habitat
Release 0.2.0

November 21, 2014






Contents

1 Introduction
2 Installing

3 Configuration

3.1 Command Line Configuration . . . . . . . . . . . . . it e e

3.2 Configuration File . . . . . . . . . . L e
4 Database information

4.1 Schema . . . . . .. e e

4.2 Views, Filters & Validation Functions . . . . . . . . . . . . . . . . . e

43 Included VIEWS . . . . . o ot i e e e e e e e e e e e

44 Using Views: Example . . . . . . . . o
5 Filters

5.1 FilterLevels . . . . . . . o e e e e e e e e e e e e

5.2 Filter SyntaxX . . . . . . . e e e e e e e e e e e e e e e

53 Filter Utils . . . . . . o e e
6 Certificates

6.1 GeneratingaPrivate Key . . . . . . . . . . e e e e

6.2  Generating a Certificate Authority . . . . . . . . . o o o v i e e e e e e

6.3 SigningCode . . . . . .. e e e e e e
7 UKHAS Parser Configuration

7.1 Introduction . . . . . . . e e e e e e

7.2 Generating Payload Configuration Documents . . . . . . .. ... ... ... ... ... ... .

7.3  Standard UKHAS Sentences . . . . . . . . . . . . e e e e e e e e

7.4  Parser Module Configuration . . . . . . . . ... .o e

8 habitat code documentation
8.1 habitat . . . . . . e e s,

9 Indices and tables

Python Module Index

15
15
15
15

17
17
17
17
17

21
21

51

53







habitat, Release 0.2.0

Contents:

Contents 1



habitat, Release 0.2.0

2 Contents



CHAPTER 1

Introduction

habitat is a system for uploading, processing, storing and displaying telemetry and related information transmitted
from high altitude balloons.

Typically this telemetry takes the form of a GPS position and potentially other data, accompanied by information on
who received the data, and is displayed by means of a map or chart (or both) showing the path a balloon took and the
historic trend of sensor readings.

Internally, configuration and data is stored in a CouchDB database. The back end is written in Python and is responsible
for parsing incoming data and storing it in the database, while the frontend is written independently in JavaScript and
HTML and communicates with CouchDB directly to obtain data and display it.

This documentation covers setting up a habitat system, describes the format used to store data in CouchDB, and
provides reference documentation for the habitat source code.

Useful habitat links:
e habitat on github
* habitat’s continuous integration server
e this documentation

* habitat home page



http://github.com/ukhas/habitat/
http://ci.habhub.org/
http://habitat.habhub.org/docs/
http://habitat.habhub.org/

habitat, Release 0.2.0

4 Chapter 1. Introduction



CHAPTER 2

Installing

habitat is currently still in early development and is not ready to be installed.

Check back here later for installation help when the first release is out.




habitat, Release 0.2.0

6 Chapter 2. Installing



CHAPTER 3

Configuration

3.1 Command Line Configuration

habitat daemons takes zero or one command line arguments: an optional filename specifying the configuration to use,
or ”./habitat.yml” by default:

./bin/parser
# or
./bin/parser /path/to/config.yml

3.2 Configuration File

The configuration file is written in YAML as several key: value pairs. Various habitat components may require certain
pieces of configuration; where possible these are all documented here.

3.2.1 habitat-wide Configuration

couch_uri: "http://localhost:5984"
couch_db: habitat
log_stderr_level: DEBUG
log_file_level: INFO

couch_uri and couch_db specify how to connect to the CouchDB database. The URI may contain authentication
details if required.

log_stderr_level and log_file_level set the log levels for a log file and the stderr output and may be “NONE”, “ERROR”,
“WARN”, “INFO” or “DEBUG”.

3.2.2 parser configuration

parser:
certs_dir: "/path/to/certs"
modules:
— name: "UKHAS"
class: "habitat.parser_modules.ukhas_parser.UKHASParser"
parserdaemon:

log_file: "/path/to/parser/log"



http://www.yaml.org/

habitat, Release 0.2.0

Inside the parser and parserdaemon objects:
* certs_dir specifies where the habitat certificates (used for code signing) are kept
* log_file specifies where the parser daemon should write its log file to

* modules gives a list of all the parser modules that should be loaded, with a name (that must match names used
in flight documents) and the Python path to load.

This configuration is used by habitat.parser and habitat.parser_daemon.

3.2.3 loadable_manager configuration

loadables:
— name: "sensors.base"
class: "habitat.sensors.base"
— name: "sensors.stdtelem"
class: "habitat.sensors.stdtelem"
— name: "filters.common"

class: "habitat.filters"

Inside the loadables object is a list of modules to load and the short name they should be loaded against. This is used
by habitat.loadable_manager.

8 Chapter 3. Configuration



CHAPTER 4

Database information

4.1 Schema

habitat stores information in a CouchDB database. At present five types of document are stored, identified by a t ype
key:

¢ Flight documents detailing a balloon flight (type: "flight")

 Payload Configuration documents containing settings for one payload, such as radio transmission data and
format (type: "payload_configuration™").

* Payload Telemetry documents containing parsed information from a telemetry message transmitted by a payload
and associated with a Flight (type: "payload_telemetry")

 Listener telemetry documents containing position data on someone listening to a payload (type:
"listener_telemetry")

e Listener information documents containing metadata on a listener such as name and radio (type:
"listener_information")

The schema are described using JSON Schema and the latest version may be browsed online via jsonschema explorer.

Database documents are typically managed through the various web interfaces and are uploaded and retrieved using
the CouchDB API.

4.2 Views, Filters & Validation Functions

Documents in the habitat CouchDB are indexed and accessed using CouchDB views, which are pre-calculated sets of
results that are updated automatically and may be paged and searched through.

A selection of generic views are provided, but it’s entirely likely that a custom view would be required for a given
application.

Three types of function may be defined in a CouchDB design document. Views consist of a map and optionally a
reduce and are typically used to query stored data. Filters selectively include certain documents in a stream from
the database, for example to the parser. Validation functions check all new incoming documents to ensure they meet
whatever requirements are imposed, making sure that only valid documents are stored in the database.

For more comprehensive information, please refer to the CouchDB documentation.



http://habitat.habhub.org/jse
http://wiki.apache.org/couchdb/HTTP_Document_API
http://wiki.apache.org/couchdb/Introduction_to_CouchDB_views

habitat, Release 0.2.0

4.3 Included Views

For documentation on the views currently included with habitat, please refer to the source documentation for each:
habitat.views.

4.4 Using Views: Example

4.4.1 Simple Example

In this simple example we just fetch the list of payload_configuration documents and print out payload names. The
full configuration document is available as payload|”doc”].

Python

import couchdbkit
db = couchdbkit.Server ("http://habitat.habhub.org") ["habitat"]
payloads = db.view("payload_configuration/name_time_created", include_docs=True)
for payload in payloads:
print "Payload: {0}".format (payload["key"][0])

Javascript

<script src="jguery.couch.js"></script>

db = $.couch.db("habitat™)
db.view ("payload_configuration/name_time_created", {include_docs: true, success: function (data) {
for (payload in data.rows) {
console.log("Payload: " + data.rows[payload].key[0]);

PH)

4.4.2 View Collation

A more complicated example, which demonstrates view collation. The flight/launch_time_including_payloads view
returns both flight documents and the associated payload_configuration documents, indicated by the second item in
the key (O for flight, 1 for payload_configuration). This code snippet fetches all the flights and prints their name and
launch time and the name of each payload in them.

Python

import couchdbkit

db = couchdbkit.Server ("http://habitat.habhub.org") ["habitat"]

flights = db.view("flight/launch_time_including_payloads", include_docs=True)
for flight in flights:

if flight["key"][1] == O:
print "Flight {0} launches at {1}!".format (
flight["doc"] ["name"], flight["doc"]["launch"]["time"])
print " Payloads:"

10 Chapter 4. Database information


http://wiki.apache.org/couchdb/View_collation

habitat, Release 0.2.0

else:
print " {0}".format (flight["doc"] ["name"])

4.4. Using Views: Example 11



habitat, Release 0.2.0

12 Chapter 4. Database information



CHAPTER 5

Filters

5.1 Filter Levels

There are three points in the message flow at which a filter can act: before pre-parsing happens, after the pre-parse but
before the main parse, and after the main parse.

Pre-parsing extracts a callsign from a string and uses it to look up the rest of the payload’s configuration, so pre-parse
filters are specified per module and will act on everything that module receives. These are called pre-filters and are
specified in the parser configuration document.

Intermediate filters act after a callsign has been found but before the message is parsed for data, so they can correct
particular format errors a certain payload might be transmitting. Post-parse filters act after the data parsing has hap-
pened, so can tweak the output data. Both intermediate and post filters are specified in the payload section of a flight
document.

5.2 Filter Syntax

Two types of filters are supported: normal and hot fix. Normal filters give a callable object, which must be in
the Python path, and optionally may give a configuration object which will be passed as the second argument to the
callable. Hotfix filters just supply some Python code, which is used as the body of a function given the incoming data
as its sole argument. In either case, the filter must return the newly processed data.

Example of a normal filter:

{
"type": "normal",
"callable": "habitat.filters.upper_case"

}

# habitat/filters.py
def upper_case (data) :
return data.upper ()

A normal filter with a configuration object:

{
"type": "normal",
"callable": "habitat.filters.daylight_savings",
"config": {"time_field": 7}

13



habitat, Release 0.2.0

# habitat/filters.py
def daylight_savings(data, config):

time = data[config[’time_field’]]
hour = int (time[0:2])
datalconfig[’time_field’]] = str(hour + 1) + time[2:]

return data

A hotfix filter:
{
"type": "hotfix",
"code": "parts = data.split(’,’)\nreturn ’.’.join(parts)\n"

Which would be assembled into:

def f (data):
parts = data.split(’,’)
return ’ .’ .Jjoin(parts)

A more complete hotfix example, to fix non-zero-padded time values:

from habitat.utils.filtertools import UKHASChecksumFixer

parts = data.split (", ")
timestr = parts[2]

timeparts = timestr.split(":")

timestr = "{0:02d}:{1:02d}:{2:02d}".format (»[int (part) for part in timeparts])
parts[2] = timestr

newdata = ",".join (parts)

with UKHASChecksumFixer (' xor’, {"data": data}) as fixer:
fixer["data"] = newdata

return fixer["data"]

5.3 Filter Utils

Please refer to habitat.utils.filtertools for information on available filter tools such as UKHASChecksumFixer used
above.

