
]

}
]

}
]

}
}

7.7.4 Growable Partitions

Physical and Logical Partitions can be marked as growable by using the grow flag. This declares that the particular
partition takes all remaining disk space available after the other partition sizes of been satisfied.

You can only declare one physical partition to be growable in a disk, and one logical partition to be growable for a
physical partition.

Example

In this example we mark the “space” phyiscal partition as growable, i.e. the “space” partition takes up the rest of the
disk (rather than us having to calculate the space left after creating the first two partitions). We must specify though a
size for the “space” partition (the minimum partition size is 64MB).

{
"partitioning": {

"disks": [
{
"name": "sda",
"type": "msdos",

7.7. Using Advanced Partitioning 43

Hammr Guide, Release 3.5.1

"size": 20480,
"partitions": [
{
"number": 1,
"fstype": "ext3",
"size": 2048,
"mountPoint": "/boot"

},
{
"number": 2,
"fstype": "linux-swap",
"size": 1024

},
{
"number": 3,
"fstype": "ext3",
"size": 64,
"grow": true,
"label": "space",
"mountPoint": "/space"

}
]

}
]

}
}

7.7.5 Volume Groups and Logical Volumes

Volume groups and logical volumes allows more creative and flexible partitioning schemas to be created than conven-
tional partitioning schemas we have already discussed.

A volume group allows us to gather disks, physical and logical partitions into a single logical pool of storage. This
pool of storage can then be partitioned (like a disk) by using a logical volume.

Only disks that have the type lvm, and physical partitions or logical partitions that have filesystem types lvm2 can be
grouped together in a volume group.

Note: Once a physical or logical partition is grouped together into a volume group, they cannot be declared in another
volume group.

In this example, an extended physical partition that has two logical partitions that have lvm filesystems; and a disk
of type lvm are pooled together via a volume group grp1. A logical volume is used to partition further this volume
group.

44 Chapter 7. Creating and Managing Templates

Hammr Guide, Release 3.5.1

{
"partitioning": {

"disks": [
{
"name": "sda",
"type": "msdos",
"size": 20480,
"partitions": [
{
"number": 1,
"fstype": "ext3",
"mountPoint": "/boot",
"size": 1024

},
{
"number": 2,
"fstype": "linux-swap",
"size": 1024

},
{
"number": 3,
"fstype": "extended",
"size": 18432,
"partitions": [
{
"number": 5,
"fstype": "lvm2",
"size": 9216

},
{
"number": 6,
"fstype": "lvm2",
"size": 9216

}
]

}
]

7.7. Using Advanced Partitioning 45

Hammr Guide, Release 3.5.1

},
{
"name": "sdb",
"type": "lvm",
"size": 122880

}
],
"volumeGroups": [
{
"name": "grp1",
"physicalVolumes": [

{
"name": "sda5"

},
{
"name": "sda6"

},
{
"name": "sdb"

}
]

}
],
"logicalVolumes": [
{
"name": "vol1",
"vg_name": "grp1",
"fstype": "ext3",
"mountPoint": "/home",
"size": 4098

},
{
"name": "vol2",
"vg_name": "grp1",
"fstype": "ext3",
"mountPoint": "/space",
"size": 64,
"grow": true

}
]

}
}

46 Chapter 7. Creating and Managing Templates

CHAPTER 8

Building and Publishing Machine Images

Templates allow you to generate and publish identical machine images for phyiscal, virtual and cloud environments.
The rest of this section highlights how to build, publish and manage machine images with hammr.

8.1 Building a Machine Image

In order to generate a machine image based on the template you created, you must update the template with the
information for each type of image you want to generate (physical, virtual or cloud). This is done in the builders
section of the configuration file.

The parameters you need to enter will depend on the type of image you want to generate. For a complete list of the
mandatory and optional fields, see the builders list. Note that you can define several types of images in the same
template.

When you run the hammr command to generate the images, all image formats defined in the builders section will be
built at the same time.

Once the template is updated, build the images by running the command template build:

$ hammr template build --file <path/filename>.json
Validating the template file [nginx-template.json] ...
OK: Syntax of template file [nginx-template.json] is ok
Generating 'ami' image (1/1)
|>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>| 100%: Done, created on ... |<<<<<<<<<<<<<<<<<<<<<<
→˓<<<<<<<<<<|
OK: Generation 'ami' ok
Image URI: users/root/appliances/21/images/47
Image Id : 47

Note: This may take some time. A progress report is be shown.

47

Hammr Guide, Release 3.5.1

8.2 Listing the Images Generated

You can check that the machine images have been created by running image list:

$ hammr image list
Getting all images and publications for [root] ...
Images:
+------+---------------+---------+------+-----------+---------------------+------+----
→˓--------+-------------------+
| Id | Name | Version | Rev. | Format | Created | Size |
→˓Compressed | Generation Status |
+======+===============+=========+======+===========+=====================+======+============+===================+
| 1042 | generation | 1.0 | 1 | kvm | 2014-05-21 09:29:36 | 0B | X
→˓ | Done |
+------+---------------+---------+------+-----------+---------------------+------+----
→˓--------+-------------------+
| 981 | wordpress | 1.0 | 1 | vbox | 2014-05-19 17:08:06 | 0B | X
→˓ | Canceled |
+------+---------------+---------+------+-----------+---------------------+------+----
→˓--------+-------------------+
| 960 | nginx-muppets | 1.0 | 1 | vbox | 2014-05-15 13:33:43 | 0B | X
→˓ | Done |
+------+---------------+---------+------+-----------+---------------------+------+----
→˓--------+-------------------+

Found 3 images
No publication available

The table lists the image ID number, which you will need to publish the image, the name, version, revision (this is
automatically increased everytime you modify the template and run template build), the format of the image,
when it was created (date and time of the creation), if the image is compressed (not possible for all formats) and the
status.

8.3 Publishing a Machine Image

In order to publish a machine image of the template you created, you must make sure that the builders section of
the template has the necessary info for each machine image you want to publish to. This includes defining the machine
image you want to build as well the information for the cloud platform you want to publish you.

You will also need to set the information for your cloud account. We recommend that this information not be included
in the template file, but rather set as a value that hammr will access in a seperate read-only file. For more information
on creating a credential file with your cloud account information refer to the details in .

The following is an example of the builders section illustrating the publication to OpenStack. Note that you can
incorporate details for several cloud platforms in the same configuration file. For details of the required parameters for
each of the image types, refer to the documentation.

{
"builders": [
{

"type": "openstack",
"hardwareSettings": {
"memory": 1024

},
"installation": {

48 Chapter 8. Building and Publishing Machine Images

Hammr Guide, Release 3.5.1

"diskSize": 2000
},
"account": "Openstack OW2",
"tenant": "opencloudware",
"imageName": "openstack-test",
"publicImage": "no",
"endpoint": "http://ow2-04.xsalto.net:9292/v1",
"keystoneEndpoint": "http://ow2-04.xsalto.net:5000/v2.0",
"username": "test",
"password": "password"

}
]

}

Publish the image(s) by running the command image publish:

$ hammr image publish --id <the id> --file <your-template>.json
Validating the template file [/tmp/centOS.json] ...
OK: Syntax of template file [/tmp/centOS.json] is ok
Publishing 'ami' image (1/1)
|>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>| 100%: Done, published o... |<<<<<<<<<<<<<<<<<<<<<
→˓<<<<<<<<<<<<<|
OK: Publication to 'amazon' is ok
Cloud ID : ami-25aa6752

Note: This may take some time. A progress report will be shown.

To get the id of the machine image generated, use the command image list:

$ hammr image list
Getting all images and publications for [root] ...
Images:
+------+---------------+---------+------+-----------+---------------------+------+----
→˓--------+-------------------+
| Id | Name | Version | Rev. | Format | Created | Size |
→˓Compressed | Generation Status |
+======+===============+=========+======+===========+=====================+======+============+===================+
| 1042 | generation | 1.0 | 1 | kvm | 2014-05-21 09:29:36 | 0B | X
→˓ | Done |
+------+---------------+---------+------+-----------+---------------------+------+----
→˓--------+-------------------+
| 1049 | generation | 1.0 | 1 | ovf | 2014-05-21 12:17:21 | 0B | X
→˓ | In progress (2%) |
+------+---------------+---------+------+-----------+---------------------+------+----
→˓--------+-------------------+
| 981 | wordpress | 1.0 | 1 | vbox | 2014-05-19 17:08:06 | 0B | X
→˓ | Canceled |
+------+---------------+---------+------+-----------+---------------------+------+----
→˓--------+-------------------+
| 960 | nginx-muppets | 1.0 | 1 | vbox | 2014-05-15 13:33:43 | 0B | X
→˓ | Done |
+------+---------------+---------+------+-----------+---------------------+------+----
→˓--------+-------------------+

Found 4 images
No publication available

8.3. Publishing a Machine Image 49

Hammr Guide, Release 3.5.1

8.4 Downloading a Machine Image

You can only download images that have been compressed. You will need the image Id number in order to download
it as follows. You must also set the location where the image should be saved. To download a machine image, use the
command image download.

$ hammr image download -c ~/.hammr/credentials-UFOL.json --id 17517 --file /tmp/test.
→˓tar,gz
INFO: no username nor password provided on command line, trying credentials file
INFO: Using credentials file: /home/joris/.hammr/credentials-UFOL.json
INFO: Using url https://factory.usharesoft.com/api
Searching image with id [17517] ...
Status: 100% |>>
→˓>>>| Time: 0:01:11
OK: Image downloaded

50 Chapter 8. Building and Publishing Machine Images

CHAPTER 9

Importing and Exporting

Hammr has a notion of importing and exporting templates. After creating a template from a JSON configuration file;
this template can be exported as an archive. The archive will include the template JSON file as well as any bundled
software that was initially uploaded as part of the template creation.

The archive can then be used to import the template into another UForge Server instance.

The stack section of a template can include bundles of software and configuration information. This information
may be stored locally on a filesystem or available via URLs. In some cases, when another user creates a template
from the same template JSON file, the custom software and/or configuration files may not be reachable or present. By
creating an archive (using export) ensure that all relevant software for creating the template is available.

9.1 Exporting a Template

To illustrate exporting a template, let’s start from scratch. We will create a template, get the ID and export it with
hammr.

So first lets create a new template with the JSON file centoscore-template.json.

{
"stack" : {
"name" : "CentOS Core",
"version" : "6.4",
"os" : {

"name" : "CentOS",
"version" : "6.4",
"arch" : "x86_64"
"profile" : "Minimal"

},
"config" : [{

"name" : "firstboot1.sh",
"source" : "http://myconfig.site.com/config/firstboot1.sh",
"type" : "bootscript",
"frequency" : "firstboot"

51

Hammr Guide, Release 3.5.1

}, {
"name" : "firstboot0.sh",
"source" : "http://myconfig.site.com/config/firstboot1.sh",
"type" : "bootscript",
"frequency" : "firstboot"

}]
}

}

$ hammr template create --file centoscore-template.json

Now that the template is created we need to get the Id of the template you want to export. To do so, list the templates
with the command template list:

$ hammr template list
+-----+------------------------------+---------+---------------------+----------------
→˓-----+---------------------+--------+---------+-----+--------+
| Id | Name | Version | OS | Created
→˓ | Last modified | # Imgs | Updates | Imp | Shared |
+=====+==============================+=========+=====================+=====================+=====================+========+=========+=====+========+
| 669 | CentOS Core | 1.0 | CentOS 6.4 x86_64 | 2014-04-25
→˓13:55:19 | 2014-05-09 13:24:59 | 0 | 0 | | |
+-----+------------------------------+---------+---------------------+----------------
→˓-----+---------------------+--------+---------+-----+--------+

In this case the Id is 669. To export the template, run the command template export:

$ hammr template export --id 669 --file /tmp/centos-core-archive.tar.gz
Exporting template with id [669] :
100%|##
→˓#|
Downloading archive...
OK: Download complete of file [/tmp/centos-core-archive.tar.gz]

Now if you uncompress the archive, you will find a file template.json, which is the template JSON configuration
file and a sub-directory config containing the two boot scripts.

If you open the template.json file, then you will notice that there is additional information added, including:

• pkgs: this contains all the packages that are added by the os profile Minimal

• updateTo: this is the date that the template initially created. This ensure that if you re-import this template
(the creation date might be different) and build a machine image, the machine image will be identical to any
machine image built from the original template

• installation: adds the default installation parameters.

9.2 Importing a Template

You can import a template based on a tar.gz archive file by using the command template import. This will
import the archive, which contains the .json and binaries of the template.

$ hammr template import --file /tmp/centos-core-archive.tar.gz
Importing template from [/tmp/centos-core-archive.tar.gz] archive ...
100%|##
→˓#|

52 Chapter 9. Importing and Exporting

Hammr Guide, Release 3.5.1

OK: Template import: DONE
Template URI: users/root/appliances/22
Template Id : 22

9.2. Importing a Template 53

Hammr Guide, Release 3.5.1

54 Chapter 9. Importing and Exporting

CHAPTER 10

Templates Specification

Templates contain all the information used to create stacks; build machine images and publish them to the target
platform. They are JSON files, passed as a parameter to the hammr command-line.

A template has two main parts:

• stack: defines the packages, files and configuration scripts of the machine image to build.

• builders: an array defining the format of the machine images to build.

10.1 Stack

Within a template, the stack section describes the packages, files and configuration information required to be added
when building a machine image. It can also contain low level installation information (for example keyboard settings,
partitioning, timezone etc) to be configured as part of the build or prompted during the first boot of an instance using
the machine image.

The definition of a stack section is:

{
"stack": {

...the stack definition goes here.
}

}

The valid keys to use within a stack are:

• name (mandatory): a string providing the name of the stack

• version (mandatory): a string providing the version of the stack

• description (optional): a string providing a description of what the stack oes

• os (mandatory): an object providing the operating system to use when building the machine image. You must
have access to this operating system in UForge. This object may include specific packages to install from the
operating system repository. For more information, refer to the os sub-section.

55

Hammr Guide, Release 3.5.1

• bundles (optional): an array of objects describing any software bundles (can be native packages, tarballs,
jars, wars etc) to upload and use when building the machine image. For more information, refer to the bundles
sub-section.

• installation (optional): an object providing low-level installation or first boot options. Some options can
be pre-configured as part of the build or prompted by the end-user to provide when provisioning an instance
from the machine image. For more information, refer to the installation sub-section.

• config (optional): an array of objects describing any configuration scripts to execute when an instance is
booted from the machine image. For more information, refer to the config sub-section.

Stack sub-sections are:

10.1.1 os

Within a stack, the os sub-section describes the operating system to use when building the machine image. This
includes the operating system version, architecture and the os profile to use. The os profile is a pre-determined group
of packages that will be installed as part of the machine image build. Extra packages can be specified to include in
the build that are available in the operating system repository, and the build date can be set to get the latest updates, or
roll-back. For more information on os package updates, refer to Package Updates.

To use a particular operating system, you must have access to it in the UForge server you are using. To determine which
operating systems are available, use the os list command (please refer Command-Line for more information).

The definition of an os section is:

"os": {
...the os definition goes here.

}

The valid keys to use within the os object are:

• arch (mandatory): a string providing the architecture to use

• name (mandatory): a string providing the name of the operating system to use

• pkgs (optional): an array providing any extra packages to install (see pkgs key sub-section for more informa-
tion)

• profile (mandatory): a string providing which operating system profile to use

• updateTo (optional): a string providing the date where package versions should be calculated (determines
which package versions to use to * calculate the package dependency tree)

• version (mandatory): a string providing the version of the operating system to use

Sub-Sections

The os sub-sections are:

pkgs

Within the os section, the pkgs sub-section is an array of objects describing any extra packages that should be installed
as part of the machine image build. Any package information provided in this section must exist in the corresponding
operating system repository, otherwise this will result in a build failure.

The definition of a pkgs section is:

56 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

"pkgs": [
...the list of packages goes here.

]

The valid keys to use within the pkgs object are:

• arch (optional): a string providing architecture to use

• fullName (optional): a string providing the name, version, release and architecture information. If used, the
mandatory name key is not required.

• name (mandatory): a string providing the name of the package to use

• release (optional): a string providing the release of the package to use

• version (optional): a string providing the version of the package to use

When name is used on its own, the version, release and arch is determined when the machine image is being built.
This information is determined during the package dependency phase of the build. The package dependency phase
uses the created date of the stack within the UForge server to calculate the correct versions of packages. This date can
be overridden by the updateTo key in the os section. Any missing packages required by the stack are also added to
ensure any dependencies are met.

In the case where version, release and arch (or fullName) is used, then the version determined by the created
stack date (or updateTo date) is overridden by the version details provided. This is known as making the package sticky.
Note, that any updates available for this package will NOT be used in this case.

Examples

Basic Example

The following example uses CentOS 6.4 64 bit operating system for the template and adding the packages php,
php-cli, php-common and php-mysql. Note that only the name is provided. The final version and release of
these packages is determined during the build of the machine image.

{
"os": {
"name": "CentOS",
"version": "6.4",
"arch": "x86_64",
"profile": "Minimal",
"pkgs": [

{
"name": "php"

},
{

"name": "php-cli"
},
{

"name": "php-common"
},
{

"name": "php-mysql"
}

]
}

}

10.1. Stack 57

Hammr Guide, Release 3.5.1

Adding a Version and Release

By adding version, release and arch or fullName`, during the build this specific
version is used regardless of any build date (``updateTo) set in the os section. This is
called making the package “sticky”.

{
"os": {
"name": "CentOS",
"version": "6.4",
"arch": "x86_64",
"profile": "Minimal",
"pkgs": [

{
"name": "php",
"version": "5.5.3",
"release": "23.el6_4",
"arch": "i686"

},
{

"name": "php-cli",
"version": "5.5.3",
"release": "23.el6_4",
"arch": "i686"

},
{

"fullName": "php-common-5.5.3-23.el6_4-i686.rpm"
},
{

"fullName": "php-mysql-5.5.3-23.el6_4-i686.rpm"
}

]
}

}

Examples

Basic Example

The following example describes using CentOS 6.4 64 bit operating system for the template. The profile Minimal is
used, which automatically adds a pre-determined group of packages to the template.

