
h5features Documentation
Release 1.2.2

Thomas Schatz, Mathieu Bernard, Roland Thiolliere

Dec 12, 2018

Contents

1 Package overview 3
1.1 Brief . 3
1.2 Description . 4
1.3 Command line converter . 4
1.4 Basic usage . 4

2 Installation 7
2.1 Getting the source . 7
2.2 Installing . 7
2.3 Testing . 8
2.4 Building the documentation . 8

3 API Reference 9
3.1 Top-level modules . 9
3.2 Low-level modules . 14

4 What’s new ? 19
4.1 h5features-1.2.2 . 19
4.2 h5features-1.2.1 . 19
4.3 h5features-1.2 . 19
4.4 h5features-1.1 . 20
4.5 h5features-1.0 . 20
4.6 TODO list . 20

5 License and copyright 23

6 Indices and tables 25

Python Module Index 27

i

ii

h5features Documentation, Release 1.2.2

Note: The source code is available at http://www.github.com/bootphon/h5features.

Table of contents

Contents 1

http://www.github.com/bootphon/h5features

h5features Documentation, Release 1.2.2

2 Contents

CHAPTER 1

Package overview

Note: In the following code samples, the h5features package is imported as:

import h5features as h5f

1.1 Brief

The h5features package allows you to easily interface your code with a HDF5 file. It is designed to efficiently read
and write large features datasets. It is a wrapper on h5py and and is used for exemple in the ABXpy package.

• Package organization:

The main classes composing the package are h5f.Writer and h5f.Reader, which respectively
write to and read from HDF5 files, and h5f.Data which interface that data with your code.

• Data structure:

The h5features data is structured as a follows

– a list of items represented by their names (files names for exemple),

– for each item, some attached features as a numpy array,

– some labels information attached to features, also as numpy arrays.

• File structure:

In a h5features file, data is stored as a HDF5 group. The underlying group structure directly follows
data organization. A h5features group mainly stores a version attribute and the following datasets:
items, labels, features and index.

3

http://docs.h5py.org
https://github.com/bootphon/ABXpy

h5features Documentation, Release 1.2.2

1.2 Description

The h5features package provides efficient and flexible I/O on a (potentially large) collection of (potentially small)
2D datasets with one fixed dimension (the ‘feature’ dimension, identical for all datasets) and one variable dimension
(the ’label’ dimension, possibly different for each dataset). For example, the collection of datasets can correspond to
speech features (e.g. MFC coefficients) extracted from a collection of speech recordings with variable durations. In
this case, the ‘label’ dimension corresponds to time and the meaning of the ‘feature’ dimension depends on the type
of speech features used.

The h5features package can handle small or large collections of small or large datasets, but the case that motivated its
design is that of large collections of small datasets. This is a common case in speech signal processing, for example,
where features are often extracted separately for each sentence in multi-hours recordings of speech signal. If the
features are stored in individual files, the number of files becomes problematic. If the features are stored in a single
big file which does not support partial I/O, the size of the file becomes problematic. To solve this problem, h5features
is built on top of h5py, a python binding of the HDF5 library, which supports partial I/O. All the items in the collection
of datasets are stored in a single file and an indexing structure allows for efficient I/O on single items or on contiguous
groups of items. h5features also indexes the ‘label’ dimension of each individual dataset and allow partial I/O along
it. To continue our speech features example, this means that it is possible to load just the features for a specific time-
interval in a specific utterance (corresponding to a word or phone of interest for instance). The labels indexing the
‘label’ dimension typically correspond to center-times or time-intervals associated to each feature vector in a dataset.

1.3 Command line converter

The scipt convert2h5features allows you to simply convert a set of files to a single h5features file. Supported
files format are numpy NPZ and Octave/Matlab mat files.

For more info on that script, have a:

$ convert2h5features --help

1.4 Basic usage

import h5features as h5f

########################
Prelude to the exemple
########################

def generate_data(nitem, nfeat=2, dim=10, labeldim=1, base='item'):
"""Returns a randomly generated h5f.Data instance.

- nitem is the number of items to generate.
- nfeat is the number of features to generate for each item.
- dim is the dimension of the features vectors.
- base is the items basename
- labeldim is the dimension of the labels vectors.
"""
import numpy as np

A list of item names
items = [base + '_' + str(i) for i in range(nitem)]

(continues on next page)

4 Chapter 1. Package overview

h5features Documentation, Release 1.2.2

(continued from previous page)

A list of features arrays
features = [np.random.randn(nfeat, dim) for _ in range(nitem)]

A list on 1D or 2D times arrays
if labeldim == 1:

labels = [np.linspace(0, 1, nfeat)] * nitem
else:

t = np.linspace(0, 1, nfeat)
labels = [np.array([t+i for i in range(labeldim)])] * nitem

Format data as required by the writer
return h5f.Data(items, labels, features, check=True)