14 Chapter 5. Filters



CHAPTER 6

Certificates

The certificates folder contains x509 certificate files which are used to verify the authenticity of hotfix code.

As hotfix code is run live from the CouchDB database, habitat uses certificates to check that the code can be trusted.
The habitat developers maintain a certificate authority, whose certificate is included as ca/habitat_ca_cert.pem, which
is used to sign code-signing certificates.

Hotfix code then has its SHA-256 digest signed by the developer’s private key, and this is verified by habitat before
the code is executed.

You can add new CA certificates to the ca folder, and new code-signing certificates to the certs folder, as you please.
Hotfix code references a certificate filename found in the certs folder.

6.1 Generating a Private Key

S openssl genrsa -des3 4096 > private.pem
S openssl req -new —-key private.pem -out reqg.csr

Now send req.csr to us and we can sign it with the habitat CA and give you the signed certificate.

6.2 Generating a Certificate Authority

This is a fair bit more complex. Consider using tools such as tinyca or gnomint.

6.3 Signing Code

S vi my_hotfix_code.py
$ habitat/bin/sign_hotfix my_hotfix_code.py ~/my_rsa_key.pem

The printed result is a JSON object which can be placed into the filters list on a flight document.

15



habitat, Release 0.2.0

16 Chapter 6. Certificates



CHAPTER 7

UKHAS Parser Configuration

7.1 Introduction

The UKHAS protocol is the most widely used at time of writing, and is implemented by the UKHAS parser module.
This document provides information on how what configuration settings the UKHAS parser module expects.

Parser module configuration is given in the “sentence” dictionary of the payload dictionary in a flight document.

7.2 Generating Payload Configuration Documents

The easiest and recommended way to generate configuration documents is using the web tool genpayload.

7.3 Standard UKHAS Sentences

A typical minimum UKHAS protocol sentence may be:

$$habitat,123,13:16:24,51.123,0.123,11000%xABCD

This sentence starts with a double dollar sign ($$) followed by the payload name (here habitat), several comma-
delimited fields and is then terminated by an asterisk and four-digit CRC16 CCITT checksum (*ABCD).

In this typical case, the fields are a message ID, the time, a GPS latitude and longitude in decimal degrees, and the
current altitude.

However, both the checksum algorithm in use and the number, type and order of fields may be configured per-payload.

7.4 Parser Module Configuration

The parser module expects to be given the callsign, the checksum algorithm, the protocol name (“UKHAS”) and a list
of fields, each of which should at least specify the field name and data type.

7.4.1 Checksum Algorithms

Three algorithms are available:

17


http://habitat.habhub.org/genpayload

habitat, Release 0.2.0

¢ CRC16 CCITT (crcl6-ccitt):

The recommended algorithm, uses two bytes transmitted as four ASCII digits in hexadecimal. Can often be
calculated using libraries for your payload hardware platform. In particular, note that we use a polynomial of
0x1021 and a start value of OxFFFF, without reversing the input. If implemented correctly, the string habitat
should checksum to Ox3EFB.

+ XOR (x07):

The simplest algorithm, calculating the one-byte XOR over all the message data and transmitting as two ASCII
digits in hexadecimal. habitat checksums to 0x63.

¢ Fletcher-16 (fletcher-16):

Not recommended but supported. Uses a modulus of 255 by default, if modulus 256 is required use
fletcher-16-256.

In all cases, the checksum is of everything after the $$ and before the *.

7.4.2 Field Names

Field names may be any string that does not start with an underscore. It is recommended that they follow the basic
pattern of prefix [_suffix[_suffix[...]]] toaid presentation: for example, temperature_internal
and temperature_external could then be grouped together automatically by a user interface.

In addition, several common field names have been standardised on, and their use is strongly encouraged:

Field Name Notes
To Use

Sentence ID (aka count, sentence Andncreasing integer

message count, sequence

number)

Time time Something like HH:MM:SS or HHMMSS or HHMM or HH:MM.

Latitude latitude Will be converted to decimal degrees based on format field.

Longitude longituddVill be converted to decimal degrees based on format field.

Altitude altitudeln, or converted to, metres.

Temperature temperalt Sheuld specify a suffix, such as _internal or _external. In
or converted to degrees Celsius.

Satellites In View satelliftes

Battery Voltage battery| Suffixes allowable, e.g., _backup, _cutdown, but without the
suffix it is treated as the main battery voltage. In volts.

Pressure pressure Suffixes allowable, e.g., _balloon. Should be in or converted to
Pa.

Speed speed For speed over the ground. Should be converted to m/s (SI units).

Ascent Rate ascentrpaber vertical speed. Should be m/s.

Standard user interfaces will use title case to render these names, so f1ight_mode would become F1ight Mode
and so on. Some exceptions may be made in the case of the common field names specified above.

7.4.3 Field Types

Supported types are:
* string: aplain text string which is not interpreted in any way.

e float: a value that should be interpreted as a floating point number. Transmitted as a string, e.g., “123.45”,
rather than in binary.

18 Chapter 7. UKHAS Parser Configuration



habitat, Release 0.2.0

e int: a value that should be interpreted as an integer.

* time: afield containing the time as either HH:MM: SS or just HH : MM. Will be interpreted into a time represen-
tation.

e time: a field containing the time of day, in one of the following formats: HH:MM:SS, HHMMSS, HH: MM,
HHMM.

e coordinate: a coordinate, see below

7.4.4 Coordinate Fields

Coordinate fields are used to contain, for instance, payload latitude and longitude. They have an additional configura-
tion parameter, format, which is used to define how the coordinate should be parsed. Options are:

* dd.dddd: decimal degrees, with any number of digits after the decimal point. Leading zeros are allowed.

* ddmm.mm: degrees and decimal minutes, with the two digits just before the decimal point representing the
number of minutes and all digits before those two representing the number of degrees.

In both cases, the number can be prefixed by a space or + or - sign.

Please note that the the options reflect the style of coordinate (degrees only vs degrees and minutes), not the number
of digits in either case.

7.4.5 Units

Received data may use any convenient unit, however it is strongly recommended that filters (see below) be used to
convert the incoming data into SI units. These then allow for standardisation and ease of display on user interface
layers.

7.4.6 Filters

See Filters

7.4. Parser Module Configuration 19



habitat, Release 0.2.0

20

Chapter 7. UKHAS Parser Configuration



CHAPTER 8

habitat code documentation

habitat The top level habitat package.

8.1 habitat

The top level habitat package.

habitat is an application for tracking the flight path of high altitude balloons, relying on a network of users with radios
sending in received telemetry strings which are parsed into position information and displayed on maps.

See http://habitat.habhub.org for more information.

habitat.parser Interpret incoming telemetry strings into useful telemetry data.

habitat.parser_daemon Run the Parser as a daemon connected to CouchDB’s _changes feed.
habitat.parser_modules Parser modules for specific protocols.

habitat.loadable_manager Load configured Python functions for later use elsewhere.

habitat.sensors Sensor function libraries.

habitat.filters Commonly required filters that are supplied with habitat.

habitat.uploader Python interface to document insertion into CouchDB.

habitat.utils Various utilities for general use by habitat.

habitat.views View functions for CouchDB with the couch-named-python view server, used by habitat relatec

8.1.1 habitat.parser

Interpret incoming telemetry strings into useful telemetry data.

Classes

Parser(config) habitat’s parser
ParserModule(parser) Base class for real ParserModules to inherit from.

class habitat .parser.Parser (config)
habitat’s parser

Parser takes arbitrary unparsed payload telemetry and attempts to use each loaded ParserModule to turn
this telemetry into useful data.

21


http://habitat.habhub.org

habitat, Release 0.2.0

On construction, it will:
*Use config[daemon_name] as self.config (defaults to ‘parser’).
*[oad modules from self.config["modules"].
*Connects to CouchDB using self.config["couch_uri"] and config["couch_db"].

pacrse (doc, initial_config=None)
Attempts to parse telemetry information out of a new telemetry document doc.

This function attempts to determine which of the loaded parser modules should be used to parse the mes-
sage, and which payload_configuration document it should be given to do so (if initial_config is specified,
no attempt will be made to find any other configuration document).

The resulting parsed document is returned, or None is returned if no data could be parsed.
Some field names in data[”’data”] are reserved, as indicated by a leading underscore.
These fields may include:

»_protocol which gives the parser module name that was used to decode this message
From the UKHAS parser module in particular:

»_sentence gives the ASCII sentence from the UKHAS parser
Parser modules should be wary when outputting field names with leading underscores.

class habitat .parser.ParserModule (parser)
Base class for real ParserModules to inherit from.

ParserModules are classes which turn radio strings into useful data. They do not have to inherit from
ParserModule, but can if they want. They must implement pre_parse () and parse () as described
below.

pre_parse (string)
Go though string and attempt to extract a callsign, returning it as a string. If string is not parseable by
this module, raise CantParse. If string might be parseable but no callsign could be extracted, raise
CantExtractCallsign.

pacrse (string, config)
Go through string which has been identified as the format this parser module should be able to parse,
extracting the data as per the information in config, which is the sent ence dictionary extracted from the
payload’s configuration document.

8.1.2 habitat.parser_daemon

Run the Parser as a daemon connected to CouchDB’s _changes feed.