{
"os": {
"name": "CentOS",
"version": "6.4",
"arch": "x86_64",
"profile": "Minimal"

}
}

The name, version, arch and profile values for an operating system can be found by using the command os list.
This lists all the operating systems you have access to.

58 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

Specifying a Build Date

By using the updateTo key will specify the date to calculate the version and release of all the packages to use in
the template during the build phase of a machine image. This allows you to roll-back or update the operating system
packages used. If no date is provided, then the date the template is created is used. The example below sets the date to
14 May 2014.

{
"os": {
"name": "CentOS",
"version": "6.4",
"arch": "x86_64",
"profile": "Minimal"
"updateTo": "2014-05-14"

}
}

10.1.2 bundles

Within a stack, the bundles sub-section describes any custom software to be added to the filesystem of the machine
image during the build phase. Software bundles can contain any file, archive or native package. Native packages can
be installed and archives can be uncompressed as part of this process.

The definition of a bundles section is:

"bundles": [
...the list of bundles goes here.

]

The valid keys to use within a bundle are:

• description (optional): a string describing what the bundle does or contains.

• destination (mandatory): a string providing the target directory where to add the files in the filesystem.

• files (mandatory): an array of objects describing the files, archives or packages contained in the bundle. See
the files sub-section for available keys.

• license (optional): an object providing the license information for the bundle. See the license sub-section for
available keys.

• name (mandatory): a string providing the name of the bundle.

• version (mandatory): a string providing the version of the bundle.

The destination string that describes where to add the files in the bundle is ignored for native packages that have the
option to be installed during the build process.

Sub-sections

Bundle sub-sections are:

files

Within a bundle, the files sub-section describes the list of files, binaries, archives or native packages that are part
of the bundle. Within the files you can also list a folder.

10.1. Stack 59

Hammr Guide, Release 3.5.1

The definition of a files section is:

{
"files": [

...the list of files goes here.
]

}

The valid keys to use within a file are:

• destination (optional): a string providing the destination path where to install the file on the machine image
filesystem. This overrides any destination install path provided in the bundle section.

• extract (optional): a boolean describing whether to uncompress/extract the archive file during the build
process. This flag can only be used if the file is an archive, otherwise this flag is ignored.

• install (optional): a boolean describing whether to install the native package as part of the build. It can only
be used for native packages. If false, then the native package will be added to the filesystem as a file described
by the destination. Otherwise the package will be treated like any other native package – package dependencies
will be verified and installed. If the file is not a native package then this flag is ignored.

• md5sum (optional): a string providing a md5sum checksum.

• name (mandatory): a string providing the name of the bundle.

• params (optional): a string providing any parameters to execute with the binary file as part of the generation
process. These parameters are ignored if the file is not a binary (.msi, .exe etc)

• source (mandatory): a string providing the location of where to get the file. This can be a filesystem path
(absolute or relative) or an URL.

Examples

Basic Example

The following example shows how to declare a set of files to uploaded as part of a bundle.

Note: If you declare the same file twice, the second file will overwrite the first one.

{
"files": [
{

"name": "wordpress.zip",
"source": "http://wordpress.org/wordpress-3.5.zip"

}
]

}

Example of a Folder in Files Sub-section

The following example shows how to declare a folder to be uploaded as part of a bundle. All the files within the
declared bundle will be uploaded.

60 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

Note: You cannot upload the same source folder with two different names. In the end, the source folder and files will
only be uploaded once.

{
"files": [
{

"name": "folder",
"source": "/usr/local/folder"

}
]

}

Overriding Bundle Destination

The bundle via destination provides the global install path for all the files. This example shows how you can add a file
to another directory in the filesystem, effectively overriding the default destination directory.

{
"files": [
{

"name": "wordpress.zip",
"source": "http://wordpress.org/wordpress-3.5.zip",
"destination": "/usr/local/wordpress"

}
]

}

Extracting Archives

The example uses the extract key to automatically extract the archive file:

{
"files": [
{

"name": "wordpress.zip",
"source": "http://wordpress.org/wordpress-3.5.zip",
"destination": "/usr/local/wordpress",
"extract": true

}
]

}

Installing or Placing Native Packages

The example declares a native package to be added to the bundle. The install key is used to tell the build process not
to install the package, but to add it to the filesystem in the destination directory.

{
"files": [{

"name": "mypackage.rpm",
"source": "/home/joris/demo/mypackage-3.1.rpm",

10.1. Stack 61

Hammr Guide, Release 3.5.1

"destination": "/usr/local/rpms",
"install": false

}
]

}

If install is set to true, then the package is installed as a native package (including package dependency checking)
and then destination information is ignored.

Using Parameters for Binaries

The example declares a binary file to be added to the bundle. The params key is used to provide a set of parameters
that are used to execute the binary.

{
"files": [
{

"name": "mybinary.exe",
"source": "/home/joris/demo/mybinary.exe",
"params": "--silent"

}
]

}

Warning: Hammr only supports windows binaries to be executed with parameters (.exe and .msi). For linux, use
the config section to declare boot scripts.

license

Within a bundle, the license sub-section describes the license information or EULA for the files that make up the
bundle.

The definition of a license section is:

"license": {
...the license declaration goes here.

}

The valid keys to use within a license are:

• name (mandatory): a string providing the name of the license.

• source (mandatory): a string providing the location of where to get the license. This can be a filesystem path or
URL.

Example

The following example shows how to declare a license for a bundle.

{
"license": {
"name": "license.html",

62 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

"source": "/home/joris/demo/apache-license.html"
}

}

Examples

Basic Example

The following example describes the mandatory information in a bundle to be uploaded and used in the template. All
the files described in the bundle are placed in the /tmp/wordpress directory.

{
"bundles": [
{

"name": "wordpress",
"version": "3.5",
"destination": "/tmp/wordpress",
"files": [

...add files definition here.
]

},
{

"name": "wordpress language pack",
"version": "3.5",
"destination": "/tmp/wordpress",
"files": [

...add files definition here.
]

}
]

}

Adding a Description and License

The following example show how you can add license information and a description to the bundle.

{
"bundles": [
{

"name": "wordpress",
"version": "3.5",
"description": "The wordpress files from wordpress.org",
"destination": "/tmp/wordpress",
"files": [

...add files definition here (see files sub section)
],
"license": {

...add license definition here (see license sub section)
}

}
]

}

10.1. Stack 63

Hammr Guide, Release 3.5.1

10.1.3 installation

Within a Stack, the installation sub-section describes questions that are normally related to the installation of
an operating system. This includes root password, keyboard settings, timezone, and partitioning. These questions
are only asked once as part of the operating system installation; consequently decided by the person when building
machine images manually. Hammr provides a mechanism that allows some of the installation questions to be asked as
part of the first-boot when provisioning an instance from the machine image. This makes any machine image built by
hammr to be more flexible, for example if you have a team in the UK and another team in France then their keyboard
settings are most likely to be QWERTY and AZERTY respectively. By allowing the end-user to choose the keyboard
settings as part of first-boot can help resolve hours of frustration.

The definition of a pkgs section is:

"installation": {
...the installation definition goes here.

}

The valid keys to use within an installation are:

• diskSize (optional): an integer value (in MB) providing the disk size of the machine image. This value is
ignored if an advanced partitioning table is provided (see xxx)

• displayLicense (optional): a boolean value to display any EULA during the first boot of a provisioned
instance (includes operating system EULA and any license information provided in the bundles section of the
stack). If the value is false then no license information is displayed. If displayLicense is not used, then
by default all license information is displayed during first boot.

• internetSettings (optional): a string providing the network settings. Only two possible values dhcp or
static. If no value is provided, dhcp is set by default.

• kernelParams (optional): an array of strings providing the kernel parameters to use. These parameters are
used when provisioning an instance from the machine image. If no kernel parameters are provided, the rhbg
and quiet parameters are set by default

• keyboard (optional): a string providing the keyboard layout to use. If no keyboard setting is provided, then
during first boot the keyboard setting is prompted. See keyboard sub-section for all available values for keyboard

• partitioning (optional): an array of objects describing an advanced partitioning table. Refer to partitioning
sub-section for more information.

• rootUser (optional): an object describing the configuration information of the root user (or primary adminis-
trator). If rootUser is not provided, then during first boot the root user password is prompted

• swapSize (optional): an integer value (in MB) providing the swap size to be allocated. This value is ignored
if an advanced partitioning table is provided (see xxx)

• timezone (optional): a string providing the timezone to use. If no timezone is provided, then during first boot
the timezone is prompted. See timezone sub-section for all available values for timezone.

• firewall (optional): a boolean to enable or disable the firewall service. If no firewall is given, then the
firewall is asked during installation.

• welcomeMessage (optional): a string providing a welcome message displayed during the first boot of a
provisioned instance

Sub-sections

The installation sub-sections are:

64 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

keyboard

The following is a list of all the accepted keyboard values that can be used for the keyboard key in an installation
sub-section of the stack.

You do not need to enter the full name; only the short form is required. For example, for Danish use:

{
"installation": {
"keyboard": "dk"

}
}

Available Keyboard Values

• Arabic (azerty) ar-azerty

• Arabic (azerty/digits) ar-azerty-digits

• Arabic (digits) ar-digits

• Arabic (qwerty) ar-qwerty

• Arabic (qwerty/digits) ar-qwerty-digits

• Belgian (be-latin1) be-latin1

• Bengali (Inscript) ben

• Bengali (Probhat) ben-probhat

• Brazilian (ABNT2) br-abnt2

• Bulgarian (Phonetic) bg_pho-utf8

• Bulgarian bg_bds-utf8

• Croatian croat

• Czech (qwerty) cz-lat2

• Czech cz-us-qwertz

• Danish dk

• Danish (latin1) dk-latin1

• Devanagari (Inscript) dev

• Dutch nl

• Dvorak dvorak

• Estonian et

• Finnish (latin1) fi-latin1

• Finnish fi

• French (latin1) fr-latin1

• French (latin9) fr-latin9

• French (pc) fr-pc

• French Canadian cf

10.1. Stack 65

Hammr Guide, Release 3.5.1

• French fr

• German (latin1 w/ no deadkeys) de-latin1-nodeadkeys

• German (latin1) de-latin1

• German de

• Greek gr

• Gujarati (Inscript) guj

• Hungarian (101 key) hu101

• Hungarian hu

• Icelandic is-latin1

• Irish ie

• Italian (IBM) it-ibm

• Italian (it2) it2

• Italian it

• Japanese jp106

• Korean ko

• Latin American la-latin1

• Macedonian mk-utf

• Norwegian no

• Polish pl2

• Portuguese pt-latin1

• Punjabi (Inscript) gur

• Romanian Cedilla ro-cedilla

• Romanian ro

• Romanian Standard Cedilla ro-std-cedilla

• Romanian Standard ro-std

• Russian ru

• Serbian (latin) sr-latin

• Serbian sr-cy

• Slovak (qwerty) sk-qwerty

• Slovenian slovene

• Spanish es

• Swedish sv-latin1

• Swiss French (latin1) fr_CH-latin1

• Swiss French fr_CH

• Swiss German (latin1) sg-latin1

• Swiss German sg

66 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

• Tajik tj

• Tamil (Inscript) tml-inscript

• Tamil (Typewriter) tml-uni

• Turkish trq

• U.S. English us

• U.S. International us-acentos

• Ukrainian ua-utf

• United Kingdom uk

groups

Within an installation section, the groups sub-section describes extra operating system groups to create as part of
the machine image build process.

The definition of a groups section is:

"groups": [
...the list of groups goes here.

]

The valid keys to use within a user are:

• name (mandatory): a string providing the name of the group. The name cannot contain any spaces.

• systemGroup (optional): a boolean determining if the group is a system user.

• groupId (optional): an integer providing the unique Id of the group. This number must be greater than 1000.
If the group is a system group, then this number must be greater than 201.

Examples

Basic Example

The following example describes groups to be created during the build. As no groupId is specified, the next available
group Id numbers are used automatically during the build of the machine image.

{
"groups": [
{

"name": "nginx"
},
{

"name": "mongoDb"
}

]
}

10.1. Stack 67

Hammr Guide, Release 3.5.1

System Groups and Group Ids

This example shows how you can pre-determine the groupId of the group to be created as well as making the group
a system group.

Warning: A normal group’s Id must be greater than 1000. If the group is a system group, then this Id can start at
201.

{
"groups": [
{

"name": "nginx",
"groupId": 1033

},
{

"name": "mongoDb",
"systemGroup": true,
"groupId": 245

}
]

}

partitioning

Within an installation section, the partitioning sub-section allows you to describe an advanced partitioning table.

Warning: not all clouds support advanced partitioning. When building a machine image for an environment that
does not support advanced partitioning, the build will fail with an appropriate error message.

The definition of a partitioning section is:

"partitioning": {
...the partitioning definition goes here.

}

The valid keys to use within partitioning are:

• disks (mandatory): an array of objects describing the physical disks that make up the advanced partitioning
table. A disk may include up to four partitions, one of which can be of type extended that may hold one or more
logical partitions. For more information, refer to the disks sub-section.

• volumeGroups (optional): an array objects describing any volume groups that make up the advanced parti-
tioning table. If used, you must have one or more logical volumes using this volume group. For more informa-
tion, refer to the volumeGroups sub-section.

• logicalVolumes (optional): an array of objects describing any logical volumes that make up the partitioning
table. If used, you must have one or more volume groups that are used in creating the logical volume. For more
information, refer to the logical volumes sub-section.

Sub-sections

The partitioning sub-sections are:

68 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

disks

Within a partitioning section, the disks sub-section describes all the physical disks for an advanced partitioning
table. Each disk may be partitioned, i.e. the act of dividing the physical disk into logical sections with the goal to treat
one physical disk drive as if it were multiple disks. These are called physical partitions. A disk may have a maximum
of 4 physical partitions.

The definition of a disks section is:

"disks": [
...the list of disks goes here.

]

The valid keys to use within a disk are:

• name (mandatory): a string providing the name of the disk. Currently only the following values are valid: sd
followed by a letter. The first disk must use the letter a (i.e. sda), the second disk b and so forth.

• partitions (optional): an array of objects describing the partitions for this disk. For more information, refer
to the partitions sub-section. A maximum of 4 partitions is allowed.

• size (mandatory): an integer providing the size of the disk (in MB)

• type (mandatory): a string providing the disk type. The valid values are MSDOS or LVM

Sub-sections

The disks sub-sections are:

partitions

Within a disks section, the partitions sub-section describes all the partitions to create for the disk. Disk partition-
ing is the act of dividing the physical disk into logical sections with the goal to treat one physical disk drive as if it
were multiple disks.

Warning: A disk may have a maximum of 4 partitions.

The definition of a partitions section is:

"partitions": [
...the list of partitions goes here.

]

The valid keys to use within a partition are:

• fstype (mandatory): a string providing the filesystem type. See below for valid values.

• grow (optional): a boolean marking this partition as growable. When a partition is growable it will take any
available space left on the disk after all the other partitions catered for. You can only have 1 growable partition
in a disk.

• label (optional): a string providing a label for this partition

• partitions (optional): an array of objects partition describing any logical partitions this partition may
contain. To use logical partitions, this partition must use the Extended filesystem type.

10.1. Stack 69

Hammr Guide, Release 3.5.1

• mountPoint (optional): a string providing the mount point of the partition. If the fstype is NOT lvm then
the mount point is mandatory.

• number (mandatory): an integer providing the partition number. Starting at 1

• size (mandatory): an integer providing the size of the partition. Note that the sum of all the partitions cannot
be greater than the total disk size provided in the disk. The minimum size is 64MB.

Available Filesystem Types

The following are valid filesystem types used with the fstype key:

• Extended

• ext2

• ext3

• ext4

• NTFS

• FAT16

• FAT32

• jfs

• linux-swap

• lvm2

• unformated

• xfs

logical volumes

Within a partitioning section, the logicalVolumes sub-section describes the way a volume group should be parti-
tioned.

The definition of a logicalVolumes section is:

"disks": [
...the list of logical volumes goes here.

]

The valid keys to use within a logical volume are:

• fstype (mandatory): a string providing the filesystem type. See below for valid values.

• grow (optional): a boolean marking this volume (partition) as growable. When a volume is growable it will
take any available space remaining in the volume group after all the other volumes catered for. You can only
have 1 growable partition in the logical volume.

• label (optional): a string providing a label for this volume

• mountPoint (mandatory): a string providing the mount point of the volume.

• name (mandatory): a string providing the name of the volume.

• size (mandatory): an integer providing the size of the volume. Note that the sum of all the volumes cannot be
greater than the total size provided in the volumeGroups.

70 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

• vg_name (mandatory): a string providing the name of the volume group this logical volume is using

Available Filesystem Types

The following are valid filesystem types used with the fstype key:

• Extended

• ext2

• ext3

• ext4

• NTFS

• FAT16

• FAT32

• jfs

• linux-swap

• lvm2

• unformated

• xfs

volumeGroups

Within a partitioning section, the volumeGroups sub-section describes a volume group in the partitioning table. A
volume group creates a pool of disk space from a collection of disks or partitions. This volume group can then be
partitioned via a logical volumes.

Warning: Only disks and partitions of type lvm and logical partitions can be added to a volume group.

The definition of a volumeGroups section is:

"disks": [
...the list of volume groups goes here.

]

The valid keys to use within a volumeGroup are:

• name (mandatory): a string providing the name of the volume group

• physicalVolumes (optional): an array of strings describing the names of the disks or partitions to include
in this group. The sum of all the disks and partitions added will be the total size of this volume group. This
logical pool of disk can then be partitioned via a logical volume. You cannot add a disk and one of its partitions
into the same volume group, furthermore you cannot use a disk or partition more than once if 2 or more volume
groups are declared.