########################
Writing data to a file
########################

Generate some data for 100 items
data = generate_data(100)

Initialize a writer, write the data in a group called 'group1' and
close the file
writer = h5f.Writer('exemple.h5')
writer.write(data, 'group1')
writer.close()

More pythonic, the with statement
with h5f.Writer('exemple.h5') as writer:

Write the same data to a second group
writer.write(data, 'group2')

You can append new data to an existing group if all items have
different names. Here we generate 10 more items and append them
to the group 2, which now stores 110 items.
data2 = generate_data(10, base='item2')
writer.write(data2, 'group2', append=True)

If append is not True, existing data in the group is overwrited.
data3 = generate_data(10, base='item3')
writer.write(data3, 'group2', append=True) # 120 items
writer.write(data3, 'group2') # 10 items

##########################
Reading data from a file
##########################

Initialize a reader and load the entire group. A notable difference
with the Writer is that a Reader is attached to a specific group of
a file. This allows optimized read operations.
rdata = h5f.Reader('exemple.h5', 'group1').read()

Hopefully we read the same data we just wrote
assert rdata == data

Some more advance reading facilities
(continues on next page)

1.4. Basic usage 5

h5features Documentation, Release 1.2.2

(continued from previous page)

with h5f.Reader('exemple.h5', 'group1') as reader:
Same as before, read the whole data
whole_data = reader.read()

Read the first item stored on the group.
first_item = reader.items.data[0]
rdata = reader.read(first_item)
assert len(rdata.items()) == 1

Read an interval composed of the 10 first items.
tenth_item = reader.items.data[9]
rdata = reader.read(first_item, tenth_item)
assert len(rdata.items()) == 10

#####################
Playing with labels
#####################

Previous exemples shown writing and reading labels associated to 1D
times information (each feature vector correspond to a single
timestamp, e.g. the center of a time window). In more advanced
processing you may want to store 2D times information (e.g. begin
and end of a time window). For now non-numerical labels or not
supported.

data = generate_data(100, labeldim=2)
h5f.Writer('exemple.h5').write(data, 'group3')

rdata = h5f.Reader('exemple.h5', 'group3').read()
assert rdata == data

Remove the writed file
from os import remove
remove('exemple.h5')

6 Chapter 1. Package overview

CHAPTER 2

Installation

2.1 Getting the source

The source code is publicly available at https://github.com/bootphon/h5features

$ git clone https://github.com/bootphon/h5features.git

Note: In what follows we suppose your current directory is the root of the h5features package you just cloned:

$ cd h5features

2.2 Installing

2.2.1 Dependancies

h5features relies on external dependencies. The setup script should install it automatically, but you may want to install
it manually. The required packages are:

• h5py 2.3.0 or newer

• NumPy 1.8.0 or newer

• scipy 0.13.0 or newer

On Debian/Ubuntu:

sudo apt-get install python3-numpy python3-scipy python3-h5py

Using Python anaconda:

7

https://github.com/bootphon/h5features

h5features Documentation, Release 1.2.2

conda install numpy scipy h5py

2.2.2 Setup

To install the package, run:

python setup.py build
[sudo] python setup.py install

2.3 Testing

This package is continuously integrated with travis. You can follow the build status here.

For testing it on your local machine, make sure you have pytest installed:

pip install pytest

Then simply run from the root directory:

pytest -v ./test

2.4 Building the documentation

The documentation (the one you are currently reading) is builded with sphinx. The main HTML page is generated to
docs/build/html/index.html:

pip install Sphinx mock sphinx_rtd_theme

python setup.py build_sphinx

Or:

cd docs && make html

8 Chapter 2. Installation

https://travis-ci.org/bootphon/h5features

CHAPTER 3

API Reference

3.1 Top-level modules

3.1.1 h5features.data module

Provides the Data class to the h5features package.

class h5features.data.Data(items, labels, features, sparsity=None, check=True)
Bases: object

This class manages h5features data.

append(data)
Append a Data instance to self

clear()
Erase stored data

dict_features()
Returns a items/features dictionary.

dict_labels()
Returns a items/labels dictionary.

features()
Returns the stored features as a list of numpy arrays.

init_group(group, chunk_size)
Initializes a HDF5 group compliant with the stored data.

This method creates the datasets ‘items’, ‘labels’, ‘features’ and ‘index’ and leaves them empty.

Parameters

• group (h5py.Group) – The group to initializes.

• chunk_size (float) – The size of a chunk in the file (in MB).

9

h5features Documentation, Release 1.2.2

is_appendable_to(group)
Returns True if the data can be appended in a given group.

is_empty()

items()
Returns the stored items as a list of str.

labels()
Returns the stored labels as a list.

write_to(group, append=False)
Write the data to the given group.