Classes

ParserDaemon(config[, daemon_name]) ParserDaemon runs persistently, watching CouchDB’s _changes feed

class habitat .parser_daemon.ParserDaemon (config, daemon_name="parserdaemon’)
ParserDaemon runs persistently, watching CouchDB’s _changes feed for new unparsed telemetry, parsing it
with Parser and storing the result back in the database.

On construction, it will:

22 Chapter 8. habitat code documentation



habitat, Release 0.2.0

*Connect to CouchDB using self.config["couch_uri"] and config["couch_db"].

run ()
Start a continuous connection to CouchDB’s _changes feed, watching for new unparsed telemetry.

8.1.3 habitat.parser_modules

Parser modules for specific protocols.

habitat.parser_modules.ukhas_parser This module contains the parser for the UKHAS telemetry protoco
habitat.parser_modules.simple_binary_parser This module contains a parser for a generic and simple binary prot

habitat.parser_modules.ukhas_parser

This module contains the parser for the UKHAS telemetry protocol format.
The protocol is most succinctly described as:

$$<callsign>, <data>, <data>, ..., <data>*<checksum>

The typical minimum telemetry string is:

$$<callsign>, <message number>,<time>,<latitude>, <longitude>,<altitude>,<data>,...,<data>*<checksum>

The number of custom data fields and their types are configurable.

Data fields are typically human readable (or at the least ASCII) readings of sensors or other system information. See
the habitat . sensors module for more information on supported formats.

Checksums work on the message content between the $$ and the %, non-inclusive, and are given as hexadecimal
(upper or lower case) after the » in the message.

Supported checksums are CRC16-CCITT with polynomial 0x1021 and start OxFFFF, Fletcher-16 and an 8bit XOR
over the characters. The corresponding values for configuration are crcl6-ccitt, fletcher-16 and xor. For
compatibility, a varient of Fletcher16 using modulus 256 is also provided, as fletcher—-16-256. Don’t use it for
new payloads. none may also be specified as a checksum type if no checksum is used; in this case the message should
not include a terminating *.

See also:

UKHAS Parser Configuration

Classes

ParserModule(parser) Base class for real ParserModules to inherit from.
UKHASParser(parser) The UKHAS Parser Module

class habitat.parser_modules.ukhas_parser.UKHASParser (parser)
The UKHAS Parser Module

pre_parse (string)
Check if string is parsable by this module.

Ifitis, pre_parse () extracts the payload name and return it. Otherwise, a Va lueError is raised.

parse (string, config)

8.1. habitat 23


http://docs.python.org/2.7/library/exceptions.html#exceptions.ValueError

habitat, Release 0.2.0

Parse string, extracting processed field data.
config is a dictionary containing the sentence dictionary from the payload’s configuration document.

Returns a dictionary of the parsed data, with field names as keys and the result as the value. Also inserts
a payload field containing the payload name, and an _sentence field containing the ASCII sentence
that data was parsed from.

ValueError israised on invalid messages.

habitat.parser_modules.simple_binary_parser

This module contains a parser for a generic and simple binary protocol. The protocol does not specify callsigns or
checksums, so the assumption is that both are provided in an outer protocol layer or out of band. Any binary data that
python’s struct.unpack may interpret is usable.

Any fields may be submitted but it is recommended that a GPS-provided latitude, longitude and time are submitted.

The configuration document should specify the format string, a name and optionally a sensor for each field in the
data. The format strings will be concatenated to unpack the data. A format string prefix may be provided as the
format_prefix key in the configuration, to specify byte order, size and alignment. Note that at present each field
must map to precisely one format string argument, so while variable length strings are OK, a field cannot have, for
instance, two integers.

Example payload_configuration.sentences[0]:

{

"protocol": "simple_binary",
"callsign": "1234567890",
"format_prefix": "<",
"fields": [
{
"format": "i",
"name": "latitude"
b Ao
"format": "i",
"name": "longitude"
b A
"format": "I",
"name": "date",
"sensor": "std_telem.binary_timestamp"
oo Ao
"format": "b",
"name": "temperature"

1,
"filters": {

"post": [
{
"type": "normal",
"filter": "common.numeric_scale",
"source": "latitude",

"scale": 1E-7

"type": "normal",
"filter": "common.numeric_scale",
"source": "longitude",

"scale": 1E-7

24 Chapter 8. habitat code documentation


http://docs.python.org/2.7/library/exceptions.html#exceptions.ValueError

habitat, Release 0.2.0

}

For the list of format string specifiers, please see: http://docs.python.org/2/library/struct.html.

The filter common . numeric_scale may be useful for fixed-point data rather than sending floats, and the various
std_telem.binaryx sensors may be applicable.

Classes

ParserModule(parser) Base class for real ParserModules to inherit from.
SimpleBinaryParser(parser) The Simple Binary Parser Module

Exceptions

CantExtractCallsign Parser submodule cannot find a callsign, though in theory might be able to parse the sentence if one we

class habitat.parser_modules.simple_binary_parser.SimpleBinaryParser (parser)
The Simple Binary Parser Module

pre_parse (string)
As no callsign is provided by the protocol, assume any string we are given is potentially parseable binary
data.

parse (data, config)
Parse string, extracting processed field data.

config is the relevant sentence dictionary from the payload’s configuration document, containing the re-
quired binary format and field details.

Returns a dictionary of the parsed data.

ValueError is raised on invalid messages.

8.1.4 habitat.loadable_manager

Load configured Python functions for later use elsewhere.

The manager is configured with modules to use and it loads all the functions defined in each module’s__al1__ . This
ensures that users cannot specify arbitrary paths in runtime configuration which may lead to undesired or insecure
behaviour.

The modules that functions are loaded from are given shorthand names to ease referring to them elsewhere, for example
habitat.sensors.stdtelem.time () might become stdtelem.time. The shorthand is specified in the
configuration document.

Configuration

loadable_manager reads its configuration data from the config argument to LoadableManager.__init__, which is typ-
ically parsed from the configuration YAML file in the following format:

8.1. habitat 25


http://docs.python.org/2/library/struct.html

habitat, Release 0.2.0

loadables:
— name: "sensors.base"
class: "habitat.sensors.base"
— name: "filters.common"

class: "habitat.filters"

name specifies the shorthand name that the module will be available under; it should begin either sensors or
filters for use by the respective parts of habitat, which prepend the relevant prefix themselves.

For example, to use the filter habitat.filters.semicolons_to_commas () in a flight document, having
configured as above, you would specify:

"filters": {

"intermediate": {
[
{
"type": "normal",
"filter": "common.semicolons_to_commas"

Sensor Functions

One of the major uses of loadable_manager (and historically its only use) is sensor functions, used by parser modules
to convert input data into usable Python data formats. See habitat.sensors for some sensors included with
habitat, but you may also want to write your own for a specific type of data.

A sensor function may two one or two arguments, config and data or just data. It can return any Python object which
can be stored in the CouchDB database.

config is a dict of options. It is passed to the function from LoadableManager.run ()

data is the string to parse.

Filter Functions

Another use for the loadable_manager is filters that are applied against incoming telemetry strings. Which filters to
use is specified in a payload’s flight document, either as user-specified (but signed) hotfix code or a loadable function
name, as with sensors.

See habitat.filters for some filters included with habitat.

Filters can take one or two arguments, config, data or just data. They should return a suitably modified form of data,
optionally using anything from config which was specified by the user in the flight document.

Classes

LoadableManager(config) The main Loadable Manager class.

class habitat.loadable_manager.LoadableManager (config)
The main Loadable Manager class.

On construction, all modules listed in config[’loadables’’] will be loaded using 1oad ().

26 Chapter 8. habitat code documentation



habitat, Release 0.2.0

load (module, shorthand)
Loads module as a library and assigns it to shorthand.

run (name, config, data)
Run the loadable specified by name, giving it config and data.

If the loadable only takes one argument, it will only be given data. config is ignored in this case.
Returns the result of running the loadable.

8.1.5 habitat.sensors

Sensor function libraries.

habitat.sensors.base Basic sensor functions.
habitat.sensors.stdtelem Sensor functions for dealing with telemetry.

habitat.sensors.base

Basic sensor functions.

These sensors cover simple ASCII representations of numbers and strings.

Functions

ascii_float(config, data) Parse data to a float.

ascii_int(config, data) Parse data to an integer.
constant(config, data) Checks that data is equal to config[”expect”], returning None.
string(data) Returns data as a string.

habitat.sensors.base.ascii_int (config, data)
Parse data to an integer.

habitat.sensors.base.ascii_float (config, data)
Parse data to a float.

habitat.sensors.base.string (data)
Returns data as a string.

habitat.sensors.base.constant (config, data)
Checks that data is equal to config[’expect’], returning None.

habitat.sensors.base.binary b64 (data)
Encodes raw binary data to base64.

habitat.sensors.stdtelem

Sensor functions for dealing with telemetry.

Functions

8.1. habitat 27



habitat, Release 0.2.0

coordinate(config, data) Parses ASCII latitude or longitude into a decimal-degrees float.
strptime((string, format) -> struct_time) Parse a string to a time tuple according to a format specification.
time(data) Parse the time, validating it and returning the standard HH: MM: SS.

habitat.sensors.stdtelem.time (data)
Parse the time, validating it and returning the standard HH:MM: SS.

Accepted formats include HH:MM: SS, HHMMSS, HH: MM and HHMM. It uses strptime to ensure the values are
sane.

habitat.sensors.stdtelem.coordinate (config, data)
Parses ASCII latitude or longitude into a decimal-degrees float.

Either decimal degrees or degrees with decimal minutes are accepted (degrees, minutes and seconds are not
currently supported).

The format is specified in config["format"] and can look like either dd . dddd or ddmm . mmmm, with one
to three leading d characters and one to six trailing d or m characters.

habitat.sensors.stdtelem.binary_timestamp (data)
Parse a four byte unsigned integer into a time string in the format “HH:MM:SS”. Date information is thus
discarded.

habitat.sensors.stdtelem.binary bed_time (data)
Parse two or three bytes (given as a string, format 2s or 3s) into hours, minutes and optionally seconds in the
format “HH:MM:SS”".