10.1. Stack 71

Hammr Guide, Release 3.5.1

Examples

Basic Example

The following example describes a partitioning table with one disk that has three partitions: the boot partition, a
swap partition and a third partition called space.

{
"partitioning": {
"disks": [
{

"name": "sda",
"type": "msdos",
"size": 12288,
"partitions": [
{
"number": 1,
"fstype": "ext3",
"size": 2048,
"mountPoint": "/boot"

},
{

"number": 2,
"fstype": "linux-swap",
"size": 1024

},
{
"number": 3,
"fstype": "ext3",
"size": 9216,
"label": "space",
"mountPoint": "/space"

}
]

}
]

}
}

Using Growable Example

The same partitioning table as shown in Basic Example can be written slightly differently using the grow flag. A
growable partition is partition that takes up the rest of the available disk space after the other partition sizes have been
satisfied. In this case, we say that the “space” partition takes up the rest of the disk (rather than us having to calculate
the space left after creating the first two partitions). We must specify though a size for the third partition (the minimum
partition size is 64MB).

72 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

{
"partitioning": {
"disks": [
{

"name": "sda",
"type": "msdos",
"size": 12288,
"partitions": [
{
"number": 1,
"fstype": "ext3",
"size": 2048,
"mountPoint": "/boot"

},
{

"number": 2,
"fstype": "linux-swap",
"size": 1024

},
{
"number": 3,
"fstype": "ext3",
"size": 64,
"grow": true,
"label": "space",
"mountPoint": "/space"

}
]

}
]

}
}

Creating Logical Partitions Example

In this example the, logical partitions are created inside the space partition. The space partition now has the
filesystem type Extended.

..warning:: only one partition within a disk can have logical partitions. When a partition is extended, you cannot
specify a mount point or a label. Logical partitions must start with number 5

10.1. Stack 73

Hammr Guide, Release 3.5.1

{
"partitioning": {
"disks": [
{

"name": "sda",
"type": "msdos",
"size": 12288,
"partitions": [
{
"number": 1,
"fstype": "ext3",
"size": 2048,
"mountPoint": "/boot"

},
{

"number": 2,
"fstype": "linux-swap",
"size": 1024

},
{
"number": 3,
"fstype": "Extended",
"size": 9216,
"partitions": [
{
"number": 5,
"fstype": "ext3",
"size": 4098,
"mountPoint": "/space",
"label": "space"

},
{
"number": 6,
"fstype": "ext3",
"size": 4098,
"mountPoint": "/home",
"label": "home"

},
{
"number": 7,
"fstype": "ext3",
"size": 64,
"mountPoint": "/tmp",
"label": "tmp",
"grow": true

}

74 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

]
}

]
}

]
}

}

Volume Groups and Logical Volumes Example

The following example shows how disks and partitions that have lvm filesystem types can be regrouped together –
volume group then re-partitioned differently – a logical volume.

{
"partitioning": {
"disks": [
{

"name": "sda",
"type": "msdos",
"size": 12288,
"partitions": [
{
"number": 1,
"fstype": "ext3",
"mountPoint": "/boot",
"size": 1024

},
{
"number": 2,
"fstype": "linux-swap",
"size": 1024

},
{
"number": 3,
"fstype": "extended",

10.1. Stack 75

Hammr Guide, Release 3.5.1

"size": 64,
"grow": true,
"partitions": [
{
"number": 5,
"fstype": "lvm2",
"size": 5120

},
{
"number": 6,
"fstype": "lvm2",
"size": 5120

}
]

}
]

},
{

"name": "sdb",
"type": "lvm",
"size": 122880

}
],
"volumeGroups": [

{
"name": "grp1",
"physicalVolumes": [
{
"name": "sda5"

},
{
"name": "sda6"

},
{
"name": "sdb"

}
]

}
],
"logicalVolumes": [

{
"name": "vol1",
"vg_name": "grp1",
"fstype": "ext3",
"mountPoint": "/home",
"size": 4098

},
{

"name": "vol2",
"vg_name": "grp1",
"fstype": "ext3",
"mountPoint": "/space",
"size": 64,
"grow": true

}
]

}
}

76 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

rootUser

Within an installation, the rootUser sub-section describes information for the root user to be created as part of
the machine image build. If no root user information is provided, when an instance is provisioned from the machine
image, the root user password is prompted.

The definition of a rootUser section is:

"rootUser": {
...the root user definition goes here.

}

The valid keys to use within a rootUser are:

• disablePasswordLogin (optional): a boolean to determine whether to disable the ability for the root user
to login into a running instance using the root password.

• password (optional): a string providing the root user password. A blank password “” is valid.

• encrypted (optional): a boolean to determine whether password is encrypted or not. The default is false.

• setPassword (mandatory): a boolean to determine whether to preset a password during the build or prompt
the user to add a password during first boot of the instance.

• sshKeys (optional): an array of objects providing one or more public ssh keys for the root user. For more
information, refer to the sshKeys sub-section.

Sub-sections

The root user sub-sections are:

sshKeys

The sshKeys sub-section describes one or more public SSH keys that can be used for a particular user.

The definition of a sshKeys section is:

"sshKeys": [
...the list of ssh keys goes here.

]

The valid keys to use within a sshKey are:

• name (mandatory): a string providing the name of the public SSH key

• publicKey (mandatory): a string providing the public key content. A public key must begin with string
ssh-rsa or ssh-dss

Example

This example shows how to provide an ssh key for the root user of the operating system.

{
"sshKeys": [
{

"name": "admin-public",

10.1. Stack 77

Hammr Guide, Release 3.5.1

"publicKey": "ssh-rsa
→˓AAAAB3NzaC1yc2EAAAABIwAAAQEA6NF8iallvQVp22WDkTkyrtvp9eWW6A8YVr+kz4TjGYe7gHzIw+niNltGEFHzD8+v1I2YJ6oXevct1YeS0o9HZyN1Q9qgCgzUFtdOKLv6IedplqoPkcmF0aYet2PkEDo3MlTBckFXPITAMzF8dJSIFo9D8HfdOV0IAdx4O7PtixWKn5y2hMNG0zQPyUecp4pzC6kivAIhyfHilFR61RGL+GPXQ2MWZWFYbAGjyiYJnAmCP3NOTd0jMZEnDkbUvxhMmBYSdETk1rRgm+R4LOzFUGaHqHDLKLX+FIPKcF96hrucXzcWyLbIbEgE98OHlnVYCzRdK8jlqm8tehUc9c9WhQ
→˓"

}
]

}

Examples

Basic Example

The following example describes the basic root user information.

{
"rootUser": {
"password": "welcome-not-a-good-password"

}
}

Disabling Password Login

You can easily disable root password login as a security measure by doing the following:

{
"rootUser": {
"password": "welcome-not-a-good-password",
"disablePasswordLogin": true

}
}

timezone

The following is a list of all the accepted timezone values that can be used for the timezone key in an installation
sub-section of the stack.

For example:

{
"installation": {
"timezone": "Europe/Paris"

}
}

Available Keyboard Values

• Africa/Abidjan

• Africa/Accra

• Africa/Addis_Ababa

• Africa/Algiers

78 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

• Africa/Asmara

• Africa/Bamako

• Africa/Bangui

• Africa/Banjul

• Africa/Bissau

• Africa/Blantyre

• Africa/Brazzaville

• Africa/Bujumbura

• Africa/Cairo

• Africa/Casablanca

• Africa/Ceuta

• Africa/Conakry

• Africa/Dakar

• Africa/Dar_es_Salaam

• Africa/Djibouti

• Africa/Douala

• Africa/El_Aaiun

• Africa/Freetown

• Africa/Gaborone

• Africa/Harare

• Africa/Johannesburg

• Africa/Kampala

• Africa/Khartoum

• Africa/Kigali

• Africa/Kinshasa

• Africa/Lagos

• Africa/Libreville

• Africa/Lome

• Africa/Luanda

• Africa/Lubumbashi

• Africa/Lusaka

• Africa/Malabo

• Africa/Maputo

• Africa/Maseru

• Africa/Mbabane

• Africa/Mogadishu

10.1. Stack 79

Hammr Guide, Release 3.5.1

• Africa/Monrovia

• Africa/Nairobi

• Africa/Ndjamena

• Africa/Niamey

• Africa/Nouakchott

• Africa/Ouagadougou

• Africa/Porto-Novo

• Africa/Sao_Tome

• Africa/Tripoli

• Africa/Tunis

• Africa/Windhoek

• America/Adak

• America/Anchorage

• America/Anguilla

• America/Antigua

• America/Araguaina

• America/Argentina/Buenos_Aires

• America/Argentina/Catamarca

• America/Argentina/Cordoba

• America/Argentina/Jujuy

• America/Argentina/La_Rioja

• America/Argentina/Mendoza

• America/Argentina/Rio_Gallegos

• America/Argentina/Salta

• America/Argentina/San_Juan

• America/Argentina/San_Luis

• America/Argentina/Tucuman

• America/Argentina/Ushuaia

• America/Aruba

• America/Asuncion

• America/Atikokan

• America/Bahia

• America/Bahia_Banderas

• America/Barbados

• America/Belize

• America/Blanc-Sablon

80 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

• America/Boa_Vista

• America/Bogota

• America/Boise

• America/Cambridge_Bay

• America/Campo_Grande

• America/Cancun

• America/Caracas

• America/Cayenne

• America/Cayman

• America/Chicago

• America/Chihuahua

• America/Costa_Rica

• America/Cuiaba

• America/Curacao

• America/Danmarkshavn

• America/Dawson

• America/Dawson_Creek

• America/Denver

• America/Detroit

• America/Dominica

• America/Edmonton

• America/Eirunepe

• America/El_Salvador

• America/Fortaleza

• America/Glace_Bay

• America/Godthab

• America/Goose_Bay

• America/Grand_Turk

• America/Grenada

• America/Guadeloupe

• America/Guatemala

• America/Guayaquil

• America/Guyana

• America/Halifax

• America/Havana

• America/Hermosillo

10.1. Stack 81

Hammr Guide, Release 3.5.1

• America/Indiana/Indianapolis

• America/Indiana/Knox

• America/Indiana/Marengo

• America/Indiana/Petersburg

• America/Indiana/Tell_City

• America/Indiana/Vevay

• America/Indiana/Vincennes

• America/Indiana/Winamac

• America/Inuvik

• America/Iqaluit

• America/Jamaica

• America/Juneau

• America/Kentucky/Louisville

• America/Kentucky/Monticello

• America/La_Paz

• America/Lima

• America/Los_Angeles

• America/Maceio

• America/Managua

• America/Manaus

• America/Marigot

• America/Martinique

• America/Matamoros

• America/Mazatlan

• America/Menominee

• America/Merida

• America/Mexico_City

• America/Miquelon

• America/Moncton

• America/Monterrey

• America/Montevideo

• America/Montreal

• America/Montserrat

• America/Nassau

• America/New_York

• America/Nipigon

82 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

• America/Nome

• America/Noronha

• America/North_Dakota/Beulah

• America/North_Dakota/Center

• America/North_Dakota/New_Salem

• America/Ojinaga

• America/Panama

• America/Pangnirtung

• America/Paramaribo

• America/Phoenix

• America/Port-au-Prince

• America/Port_of_Spain

• America/Porto_Velho

• America/Puerto_Rico

• America/Rainy_River

• America/Rankin_Inlet

• America/Recife

• America/Regina

• America/Resolute

• America/Rio_Branco

• America/Santa_Isabel

• America/Santarem

• America/Santiago

• America/Santo_Domingo

• America/Sao_Paulo

• America/Scoresbysund

• America/Shiprock

• America/St_Barthelemy

• America/St_Johns

• America/St_Kitts

• America/St_Lucia

• America/St_Thomas

• America/St_Vincent

• America/Swift_Current

• America/Tegucigalpa

• America/Thule

10.1. Stack 83

Hammr Guide, Release 3.5.1

• America/Thunder_Bay

• America/Tijuana

• America/Toronto

• America/Tortola

• America/Vancouver

• America/Whitehorse

• America/Winnipeg

• America/Yakutat

• America/Yellowknife

• Antarctica/Casey

• Antarctica/Davis

• Antarctica/DumontDUrville

• Antarctica/Macquarie

• Antarctica/Mawson

• Antarctica/McMurdo

• Antarctica/Palmer

• Antarctica/Rothera

• Antarctica/South_Pole

• Antarctica/Syowa

• Antarctica/Vostok

• Arctic/Longyearbyen

• Asia/Aden

• Asia/Almaty

• Asia/Amman

• Asia/Anadyr

• Asia/Aqtau

• Asia/Aqtobe

• Asia/Ashgabat

• Asia/Baghdad

• Asia/Bahrain

• Asia/Baku

• Asia/Bangkok

• Asia/Beirut

• Asia/Bishkek

• Asia/Brunei

• Asia/Choibalsan

84 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

• Asia/Chongqing

• Asia/Colombo

• Asia/Damascus

• Asia/Dhaka

• Asia/Dili

• Asia/Dubai

• Asia/Dushanbe

• Asia/Gaza

• Asia/Harbin

• Asia/Ho_Chi_Minh

• Asia/Hong_Kong

• Asia/Hovd

• Asia/Irkutsk

• Asia/Jakarta

• Asia/Jayapura

• Asia/Jerusalem

• Asia/Kabul

• Asia/Kamchatka

• Asia/Karachi

• Asia/Kashgar

• Asia/Kathmandu

• Asia/Kolkata

• Asia/Krasnoyarsk

• Asia/Kuala_Lumpur

• Asia/Kuching

• Asia/Kuwait

• Asia/Macau

• Asia/Magadan

• Asia/Makassar

• Asia/Manila

• Asia/Muscat

• Asia/Nicosia

• Asia/Novokuznetsk

• Asia/Novosibirsk

• Asia/Omsk

• Asia/Oral

10.1. Stack 85

Hammr Guide, Release 3.5.1

• Asia/Phnom_Penh

• Asia/Pontianak

• Asia/Pyongyang

• Asia/Qatar

• Asia/Qyzylorda

• Asia/Rangoon

• Asia/Riyadh

• Asia/Sakhalin

• Asia/Samarkand

• Asia/Seoul

• Asia/Shanghai

• Asia/Singapore

• Asia/Taipei

• Asia/Tashkent

• Asia/Tbilisi

• Asia/Tehran

• Asia/Thimphu

• Asia/Tokyo

• Asia/Ulaanbaatar

• Asia/Urumqi

• Asia/Vientiane

• Asia/Vladivostok

• Asia/Yakutsk

• Asia/Yekaterinburg

• Asia/Yerevan

• Atlantic/Azores

• Atlantic/Bermuda

• Atlantic/Canary

• Atlantic/Cape_Verde

• Atlantic/Faroe

• Atlantic/Madeira

• Atlantic/Reykjavik

• Atlantic/South_Georgia

• Atlantic/St_Helena

• Atlantic/Stanley

• Australia/Adelaide

86 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

• Australia/Brisbane

• Australia/Broken_Hill

• Australia/Currie

• Australia/Darwin

• Australia/Eucla

• Australia/Hobart

• Australia/Lindeman

• Australia/Lord_Howe

• Australia/Melbourne

• Australia/Perth

• Australia/Sydney

• Europe/Amsterdam

• Europe/Athens

• Europe/Belgrade

• Europe/Berlin

• Europe/Bratislava

• Europe/Brussels

• Europe/Bucharest

• Europe/Budapest

• Europe/Chisinau

• Europe/Copenhagen

• Europe/Dublin

• Europe/Gibraltar

• Europe/Guernsey

• Europe/Helsinki

• Europe/Isle_of_Man

• Europe/Istanbul

• Europe/Jersey

• Europe/Kaliningrad

• Europe/Kiev

• Europe/Lisbon

• Europe/Ljubljana

• Europe/London

• Europe/Luxembourg

• Europe/Madrid

• Europe/Malta

10.1. Stack 87

Hammr Guide, Release 3.5.1

• Europe/Mariehamn

• Europe/Minsk

• Europe/Monaco

• Europe/Moscow

• Europe/Oslo

• Europe/Paris

• Europe/Podgorica

• Europe/Prague

• Europe/Riga

• Europe/Rome

• Europe/Samara

• Europe/San_Marino

• Europe/Sarajevo

• Europe/Simferopol

• Europe/Skopje

• Europe/Sofia

• Europe/Stockholm

• Europe/Tallinn

• Europe/Tirane

• Europe/Uzhgorod

• Europe/Vaduz

• Europe/Vatican

• Europe/Vienna

• Europe/Vilnius

• Europe/Volgograd

• Europe/Warsaw

• Europe/Zagreb

• Europe/Zaporozhye

• Europe/Zurich

• Indian/Antananarivo

• Indian/Chagos

• Indian/Christmas

• Indian/Cocos

• Indian/Comoro

• Indian/Kerguelen

• Indian/Mahe

88 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

• Indian/Maldives

• Indian/Mauritius

• Indian/Mayotte

• Indian/Reunion

• Pacific/Apia

• Pacific/Auckland

• Pacific/Chatham

• Pacific/Chuuk

• Pacific/Easter

• Pacific/Efate

• Pacific/Enderbury

• Pacific/Fakaofo

• Pacific/Fiji

• Pacific/Funafuti

• Pacific/Galapagos

• Pacific/Gambier

• Pacific/Guadalcanal

• Pacific/Guam

• Pacific/Honolulu

• Pacific/Johnston

• Pacific/Kiritimati

• Pacific/Kosrae

• Pacific/Kwajalein

• Pacific/Majuro

• Pacific/Marquesas

• Pacific/Midway

• Pacific/Nauru

• Pacific/Niue

• Pacific/Norfolk

• Pacific/Noumea

• Pacific/Pago_Pago

• Pacific/Palau

• Pacific/Pitcairn

• Pacific/Pohnpei

• Pacific/Port_Moresby

• Pacific/Rarotonga

10.1. Stack 89

Hammr Guide, Release 3.5.1

• Pacific/Saipan

• Pacific/Tahiti

• Pacific/Tarawa

• Pacific/Tongatapu

• Pacific/Wake

• Pacific/Wallis

users

Within an installation section, the users sub-section describes extra operating system users to create as part of the
machine image build process.