8.1.6 habitat.filters

Commonly required filters that are supplied with habitat.

Filters are small functions that can be run against incoming payload telemetry during the parse phase, either before
attempts at callsign extraction, before the actual parse (but after the callsign has been identified) or after parsing is
complete.

This module contains commonly used filters which are supplied with habitat, but end users are free to write their own
and have habitat.loadable_manager load them for use.

Functions
invalid_always(data) Add the _fix_invalid key to data.
invalid_gps_lock(config, data) Checks a gps_lock field to see if the payload has a lock
invalid_location_zero(data) If the latitude and longitude are zero, the fix is marked invalid.
numeric_scale(config, data) Post filter that scales a key from data by a factor in config.
semicolons_to_commas(config, data) Intermediate filter that converts semicolons to commas.
simple_map(config, data) Post filter that maps source to destination values based on a dictionary.

habitat.filters.semicolons_to_commas (config, data)
Intermediate filter that converts semicolons to commas.

All semicolons in the string are replaced with colons and the checksum is updated; crcl6-ccitt is assumed
by default but can be overwritten with config["checksum"].

28 Chapter 8. habitat code documentation



habitat, Release 0.2.0

>>> semicolons_to_commas ({}, '$Stestpayload,1l,2,3;4;5;6%x8A24")
"SStestpayload,1,2,3,4,5,6%x888F'

habitat.filters.numeric_scale (config, data)
Post filter that scales a key from data by a factor in config.

data[config["source"]] is multiplied by config["factor"] and written back to
data[config["destination"]] if it exists, or datal[config["source"]] if not.
config["offset"] is also optionally applied along with config["round"].

>>> config = {"source": "key", "factor": 2.0}

>>> data = {"key": "4", "other": "data"}

>>> numeric_scale(config, data) == {’key’: 8.0, 'other’: ’"data’}

True

>>> config["destination"] = "result"

>>> numeric_scale(config, data) == {’'key’: 8.0, ’'result’: 16.0, "other’:
"data’ }

True

habitat.filters.simple_map (config, data)
Post filter that maps source to destination values based on a dictionary.

data[config["source"]] isusedasalookupkeyin config["map"] and the resulting value is written
to data[config["destination"]] ifitexists, or data[config["source"]] if not.

AValueErrorisraisedif config["map"] is not a dictionary or does not contain the value read from data.
>>> config = {“source”: “key”, “destination”: “result”’, “map”: ... {1: ‘a’, 2: ‘b’}} ... >>> data = {“key”: 2}
>>> simple_map(config, data) == {‘key’: 2, ‘result’: ‘b’} True

habitat.filters.invalid_always (data)
Add the _fix_invalid key to data.

habitat.filters.invalid location_zero (data)
If the latitude and longitude are zero, the fix is marked invalid.

habitat.filters.invalid_gps_lock (config, data)
Checks a gps_lock field to see if the payload has a lock

The source key is config[”’source”], or “gps_lock™ if that is not set.
The fix is marked invalid if data[source] is not in the list config[”ok”].

habitat.filters.zero_pad_coordinates (config, data)
Post filter that inserts zeros after the decimal point in coordinates, to fix the common error of having the in-
teger and fractional parts of a decimal degree value as two ints and outputting them using something like
sprintf( “%i. %i”, int_part, frac_part);, resulting in values that should be 51.0002 being output as 51.2 or similar.

The fields to change is the list config[ "fields” | and the correct post-decimal-point width is config[ "width”]. By
default fields is [ "latitude”, “longitude” ] and width is 5.

habitat.filters.zero_pad_times (config, data)
Intermediate filter that zero pads times which have been incorrectly transmitted as e.g. [12:3:8 instead of
12:03:08. Only works when colons are used as delimiters.

The field position to change is config[ "field” ] and defaults to 2 (which is typical with $$PAYLOAD,ID,TIME).
The checksum in use is config[ ”checksum” ] and defaults to crcl16-ccitt.

8.1. habitat 29


http://docs.python.org/2.7/library/exceptions.html#exceptions.ValueError

habitat, Release 0.2.0

8.1.7 habitat.uploader

Python interface to document insertion into CouchDB.

The uploader is a client for end users that pushes documents into a CouchDB database where they can be used directly
by the web client or picked up by a daemon for further processing.

Classes
Extractor() A base class for an Extractor.
ExtractorManager(uploader) Manage one or more Ext ractor objects, and handle their logging.
UKHASExtractor()
Uploader(callsign[, couch_uri, couch_db, ...]) An easy interface to insert documents into a habitat CouchDB.
UploaderThread() An easy wrapper around Uploader to make a non blocking Uploader
Exceptions
CollisionError

UnmergeableError Couldn’t merge a payload_telemetry CouchDB conflict after many tries.

exception habitat.uploader.UnmergeableError
Couldn’t merge a payload_telemetry CouchDB conflict after many tries.

class habitat .uploader.Uploader (callsign, couch_uri="http://habitat.habhub.org/’,
couch_db="habitat’, max_merge_attempts=20)
An easy interface to insert documents into a habitat CouchDB.

This class is intended for use by a listener.

After having created an Uploader object, call payload_telemetry (), listener_telemetry ()
or listener information () in any order. It is however recommended that
listener_information() and listener_telemetry () are called once before any other up-
loads.

flights () returns a list of current flight documents.

Each method that causes an upload accepts an optional kwarg, time_created, which should be the unix timestamp
of when the doc was created, if it is different from the default ‘now’. It will add time_uploaded, and turn both
times into RFC3339 strings using the local offset.

See the CouchDB schema for more information, both on validation/restrictions and data formats.

listener_telemetry (data, time_created=None)
Uploada listener_telemetry doc. The doc_id is returned

A listener_telemetry doc contains information about the listener’s current location, be it a rough
stationary location or a constant feed of GPS points. In the former case, you may only need to call this
function once, at startup. In the latter, you might want to call it constantly.

The format of the document produced is described elsewhere; the actual document will be constructed by
Uploader. data must be a dict and should typically look something like this:

data = {
"time": "12:40:12",
"latitude": -35.11,
"longitude": 137.567,

30 Chapter 8. habitat code documentation



habitat, Release 0.2.0

"altitude": 12
}

t ime is the GPS time for this point, lat itude and 1longitude are in decimal degrees, and alt itude
is in metres.

latitude and longitude are mandatory.

Validation will be performed by the CouchDB server. data must not contain the key callsign as thatis
added by Uploader.

listener_ information (data, time_created=None)
Upload a listener_information doc. The doc_id is returned

A listener_information document contains static human readable information about a listener.

The format of the document produced is described elsewhere (TODQ?); the actual document will be
constructed by Uploader. data must be a dict and should typically look something like this:

data = {
"name": "Adam Greig",
"location": "Cambridge, UK",
"radio": "ICOM IC-7000",
"antenna": "9el 434MHz Yagi"

}

data must not contain the key callsign as that is added by Uploader.

payload_telemetry (string, metadata=None, time_created=None)
Create or add to the payload_telemetry document for string.

This function attempts to create a new payload_telemetry document for the provided string (a new
document, with one receiver: you). If the document already exists in the database it instead downloads it,
adds you to the list of receivers, and reuploads.

metadata can contain extra information about your receipt of string. Nothing has been standardised yet
(TODO), but here’s an example of what you might be able to do in the future:

metadata = {
"frequency": 434075000,
"signal_strength": 5

}

metadata must not contain the keys time_created, time_uploaded,
latest_listener_information or latest_listener_telemetry. These are added
by Uploader.

flights ()
Return a list of flight documents.

Finished flights are not included; so the returned list contains active and not yet started flights (i.e., now
<= flight.end).

Only approved flights are included.
Flights are sorted by end time.
Active is (flight.start <= now <= flight.end), i.e., within the launch window.

The key _payload_docs is added to each flight document and is populated with the documents listed
in the payloads array, provided they exist. If they don’t, that _id will be skipped.

8.1. habitat 31



habitat, Release 0.2.0

payloads ()
Returns a list of all payload_configuration docs ever.

Sorted by name, then time created.

class habitat.uploader.UploaderThread
An easy wrapper around Uploader to make a non blocking Uploader

After creating an UploaderThread object, call start () to create athread. Then, call settings () toinitialise
the underlying Uploader. You may then call any of the 4 action methods from Uploader with exactly the
same arguments. Note however, that they do not return anything (see below for flights() returning).

Several methods may be overridden in the UploaderThread. They are:
*log ()
swarning ()
esaved_id ()
einitialised()
ereset_done ()
ecaught_exception ()
egot_flights ()
egot_payloads ()
Please note that these must all be thread safe.

If initialisation fails (bad arguments or similar), a warning will be emitted but the UploaderThread will continue
to exist. Further calls will just emit warnings and do nothing until a successful settings () call is made.

The reset () method destroys the underlying Uploader. Calls will emit warnings in the same fashion as a
failed initialisation.

start ()
Start the background UploaderThread

join ()
Asks the background thread to exit, and then blocks until it has

settings (*args, **kwargs)
See Uploader‘s initialiser

reset ()
Destroys the Uploader object, disabling uploads.

payload_telemetry (*args, **kwargs)
See Uploader.payload_telemetry ()

listener_ telemetry (*args, **kwargs)
See Uploader.listener_telemetry ()

listener_information (*args, **kwargs)
See Uploader.listener_information ()

flights ()
See Uploader.flights ().

Flight data is passed to got_flights ().

32 Chapter 8. habitat code documentation



habitat, Release 0.2.0

payloads ()
See Uploader.payloads ().

Flight data is passed to got_payloads ().

debug (msg)
Log a debug message

log (msg)
Log a generic string message

warning (msg)
Alike log, but more important

saved_id (doc_type, doc_id)
Called when a document is succesfully saved to couch

initialised()
Called immiediately after successful Uploader initialisation

reset_done ()
Called immediately after resetting the Uploader object

caught_exception ()
Called when the Uploader throws an exception

got_flights (flights)
Called after a successful flights download, with the data.

Downloads are initiated by calling f1ights ()

got_payloads (payloads)
Called after a successful payloads download, with the data.

Downloads are initiated by calling payloads ()

class habitat.uploader.ExtractorManager (uploader)

Manage one or more Ext ractor objects, and handle their logging.

The extractor manager maintains a list of Ext ractor objects. Any push () or skipped () calls are passed
directly to each added Extractor in turn. If any Extractor produces logging output, or parsed data, it is returned
tothe status () and data () methods, which the user should override.

The ExtractorManager also handles thread safety for all Extractors (i.e., it holds a lock while pushing data to
each extractor). Your status () and data () methods should be thread safe if you want to call the Extractor-
Manager from more than one thread.

uploader: an Uploader or UploaderThread object

add (extractor)
Add the extractor object to the manager

push (b, **kwargs)
Push a received byte of data, b, to all extractors.

b must be of type str (i.e., ascii, not unicode) and of length 1.
Any kwargs are passed to extractors. The only useful kwarg at the moment is the boolean “baudot hack”.

baudot_hack is set to True when decoding baudot, which doesn’t support the ‘*’ character, as the UKHA-
SExtractor needs to know to replace all ‘#’ characters with ‘*’s.

skipped (n)
Tell all extractors that approximately n undecodable bytes have passed

8.1.

habitat 33



habitat, Release 0.2.0

This advises extractors that some bytes couldn’t be decoded for whatever reason, but were transmitted.
This can assist some fixed-size packet formats in recovering from errors if one byte is dropped, say, due to
the start bit being flipped. It also causes Extractors to ‘give up’ after a certain amount of time has passed.

status (msg)
Logging method, called by Extractors when something happens

data (d)
Called by Extractors if they are able to parse extracted data

class habitat.uploader.Extractor
A base class for an Extractor.

An extractor is responsible for identifying telemetry in a stream of bytes, and extracting them as standalone
strings. This may be by using start/end delimiters, or packet lengths, or whatever. Extracted strings are passed
toUploader.payload_telemetry () viathe ExtractorManager.

An extractor may optionally attempt to parse the data it has extracted. This does not affect the upload of extracted
data, and offical parsing is done by the habitat server, but may be useful to display in a GUI. It could even be a
stripped down parser capable of only a subset of the full protocol, or able to parse the bare minimum only. If it
succeeds, the result is passed to Ext ractorManager.data ().

push (b, **kwargs)
see ExtractorManager.push ()

skipped (n)
see ExtractorManager.skipped/()

8.1.8 habitat.utils

Various utilities for general use by habitat.

habitat.utils.checksums Various checksum calculation utilities.
habitat.utils.dynamicloader A generic dynamic python module loader.
habitat.utils.filtertools Various utilities for filters to call upon.
habitat.utils.startup Useful functions for daemon startup

habitat.utils.immortal_changes An extension to couchdbkit’s changes consumer that never dies.
habitat.utils.quick_traceback Quick traceback module shortcuts for logging

habitat.utils.checksums

Various checksum calculation utilities.

Functions
crcl6_ccitt(data) Calculate the CRC16 CCITT checksum of data.
fletcher_16(data[, modulus]) Calculate the Fletcher-16 checksum of data, default modulus 255.
op_xor xor(a, b) — Same as a  b.
xor(data) Calculate the XOR checksum of data.

habitat.utils.checksums.crecl6_ccitt (data)
Calculate the CRC16 CCITT checksum of data.

(CRC16 CCITT: start 0xFFFF, poly 0x1021)

34 Chapter 8. habitat code documentation



habitat, Release 0.2.0

Returns an upper case, zero-filled hex string with no prefix such as 0A1B.

>>> crcl6_ccitt ("hello,world")
"E408’

habitat.utils.checksums.xor (data)
Calculate the XOR checksum of data.

Returns an upper case, zero-filled hex string with no prefix such as 01.
>>> xor ("hello,world")
4 2 C 4

habitat.utils.checksums.fletcher_ 16 (data, modulus=255)
Calculate the Fletcher-16 checksum of data, default modulus 255.
Returns an upper case, zero-filled hex string with no prefix such as 0A1B.

>>> fletcher_16("hello,world")
"6C62"

>>> fletcher_ 16 ("hello,world", 256)
6848’

habitat.utils.dynamicloader

A generic dynamic python module loader.

The main function to call is load(). In addition, several functions to quickly test the loaded object for certain conditions
are provided:

e isclass()

e isfunction ()

* isgeneratorfunction ()

e isstandardfunction () (isfunction and not isgeneratorfunction)
e iscallable ()

* issubclass|()

* hasnumargs ()

* hasmethod ()

* hasattr ()

Further to that, functions expectisclass (), expectisfunction (), etc., are provided which are identical to
the above except they raise either a ValueError or a TypeError where the original function would have returned False.

Example use:

def loadsomething(loadable) :
loadable = dynamicloader.load(loadable)
expectisstandardfunction (loadable)
expecthasattr (loadable, 2)

If you use expectiscallable () note that you may get either a function or a class, an object of which is callable
(i.e.,theclasshas __call__ (self, ...)).Inthatcase you may need to create an object:

if isclass (loadable):
loadable = loadable ()

8.1. habitat 35



habitat, Release 0.2.0

Of course if you've used expectisclass () then you will be creating an object anyway. Note that classes are
technically “callable” in that calling them creates objects. expectiscallable () ignores this.

A lot of the provided tests are imported straight from inspect and are therefore not documented here. The ones
implemented as a part of this module are.

Functions
expecthasattr(*args, **kwargs) does thing have an attribute named attr?
expecthasmethod(*args, **kwargs) is loadable.name callable?
expecthasnumargs(*args, **kwargs) does thing have num arguments?
expectiscallable(*args, **kwargs) is loadable a method, function or callable class?
expectisclass(*args, **kwargs) is thing a class?
expectisfunction(*args, **kwargs) is thing a function? (either normal or generator)

expectisgeneratorfunction(*args, **kwargs) is thing a generator function?
expectisstandardfunction(*args, **kwargs) is thing a normal function (i.e., not a generator)

expectissubclass(*args, **kwargs) is thing a subclass of the other thing?
fullname(loadable) Determines the full name in module .module.class form
hasattr(thing, attr) does thing have an attribute named attr?
hasmethod(loadable, name) is loadable.name callable?
hasnumargs(thing, num) does thing have num arguments?
iscallable(loadable) is loadable a method, function or callable class?
isclass(thing) is thing a class?

isfunction(thing) is thing a function? (either normal or generator)
isgeneratorfunction(thing) is thing a generator function?
isstandardfunction(thing) is thing a normal function (i.e., not a generator)
issubclass(thing, the_other_thing) is thing a subclass of the other thing?
load(loadablel, force_reload]) Attempts to dynamically load loadable

habitat.utils.dynamicloader.load (loadable, force_reload=False)
Attempts to dynamically load loadable

loadable: a class, a function, a module, or a string that is a dotted-path to one a class function or module
Some examples:

load (MyClass) # returns MyClass

load (MyFunction) # returns MyFunction

load ("mypackage") # returns the mypackage module

load ("packagea.packageb") # returns the packageb module
load ("packagea.packageb.aclass") # returns aclass

habitat.utils.dynamicloader.fullname (loadable)
Determines the full name in module .module.class form

loadable: a class, module or function.
If fullname is given a string it will 1oad () it in order to resolve it to its true full name.

habitat.utils.dynamicloader.isclass (thing)
is thing a class?

habitat.utils.dynamicloader.isfunction (thing)
is thing a function? (either normal or generator)

habitat.utils.dynamicloader.isgeneratorfunction (thing)
is thing a generator function?

36 Chapter 8. habitat code documentation



habitat, Release 0.2.0

habitat.utils.dynamicloader.issubclass (thing, the_other_thing)
is thing a subclass of the other thing?

habitat.utils.dynamicloader.hasattr (thing, attr)
does thing have an attribute named attr?

habitat.utils.dynamicloader.isstandardfunction (thing)
is thing a normal function (i.e., not a generator)

habitat.utils.dynamicloader.hasnumargs (thing, num)
does thing have num arguments?

If thing is a function, the positional arguments are simply counted up. If thing is a method, the positional
arguments are counted up and one is subtracted in order to account for method (self, ...) If thing is
a class, the positional arguments of c1s.__call__ are counted up and one is subtracted (self), giving the
number of arguments a callable object created from that class would have.

habitat.utils.dynamicloader.hasmethod (loadable, name)
is loadable.name callable?

habitat.utils.dynamicloader.iscallable (loadable)
is loadable a method, function or callable class?

For loadable to be a callable class, an object created from it must be callable (i.e.,ithasa___call__ method)

habitat.utils.dynamicloader.expectisclass (*args, **kwargs)
is thing a class?

habitat.utils.dynamicloader.expectisfunction (*args, **kwargs)
is thing a function? (either normal or generator)

habitat.utils.dynamicloader.expectisgeneratorfunction (*args, **kwargs)
is thing a generator function?

habitat.utils.dynamicloader.expectisstandardfunction (*args, **kwargs)
is thing a normal function (i.e., not a generator)

habitat.utils.dynamicloader.expectiscallable (*args, **kwargs)
is loadable a method, function or callable class?

For loadable to be a callable class, an object created from it must be callable (i.e.,ithasa___call__ method)

habitat.utils.dynamicloader.expectissubclass (*args, **kwargs)
is thing a subclass of the other thing?

habitat.utils.dynamicloader.expecthasnumargs (*args, **kwargs)
does thing have num arguments?