The definition of a users section is:

"users": [
...the list of users goes here.

]

The valid keys to use within a user are:

• fullName (mandatory): a string providing the full name of the user. The same value as name can be used.

• homeDir (mandatory): a string providing the home directory of the user. Recommended default: /home/
username where username is the same value as name

• name (mandatory): a string providing the name of the user. The name cannot contain any spaces.

• password (optional): a string providing the user password.

• encrypted (optional): a boolean to determine whether password is encrypted or not. The default is false.

• primaryGroup (optional): a string providing the user’s primary group. If no primary group is given, then the
primary group is the same as name.

• shell (mandatory): a string providing the default shell environment for the user. Recommended default is
/bin/bash.

• secondaryGroups (optional): a string providing one or more group names separated by a comma (,).

• systemUser (optional): a boolean determining if the user is a system user.

• userId (optional): an integer providing the unique Id of the user. This number must be greater than 1000. If
the user is a system user, then this number must be greater than 201.

Examples

Basic Example

The following example provides the minimal information to create users during a build. As no userId is specified,
the next available user Id numbers are used automatically during the build of the machine image. Furthermore, as no
primary group is provided, the primary group will have the same name as the user name.

{
"users": [
{

90 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

"name": "joris",
"fullName": "joris",
"homeDir": "/home/joris",
"shell": "/bin/bash"

},
{

"name": "yann",
"fullName": "yann dorcet",
"homeDir": "/home/ydorcet",
"shell": "/bin/bash"

}
]

}

More Complex Example

This example shows how you can provide group information, set a user Id and make a user a system user.

{
"users": [
{

"name": "joris",
"fullName": "joris",
"userId": 2222,
"primaryGroup": "joris",
"secondaryGroups": "dev,france",
"homeDir": "/home/joris",
"shell": "/bin/bash"

},
{

"name": "yann",
"fullName": "yann dorcet",
"systemUser": true,
"userId": 400,
"primaryGroup": "yann",
"secondaryGroups": "admin,dev,france",
"homeDir": "/home/ydorcet",
"shell": "/sbin/nologin"

}
]

}

Warning: By setting /sbin/nologin the user will not be able to log via the machine’s console.

Example

The following example sets the timezone, disk size, swap size, kernel parameters and automatically accepts all the
licenses on the end-user’s behalf (license information not displayed on boot).

Note: By default without any installation information specified, the internet settings is set to dhcp; kernel parameters
rhgb and quiet are set and display licenses is set to true.

10.1. Stack 91

Hammr Guide, Release 3.5.1

{
"installation": {
"timezone": "Europe/London",
"internetSettings": "dhcp",
"kernelParams": [

"rhgb",
"quiet"

],
"diskSize": 12288,
"swapSize": 512,
"displayLicenses": false

}
}

10.1.4 config

Within a stack, the config sub-section describes boot scripts to be added to the template and executed as part of
the boot sequence of an instance.

The definition of a config section is:

"config": [
...the list of configuration file definitions goes here.

]

The valid keys to use within a config are:

• frequency (mandatory): a string to determine when the boot script should be executed. There are only two
valid values, firstboot to specify the script should only be executed once on the first time the instance is booted;
everyboot to specify the script should be executed every time the instance is booted.

• name (mandatory): a string providing the name of the boot script.

• source (mandatory): a string providing the location of the boot script. This can be a filesystem pathname
(relative or absolute) or an URL.

• type (mandatory): a string providing the script type. For the moment the only valid value is bootscript

• order (optional): an integer providing the boot order.

Example

The following example shows the declaration of two boot scripts, one to be execute only once the first time the machine
is instantiated; the second to be executed every time the instance is rebooted.

{
"config": [
{

"name": "configure-mysql.sh",
"source": "/home/joris/demo/configure-mysql.sh",
"type": "bootscript",
"frequency": "firstboot"

},
{

"name": "check-stats.sh",
"source": "http://downloads.mysite.com/config/check-stats.sh",
"type": "bootscript",

92 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

"frequency": "everyboot"
"order": "1"

}
]

}

Example

The following example shows a simple stack definition.

{
"stack": {
"name": "CentOS Base Template",
"version": "6.4",
"description": "This is a CentOS core template.",
"os": {

"name": "CentOS",
"version": "6.4",
"arch": "x86_64",
"profile": "Minimal"

}
}

}

10.2 Builders

Within a template, the builders section is an array of objects, describing the list of machine images to build (and
where possible publish). For example if you wished to build an AMI image for Amazon EC2 and another for Microsoft
Azure, you would specify a builder for each.

The information may include H/W requirements, authentication information (known as a cloud account) or where to
upload and register the machine image after the build is complete.

Please refer to the specific machine image format for the mandatory and optional attributes.

A Word on Cloud Accounts

For “cloud” machine images, for example Amazon EC2, Azure CloudStack, OpenStack, Flexiant and Eucalyptus, the
builder requires account information to the cloud environment. Information from the builder is used to correctly
generate the machine image (for example AMI images for Amazon EC2 requires to have certain certificates embedded
into the machine image) and to upload and register the machine image into the correct region, zone or datacenter.

The cloud account information can be part of the builder section, however as this includes sensitive information, hammr
provides other mechanisms to include this information in the builder section. A safer way is to store this information
in a separate JSON file and create the cloud account using account create; then reference the account name in
the builder.

Please refer to the specific machine image format for the cloud account options and examples.

10.2. Builders 93

Hammr Guide, Release 3.5.1

10.2.1 Cloud Targets

Abiquo

Builder type: abiquo

Require Cloud Account: Yes www.abiquo.com

The abiquo builder provides information for building and publishing the machine image for the Abiquo cloud plat-
form. The Abiquo builder requires cloud account information to upload and register the machine image to the Abiquo
platform.

The Abiquo builder section has the following definition:

{
"builders": [
{

"type": "abiquo",
...the rest of the definition goes here.

}
]

}

Building a Machine Image

For building an image, the valid keys are:

• hardwareSettings (mandatory): an object providing hardware settings to be used for the machine image. The following valid keys for hardware settings are:

– memory (mandatory): an integer providing the amount of RAM to provide to an instance provisioned
from the machine image (in MB).

– hwType (optional): an integer providing the hardware type for the machine image. This is the
VMware hardware type: 4 (ESXi>3.x), 7 (ESXi>4.x) or 9 (ESXi>5.x)

• installation (optional): an object providing low-level installation or first boot options. These override any
installation options in the Stack section. The following valid keys for installation are:

• diskSize (mandatory): an integer providing the disk size of the machine image to create. Note, this overrides
any disk size information in the stack. This cannot be used if an advanced partitioning table is defined in the
stack.

• type (mandatory): the builder type, abiquo

Publishing a Machine Image

To publish an image, the valid keys are:

• account (mandatory): an object providing the abiquo cloud account information required to publish the built
machine image.

• category (mandatory): a string providing the category this machine image. The category name must already
be present in the abiquo platform.

• datacenter (mandatory): a string providing the datacenter name. The datacenter must already be present in
the abiquo platform, and the cloud account must have access to the datacenter.

• description (mandatory): a string providing the description of what the machine image does.

94 Chapter 10. Templates Specification

www.abiquo.com

Hammr Guide, Release 3.5.1

• enterprise (mandatory): a string providing the enterprise resource name where to publish the machine
image to. The enterprise resource must already exists in the abiquo platform, and the cloud account must have
access to the enterprise resource.

• productName (mandatory): a string providing the name to be displayed for machine image. The name cannot
exceed 32 characters

• type (mandatory): the builder type, abiquo

Abiquo Cloud Account

Key: account

Used to authenticate the abiquo platform.

The Abiquo cloud account has the following valid keys:

• file (optional): a string providing the location of the account information. This can be a pathname (relative or
absolute) or an URL.

• hostname (mandatory): a string providing the hostname or IP address where the abiquo cloud platform is
running

• name (mandatory): a string providing the name of the cloud account. This name can be used in a builder section
to reference the rest of the cloud account information.

• password (mandatory): a string providing the password to use to authenticate

• type (mandatory): a string providing the cloud account type: abiquo.

• username (mandatory): a string providing the username to use to authenticate

Note: In the case where name or file is used to reference a cloud account, all the other keys are no longer required
in the account definition for the builder.

Examples

Basic Example

The following example shows an abiquo builder with all the information to build and publish a machine image to the
Abiquo Cloud platform.

{
"builders": [
{

"type": "abiquo",
"account": {
"type": "abiquo",
"name": "My Abiquo Account",
"hostname": "test.abiquo.com",
"username": "myLogin",
"password": "myPassWD"

},
"hardwareSettings": {

"memory": 1024
},

10.2. Builders 95

Hammr Guide, Release 3.5.1

"installation": {
"diskSize": 2000

},
"enterprise": "UShareSoft",
"datacenter": "London",
"productName": "CentOS Core",
"category": "OS",
"description": "CentOS Core template."

}
]

}

Referencing the Cloud Account

To help with security, the cloud account information can be referenced by the builder section. This example is the
same as the previous example but with the account information in another file. Create a json file abiquo-account.
json.

{
"accounts": [
{

"type": "abiquo",
"name": "My Abiquo Account"
"hostname": "test.abiquo.com",
"username": "myLogin",
"password": "myPassWD"

}
]

}

The builder section can either reference by using file or name.

Reference by file:

{
"builders": [
{

"type": "abiquo",
"account": {
"file": "/home/joris/accounts/abiquo-account.json"

},
"hardwareSettings": {

"memory": 1024
},
"installation": {

"diskSize": 2000
},
"enterprise": "UShareSoft",
"datacenter": "London",
"productName": "CentOS Core",
"category": "OS",
"description": "CentOS Core template."

}
]

}

96 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

Reference by name, note the cloud account must already be created by using account create.

{
"builders": [
{

"type": "abiquo",
"account": {
"name": "My Abiquo Account"

},
"hardwareSettings": {

"memory": 1024
},
"installation": {

"diskSize": 2000
},
"enterprise": "UShareSoft",
"datacenter": "London",
"productName": "CentOS Core",
"category": "OS",
"description": "CentOS Core template."

}
]

}

Amazon EC2

Builder type: ami

Require Cloud Account: Yes aws.amazon.com

The Amazon builder provides information for building and publishing machine images for Amazon EC2. The Amazon
builder requires cloud account information to upload and register the machine image to AWS (Amazon Web Services)
public cloud.

The Amazon builder section has the following definition:

{
"builders": [
{

"type": "ami",
...the rest of the definition goes here.

}
]

}

Building a Machine Image

For building an image, the valid keys are:

• account (mandatory): an object providing the AWS cloud account information required to publish the built
machine image.

• disableRootLogin (optional): a boolean flag to determine if root login access should be disabled for any
instance provisioned from the machine image.

• installation (optional): an object providing low-level installation or first boot options. These override any installation options in the Stack section. The following valid keys for installation are:

10.2. Builders 97

aws.amazon.com

Hammr Guide, Release 3.5.1

– diskSize (mandatory): an integer providing the disk size of the machine image to create. Note,
this overrides any disk size information in the stack. If the machine image is to be stored in Amazon
S3, the maximum disk size is 10GB, otherwise if this is an EBS-backed machine image the maximum
disk size is 1TB.

• ebs (optional): a boolean flag to determine if the machine image should be EBS-backed.

• type (mandatory): the builder type, ami

Publishing a Machine Image

To publish an image, the valid keys are:

• account (mandatory): an object providing the AWS cloud account information required to publish the built
machine image.

• region (mandatory): a string providing the region where to publish the machine image. See below for valid
regions.

• s3bucket (mandatory): a string providing the bucket name where to store the machine image. Bucket names
are global to everyone, so you must choose a unique bucket name that does not already exist (or belongs to you).
A bucket name cannot include spaces. Note, that if the bucket exists already in one region (for example Europe)
and you wish to upload the same machine image to another region, then you must provide a new bucket name.

• type (mandatory): the builder type, ami

Valid Regions

The following regions are supported:

• ap-northeast-1: Asia Pacific (Tokyo) Region

• ap-southeast-1: Asia Pacific (Singapore) Region

• eu-west-1: EU (Ireland) Region

• sa-east-1: South America (Sao Paulo) Region

• us-east-1: US East (North Virginia) Region

• us-west-1: US West (North california) Region

• us-west-2: US West (Oregon) Region

Amazon Cloud Account

Key: account

Used to authenticate to AWS.

The Amazon cloud account has the following valid keys:

• accessKey (mandatory): A string providing your AWS access key id. To get your access key, sign into AWS
(aws.amazon.com), click on Security Credentials > Access Credentials > Access Keys. Your access key id
should be displayed, otherwise create a new one. Note, for security purposes, we recommend you change your
access keys every 90 days

• accountNumber (mandatory): A string providing your AWS account number. This number can be found at
the top right hand side of the Account > Security Credentials page after signing into amazon web services

98 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

• file (optional): a string providing the location of the account information. This can be a pathname (relative or
absolute) or an URL.

• keyPairPrivateKey (optional): A string providing the pathname or URL where to retrieve the private key
of a key pair that has been created in AWS. This is mandatory if you wish to create an EBS-backed (elastic block
storage) machine image. The private key is used to create an instance of the image in AWS in order to attach
an EBS volume and create the EBS-backed machine image. To create a key pair, sign into amazon web services
(aws.amazon.com), click on Key Pairs to create a new key pair. Download and save the private key. This should
be a (.pem) file.

• name (mandatory): a string providing the name of the cloud account. This name can be used in a builder section
to reference the rest of the cloud account information.

• secretAccessKey (mandatory): A string providing you AWS secret access key. To get your secret access
key, sign into AWS (aws.amazon.com), click on Security Credentials > Access Credentials > Access Keys.
Click on the Show button to reveal your secret key

• type (mandatory): a string providing the cloud account type: aws.

• x509Cert (mandatory): A string providing the pathname or URL where to retrieve the X.509 certificate public
key. To create a X.509 certificate, sign into AWS (aws.amazon.com), click on Security Credentials > Access
Credentials > X.509 Certificates. Download the X.509 certificate or create a new one. This should be a (.pem)
file.

• x509PrivateKey (mandatory): A string providing the pathname or URL where to retrieve the X.509 certifi-
cate private key. This private key is provided during the X.509 creation process. AWS does not store this private
key, so you must download it and store it during this creation process. To create a X.509 certificate, sign into
AWS (aws.amazon.com), click on Security Credentials > Access Credentials > X.509 Certificates and create a
new certificate. Download and save the Private Key. This should be a (.pem) file

Note: In the case where name or file is used to reference a cloud account, all the other keys are no longer required
in the account definition for the builder.

Example

The following example shows an amazon builder with all the information to build and publish a machine image to
Amazon EC2.

{
"builders": [
{

"type": "ami",
"account": {
"type": "ami",
"name": "My AWS Account",
"accountNumber": "111122223333",
"x509PrivateKey": "/home/joris/accounts/aws/pk509.pem",
"x509Cert": "/home/joris/accounts/aws/cert509.pem",
"accessKey": "789456123ajdiewjd",
"secretAccessKey": "ks30hPeH1xWqilJ04",
"keyPairPrivateKey": "/home/joris/accounts/aws/pk-mykeypair.pem"

},
"installation": {

"diskSize": 10240
},
"region": "eu-west-1",
"s3bucket": "joris-uss-bucket"

}

10.2. Builders 99

Hammr Guide, Release 3.5.1

]
}

Referencing the Cloud Account

To help with security, the cloud account information can be referenced by the builder section. This example is the same
as the previous example but with the account information in another file. Create a json file aws-account.json.

{
"accounts": [
{

"type": "ami",
"name": "My AWS Account",
"accountNumber": "111122223333",
"x509PrivateKey": "/home/joris/accounts/aws/pk509.pem",
"x509Cert": "/home/joris/accounts/aws/cert509.pem",
"accessKey": "789456123ajdiewjd",
"secretAccessKey": "ks30hPeH1xWqilJ04",
"keyPairPrivateKey": "/home/joris/accounts/aws/pk-mykeypair.pem"

}
]

}

The builder section can either reference by using file or name.

Reference by file:

{
"builders": [
{

"type": "ami",
"account": {
"file": "/home/joris/accounts/aws-account.json"

},
"installation": {

"diskSize": 10240
},
"region": "eu-west-1",
"s3bucket": "joris-uss-bucket"

}
]

}

Reference by name, note the cloud account must already be created by using account create.

{
"builders": [
{

"type": "ami",
"account": {
"name": "My AWS Account"

},
"installation": {

"diskSize": 10240
},
"region": "eu-west-1",
"s3bucket": "joris-uss-bucket"

}

100 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

]
}

CloudStack

Builder type: cloudstack-ovf, cloudstack-qcow2 or cloudstack-vhd

Require Cloud Account: Yes cloudstack.apache.org

The CloudStack builder provides information for building and publishing the machine image to the CloudStack
cloud platform. This builder supports KVM (cloudstack-qcow2), Xen (cloudstack-vhd) or VMware
(cloudstack-ova) based images for CloudStack.

The CloudStack builder requires cloud account information to upload and register the machine image to the Cloud-
Stack platform.

The CloudStack builder section has the following definition:

{
"builders": [
{

"type": "cloudstack-qcow2",
...the rest of the definition goes here.