If thing is a function, the positional arguments are simply counted up. If thing is a method, the positional
arguments are counted up and one is subtracted in order to account for method (self, ...) If thing is
a class, the positional arguments of cls.__call__ are counted up and one is subtracted (self), giving the
number of arguments a callable object created from that class would have.

habitat.utils.dynamicloader.expecthasmethod (*args, **kwargs)
is loadable.name callable?

habitat.utils.dynamicloader.expecthasattr (*args, **kwargs)
does thing have an attribute named attr?

habitat.utils.filtertools

Various utilities for filters to call upon.

8.1. habitat 37



habitat, Release 0.2.0

Classes

UKHASChecksumFixer(protocol, data) A utility to help filters modify data that has been checksummed.

class habitat.utils.filtertools.UKHASChecksumFixer (profocol, data)
A utility to help filters modify data that has been checksummed. It may be used as a context manager or via a
class method.

For use as a context manager:

Specify the protocol in use with profocol and pass in the string being modified as data["data"], then use
the return value as a dictionary whose data key you can modify as you desire. On exit, the checksum of that
string is then updated if the original string’s checksum was valid.

If the original checksum was invalid, the original string is output instead.

>>> data = {"data": "$Shello,world«E408"}
>>> with UKHASChecksumFixer ('crcl6-ccitt’, data) as fixer:
fixer["data"] = "$S$hi,there,world+E408"

>>> fixer["data"]
"$Shi, there,world*«39D3"
For direct calling as a class method:

Call UKHASChecksumFixer.fix(protocol, old_data, new_data). The function will either return new_data with
a fixed checksum if the original checksum was valid, or it will return the old_data if the original checksum was
invalid.

>>> UKHASChecksumFixer.fix (' crclé6-ccitt’,
. "SShello,world*E408", "$Shi,there,world*«E408")
"$Shi, there,world*«39D3"

habitat.utils.startup

Useful functions for daemon startup

Functions
load_config() Loads the habitat config.
ma in(main_class) Main function for habitat daemons.

setup_logging(config, daemon_name) setup_logging initalises the Python logging module.

Classes

null logger([level]) A python logging handler that discards log messages silently.

habitat.utils.startup.load _config ()
Loads the habitat config.

The path to the configuration YAML file can be specified as the single command line argument (read from
sys.argv[1])or will defaultto . /habitat.yml.

38 Chapter 8. habitat code documentation


http://docs.python.org/2.7/library/logging.html#module-logging

habitat, Release 0.2.0

class habitat.utils.startup.null_logger (level=0)
A python logging handler that discards log messages silently.

Initializes the instance - basically setting the formatter to None and the filter list to empty.

habitat.utils.startup.setup_logging (config, daemon_name)
setup_logging initalises the Python logging module.

It will initalise the ‘habitat’ logger and creates one, two, or no Handlers, depending on the values provided for
log_file_level and log_stderr_level in config.

habitat.utils.startup.main (main_class)
Main function for habitat daemons. Loads config, sets up logging, and runs.

main_class.__name__.lower () will be used as the config sub section and passed as daemon_name.

main_class specifies a class from which an object will be created. It will be initialised with arguments (config,
daemon_name) and then the method run() of the object will be invoked.

habitat.utils.immortal_changes

An extension to couchdbkit’s changes consumer that never dies.

Classes

Consumer Mock out external modules that might annoy documentation build systems.

habitat.utils.quick_traceback

Quick traceback module shortcuts for logging

Functions

oneline([exc_value]) Return a single line describing ‘exc_value’

habitat.utils.quick_traceback.oneline (exc_value=None)
Return a single line describing ‘exc_value’

exc_value shold be either an Exception instance, for example, acquired via ‘except ValueError as e:’; or None,
in which case the exception currently being handled is used.

The string returned is the last line of Python’s normal traceback; something like ‘ValueError: some message’,
with no newline.

8.1.9 habitat.views

View functions for CouchDB with the couch-named-python view server, used by habitat related design documents.

habitat.views.flight Functions for the flight design document.
habitat.views.listener information Functions for the listener_information design document.
habitat.views.listener_ telemetry Functions for the listener_telemetry design document.

\ Continued on next page |

8.1. habitat 39


http://docs.python.org/2.7/library/logging.html#module-logging

habitat, Release 0.2.0

Table 8.24 — continued from previous page

habitat

habitat
habitat

.views
habitat.
habitat.

views.

views

.views
.views

.payload_telemetry Functions for the payload_telemetry design document.
payload_configuration Functions for the payload_configuration design document.

.habitat Functions for the core habitat design document.

.parser Functions for the parser design document.

.utils Shared utility functions for views.

habitat.views.flight

Functions for the flight design document.

Contains schema validation and views by flight launch time, window end time and payload name and window end

time.

Functions

all_name_map(doc)
end_start_including_payloads_map(doc) View: flight/end_start_including_payloads
launch_time_including_payloads_map(doc) View: flight/launch_time_including_payloads
read_ json_schema(schemaname)

rfc3339_to_timestamp

validate(new, old, userctx, secobj)
validate_doc(data, schema)

version

View: flight/all_name

Mock out external modules that might annoy documentation build systems
Validate this flight document against the schema, then check that only man
Validate data against schema, raising descriptive errors

Mock out external modules that might annoy documentation build systems

Exceptions

ForbiddenError
UnauthorizedError

Mock out external modules that might annoy documentation build systems.
Mock out external modules that might annoy documentation build systems.

habitat.views.flight.end_start_including_ payloads_map (doc)
View: flight/end_start_including_payloads

Emits:

[end_time,
[end_time,
[end_time,

start_time, flight_id, 0] -> [payload_configuration ids]
start_time, flight_id, 1] -> {linked payload_configuration doc 1}
start_time, flight_id, 1] -> {linked payload_configuration doc 2}

Or, when a flight has no payloads:

[end_time,

start_time, flight_id, 0] -> null

Times are all UNIX timestamps (and therefore in UTC).

Sorts by flight window end time then start time.

If the flight has payloads, emit it with the list of payloads, and emit a link for each payload so that they get
included with include_docs. If a flight does not have payloads, it is emitted by itself.

Only shows approved flights.

Used by the parser to find active flights and get the configurations used to decode telemetry from them.

40

Chapter 8. habitat code documentation



habitat, Release 0.2.0

May otherwise be used to find upcoming flights and their associated payloads, though typically the view
launch_time_including_payloads would be more useful as it sorts by launch time.

Query using startkey=[current_timestamp] to get all flights whose windows have not yet ended.
Use include_docs=true to have the linked payload_configuration documents fetched and returned as the
"doc" key for that row, otherwise the row’s value will just contain an object that holds the linked ID. See the
CouchDB documentation for details on linked documents.

habitat.views.flight.launch_time_including payloads_map (doc)
View: flight/launch_time_including_payloads

Emits:

[launch_time, flight_id, 0] -> [payload_configuration ids]
[launch_time, flight_id, 1] -> {linked payload_configuration doc 1}
[launch_time, flight_id, 1] -> {linked payload_configuration doc 2}

Or, when a flight has no payloads:

[launch_time, flight_id, 0] -> null

Times are all UNIX timestamps (and therefore in UTC).

Sort by flight launch time.

Only shows approved flights.

Used by the calendar and other interface elements to show a list of upcoming flights.

Query using startkey=[current_timestamp] to get all upcoming flights. Use
include_docs=true to have the linked payload_configuration documents fetched and returned as
the "doc™" key for that row, otherwise the row’s value will just contain an object that holds the linked ID. See
the CouchDB documentation for details on linked documents.

habitat.views.flight .unapproved name_including payloads_map (doc)
View: flight/unapproved_name_including_payloads

Emits:

[name, flight_id, 0] -> [payload_configuration ids]
[name, flight_id, 1] -> {linked payload_configuration doc 1}
[name, flight_id, 1] -> {linked payload_configuration doc 2}

Or, when a flight has no payloads:

[name, flight_id, 0] -> null

Times are all UNIX timestamps (and therefore in UTC).

Sort by flight name.

Only shows unapproved flights.

Used by the administration approval interface to list unapproved flights.

Use include_docs=true to have the linked payload_configuration documents fetched and returned as the
"doc" key for that row, otherwise the row’s value will just contain an object that holds the linked ID. See the
CouchDB documentation for details on linked documents.

habitat.views.flight.all_name_map (doc)
View: flight/all_name

Emits:

8.1. habitat a


http://wiki.apache.org/couchdb/Introduction_to_CouchDB_views#Linked_documents
http://wiki.apache.org/couchdb/Introduction_to_CouchDB_views#Linked_documents
http://wiki.apache.org/couchdb/Introduction_to_CouchDB_views#Linked_documents

habitat, Release 0.2.0

[name] -> null

Sort by flight name.
Show all flights, even those unapproved.

Used where the UI must show all the flights in some usefully searchable sense, for instance when creating a new
flight document based on some old or unapproved one, or when approving new flight documents.

habitat.views.listener_information

Functions for the listener_information design document.

Contains schema validation and a view by creation time and callsign.

Functions

callsign_time_created_map(doc) View: listener_information/callsign_time_created

must_be_admin(user[, msg]) Raise UnauthorizedError if the user is not an admin

read_ json_schema(schemaname)

rfc3339_to_timestamp Mock out external modules that might annoy documentation build systems.
time_created_callsign_map(doc) View: listener_information/time_created_callsign

validate(new, old, userctx, secobj) Only allow admins to edit/delete and validate the document against the schema for listen
validate_doc(data, schema) Validate data against schema, raising descriptive errors

version Mock out external modules that might annoy documentation build systems.

habitat.views.listener_information.time_created_callsign_map (doc)
View: listener_information/time_created_callsign

Emits:

[time_created, callsign] -> null

Times are UNIX timestamps (and therefore in UTC).
Sorts by time created. Useful to see the latest listener information.

habitat.views.listener_information.callsign_time_created_map (doc)
View: listener_information/callsign_time_created

Emits:

[callsign, time_created] -> null

Times are UNIX timestamps (and therefore in UTC).
Sorts by callsign. Useful to see a certain callsign’s latest information.
habitat.views.listener_telemetry

Functions for the listener_telemetry design document.