}
]

}

Building a Machine Image

For building an image, the valid keys are:

• hardwareSettings (mandatory): an object providing hardware settings to be used for the machine image.
If an OVF machine image is being built, then the hardware settings are mandatory. The following valid keys for
hardware settings are:

• memory (mandatory): an integer providing the amount of RAM to provide to an instance provisioned from the
machine image (in MB).

• installation (optional): an object providing low-level installation or first boot options. These override any
installation options in the Stack section. The following valid keys for installation are:

• diskSize (mandatory): an integer providing the disk size of the machine image to create. Note, this overrides
any disk size information in the stack. This cannot be used if an advanced partitioning table is defined in the
stack.

• type (mandatory): a string providing the machine image type to build. For CloudStack:
cloudstack-qcow2, cloudstack-vhd or cloudstack-ova.

Publishing a Machine Image

To publish an image, the valid keys are:

• account (mandatory): an object providing the CloudStack cloud account information required to publish the
built machine image.

• featured (optional): a boolean flag to determine in the machine image is to be “featured”

10.2. Builders 101

http://cloudstack.apache.org

Hammr Guide, Release 3.5.1

• imageName (mandatory): a string providing the displayed name of the machine image.

• publicImage (optional): a boolean flag to determine in the machine image is to be public

• type (mandatory): a string providing the machine image type to build. For CloudStack:
cloudstack-qcow2, cloudstack-vhd or cloudstack-ova.

• zone (mandatory): a string providing the zone to publish the machine image

CloudStack Cloud Account

Key: account Used to authenticate the CloudStack platform.

The CloudStack cloud account has the following valid keys:

• endpoint (mandatory): a string providing the API URL endpoint of the cloudstack management console to
upload the machine image to. For example: http://cloudstackhostname:8080/client/api

• file (optional): a string providing the location of the account information. This can be a pathname (relative or
absolute) or an URL.

• name (mandatory): a string providing the name of the cloud account. This name can be used in a builder section
to reference the rest of the cloud account information.

• publicKey (mandatory): a string providing your public API key. If you do not have a public/secret key pair,
please refer to the CloudStack documentation to generate them, or contact your cloud administrator

• secretKey (mandatory): a string providing your secret API key. If you do not have a public/secret key pair,
please refer to the CloudStack documentation to generate them, or contact your cloud administrator

• type (mandatory): a string providing the cloud account type: cloudstack.

Note: In the case where name or file is used to reference a cloud account, all the other keys are no longer required
in the account definition for the builder.

Example

The following example shows a CloudStack builder with all the information to build and publish a machine image to
CloudStack.

{
"builders": [
{

"type": "cloudstack-qcow2",
"account": {
"type": "cloudstack",
"name": "My CloudStack Account",
"endpoint": "http://10.1.2.214:8080/client/api",
"publicKey": "cqFaVLNrVzWDP3IsP7o8lYITDQL0WKuKVh_5S30brobdFG6Wv1aD-

→˓zEWYALxFYGOBXrUXYmilnvsK4cFgnaZwg",
"secretKey": "YjqaHb8rfqQ1fHgs_FAaLNchu3pssESEk2AcI09klFCgF6t_znV3a-

→˓NeU6BSbCYHLhCqhKBzMGQrWoI1oUztVg"
},
"imageName": "CentOS Core",
"zone": "zone1"

}

102 Chapter 10. Templates Specification

http://cloudstackhostname:8080/client/api

Hammr Guide, Release 3.5.1

]
}

Referencing the Cloud Account

To help with security, the cloud account information can be referenced by the builder section. This example is the same
as the previous example but with the account information in another file. Create a json file cloudstack-account.
json.

{
"accounts": [
{

"type": "cloudstack",
"name": "My CloudStack Account",
"endpoint": "http://10.1.2.214:8080/client/api",
"publicKey": "cqFaVLNrVzWDP3IsP7o8lYITDQL0WKuKVh_5S30brobdFG6Wv1aD-

→˓zEWYALxFYGOBXrUXYmilnvsK4cFgnaZwg",
"secretKey": "YjqaHb8rfqQ1fHgs_FAaLNchu3pssESEk2AcI09klFCgF6t_znV3a-

→˓NeU6BSbCYHLhCqhKBzMGQrWoI1oUztVg"
}

]
}

The builder section can either reference by using file or name.

Reference by file:

{
"builders": [
{

"type": "cloudstack-qcow2",
"account": {
"file": "/home/joris/accounts/cloudstack-account.json"

},
"imageName": "CentOS Core",
"zone": "zone1"

}
]

}

Reference by name, note the cloud account must already be created by using account create.

{
"builders": [
{

"type": "cloudstack-qcow2",
"account": {

"name": "My CloudStack Account"
},
"imageName": "CentOS Core",
"zone": "zone1"

}
]

}

10.2. Builders 103

Hammr Guide, Release 3.5.1

Eucalyptus

Builder type: eucalyptus-kvm or eucalyptus-xen

Require Cloud Account: Yes www.eucalyptus.com

The Eucalyptus builder provides information for building and publishing the machine image for Eucalyptus. This
builder supports KVM (eucalyptus-kvm) and Xen (eucalyptus-xen) based images for Eucalyptus.

The Eucalyptus builder requires cloud account information to upload and register the machine image to an Eucalyptus
cloud platform.

The Eucalyptus builder section has the following definition:

{
"builders": [
{

"type": "eucalyptus-kvm",
...the rest of the definition goes here.

}
]

}

Building a Machine Image

For building an image, the valid keys are:

• account (mandatory): an object providing the Eucalyptus cloud account information required to publish the
built machine image.

• installation (optional): an object providing low-level installation or first boot options. These override any installation options in the Stack section. The following valid keys for installation are:

– diskSize (mandatory): an integer providing the disk size of the machine image to create. Note,
this overrides any disk size information in the stack. This cannot be used if an advanced partitioning
table is defined in the stack.

• disableRootLogin (optional): a boolean flag to determine if root login access should be disabled for any
instance provisioned from the machine image.

• type (optional): a string providing the machine image type to build. For Eucalyptus: eucalyptus-kvm or
eucalyptus-xen

Publishing a Machine Image

To publish an image, the valid keys are:

• account (mandatory): an object providing the Eucalyptus cloud account information required to publish the
built machine image.

• bucket (mandatory): a string providing the bucket where to store the machine image. Note, bucket names are
global to everyone, so you must choose a unique bucket name that is not used by another user. The bucket name
should not include spaces.

• description (mandatory): a string providing a description of what the machine image does. The description
of the machine image is displayed in the console. The description can only be up to 255 characters long.
Descriptions longer than 255 characters will be truncated.

• imageName (mandatory): a string providing the displayed name for the machine image.

104 Chapter 10. Templates Specification

http://www.eucalyptus.com

Hammr Guide, Release 3.5.1

• kernelId (optional): a string providing the kernel Id when booting an instance from the machine image. Note
that the kernel id must be already present on the cloud environment. If a kernel Id is not specified, then the
default kernel Id registered on the cloud platform will be used.

• ramdisk (optional): a string providing the ramdisk Id when booting an instance from the machine image. Note
that the ramdisk Id must be already present on the cloud environment. If a ramdisk Id is not specified, then the
default ramdisk Id registered on the cloud platform will be used.

• type (optional): a string providing the machine image type to build. For Eucalyptus: eucalyptus-kvm or
eucalyptus-xen

Eucalyptus Cloud Account

Key: account Used to authenticate to Eucalyptus.

The Eucalyptus cloud account has the following valid keys:

• accountNumber (mandatory): a string providing the User ID or Eucalyptus account number of the user who
is bundling the image. This value can be found in the eucarc file.

• cloudCert (mandatory): a string providing the location of the cloud certificate. This may be a path or URL. To
get the cloud certificate, login into your Eucalyptus admin console (for example https://myserver.domain.com:
8443). Go to the Credentials ZIP-file and click on the button Download credentials. Unzip this file, you should
find the certificate with the name cloud-cert.pem

• file (optional): a string providing the location of the account information. This can be a pathname (relative or
absolute) or an URL.

• endpoint (mandatory): a string providing the URL of the Eucalyptus Walrus server. To get the walrus server
information, login into your Eucalyptus admin console and click on the Configuration tab

• name: (mandatory) a string providing the name of the cloud account. This name can be used in a builder section
to reference the rest of the cloud account information.

• queryId (mandatory): a string providing your Eucalyptus query id. To get this key, login into your Eucalyptus
admin console (for example https://myserver.domain.com:8443). Go to Query Interface Credentials > Show
keys, the query id will be displayed.

• secretKey (mandatory): a string of your your Eucalyptus secret key. To get this key, login into your Eucalyp-
tus admin console (for example https://myserver.domain.com:8443). Go to Query Interface Credentials > Show
keys, the secret key will be displayed

• type (optional): a string providing the cloud account type: eucalyptus.

• x509PrivateKey (mandatory): a string providing the location of the X.509 certificate private key. This may
be a path or URL. This is the private key of the X.509 certificate. To get an X.509 private key, login into your
Eucalyptus admin console, go to Credentials ZIP-file and click on the button Download credentials. Unzip this
file, you should find the private key with the name XXXX-XXXX-XXXX-pk.pem.

• x509Cert (mandatory): a string providing the location of the X.509 certificate public key. This may be a path
or URL. To get a X.509 certificate, login into your Eucalyptus admin console, go to the Credentials ZIP-file
and click on the button Download credentials. Unzip this file, you should find the certificate with the name
XXXX-XXXX-XXXX-cert.pem

Note: In the case where name or file is used to reference a cloud account, all the other keys are no longer required
in the account definition for the builder.

10.2. Builders 105

https://myserver.domain.com:8443
https://myserver.domain.com:8443
https://myserver.domain.com:8443
https://myserver.domain.com:8443

Hammr Guide, Release 3.5.1

Example

The following example shows an Eucalyptus builder with all the information to build and publish a machine image to
Eucalyptus.

{
"builders": [
{

"type": "eucalyptus-kvm",
"account": {
"type": "eucalyptus",
"name": "My Eucalyptus Account",
"accountNumber": "111122223333",
"x509PrivateKey": "/home/joris/accounts/euca/euca-pk.pem",
"x509Cert": "/home/joris/accounts/euca/euca-cert.pem",
"cloudCert": "/home/joris/accounts/euca/cloud-cert.pem",
"endpoint": "http://127.0.0.1/8773",
"queryId": "WkVpyXXZ77rXcdeSbds3lkXcr5Jc4GeUtkA",
"secretKey": "ir9CKRvOXXTHJXXj8VPRXX7PgxxY9DY0VLng"

},
"imageName": "CentOS Core",
"description": "CentOS Base Image",
"bucket": "ussprodbucket"

}
]

}

Referencing the Cloud Account

To help with security, the cloud account information can be referenced by the builder section. This example is the same
as the previous example but with the account information in another file. Create a json file euca-account.json.

{
"accounts": [
{

"type": "eucalyptus",
"name": "My Eucalyptus Account",
"accountNumber": "111122223333",
"x509PrivateKey": "/home/joris/accounts/euca/euca-pk.pem",
"x509Cert": "/home/joris/accounts/euca/euca-cert.pem",
"cloudCert": "/home/joris/accounts/euca/cloud-cert.pem",
"endpoint": "http://127.0.0.1/8773",
"queryId": "WkVpyXXZ77rXcdeSbds3lkXcr5Jc4GeUtkA",
"secretKey": "ir9CKRvOXXTHJXXj8VPRXX7PgxxY9DY0VLng"

}
]

}

The builder section can either reference by using file or name.

Reference by file:

{
"builders": [
{

"type": "eucalyptus-kvm",

106 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

"account": {
"file": "/home/joris/accounts/euca-account.json"

},
"imageName": "CentOS Core",
"description": "CentOS Base Image",
"bucket": "ussprodbucket"

}
]

}

Reference by name, note the cloud account must already be created by using account create.

{
"builders": [
{

"type": "eucalyptus-kvm",
"account": {
"name": "My Eucalytpus Account"

},
"imageName": "CentOS Core",
"description": "CentOS Base Image",
"bucket": "ussprodbucket"

}
]

}

Flexiant

Builder type: flexiant-kvm, flexiant-ova or flexiant-raw

Require Cloud Account: Yes flexiant.com

The Flexiant builder provides information for building and publishing the machine image to a Flexiant cloud platform.
This builder supports KVM (flexiant-kvm), VMware (flexiant-ova) or Raw (flexiant-raw) based im-
ages for Flexiant.

The Flexiant builder requires cloud account information to upload and register the machine image to the Flexiant
platform.

The Flexiant builder section has the following definition:

{
"builders": [
{

"type": "flexiant-ova",
...the rest of the definition goes here.

}
]

}

Building a Machine Image

For building an image, the valid keys are:

• hardwareSettings (mandatory): an object providing hardware settings to be used for the machine image. If an OVF machine image is being built, then the hardware settings are mandatory. The following valid keys for hardware settings are:

10.2. Builders 107

http://flexiant.com

Hammr Guide, Release 3.5.1

– memory (mandatory): an integer providing the amount of RAM to provide to an instance provisioned
from the machine image (in MB).

• installation (optional): an object providing low-level installation or first boot options. These override any installation options in the Stack section. The following valid keys for installation are:

– diskSize (mandatory): an integer providing the disk size of the machine image to create. Note,
this overrides any disk size information in the stack. This cannot be used if an advanced partitioning
table is defined in the stack.

• type (optional): a string providing the machine image type to build. For Flexiant: flexiant-kvm,
flexiant-ovf or flexiant-raw.

Publishing a Machine Image

To publish an image, the valid keys are:

• account (mandatory): an object providing the Flexiant cloud account information required to publish the built
machine image.

• virtualDatacenter (mandatory): a string providing the datacenter name where to register the machine
image. Note, the user must have access to this datacenter.

• imageName (mandatory): a string providing the name of the machine image to displayed.

• diskOffering (mandatory): a string providing the disk offering to register the machine image under.

• type (mandatory): a string providing the machine image type to build. For Flexiant: flexiant-kvm,
flexiant-ovf or flexiant-raw.

Flexiant Cloud Account

Key: account Used to authenticate the Flexiant platform.

The Flexiant cloud account has the following valid keys:

• file (optional): a string providing the location of the account information. This can be a pathname (relative or
absolute) or an URL.

• name (mandatory): a string providing the name of the cloud account. This name can be used in a builder section
to reference the rest of the cloud account information.

• password (mandatory): a string providing your flexiant cloud orchestrator account password

• username (mandatory): a string providing your API username. To get your api username, log in to flexiant
cloud orchestrator, click on Settings > Your API Details

• wsdlURL (mandatory): a string providing the wsdl URL of the flexiant cloud orchestrator, for example: https:
//myapi.example2.com:4442/?wsdl

Note: In the case where name or file is used to reference a cloud account, all the other keys are no longer required
in the account definition for the builder.

Example

The following example shows a Flexiant builder with all the information to build and publish a machine image to the
Flexiant.

108 Chapter 10. Templates Specification

https://myapi.example2.com:4442/?wsdl
https://myapi.example2.com:4442/?wsdl

Hammr Guide, Release 3.5.1

{
"builders": [
{

"type": "flexiant-ova",
"account": {
"type": "flexiant",
"name": "My Flexiant Account",
"username": "test.test@test.fr/hsefjuhseufhew",
"password": "myPassWD",
"wsdlURL": "https://20.20.20.20:4442/?wsdl"

},
"hardwareSettings": {
"memory": 1024

},
"installation": {

"diskSize": 2000
},
"imageName": "CentOS Core",
"virtualDatacenter": "vdc1",
"diskOffering": "50 GB"

}
]

}

Referencing the Cloud Account

To help with security, the cloud account information can be referenced by the builder section. This example is the same
as the previous example but with the account information in another file. Create a json file flexiant-account.
json.

{
"accounts": [
{

"type": "flexiant",
"name": "My Flexiant Account",
"username": "test.test@test.fr/hsefjuhseufhew",
"password": "myPassWD",
"wsdlURL": "https://20.20.20.20:4442/?wsdl"

}
]

}

The builder section can either reference by using file or name.

Reference by file:

{
"builders": [
{

"type": "flexiant-ova",
"account": {
"file": "/home/joris/accounts/flexiant-account.json"

},
"hardwareSettings": {

"memory": 1024
},

10.2. Builders 109

Hammr Guide, Release 3.5.1

"installation": {
"diskSize": 2000

},
"imageName": "CentOS Core",
"virtualDatacenter": "c8c1873f-799c-3453-b46c-f5db63116b05",
"diskOffering": "61afdd81-43d9-39b5-9150-cffe9071b1b9"

}
]

}

Reference by name, note the cloud account must already be created by using account create.

{
"builders": [
{

"type": "flexiant-ova",
"account": {
"name": "My Flexiant Account"

},
"hardwareSettings": {

"memory": 1024
},
"installation": {

"diskSize": 2000
},
"imageName": "CentOS Core",
"datacenterUUID": "vdc1",
"diskOffering": "50 GB"

}
]

}

Google Compute Engine

Builder type: gce

Require Cloud Account: Yes Google Compute Engine

The GCE builder provides information for building and publishing the machine image for Googe Compute Engine.
The GCE builder requires cloud account information to upload and register the machine image to Google Compute
Engine public cloud.

The GCE builder section has the following definition:

{
"builders": [
{

"type": "gce",
...the rest of the definition goes here.

}
]

}

Building a Machine Image

For building an image, the valid keys are:

110 Chapter 10. Templates Specification

https://cloud.google.com/compute/

Hammr Guide, Release 3.5.1

• installation (optional): an object providing low-level installation or first boot options. These override any installation options in the Stack section. The following valid keys for installation are:

– diskSize (mandatory): an integer providing the disk size of the machine image to create.

Publishing a Machine Image

To publish an image, the valid keys are:

• account (mandatory): an object providing the GCE cloud account information required to publish the built
machine image.

• bucket (mandatory): a string providing the bucket name where to store the machine image. The bucket name
can only contain lower case alpha characters [a-z] and the special character “-”.