Contains schema validation and a view by creation time and callsign.

42 Chapter 8. habitat code documentation



habitat, Release 0.2.0

Functions

8.1. habitat 43



habitat, Release 0.2.0

callsign_time_created_map(doc) View: listener_telemetry/callsign_time_created

must_be_admin(user[, msg]) Raise UnauthorizedError if the user is not an admin
read_json_schema(schemaname)

rfc3339_to_timestamp Mock out external modules that might annoy documentation build systems.
time_created_callsign_map(doc) View: listener_telemetry/time_created_callsign

validate(new, old, userctx, secobj) Only allow admins to edit/delete and validate the document against the schema for listen
validate_doc(data, schema) Validate data against schema, raising descriptive errors

version Mock out external modules that might annoy documentation build systems.

habitat.views.listener_telemetry.time_created_callsign_map (doc)
View: listener_telemetry/time_created_callsign

Emits:

[time_created, callsign] -> null

Times are UNIX timestamps (and therefore in UTC).
Sorts by time created. Useful to see the latest listener telemetry.

habitat.views.listener_telemetry.callsign_time_created_map (doc)
View: listener_telemetry/callsign_time_created

Emits:

[callsign, time_created] -> null

Times are UNIX timestamps (and therefore in UTC).

Sorts by callsign. Useful to see a certain callsign’s latest telemetry.

habitat.views.payload_telemetry

Functions for the payload_telemetry design document.

Contains schema validation and a view by flight, payload and received time.

Functions

flight_payload_time_map(doc) View: payload_telemetry/flight_payload_time

payload_time_map(doc) View: payload_telemetry/payload_time

read_ json_schema(schemaname)

rfc3339_to_timestamp Mock out external modules that might annoy documentation build systems.

validate(new, old, userctx, secobj) Validate this payload_telemetry document against the schema, then perform

validate_doc(data, schema) Validate data against schema, raising descriptive errors

version Mock out external modules that might annoy documentation build systems.
Exceptions

ForbiddenError Mock out external modules that might annoy documentation build systems.

UnauthorizedError Mock out external modules that might annoy documentation build systems.

44 Chapter 8. habitat code documentation



habitat, Release 0.2.0

habitat.views.payload_telemetry.flight_payload_time_map (doc)

View: payload_telemetry/flight_payload_time
Emits:

[flight_id, payload_configuration_id, estimated_time_received] -> null

Useful to find telemetry related to a certain flight.

habitat.views.payload_telemetry.payload_time_ map (doc)

View: payload_telemetry/payload_time
Emits:

[payload_configuration_id, estimated_time_received] -> null

Useful to find telemetry related to a specific payload_configuration.

habitat.views.payload_telemetry.time_map (doc)

View: payload_telemetry/time
Emits:

estimated_time_received -> is_flight_telemetry

Useful to get recent telemetry uploaded to habitat.

This can also be used to make a simple map application. It’s worth noting that such a technique is a bit of
a bodge, since estimated_time_received will not necessarily (but could) update if another receiver is added to
the doc, so asking this view for all telemetry since min(the last poll, the most recent telemetry I have) is not
infallible. That said, doing a proper sync is quite difficult.

habitat.views.payload_telemetry.add_listener_ update (doc, req)

Update function: payload_telemetry/_update/add_listener

Given a prototype payload_telemetry JSON document in the request body, containing just the _raw telemetry
string and one entry in receivers, create the document or merge this listener into it as appropriate.

Used by listeners when a new payload telemetry string has been received.
Usage:

PUT /habitat/_design/payload_telemetry/_update/add_listener/<doc ID>

"data": {
"_raw": "<base64 raw telemetry data>"
}I
"receivers": {
"<receiver callsign>": {
"time_created": "<RFC3339 timestamp>",
"time_uploaded": "<RFC3339 timestamp>",
<other keys as desired, for instance
latest_listener_telemetry, latest_listener_info, etc>

}

The document ID should be sha256(doc[”’data”][”_raw”’]) in hexadecimal.

Returns “OK” if everything was fine, otherwise CouchDB will raise an error. Errors might occur in validation
(in which case the validation error is returned) or because of a save conflict. In the event of a save conflict,
uploaders should retry the same request until the conflict is resolved.

8.1. habitat 45



habitat, Release 0.2.0

habitat.views.payload_telemetry.http_post_update (doc, req)
Update function: payload_telemetry/_update/http_post

Creates a new payload_telemetry document with all keys present in the HTTP POST form data available in
doc.data._fallbacks and the from HTTP querystring key as the receiver callsign if available. The
data field will be base64 encoded and used as doc.data._raw.

This function has additional functionality specific to RockBLOCKs: if all of the keys imei, momsn,
transmit_time,iridium_latitude,iridium_longitude, iridium_cep and data are present
in the form data, then: * imei will be copied to doc.data._fallbacks.payload soitcan be

used as a payload callsign.

eiridium_latitude and iridium_longitude will be copied to
doc.data._fallbacks.latitude and longitude respectively.

edata will be hex decoded before base64 encoding so it can be directly used by the binary parser module.

etransmit_time will be decoded into an RFC3339 timestamp and used for the t ime_created field
in the receiver section.

etransmit_time will be decoded into hours, minutes and seconds and copied to
doc.data._fallbacks.time.

Usage:
POST /habitat/_design/payload_telemetry/_update/http_post?from=callsign
data=hello&imei=whateveré&so=forth

This update handler may not currently be used on existing documents or with a PUT request; such requests will
fail.

Returns “OK” if everything was fine, otherwise CouchDB will return a (hopefully instructive) error.

habitat.views.payload_configuration

Functions for the payload_configuration design document.

Contains schema validation and a view by payload name and configuration version.

Functions

callsign_time_created_index_map(doc) View: payload_configuration/callsign_time_created_inde:
must_be_admin(user[, msg]) Raise UnauthorizedError if the user is not an admin
name_time_created_map(doc) View: payload_configuration/name_time_created
only_validates(doc_type)

read_json_schema(schemaname)

rfc3339_to_timestamp Mock out external modules that might annoy documentation build systems.
validate(new, old, userctx, secobj) Validate payload_configuration documents against the schema and then against
validate_doc(data, schema) Validate data against schema, raising descriptive errors

habitat.views.payload_configuration.name_time_created_map (doc)
View: payload_configuration/name_time_created

Emits:

46 Chapter 8. habitat code documentation



habitat, Release 0.2.0

[name, time_created] -> null

In the key, t ime_created is emitted as a UNIX timestamp (seconds since epoch).

Used to get a list of all current payload configurations, for display purposes or elsewhere where sorting by name

is useful.

habitat.views.payload_configuration.callsign_time_created_index_map (doc)

View: payload_configuration/callsign_time_created_index

Emits:

[callsign, time_created, 1]
[callsign, time_created, 2]

[callsign, time_created, n]

Where metadata is:

{

"name": doc.name,

-> [metadata, sentence 1]
-> [metadata, sentence 2]

-> [metadata, sentence n]

"time_created": doc.time_created (original string),
"metadata": doc.metadata (if present in doc)

}

(In other words, one row per sentence in this document).

In the key, t ime_ created is emitted as a UNIX timestamp (seconds since epoch).

Useful to obtain configuration documents for a given callsign if it can’t be found via upcoming flights, for

example parsing test telemetry or selecting a sentence to copy when making a new document.

habitat.views.habitat

Functions for the core habitat design document.

Contains a validation function that applies

Functions

to every document.

must_be_admin(user[, msg])
validate(new, old, userctx, secobj)
version

Raise UnauthorizedError if the user is not an admin
Core habitat validation function.

Mock out external modules that might annoy documentation build systems.

Exceptions

ForbiddenError Mock out external modules that might annoy documentation build systems.

habitat.views.habitat.validate (new, old, userctx, secobj)

Core habitat validation function.

*Prevent deletion by anyone except administrators.

*Prevent documents without a type.

*Prevent documents whose type is invalid.

8.1. habitat

47



habitat, Release 0.2.0

*Prevent changing document type.

habitat.views.parser

Functions for the parser design document.

Contains a filter to select unparsed payload_telemetry.

Functions

unparsed_filter(doc,req) Filter: parser/unparsed
version Mock out external modules that might annoy documentation build systems.

habitat.views.parser.unparsed_filter (doc, req)

Filter: parser/unparsed

Only select unparsed payload_telemetry documents.

habitat.views.utils

Shared utility functions for views.

Functions

datetime_to_timestamp
must_be_admin(user[, msg])
parse

read_ json_schema(schemaname)
rfc3339_to_datetime
rfc3339_to_timestamp
rfc3339_to_utc_datetime
timegm

validate
validate_doc(data, schema)
validate_rfc3339

Raise UnauthorizedError if the user is not an admin

Validate data against schema, raising descriptive errors
Mock out external modules that might annoy documentation build systems.

Classes
tzutc
Exceptions
ForbiddenError Mock out external modules that might annoy documentation build systems.

UnauthorizedError Mock out external modules that might annoy documentation build systems.

ValidationError

48

Chapter 8. habitat code documentation



habitat, Release 0.2.0

habitat.views.utils.must_be_admin (user, msg="Only server administrators may edit this docu-

ment.)
Raise UnauthorizedError if the user is not an admin

habitat.views.utils.validate_doc (data, schema)
Validate data against schema, raising descriptive errors

8.1. habitat 49



habitat, Release 0.2.0

50

Chapter 8. habitat code documentation



CHAPTER 9

Indices and tables

* genindex
* modindex

e search

51



habitat, Release 0.2.0

52

Chapter 9. Indices and tables



Python Module Index

h

habitat,
habitat.
.loadable_manager, 25

.parser, 21

.parser_daemon, 22

.parser_modules, 23
.parser_modules.simple_binary_parser,

habitat
habitat
habitat
habitat
habitat

21
filters, 28

24

habitat
habitat
habitat
habitat
habitat
habitat
habitat
habitat
habitat
habitat
habitat
habitat
habitat
habitat
habitat
habitat
habitat
habitat
habitat
habitat
habitat

.parser_modules.ukhas_parser, 23
.sensors, 27

.sensors.base, 27
.sensors.stdtelem, 27
.uploader, 30

.utils, 34

.utils.checksums, 34
.utils.dynamicloader, 35
.utils.filtertools, 37
.utils.immortal_changes, 39
.utils.quick_traceback, 39
.utils.startup, 38

.views, 39

.views.flight, 40
.views.habitat, 47
.views.listener_information,42
.views.listener_telemetry, 42
.views.parser, 48
.views.payload_configuration, 46
.views.payload_telemetry, 44
.views.utils, 48

53



habitat, Release 0.2.0

54

Python Module Index



Index

A

add() (habitat.uploader.ExtractorManager method), 33
add_listener_update() (in module habi-
tat.views.payload_telemetry), 45
all_name_map() (in module habitat.views.flight), 41
ascii_float() (in module habitat.sensors.base), 27
ascii_int() (in module habitat.sensors.base), 27

B

binary_b64() (in module habitat.sensors.base), 27

binary_bcd_time() (in module habitat.sensors.stdtelem),
28

binary_timestamp() (in module habitat.sensors.stdtelem),
28

C

callsign_time_created_index_map() (in module habi-
tat.views.payload_configuration), 47

callsign_time_created_map() (in module habi-
tat.views.listener_information), 42
callsign_time_created_map() (in module habi-

tat.views.listener_telemetry), 44
caught_exception()  (habitat.uploader.UploaderThread
method), 33
constant() (in module habitat.sensors.base), 27
coordinate() (in module habitat.sensors.stdtelem), 28
crc16_ccitt() (in module habitat.utils.checksums), 34

D

data() (habitat.uploader.ExtractorManager method), 34
debug() (habitat.uploader.UploaderThread method), 33

E

end_start_including_payloads_map() (in module habi-
tat.views.flight), 40

expecthasattr() (in module habitat.utils.dynamicloader),
37

expecthasmethod() (in module
tat.utils.dynamicloader), 37

habi-

expecthasnumargs() (in module habi-
tat.utils.dynamicloader), 37
expectiscallable() (in module habi-

tat.utils.dynamicloader), 37
expectisclass() (in module habitat.utils.dynamicloader),

37
expectisfunction() (in module habi-
tat.utils.dynamicloader), 37
expectisgeneratorfunction() (in module habi-
tat.utils.dynamicloader), 37
expectisstandardfunction() (in module habi-
tat.utils.dynamicloader), 37
expectissubclass() (in module habi-

tat.utils.dynamicloader), 37
Extractor (class in habitat.uploader), 34
ExtractorManager (class in habitat.uploader), 33

F

fletcher_16() (in module habitat.utils.checksums), 35

flight_payload_time_map() (in module habi-
tat.views.payload_telemetry), 45

flights() (habitat.uploader.Uploader method), 31

flights() (habitat.uploader.UploaderThread method), 32

fullname() (in module habitat.utils.dynamicloader), 36

G

got_flights() (habitat.uploader.UploaderThread method),
33

got_payloads()
method), 33

(habitat.uploader.UploaderThread

H

habitat (module), 21

habitat.filters (module), 28

habitat.loadable_manager (module), 25

habitat.parser (module), 21

habitat.parser_daemon (module), 22

habitat.parser_modules (module), 23

habitat.parser_modules.simple_binary_parser (module),
24

55



habitat, Release 0.2.0

habitat.parser_modules.ukhas_parser (module), 23

habitat.sensors (module), 27

habitat.sensors.base (module), 27

habitat.sensors.stdtelem (module), 27

habitat.uploader (module), 30

habitat.utils (module), 34

habitat.utils.checksums (module), 34

habitat.utils.dynamicloader (module), 35

habitat.utils.filtertools (module), 37

habitat.utils.immortal_changes (module), 39

habitat.utils.quick_traceback (module), 39

habitat.utils.startup (module), 38

habitat.views (module), 39

habitat.views.flight (module), 40

habitat.views.habitat (module), 47

habitat.views.listener_information (module), 42

habitat.views.listener_telemetry (module), 42

habitat.views.parser (module), 48

habitat.views.payload_configuration (module), 46

habitat.views.payload_telemetry (module), 44

habitat.views.utils (module), 48

hasattr() (in module habitat.utils.dynamicloader), 37

hasmethod() (in module habitat.utils.dynamicloader), 37

hasnumargs() (in module habitat.utils.dynamicloader), 37

http_post_update() (in module habi-
tat.views.payload_telemetry), 45

initialised() (habitat.uploader.UploaderThread method),
33
invalid_always() (in module habitat.filters), 29
invalid_gps_lock() (in module habitat. filters), 29
invalid_location_zero() (in module habitat.filters), 29
iscallable() (in module habitat.utils.dynamicloader), 37
isclass() (in module habitat.utils.dynamicloader), 36
isfunction() (in module habitat.utils.dynamicloader), 36

isgeneratorfunction() (in module habi-
tat.utils.dynamicloader), 36
isstandardfunction() (in module habi-

tat.utils.dynamicloader), 37
issubclass() (in module habitat.utils.dynamicloader), 36

J

join() (habitat.uploader.UploaderThread method), 32

L

launch_time_including_payloads_map() (in module habi-
tat.views.flight), 41

listener_information()
method), 31

listener_information() (habitat.uploader.UploaderThread
method), 32

listener_telemetry() (habitat.uploader.Uploader method),
30

(habitat.uploader.Uploader

listener_telemetry()

method), 32
(habitat.loadable_manager.LoadableManager

method), 26

load() (in module habitat.utils.dynamicloader), 36

load_config() (in module habitat.utils.startup), 38

LoadableManager (class in habitat.loadable_manager),

26
log() (habitat.uploader.UploaderThread method), 33

M

main() (in module habitat.utils.startup), 39
must_be_admin() (in module habitat.views.utils), 49

N

name_time_created_map() (in module
tat.views.payload_configuration), 46

null_logger (class in habitat.utils.startup), 38

numeric_scale() (in module habitat.filters), 29

O

oneline() (in module habitat.utils.quick_traceback), 39

P

parse() (habitat.parser.Parser method), 22

parse() (habitat.parser.ParserModule method), 22

parse() (habitat.parser_modules.simple_binary_parser.SimpleBinaryParser
method), 25

parse() (habitat.parser_modules.ukhas_parser. UKHASParser
method), 23

Parser (class in habitat.parser), 21

ParserDaemon (class in habitat.parser_daemon), 22

ParserModule (class in habitat.parser), 22

payload_telemetry() (habitat.uploader.Uploader method),
31

payload_telemetry()
method), 32

payload_time_map() (in module
tat.views.payload_telemetry), 45

payloads() (habitat.uploader.Uploader method), 31

payloads() (habitat.uploader.UploaderThread method), 32

pre_parse() (habitat.parser.ParserModule method), 22

pre_parse() (habitat.parser_modules.simple_binary_parser.SimpleBinaryPar
method), 25

pre_parse() (habitat.parser_modules.ukhas_parser. UKHASParser
method), 23

push() (habitat.uploader.Extractor method), 34

push() (habitat.uploader.ExtractorManager method), 33

R

reset() (habitat.uploader.UploaderThread method), 32
reset_done() (habitat.uploader.UploaderThread method),
33

(habitat.uploader.UploaderThread

load()

habi-

(habitat.uploader.UploaderThread

habi-

56

Index



habitat, Release 0.2.0

run() (habitat.loadable_manager.L.oadableManager
method), 27
run() (habitat.parser_daemon.ParserDaemon method), 23

S

saved_id() (habitat.uploader.UploaderThread method), 33
semicolons_to_commas() (in module habitat.filters), 28
settings() (habitat.uploader.UploaderThread method), 32
setup_logging() (in module habitat.utils.startup), 39
simple_map() (in module habitat.filters), 29

SimpleBinaryParser (class in habi-
tat.parser_modules.simple_binary_parser),
25

skipped() (habitat.uploader.Extractor method), 34

skipped() (habitat.uploader.ExtractorManager method),
33

start() (habitat.uploader.UploaderThread method), 32

status() (habitat.uploader.ExtractorManager method), 34

string() (in module habitat.sensors.base), 27

T

time() (in module habitat.sensors.stdtelem), 28

time_created_callsign_map() (in module habi-
tat.views.listener_information), 42

time_created_callsign_map() (in module habi-
tat.views.listener_telemetry), 44

time_map() (in module habitat.views.payload_telemetry),
45

U

UKHASChecksumFixer (class in habitat.utils.filtertools),
38

UKHASParser (class in habi-
tat.parser_modules.ukhas_parser), 23

unapproved_name_including_payloads_map() (in mod-
ule habitat.views.flight), 41

UnmergeableError, 30

unparsed_filter() (in module habitat.views.parser), 48

Uploader (class in habitat.uploader), 30

UploaderThread (class in habitat.uploader), 32

Vv

validate() (in module habitat.views.habitat), 47
validate_doc() (in module habitat.views.utils), 49

W

warning() (habitat.uploader.UploaderThread method), 33

X

xor() (in module habitat.utils.checksums), 35

Z

zero_pad_coordinates() (in module habitat.filters), 29
zero_pad_times() (in module habitat.filters), 29

Index

57



	Introduction
	Installing
	Configuration
	Command Line Configuration
	Configuration File

	Database information
	Schema
	Views, Filters & Validation Functions
	Included Views
	Using Views: Example

	Filters
	Filter Levels
	Filter Syntax
	Filter Utils

	Certificates
	Generating a Private Key
	Generating a Certificate Authority
	Signing Code

	UKHAS Parser Configuration
	Introduction
	Generating Payload Configuration Documents
	Standard UKHAS Sentences
	Parser Module Configuration

	habitat code documentation
	habitat

	Indices and tables
	Python Module Index