• bucketLocation (mandatory): a string providing the bucket location where to store the machine image. See
below for valid values.

• computeZone (mandatory): a string providing the compute zone where this machine image will be used. See
below for valid compute zone values.

• description (optional): a string providing the description for the machine image.

• diskNamePrefix (mandatory): a string providing the disk name prefix used when creating the disks for
the running machine (note the prefix name can only contain lower case alpha characters [a-z] and the special
character ”-”)

• projectId (mandatory): a string providing the project Id to associate this machine image with.

• storageClass (mandatory): a string providing the storage type to use with this machine image. See below
for valid storage class values

• type (mandatory): the builder type: gce

Valid Compute Zones

The following zones are supported:

• us-central1-a: US (availability zone: a)

• us-central1-b: US (availability zone: b)

• europe-west1-a: Europe (availability zone: a)

• europe-west1-a: Europe (availability zone: b)

Valid Bucket Locations

The following bucket locations are supported:

• EU

• US

10.2. Builders 111

Hammr Guide, Release 3.5.1

Valid Storage Classes

The following storage classes are supported:

• STANDARD

• DURABLE_REDUCED_AVAILABILITY

GCE Cloud Account

Key: account Used to authenticate to GCE.

The GCE cloud account has the following valid keys:

• certPassword (mandatory): A string providing the password to decrypt the GCE certificate. This password
is normally provided along with the certificate.

• cert (mandatory): A string providing the pathname or URL where to retrieve your GCE certificate. This
should be a (.pem) file.

• name (mandatory): a string providing the name of the cloud account. This name can be used in a builder section
to reference the rest of the cloud account information.

• type (mandatory): a string providing the cloud account type: gce.

Note: In the case where name or file is used to reference a cloud account, all the other keys are no longer required
in the account definition for the builder.

Example

The following example shows a GCE builder with all the information to build and publish a machine image to Google
Compute Engine.

{
"builders": [
{

"type": "gce",
"account": {
"type": "gce",
"name": "My GCE Account",
"username": "joris",
"certPassword": "myCertPassword",
"cert": "/home/joris/certs/gce.pem"

},
"computeZone": "europe-west1-a",
"bucketLocation": "EU",
"bucket": "jorisbucketname",
"projectId": "jorisproject",
"storageClass": "STANDARD",
"diskNamePrefix": "uss-",
"description": "CentOS Core machine image"

}
]

}

112 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

Referencing the Cloud Account

To help with security, the cloud account information can be referenced by the builder section. This example is the same
as the previous example but with the account information in another file. Create a json file gce-account.json.

{
"accounts": [
{

"type": "gce",
"name": "My GCE Account",
"username": "joris",
"certPassword": "myCertPassword",
"cert": "/home/joris/certs/gce.pem"

}
]

}

The builder section can either reference by using file or name.

Reference by file:

{
"builders": [
{

"type": "gce",
"account": {
"file": "/home/joris/accounts/gce-account.json"

},
"computeZone": "europe-west1-a",
"bucketLocation": "EU",
"bucket": "jorisbucketname",
"projectId": "jorisproject",
"storageClass": "STANDARD",
"diskNamePrefix": "uss-",
"description": "CentOS Core machine image"

}
]

}

Reference by name, note the cloud account must already be created by using account create.

{
"builders": [
{

"type": "gce",
"account": {
"name": "My GCE Account"

},
"computeZone": "europe-west1-a",
"bucketLocation": "EU",
"bucket": "jorisbucketname",
"projectId": "jorisproject",
"storageClass": "STANDARD",
"diskNamePrefix": "uss-",
"description": "CentOS Core machine image"

}
]

}

10.2. Builders 113

Hammr Guide, Release 3.5.1

Microsoft Azure

Builder type: azure

Require Cloud Account: Yes azure.microsoft.com

The Azure builder provides information for building and publishing the machine image to the Microsoft Azure cloud
platform.

The Azure builder section has the following definition:

{
"builders": [
{

"type": "azure",
...the rest of the definition goes here.

}
]

}

Building a Machine Image

For building an image, the valid keys are:

• installation (optional): an object providing low-level installation or first boot options. These override any installation options in the stack section. The following valid keys for installation are:

– diskSize (mandatory): an integer providing the disk size of the machine image to create. Note,
this overrides any disk size information in the Stack. This cannot be used if an advanced partitioning
table is defined in the stack.

• type (mandatory): a string providing the machine image type to build: azure

Publishing a Machine Image

To publish an image, the valid keys are:

• account (mandatory): an object providing all the cloud account information to authenticate and publish a
machine image to Azure.

• location (optional): a string providing the location where to create the storage account. If the storage account
already exists, then you should not specify a location. See below for valid locations.

• storageAccount (mandatory): a string providing the storage account to use for uploading and storing the
machine image. The storage account is the highest level of the namespace for accessing each of the fundamental
services.

• type (mandatory): a string providing the machine image type to build: azure

Valid Azure Locations

• North Central US

• South Central US

• East US

• West US

114 Chapter 10. Templates Specification

http://azure.microsoft.com

Hammr Guide, Release 3.5.1

• North Europe

• West Europe

• East Asia

Azure Cloud Account

Key: account

Used to authenticate the Azure platform. The Azure cloud account has the following valid keys:

• certKey (mandatory): A string providing the pathname or URL where to retrieve the X.509 certificate v3
public key associated with your Azure account. This should be a (.pem) file.

• file (optional): a string providing the location of the account information. This can be a pathname (relative or
absolute) or an URL.

• name (mandatory): a string providing the name of the cloud account. This name can be used in a builder section
to reference the rest of the cloud account information.

• rsaPrivateKey (mandatory): A string providing the pathname or URL where to retrieve the private RSA
key associated with your Azure account. This should be a (.pem) file.

• subscriptionId (mandatory): A string providing your Axure subscription Id. To get your subscription Id,
log into Windows Azure, click on “Settings”. The id is listed in the table.

• type (mandatory): a string providing the cloud account type: azure.

Note: In the case where name or file is used to reference a cloud account, all the other keys are no longer required in
the account definition for the builder.

Example

The following example shows an Azure builder with all the information to build and publish a machine image to
Azure.

{
"builders": [
{

"type": "azure",
"account": {
"type": "azure",
"name": "My Azure Account",
"subscriptionId": "xxxbewssbewdsbew-sdsewjwdtg-ssatgh-xxxdft5f323",
"certKey": "/home/joris/accounts/azure/cert.pem",
"rsaPrivateKey": "/home/joris/accounts/azure/key.pem"

},
"storageAccount": "mystorageaccount",
"location": "West Europe"

}
]

}

10.2. Builders 115

Hammr Guide, Release 3.5.1

Referencing the Cloud Account

To help with security, the cloud account information can be referenced by the builder section. This example is the same
as the previous example but with the account information in another file. Create a json file azure-account.json.

{
"accounts": [
{

"type": "azure",
"name": "My Azure Account",
"subscriptionId": "xxxbewssbewdsbew-sdsewjwdtg-ssatgh-xxxdft5f323",
"certKey": "/home/joris/accounts/azure/cert.pem",
"rsaPrivateKey": "/home/joris/accounts/azure/key.pem"

}
]

}

The builder section can either reference by using file or name.

Reference by file:

{
"builders": [
{

"type": "azure",
"account": {
"file": "/home/joris/accounts/azure-account.json"

},
"storageAccount": "mystorageaccount",
"location": "West Europe"

}
]

}

Reference by name, note the cloud account must already be created by using account create.

{
"builders": [
{

"type": "abiquo",
"account": {
"name": "My Abiquo Account"

},
"storageAccount": "mystorageaccount",
"location": "West Europe"

}
]

}

Nimbula

Builder type: nimbula-esx or nimbula-kvm Require Cloud Account: Yes

The Nimbula builder provides information for building and publishing the machine image to the Nimbula cloud plat-
form. This builder supports KVM (nimbula-kvm) or VMware (nimbula-esx) based images for Nimbula.

The Nimbula builder requires cloud account information to upload and register the machine image to the Nimbula
platform. The Nimbula builder section has the following definition:

116 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

{
"builders": [
{

"type": "nimbula-kvm",
...the rest of the definition goes here.

}
]

}

Building a Machine Image

For building an image, the valid keys are:

• hardwareSettings (mandatory): an object providing hardware settings to be used for the machine image. If an OVF machine image is being built, then the hardware settings are mandatory. The following valid keys for hardware settings are:

– memory (mandatory): an integer providing the amount of RAM to provide to an instance provisioned
from the machine image (in MB).

• installation (optional): an object providing low-level installation or first boot options. These override any installation options in the Stack section. The following valid keys for installation are:

– diskSize (mandatory): an integer providing the disk size of the machine image to create. Note,
this overrides any disk size information in the stack. This cannot be used if an advanced partitioning
table is defined in the stack.

• type (optional): a string providing the machine image type to build. For Nimbula: nimbula-kvm or
nimbula-esx.

Publishing a Machine Image

To publish an image, the valid keys are:

• account (mandatory): an object providing the Nimbula cloud account information required to publish the
built machine image.

• description (mandatory): a string providing the description that will be displayed for the machine image.

• imageListName (mandatory): a string providing the list name where to register the machine image. Note
that this is the full pathname, for example /usharesoft/administrator/myimages. Machine images
can be added to an image list to create a versioned selection of related machine images recording the versions
of the image over its lifetime. An image maintainer can add newer versions of a machine image to the image
list and can set the default version to be used when this image list is invoked in a launch plan to deploy VM
instances

• imageVersion (mandatory): a string providing the version of the machine image being registered.

• type (optional): a string providing the machine image type to build. For Nimbula: nimbula-kvm or
nimbula-esx.

Nimbula Cloud Account

Key: account

Used to authenticate the Nimbula platform. The Nimbula cloud account has the following valid keys:

10.2. Builders 117

Hammr Guide, Release 3.5.1

• file (optional): a string providing the location of the account information. This can be a pathname (relative or
absolute) or an URL.

• endpoint (mandatory): URL endpoint of the Nimbula cloud

• name (mandatory): a string providing the name of the cloud account. This name can be used in a builder section
to reference the rest of the cloud account information.

• password (mandatory): a string providing the password used to to authenticate to Nimbula Director

• username (mandatory): a string providing the user used to authenticate to Nimbula Director. This is in the
form of a URI, for example /root/root

• type (mandatory): a string providing the cloud account type: nimbula.

Note: In the case where name or file is used to reference a cloud account, all the other keys are no longer required
in the account definition for the builder.

Example

The following example shows an Nimbula builder with all the information to build and publish a machine image to
Nimbula.

{
"builders": [
{

"type": "nimbula-kvm",
"account": {
"type": "nimbula",
"name": "My Nimbula Account",
"endpoint": "http://20.20.20.201",
"username": "myLogin",
"password": "myPassWD"

},
"hardwareSettings": {

"memory": 1024
},
"installation": {

"diskSize": 2000
},
"imageListName": "/usharesoft/administrator/myimages",
"imageVersion": "1",
"description": "CentOS Core Image"

}
]

}

Referencing the Cloud Account

To help with security, the cloud account information can be referenced by the builder section. This example is the same
as the previous example but with the account information in another file. Create a json file nimbula-account.
json.

118 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

{
"accounts": [
{

"type": "nimbula",
"name": "My Nimbula Account",
"endpoint": "http://20.20.20.201",
"username": "myLogin",
"password": "myPassWD"

}
]

}

The builder section can either reference by using file or name.

Reference by file:

{
"builders": [
{

"type": "nimbula-kvm",
"account": {
"file": "/home/joris/accounts/nimbula-account.json"

},
"hardwareSettings": {

"memory": 1024
},
"installation": {

"diskSize": 2000
},
"imageListName": "/usharesoft/administrator/myimages",
"imageVersion": "1",
"description": "CentOS Core Image"

}
]

}

Reference by name, note the cloud account must already be created by using account create.

{
"builders": [
{

"type": "nimbula-kvm",
"account": {
"name": "My Nimbula Account"

},
"hardwareSettings": {

"memory": 1024
},
"installation": {

"diskSize": 2000
},
"imageListName": "/usharesoft/administrator/myimages",
"imageVersion": "1",
"description": "CentOS Core Image"

}
]

}

10.2. Builders 119

Hammr Guide, Release 3.5.1

OpenStack

Builder type: openstack-qcow2, openstack-vmdk, openstack-vhd or openstack-vdi

Require Cloud Account: Yes www.openstack.org

The OpenStack builder provides information for building and publishing the machine image to the OpenStack
cloud platform. This builder supports KVM (openstack-qcow2), VMware (openstack-vmdk), Microsoft
(openstack-vhd) or VirtualBox (openstack-vdi) based images for Openstack.

The OpenStack builder requires cloud account information to upload and register the machine image to the OpenStack
platform.

The OpenStack builder section has the following definition:

{
"builders": [
{

"type": "openstack-qcow2",
...the rest of the definition goes here.

}
]

}

Building a Machine Image

For building an image, the valid keys are:

• installation (optional): an object providing low-level installation or first boot options. These override any installation options in the Stack section. The following valid keys for installation are:

– diskSize (mandatory): an integer providing the disk size of the machine image to create. Note,
this overrides any disk size information in the stack. This cannot be used if an advanced partitioning
table is defined in the stack.

• type (mandatory): a string providing the machine image type to build. For OpenStack: openstack-qcow2,
openstack-vmdk, openstack-vdi or openstack-vhd

Publishing a Machine Image

To publish an image, the valid keys are:

• account (mandatory): an object providing the OpenStack cloud account information required to publish the
built machine image.

• description (optional): an object providing the description of the machine image.

• imageName (mandatory): a string providing the name of the image that will be displayed.

• paraVirtMode (optional) a boolean to determine if the machine should be provisioned in para-virtualised
mode. By default, machine images are provisioned in full-virtualised mode

• publicImage (optional): a boolean to determine if the machine image is public (for other users to use for
provisioning).

• tenant (mandatory): a string providing the name of the tenant to register the machine image to.

• type (mandatory): a string providing the machine image type to build. For OpenStack: openstack-qcow2,
openstack-vmdk, openstack-vdi or openstack-vhd

120 Chapter 10. Templates Specification

http://www.openstack.org

Hammr Guide, Release 3.5.1

OpenStack Cloud Account

Key: account

Used to authenticate the OpenStack platform.

The OpenStack cloud account has the following valid keys:

• file (optional): a string providing the location of the account information. This can be a pathname (relative or
absolute) or an URL.

• endpoint (mandatory): a string providing the API URL endpoint of the OpenStack glance service. For
example: http://www.example.com:9292

• keystoneEndpoint (mandatory): a string providing the URL endpoint for the OpenStack keystone service
to authenticate with. For example: http://www.example.com:5000

• name (mandatory): a string providing the name of the cloud account. This name can be used in a builder section
to reference the rest of the cloud account information.

• password (mandatory): a string providing the password for authenticating to keystone for publishing images

• type (mandatory): a string providing the cloud account type: openstack.

• username (mandatory): a string providing the user for authenticating to keystone for publishing images

Note: In the case where name or file is used to reference a cloud account, all the other keys are no longer required
in the account definition for the builder.

Example

The following example shows an OpenStack builder with all the information to build and publish a machine image to
OpenStack.

{
"builders": [
{

"type": "openstack-qcow2",
"account": {
"type": "openstack",
"name": "My OpenStack Account",
"endpoint": "http://ow2-04.xsalto.net:9292/v1",
"keystoneEndpoint": "http://ow2-04.xsalto.net:5000/v2.0",
"username": "test",
"password": "password"

},
"tenant": "opencloudware",
"imageName": "joris-test",
"description": "CentOS Core template."

}
]

}

10.2. Builders 121

http://www.example.com:9292
http://www.example.com:5000

Hammr Guide, Release 3.5.1

Referencing the Cloud Account

To help with security, the cloud account information can be referenced by the builder section. This example is the same
as the previous example but with the account information in another file. Create a json file openstack-account.
json.

{
"accounts": [
{

"type": "openstack",
"name": "My OpenStack Account",
"endpoint": "http://ow2-04.xsalto.net:9292/v1",
"keystoneEndpoint": "http://ow2-04.xsalto.net:5000/v2.0",
"username": "test",
"password": "password"

}
]

}

The builder section can either reference by using file or name.

Reference by file:

{
"builders": [
{

"type": "openstack-qcow2",
"account": {
"file": "/home/joris/accounts/openstack-account.json"

},
"tenant": "opencloudware",
"imageName": "joris-test",
"description": "CentOS Core template."

}
]

}

Reference by name, note the cloud account must already be created by using account create.

{
"builders": [
{

"type": "openstack-qcow2",
"account": {
"name": "My OpenStack Account"

},
"tenant": "opencloudware",
"imageName": "joris-test",
"description": "CentOS Core template."

}
]

}

Outscale

Builder type: outscale Require Cloud Account: Yes outscale.com

122 Chapter 10. Templates Specification

http://outscale.com

Hammr Guide, Release 3.5.1

The Outscale builder provides information for building and publishing the machine image for Outscale cloud platform.
The Outscale builder requires cloud account information to upload and register the machine image to Outscale cloud.

The Outscale builder section has the following definition:

{
"builders": [
{

"type": "outscale",
...the rest of the definition goes here.

}
]

}

Building a Machine Image

For building an image, the valid keys are:

• installation (optional): an object providing low-level installation or first boot options. These override any installation options in the Stack section. The following valid keys for installation are:

– diskSize (mandatory): an integer providing the disk size of the machine image to create. Note,
this overrides any disk size information in the stack. If the machine image is to be stored in Amazon
S3, the maximum disk size is 10GB, otherwise if this is an EBS-backed machine image the maximum
disk size is 1TB.

Publishing a Machine Image

To publish an image, the valid keys are:

• account (mandatory): an object providing the AWS cloud account information required to publish the built
machine image.

• zone (mandatory): a string providing the region where to publish the machine image. See below for valid
regions.

• type (mandatory): the builder type: outscale

Valid Regions

The following regions are supported:

• ap-northeast-1: Asia Pacific (Tokyo) Region

• ap-southeast-1: Asia Pacific (Singapore) Region

• eu-west-1: EU (Ireland) Region

• sa-east-1: South America (Sao Paulo) Region

• us-east-1: US East (North Virginia) Region

• us-west-1: US West (North california) Region

• us-west-2: US West (Oregon) Region

10.2. Builders 123

Hammr Guide, Release 3.5.1

Outscale Cloud Account

Key: account Used to authenticate to Outscale cloud platform.

The Outscale cloud account has the following valid keys:

• name (mandatory): a string providing the name of the cloud account. This name can be used in a builder
section to reference the rest of the cloud account information.

• secretAccessKey (mandatory): A string providing your Outscale secret access key

• accessKey (mandatory): A string providing your Outscale access key id

• type (mandatory): a string providing the cloud account type: outscale.

Note: In the case where name or file is used to reference a cloud account, all the other keys are no longer required
in the account definition for the builder.

Example

The following example shows an amazon builder with all the information to build and publish a machine image to
Amazon EC2.

{
"builders": [
{

"type": "outscale",
"account": {
"type": "outscale",
"name": "My Outscale Account",
"accessKey": "789456123ajdiewjd",
"secretAccessKey": "ks30hPeH1xWqilJ04"

},
"installation": {

"diskSize": 10240
},
"zone": "eu-west-2",
"description": "centos-template"

}
]

}

Referencing the Cloud Account

To help with security, the cloud account information can be referenced by the builder section. This example is the same
as the previous example but with the account information in another file. Create a json file outscale-account.
json.

{
"accounts": [
{

"type": "outscale",
"name": "My Outscale Account",
"accessKey": "789456123ajdiewjd",

124 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

"secretAccessKey": "ks30hPeH1xWqilJ04"
}

]
}

The builder section can either reference by using file or name.

Reference by file:

{
"builders": [
{

"type": "outscale",
"account": {
"file": "/home/joris/accounts/outscale-account.json"

},
"installation": {

"diskSize": 10240
},
"region": "eu-west-2",
"s3bucket": "centos-template"

}
]

}

Reference by name, note the cloud account must already be created by using account create.

{
"builders": [
{

"type": "outscale",
"account": {
"name": "My Outscale Account"

},
"installation": {

"diskSize": 10240
},
"region": "eu-west-2",
"s3bucket": "centos-template"

}
]

}

Suse Cloud

Builder type: susecloud

Require Cloud Account: Yes SuseCloud

The SuseCloud builder provides information for building and publishing the machine image to the SuseCloud cloud
platform. The SuseCloud builder requires cloud account information to upload and register the machine image to the
SuseCloud platform.

The SuseCloud builder section has the following definition:

{
"builders": [
{

10.2. Builders 125

https://www.suse.com/products/suse-cloud/

Hammr Guide, Release 3.5.1

"type": "susecloud",
...the rest of the definition goes here.

}
]

}

Building a Machine Image

For building an image, the valid keys are:

• installation (optional): an object providing low-level installation or first boot options. These override any installation options in the Stack section. The following valid keys for installation are:

– diskSize (mandatory): an integer providing the disk size of the machine image to create. Note,
this overrides any disk size information in the stack. This cannot be used if an advanced partitioning
table is defined in the stack.

• type (optional): a string providing the machine image type to build: susecloud

Publishing a Machine Image

To publish an image, the valid keys are:

• account (mandatory): an object providing the SuseCloud cloud account information required to publish the
built machine image.

• description (optional): an object providing the description of the machine image.

• imageName (mandatory): a string providing the name of the image that will be displayed.

• paraVirtMode (optional): a boolean to determine if the machine should be provisioned in para-virtualised
mode. By default, machine images are provisioned in full-virtualised mode

• publicImage (optional): a boolean to determine if the machine image is public (for other users to use for
provisioning).

• tenant (mandatory): a string providing the name of the tenant to register the machine image to.

• type (optional): a string providing the machine image type to build: susecloud

SuseCloud Cloud Account

Key: account Used to authenticate the SuseCloud platform.

The SuseCloud cloud account has the following valid keys:

• file (optional): a string providing the location of the account information. This can be a pathname (relative or
absolute) or an URL.

• endpoint (mandatory): a string providing the API URL endpoint of the SuseCloud glance service. For
example: http://www.example.com:9292

• keystoneEndpoint (mandatory): a string providing the URL endpoint for the SuseCloud keystone service
to authenticate with. For example: http://www.example.com:5000

• name (mandatory): a string providing the name of the cloud account. This name can be used in a builder section
to reference the rest of the cloud account information.

126 Chapter 10. Templates Specification

http://www.example.com:9292
http://www.example.com:5000

Hammr Guide, Release 3.5.1

• password (mandatory): a string providing the password for authenticating to keystone for publishing images

• type (mandatory): a string providing the cloud account type: susecloud.

• username (mandatory): a string providing the user for authenticating to keystone for publishing images

Note: In the case where name or file is used to reference a cloud account, all the other keys are no longer required
in the account definition for the builder.

Example

The following example shows a SuseCloud builder with all the information to build and publish a machine image to
SuseCloud.

{
"builders": [
{

"type": "susecloud",
"account": {
"type": "susecloud",
"name": "My SuseCloud Account",
"endpoint": "http://ow2-04.xsalto.net:9292/v1",
"keystoneEndpoint": "http://ow2-04.xsalto.net:5000/v2.0",
"username": "test",
"password": "password"

},
"tenant": "opencloudware",
"imageName": "joris-test",
"description": "CentOS Core template."

}
]

}

Referencing the Cloud Account

To help with security, the cloud account information can be referenced by the builder section. This example is the same
as the previous example but with the account information in another file. Create a json file susecloud-account.
json.

{
"accounts": [
{

"type": "susecloud",
"name": "My SuseCloud Account",
"endpoint": "http://ow2-04.xsalto.net:9292/v1",
"keystoneEndpoint": "http://ow2-04.xsalto.net:5000/v2.0",
"username": "test",
"password": "password"

}
]

}

The builder section can either reference by using file or name.

10.2. Builders 127

Hammr Guide, Release 3.5.1

Reference by file:

{
"builders": [
{

"type": "susecloud",
"account": {
"file": "/home/joris/accounts/susecloud-account.json"

},
"tenant": "opencloudware",
"imageName": "joris-test",
"description": "CentOS Core template."

}
]

}

Reference by name, note the cloud account must already be created by using account create.

{
"builders": [
{

"type": "susecloud",
"account": {
"name": "My SuseCloud Account"

},
"tenant": "opencloudware",
"imageName": "joris-test",
"description": "CentOS Core template."

}
]

}

VMware vCloud Director

Builder type: vcd Require Cloud Account: Yes

The VMware vCloud Director builder provides information for building VMware vCloud Director compatible machine
images. The VMware VCD builder section has the following definition:

{
"builders": [
{

"type": "vcd",
...the rest of the definition goes here.

}
]

}

Building a Machine Image

For building an image, the valid keys are:

• hardwareSettings (mandatory): an object providing hardware settings to be used for the machine image. The following valid keys for hardware settings are:

128 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

– memory (mandatory): an integer providing the amount of RAM to provide to an instance provisioned
from the machine image (in MB).

– hwType (optional): an integer providing the hardware type for the machine image. This is the
VMware hardware type: 4 (ESXi>3.x), 7 (ESXi>4.x) or 9 (ESXi>5.x)

• installation (optional): an object providing low-level installation or first boot options. These override any
installation options in the Stack section. The following valid keys for installation are:

• diskSize (mandatory): an integer providing the disk size of the machine image to create. Note, this overrides
any disk size information in the stack. This cannot be used if an advanced partitioning table is defined in the
stack.

• type (mandatory): the builder type: vcd

Publishing a Machine Image

To publish an image, the valid keys are:

• account (mandatory): an object providing the vCloud Director cloud account information required to publish
the built machine image.

• catalogName (mandatory): a string providing the name of the catalog to register the machine image. Catalogs
contain references to virtual systems and media images.

• imageName (mandatory): a string providing the name of the machine image to display in VCD.

• orgName (mandatory): a string providing the name of the vCloud organization to register the machine image.

• type (mandatory): a string providing the builder type: vcd

vCloud Director Cloud Account

Key: account Used to authenticate to VMware vCloud Director.

The VCD cloud account has the following valid keys:

• hostname (mandatory): a string providing the fully-qualified hostname or IP address of the vCloud Directory
platform.

• password (mandatory): a string providing the password to use to authenticate to the vCloud Director platform

• port (optional): an integer providing the vCloud Director platform port number (by default: 443 is used).

• proxyHostname (optional): a string providing the fully qualified hostname or IP address of the proxy to
reach the vCloud Director platform.

• proxyPort (optional): an integer providing the proxy port number to use to reach the vCloud Director plat-
form.

• type (mandatory): a string providing the builder type: vcd

• username (mandatory): a string providing the user name to use to authenticate to the vCloud Director platform

Note: In the case where name or file is used to reference a cloud account, all the other keys are no longer required
in the account definition for the builder.

10.2. Builders 129

Hammr Guide, Release 3.5.1

Example

The following example shows a VCD builder with all the information to build and publish a machine image to VMware
vCloud Director.

{
"builders": [
{

"type": "vcd",
"account": {
"type": "vcd",
"name": "My VCD Account",
"hostname": "10.1.1.2",
"username": "joris",
"password": "mypassword"

},
"hardwareSettings": {

"memory": 1024,
"hwType": 7

},
"installation": {

"diskSize": 10240
},
"orgName": "HQProd",
"catalogName": "myCatalog",
"imageName": "CentOS Core"

}
]

}

Referencing the Cloud Account

To help with security, the cloud account information can be referenced by the builder section. This example is the same
as the previous example but with the account information in another file. Create a json file vcd-account.json.

{
"accounts": [
{

"type": "vcd",
"name": "My VCD Account",
"hostname": "10.1.1.2",
"username": "joris",
"password": "mypassword"

}
]

}

The builder section can either reference by using file or name.

Reference by file:

{
"builders": [
{

"type": "vcd",
"account": {

130 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

"file": "/home/joris/accounts/vcd-account.json"
},
"hardwareSettings": {
"memory": 1024,
"hwType": 7

},
"installation": {

"diskSize": 10240
},
"orgName": "HQProd",
"catalogName": "myCatalog",
"imageName": "CentOS Core"

}
]

}

Reference by name, note the cloud account must already be created by using account create.

{
"builders": [
{

"type": "vcd",
"account": {
"name": "My VCD Account"

},
"hardwareSettings": {

"memory": 1024,
"hwType": 7

},
"installation": {

"diskSize": 10240
},
"orgName": "HQProd",
"catalogName": "myCatalog",
"imageName": "CentOS Core"

}
]

}

10.2.2 Virtual Targets

citrix-xen

Require Cloud Account: No

The Citrix XenServer builder provides information for building XenServer compatible machine images.

The Citrix XenServer builder section has the following definition:

{
"builders": [
{

"type": "citrix-xen",
...the rest of the definition goes here.

}
]

}

10.2. Builders 131

Hammr Guide, Release 3.5.1

Building a Machine Image

For building an image, the valid keys are:

• hardwareSettings (mandatory): an object providing hardware settings to be used for the machine image. The following valid keys for hardware settings are:

– memory (mandatory): an integer providing the amount of RAM to provide to an instance provisioned
from the machine image (in MB).

• installation (optional): an object providing low-level installation or first boot options. These override any
installation options in the Stack section. The following valid keys for installation are:

• diskSize (mandatory): an integer providing the disk size of the machine image to create. Note, this overrides
any disk size information in the stack. This cannot be used if an advanced partitioning table is defined in the
stack.

• type (mandatory): the builder type, xenserver

Example

The following example shows a Citrix XenServer builder.

{
"builders": [
{

"type": "citrix-xen",
"hardwareSettings": {
"memory": 1024

}
}

]
}

Hyper-V

Builder type: hyper-v Require Cloud Account: No

The Hyper-V builder provides information for building Hyper-V compatible machine images. The Hyper-V builder
section has the following definition:

{
"builders": [
{

"type": "hyper-v",
...the rest of the definition goes here.

}
]

}

132 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

Building a Machine Image

For building an image, the valid keys are:

• hardwareSettings (mandatory): an object providing hardware settings to be used for the machine image. The following valid keys for hardware settings are:

– memory (mandatory): an integer providing the amount of RAM to provide to an instance provisioned
from the machine image (in MB).

• installation (optional): an object providing low-level installation or first boot options. These override any installation options in the Stack section. The following valid keys for installation are:

– diskSize (mandatory): an integer providing the disk size of the machine image to create. Note,
this overrides any disk size information in the stack. This cannot be used if an advanced partitioning
table is defined in the stack.

• type (mandatory): the builder type, hyper-v

Example

The following example shows a Hyper-V builder.

{
"builders": [
{

"type": "hyper-v",
"hardwareSettings": {
"memory": 1024

}
}

]
}

KVM

Builder type: kvm

Require Cloud Account: No

The KVM builder provides information for building KVM (Kernel-based Virtual Machine) compatible machine im-
ages. The KVM builder section has the following definition:

{
"builders": [
{

"type": "kvm",
...the rest of the definition goes here.

}
]

}

Building a Machine Image

For building an image, the valid keys are:

10.2. Builders 133

Hammr Guide, Release 3.5.1

• hardwareSettings (mandatory): an object providing hardware settings to be used for the machine image. The following valid keys for hardware settings are:

– memory (mandatory): an integer providing the amount of RAM to provide to an instance provisioned
from the machine image (in MB).

• installation (optional): an object providing low-level installation or first boot options. These override any installation options in the Stack section. The following valid keys for installation are:

– diskSize (mandatory): an integer providing the disk size of the machine image to create. Note,
this overrides any disk size information in the stack. This cannot be used if an advanced partitioning
table is defined in the stack.

• type (mandatory): the builder type, kvm

Example

The following example shows a KVM builder.

{
"builders": [
{

"type": "kvm",
"hardwareSettings": {
"memory": 1024

}
}

]
}

OVF

Builder type: ovf Require Cloud Account: No

The OVF builder provides information for building OVF (Open Virtualization Format) compatible machine images.

The OVF builder section has the following definition:

{
"builders": [
{

"type": "ovf",
...the rest of the definition goes here.

}
]

}

The OVF builder has the following valid keys:

• hardwareSettings (mandatory): an object providing hardware settings to be used for the machine image. The following valid keys for hardware settings are:

– memory (mandatory): an integer providing the amount of RAM to provide to an instance provisioned
from the machine image (in MB).

– hwType (optional): an integer providing the hardware type for the machine image. This is the
VMware hardware type: 4 (ESXi>3.x), 7 (ESXi>4.x) or 9 (ESXi>5.x)

134 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

• installation (optional): an object providing low-level installation or first boot options. These override any installation options in the Stack section. The following valid keys for installation are:

– diskSize (mandatory): an integer providing the disk size of the machine image to create. Note,
this overrides any disk size information in the stack. This cannot be used if an advanced partitioning
table is defined in the stack.

• type (mandatory): the builder type: ovf

Example

The following example shows an OVF builder.

{
"builders": [
{

"type": "ovf",
"hardwareSettings": {
"memory": 1024,
"hwType": 7

}
}

]
}

QCOW2

Builder type: qcow2 Require Cloud Account: No

The QCOW2 builder provides information for building a QCOW2 compatible machine images. The QCOW2 builder
section has the following definition:

{
"builders": [
{

"type": "qcow2",
...the rest of the definition goes here.

}
]

}

Building a Machine Image

For building an image, the valid keys are:

• hardwareSettings (mandatory): an object providing hardware settings to be used for the machine image. The following valid keys for hardware settings are:

– memory (mandatory): an integer providing the amount of RAM to provide to an instance provisioned
from the machine image (in MB).

• installation (optional): an object providing low-level installation or first boot options. These override any installation options in the Stack section. The following valid keys for installation are:

10.2. Builders 135

Hammr Guide, Release 3.5.1

– diskSize (mandatory): an integer providing the disk size of the machine image to create. Note,
this overrides any disk size information in the stack. This cannot be used if an advanced partitioning
table is defined in the stack.

• type (mandatory): the builder type: qcow2

Example

The following example shows a QCOW2 builder.

{
"builders": [
{

"type": "qcow2",
"hardwareSettings": {
"memory": 1024

}
}

]
}

Raw

Builder type: raw Require Cloud Account: No

The Raw builder provides information for building a Raw Virtual Disk compatible machine images. The Raw builder
section has the following definition:

{
"builders": [
{

"type": "raw",
...the rest of the definition goes here.

}
]

}

Building a Machine Image

For building an image, the valid keys are:

• installation (optional): an object providing low-level installation or first boot options. These override any installation options in the Stack section. The following valid keys for installation are:

– diskSize (mandatory): an integer providing the disk size of the machine image to create. Note,
this overrides any disk size information in the stack. This cannot be used if an advanced partitioning
table is defined in the stack.

• type (mandatory): the builder type: raw

Example

The following example shows a Raw builder.

136 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

{
"builders": [
{

"type": "raw",
"hardwareSettings": {
"memory": 1024

}
}

]
}

Vagrant Base Box

Builder type: vagrant Require Cloud Account: No

The Vagrant builder provides information for building Vagrant base-box machine images. The Vagrant builder section
has the following definition:

{
"builders": [
{

"type": "vagrant",
...the rest of the definition goes here.

}
]

}

Building a Machine Image

For building an image, the valid keys are:

• hardwareSettings (mandatory): an object providing hardware settings to be used for the machine image. The following valid keys for hardware settings are:

– memory (mandatory): an integer providing the amount of RAM to provide to an instance provisioned
from the machine image (in MB).

• installation (optional): an object providing low-level installation or first boot options. These override any installation options in the Stack section. The following valid keys for installation are:

– diskSize (mandatory): an integer providing the disk size of the machine image to create. Note,
this overrides any disk size information in the stack. This cannot be used if an advanced partitioning
table is defined in the stack.

• osUser (optional): a string providing the user used to authenticate to the vagrant base box. This is mandatory
if the base box is private, otherwise this value is ignored and the user vagrant is used.

• publicBaseBox (optional): a boolean determining if the base box to be created is a public base box or
not. When public, the os user is vagrant and uses the public (insecure) public key as described in the vagrant
documentation

• sshKey (optional): an object providing the public SSH key information to add to the base box. The object contains:

– name (mandatory): a string providing the name of the public ssh key

10.2. Builders 137

Hammr Guide, Release 3.5.1

– publicKey (mandatory): a string providing the public ssh key. A public key must begin with string
ssh-rsa or ssh-dss. This is mandatory if the base box is private, otherwise this value is ignored
and the default public ssh key is used.

• type (mandatory): the builder type: vagrant

Note: You can get copies of the SSH keypairs for public base boxes here.

Examples

Basic Example: Public Base Box

The following example shows a Vagrant builder creating a public base box.

{
"builders": [
{

"type": "vagrant",
"hardwareSettings": {
"memory": 1024

},
"publicBaseBox": true

}
]

}

Private Base Box Example

The following example shows a Vagrant builder for a private base box (note, that the values used is the same for
building a public base box)

{
"builders": [
{

"type": "vagrant",
"hardwareSettings": {
"memory": 1024

},
"publicBaseBox": false,
"osUser": "vagrant",
"sshKey": {

"name": "myVagrantPublicKey",
"publicKey": "ssh-rsa

→˓AAAAB3NzaC1yc2EAAAABIwAAAQEA6NF8iallvQVp22WDkTkyrtvp9eWW6A8YVr+kz4TjGYe7gHzIw+niNltGEFHzD8+v1I2YJ6oXevct1YeS0o9HZyN1Q9qgCgzUFtdOKLv6IedplqoPkcmF0aYet2PkEDo3MlTBckFXPITAMzF8dJSIFo9D8HfdOV0IAdx4O7PtixWKn5y2hMNG0zQPyUecp4pzC6kivAIhyfHilFR61RGL+GPXQ2MWZWFYbAGjyiYJnAmCP3NOTd0jMZEnDkbUvxhMmBYSdETk1rRgm+R4LOzFUGaHqHDLKLX+FIPKcF96hrucXzcWyLbIbEgE98OHlnVYCzRdK8jlqm8tehUc9c9WhQ==
→˓vagrant insecure public key"

}
}

]
}

138 Chapter 10. Templates Specification

https://github.com/mitchellh/vagrant/blob/master/keys/vagrant.pub
https://github.com/mitchellh/vagrant/tree/master/keys

Hammr Guide, Release 3.5.1

VirtualBox

Builder type: VirtualBox

Require Cloud Account: No Oracle VirtualBox

The VirtualBox builder provides information for building Oracle VM VirtualBox compatible machine images.

The VirtualBox builder section has the following definition:

{
"builders": [
{

"type": "vbox",
...the rest of the definition goes here.

}
]

}

Building a Machine Image

For building an image, the valid keys are:

• hardwareSettings (mandatory): an object providing hardware settings to be used for the machine image. The following valid keys for hardware settings are:

– memory (mandatory): an integer providing the amount of RAM to provide to an instance provisioned
from the machine image (in MB).

• installation (optional): an object providing low-level installation or first boot options. These override any installation options in the Stack section. The following valid keys for installation are:

– diskSize (mandatory): an integer providing the disk size of the machine image to create. Note,
this overrides any disk size information in the stack. This cannot be used if an advanced partitioning
table is defined in the stack.

• type (mandatory): the builder type: vbox

Example

The following example shows a VirtualBox builder.

{
"builders": [
{

"type": "vbox",
"hardwareSettings": {
"memory": 1024

}
}

]
}

VHD

Builder type: vhd Require Cloud Account: No

10.2. Builders 139

https://www.virtualbox.org/

Hammr Guide, Release 3.5.1

The VHD builder provides information for building VHD (Virtual Hard Disk) compatible machine images. The VHD
builder section has the following definition:

{
"builders": [
{

"type": "vhd",
...the rest of the definition goes here.

}
]

}

Building a Machine Image

For building an image, the valid keys are:

• hardwareSettings (mandatory): an object providing hardware settings to be used for the machine image. The following valid keys for hardware settings are:

– memory (mandatory): an integer providing the amount of RAM to provide to an instance provisioned
from the machine image (in MB).

• installation (optional): an object providing low-level installation or first boot options. These override any installation options in the Stack section. The following valid keys for installation are:

– diskSize (mandatory): an integer providing the disk size of the machine image to create. Note,
this overrides any disk size information in the stack. This cannot be used if an advanced partitioning
table is defined in the stack.

• type (mandatory): the builder type: vhd

Example

The following example shows a VHD builder.

{
"builders": [
{

"type": "vhd",
"hardwareSettings": {
"memory": 1024

}
}

]
}

VMware Workstation

Builder type: vmware Require Cloud Account: No

The VMware Workstation builder provides information for building VMware Workstation compatible machine im-
ages. The VMware Workstation builder section has the following definition:

140 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

{
"builders": [
{

"type": "vmware",
...the rest of the definition goes here.

}
]

}

The VMware Workstation builder has the following valid keys:

• hardwareSettings (mandatory): an object providing hardware settings to be used for the machine image. The following valid keys for hardware settings are:

– memory (mandatory): an integer providing the amount of RAM to provide to an instance provisioned
from the machine image (in MB).

– hwType (optional): an integer providing the hardware type for the machine image. This is the
VMware hardware type: 4 (ESXi>3.x), 7 (ESXi>4.x) or 9 (ESXi>5.x)

• installation (optional): an object providing low-level installation or first boot options. These override any installation options in the Stack section. The following valid keys for installation are:

– diskSize (mandatory): an integer providing the disk size of the machine image to create. Note,
this overrides any disk size information in the stack. This cannot be used if an advanced partitioning
table is defined in the stack.

• type (mandatory): the builder type: vmware

Example

The following example shows an VMware Workstation builder.

{
"builders": [
{

"type": "vmware",
"hardwareSettings": {
"memory": 1024,
"hwType": 7

}
}

]
}

VMware vSphere vCenter

Builder type: vcenter Require Cloud Account: Yes

The VMware vCenter builder provides information for building VMware vSphere vCenter compatible machine im-
ages. The VMware vCenter builder section has the following definition:

{
"builders": [
{

"type": "vcenter",
...the rest of the definition goes here.

10.2. Builders 141

Hammr Guide, Release 3.5.1

}
]

}

Building a Machine Image

For building an image, the valid keys are:

• hardwareSettings (mandatory): an object providing hardware settings to be used for the machine image. The following valid keys for hardware settings are:

– memory (mandatory): an integer providing the amount of RAM to provide to an instance provisioned
from the machine image (in MB).

– hwType (optional): an integer providing the hardware type for the machine image. This is the
VMware hardware type: 4 (ESXi>3.x), 7 (ESXi>4.x) or 9 (ESXi>5.x)

• installation (optional): an object providing low-level installation or first boot options. These override any installation options in the Stack section. The following valid keys for installation are:

– diskSize (mandatory): an integer providing the disk size of the machine image to create. Note,
this overrides any disk size information in the stack. This cannot be used if an advanced partitioning
table is defined in the stack.

• type (mandatory): the builder type: vcenter

Publishing a Machine Image

To publish an image, the valid keys are:

• account (mandatory): an object providing the VMware vSphere vCenter cloud account information required
to publish the built machine image.

• cluster (mandatory): a string providing the name of the cluster to register the machine image.

• datacenterName (mandatory): a string providing the name of the datacenter to register the machine image.

• datastore (mandatory): a string providing the name of the datastore where to store the machine image.

• imageName (mandatory): a string providing the name of the machine image to display in VMware vSphere
vCenter.

• type (mandatory): a string providing the builder type: vcenter

vSphere vCenter Cloud Account

Key: account Used to authenticate to VMware vSphere vCenter.

The vCenter cloud account has the following valid keys:

• hostname (mandatory): a string providing the fully-qualified hostname or IP address of the VMware vSphere
vCenter platform.

• password (mandatory): a string providing the password to use to authenticate to the VMware vSphere vCenter
platform

• port (optional): an integer providing the VMware vSphere vCenter platform port number (by default: 443 is
used).

142 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

• proxyHostname (optional): a string providing the fully qualified hostname or IP address of the proxy to
reach the VMware vSphere vCenter platform.

• proxyPort (optional): an integer providing the proxy port number to use to reach the VMware vSphere
vCenter platform.

• type (mandatory): a string providing the builder type: vcenter

• username (mandatory): a string providing the user name to use to authenticate to the VMware vSphere vCen-
ter platform

..note:: In the case where name or file is used to reference a cloud account, all the other keys are no longer required
in the account definition for the builder.

Example

The following example shows an vCenter builder with all the information to build and publish a machine image to
VMware vSphere vCenter.

{
"builders": [
{

"type": "vcenter",
"account": {
"type": "vcenter",
"name": "My vCenter Account",
"hostname": "10.1.1.2",
"username": "joris",
"password": "mypassword"

},
"hardwareSettings": {

"memory": 1024,
"hwType": 7

},
"installation": {

"diskSize": 10240
},
"datacenter": "HQProd",
"cluster": "myCluster",
"datastore": "myDatastore",
"imageName": "CentOS Core"

}
]

}

Referencing the Cloud Account

To help with security, the cloud account information can be referenced by the builder section. This example is the same
as the previous example but with the account information in another file. Create a json file vcenter-account.
json.

{
"accounts": [
{

"type": "vcenter",
"name": "My vCenter Account",

10.2. Builders 143

Hammr Guide, Release 3.5.1

"hostname": "10.1.1.2",
"username": "joris",
"password": "mypassword"

}
]

}

The builder section can either reference by using file or name.

Reference by file:

{
"builders": [
{

"type": "vcenter",
"account": {
"file": "/home/joris/accounts/vcenter-account.json"

},
"hardwareSettings": {

"memory": 1024,
"hwType": 7

},
"installation": {

"diskSize": 10240
},
"datacenter": "HQProd",
"cluster": "myCluster",
"datastore": "myDatastore",
"imageName": "CentOS Core"

}
]

}

Reference by name, note the cloud account must already be created by using account create.

{
"builders": [
{

"type": "vcd",
"account": {
"name": "My vCenter Account"

},
"hardwareSettings": {

"memory": 1024,
"hwType": 7

},
"installation": {

"diskSize": 10240
},
"datacenter": "HQProd",
"cluster": "myCluster",
"datastore": "myDatastore",
"imageName": "CentOS Core"

}
]

}

144 Chapter 10. Templates Specification

Hammr Guide, Release 3.5.1

Xen

Builder type: xen Require Cloud Account: No

The Xen builder provides information for building a Xen.org compatible machine images. The Xen builder section
has the following definition:

{
"builders": [
{

"type": "xen",
...the rest of the definition goes here.

}
]

}

Building a Machine Image

For building an image, the valid keys are:

• hardwareSettings (mandatory): an object providing hardware settings to be used for the machine image. The following valid keys for hardware settings are:

– memory (mandatory): an integer providing the amount of RAM to provide to an instance provisioned
from the machine image (in MB).

• installation (optional): an object providing low-level installation or first boot options. These override any installation options in the Stack section. The following valid keys for installation are:

– diskSize (mandatory): an integer providing the disk size of the machine image to create. Note,
this overrides any disk size information in the stack. This cannot be used if an advanced partitioning
table is defined in the stack.

• type (mandatory): the builder type: xen

Example

The following example shows a Xen builder.

{
"builders": [
{

"type": "xen",
"hardwareSettings": {
"memory": 1024

}
}

]
}

10.2.3 Physical Targets

ISO

Builder type: iso

10.2. Builders 145

Hammr Guide, Release 3.5.1

Require Cloud Account: No The ISO builder provides information for building ISO images.

The ISO builder section has the following definition:

{
"builders": [
{

"type": "iso",
...the rest of the definition goes here.

}
]

}

Building a Machine Image

For building an image, the valid keys are:

• installation (optional): an object providing low-level installation or first boot options. These override any installation options in the Stack section. The following valid keys for installation are:

– diskSize (mandatory): an integer providing the disk size of the machine image to create. Note, this
overrides any disk size information in the stack. This cannot be used if an advanced partitioning table
is defined in the stack.

• type (mandatory): the builder type: iso

Example

The following example shows an ISO builder.

{
"builders": [
{

"type": "iso"
}

]
}

146 Chapter 10. Templates Specification

CHAPTER 11

Migrating a Live System

Hammr allows you to migrate a live system. The key steps in migrating your system are:

1. Scan your system, this sends a scan report back to your UForge account

2. From the scan report, build and publish a machine image

3. Finally provision an instance from the published machine image (effectively migrating the system)

Optionally, at step #2, you can import the scan report to create a template. This allows you to change the content prior
to building a machine image.

First, scan the system you wish to migrate by running scan run. This “deep scans” the live system, reporting back
the meta-data of every file and package that makes up the running workload. The following is an example of a scan of
a live system:

$ hammr scan run --ip 192.0.2.0 --scan-login LOGIN --name scan-name
Password for root@192.0.2.0:
... uforge-scan v2.54 (Feb 18 2014 13:16:37) (SVN Revision: 21664)
... Distribution: Debian / 6.0.9 / x86_64
... Current System Name: Linux
... Node Name: test-deb-1-0rev2-vbox
... Release: 2.6.32-5-amd64
... Version: #1 SMP Tue May 13 16:34:35 UTC 2014
... Machine: x86_64
... Domain: (none)
... Server URL: http://192.168.10.141/ufws-3.3
... User: root
... Testing connection to the service...
... SUCCESS!
...
...
Searching scan on uforge ...
|>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>| 100%: Successfully scanned |<<<<<<<<<<<<<<<<<<<<<<
→˓<<<<<<<<<<|
OK: Scan successfully

147

Hammr Guide, Release 3.5.1

Once you have run the scan of your system, a scan report is saved to your account. You can list your scans by running
scan list. The output will be similar to the following. As you can see below, the “scanExample” is the group
name. The actual scan appears below it with “Scan #1 added to the name. If you run the scan on the same machine
again, the scan number will increase. This allows you to compare scans.

$ hammr scan list
Getting scans for [root] ...
+-----+-----------------------------+--------+-----------------+
| Id | Name | Status | Distribution |
+=====+=============================+========+=================+
| 133 | scanExample | | Debian 6 x86_64 |
+-----+-----------------------------+--------+-----------------+
| 149 | scanExample Scan #1 | Done | |
+-----+-----------------------------+--------+-----------------+
Found 1 scans

If you are simply moving your system from one cloud provider to another, you can then simply build a machine image
from this scan by running scan build. The following is an example which builds a machine image from a scan:

$ hammr scan build --id 192 --file openstack-builder.json
OK: Syntax of template file [openstack-builder.json] is ok
Generating 'openstack' image (1/1)
|>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>| 100%: Done, created on ... |<<<<<<<<<<<<<<<<<<<<<<
→˓<<<<<<<<<<|
OK: Generation 'openstack' ok

In the example above, you will need to have a JSON file which defines the builder parameters for the type of
machine image you want to create. This is NOT a full template configuration file, but just the builders parameters. For
example:

{
"builders": [
{

"type": "openstack",
"hardwareSettings": {
"memory": 1024

},
"installation": {

"diskSize": 2000
},
"account": "Openstack OW2",
"tenant": "opencloudware",
"imageName": "scan-test",
"publicImage": "no"

}
]

}

11.1 Updating a Template Before Migrating

Hammr also allows you to modify or update packages that are part of the system you want to migrate. To do this,
you first need to transform the scan report to a template. You can then modify any part of this new template prior to
building the final machine image used for migration.

To create a template from your scan you will need to run scan import. The following is an example that shows a
scan conversion to a template within UForge.

148 Chapter 11. Migrating a Live System

Hammr Guide, Release 3.5.1

$ hammr scan import --id 123 --name "MyScan" --version "1.0"
Import scan id [123] ...
|>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>| 100%: Imported 28 May 2... |<<<<<<<<<<<<<<<<<<<<<
→˓<<<<<<<<<<<|
OK: Importing ok

Once this template is created, you can now update it. In this release, hammr does not provide a mechanism to update
existing templates. So to update a template you must:

1. Export the template – see section Importing and Exporting for more information.

2. Extract the archive, retrieving the JSON configuration file.

3. Update the JSON file with the required changes, you will need to change either the template name or version so
you do not get a conflict when you create the new template.

4. Create a new template – see section Creating and Managing Templates.

5. Build and publish the machine image (which effectively migrates the workload with the changes) – see section
Building and Publishing Machine Images

11.1. Updating a Template Before Migrating 149

	Introduction
	Getting Started
	Template Configuration File
	Installation
	Launching hammr
	Creating Your First Machine Image

	Authentication
	Command-line Parameters

	Using a Credential File
	Command-Line
	account
	bundle
	format
	image
	os
	quota
	scan
	template

	You Account
	Operating Systems
	Quotas
	Setting Your Cloud Accounts

	Creating and Managing Templates
	Creating a Template
	Validating Your Template
	Adding Packages to Your Template
	Searching for Packages
	Understanding Package Updates
	Package Dependencies and Updates
	Using Advanced Partitioning

	Building and Publishing Machine Images
	Building a Machine Image
	Listing the Images Generated
	Publishing a Machine Image
	Downloading a Machine Image

	Importing and Exporting
	Exporting a Template
	Importing a Template

	Templates Specification
	Stack
	Builders

	Migrating a Live System
	Updating a Template Before Migrating