Parameters

• group (h5py.Group) – The group to write the data on. It is assumed that the
group is already existing or initialized to store h5features data (i.e. the method Data.
init_group have been called.

• append (bool) – If False, any existing data in the group is overwrited. If True, the data
is appended to the end of the group and we assume Data.is_appendable_to is True
for this group.

3.1.2 h5features.reader module

Provides the Reader class to the h5features package.

class h5features.reader.Reader(filename, groupname=None)
Bases: object

This class provides an interface for reading from h5features files.

A Reader object wrap a h5features file. When created it loads items and index from file. The read() method
then allows fast access to features and times data.

Parameters

• filename (str) – Path to the HDF5 file to read from.

• groupname (str) – Name of the group to read from in the file. If None, guess there is
one and only one group in filename.

Raises IOError – if filename is not an existing HDF5 file or if groupname is not a valid group in
filename.

close()

index_read(index)
Read data from its indexed coordinate

read(from_item=None, to_item=None, from_time=None, to_time=None)
Retrieve requested data coordinates from the h5features index.

Parameters

• from_item (str) – Optional. Read the data starting from this item. (defaults to the first
stored item)

• to_item (str) – Optional. Read the data until reaching the item. (defaults to from_item
if it was specified and to the last stored item otherwise).

• from_time (float) – Optional. (defaults to the beginning time in from_item) The
specified times are included in the output.

10 Chapter 3. API Reference

h5features Documentation, Release 1.2.2

• to_time (float) – Optional. (defaults to the ending time in to_item) the specified
times are included in the output.

Returns An instance of h5features.Data read from the file.

3.1.3 h5features.writer module

Provides the Writer class to the h5features module.

class h5features.writer.Writer(filename, chunk_size=0.1, version=’1.1’, mode=’a’)
Bases: object

This class provides an interface for writing to h5features files.

Parameters

• filename (str) – The name of the HDF5 file to write on. For clarity you should use a
‘.h5’ or ‘.h5f’ extension but this is not required by the package.

• chunk_size (float) – Optional. The size in Mo of a chunk in the file. Default is 0.1
Mo. A chunk size below 8 Ko is not allowed as it results in poor performances.

• version (str) – Optional. The file format version to write, default is to write the latest
version.

• mode (char) – Optional. The mode for overwriting an existing file, ‘a’ to append data to
the file, ‘w’ to overwrite it

Raises IOError – if the file exists but is not HDF5, if the file can be opened, if the mode is not ‘a’
or ‘w’, if the chunk size is below 8 Ko or if the requested version is not supported.

close()
Close the HDF5 file.

write(data, groupname=’h5features’, append=False)
Write h5features data in a specified group of the file.

Parameters

• data (dict) – A h5features.Data instance to be writed on disk.

• groupname (str) – Optional. The name of the group in which to write the data.

• append (bool) – Optional. This parameter has no effect if the groupname is not an
existing group in the file. If set to True, try to append new data in the group. If False
(default) erase all data in the group before writing.

Raises IOError – if append requested but not possible.

3.1.4 h5features.converter module

Provides the Converter class to the h5features package.

class h5features.converter.Converter(filename, groupname=’h5features’, chunk=0.1)
Bases: object

This class allows convertion from various formats to h5features.

• A Converter instance owns an h5features file and write converted input files to it, in a specified group.

• An input file is converted to h5features using the convert method, which choose a concrete conversion
method based on the input file extension.

3.1. Top-level modules 11

h5features Documentation, Release 1.2.2

• Supported extensions are:

– .npz for numpy NPZ files

– .mat for Octave/Matlab files

– .h5 for h5features files. In this later case, the files are simply converted to latest version of the
h5features data format

Parameters

• filename (str) – The h5features to write in.

• groupname (str) – The group to write in filename

• chunk (float) – Size a chunk in filename, in MBytes.

close()
Close the converter and release the owned h5features file.

convert(infile, item=None)
Convert an input file to h5features based on its extension.

Raises

• IOError – if infile is not a valid file.

• IOError – if infile extension is not supported.

h5features_convert(infile)
Convert a h5features file to the latest h5features version.

mat_convert(infile, item)
Convert a Octave/Matlab file to h5features.

npz_convert(infile, item)
Convert a numpy NPZ file to h5features.

3.1.5 h5features.h5features module

Provides the read() and write() wrapper functions.

Note: For compatibility with h5features 1.0, this legacy top-level API have been conserved in this module. Except
for use in legacy code, it is better not to use it. Use instead the h5features.writer and h5features.reader modules.

h5features.h5features.read(filename, groupname=None, from_item=None, to_item=None,
from_time=None, to_time=None, index=None)

Reads in a h5features file.

Parameters

• filename (str) – Path to a hdf5 file potentially serving as a container for many small
files

• groupname (str) – HDF5 group to read the data from. If None, guess there is one and
only one group in filename.

• from_item (str) – Optional. Read the data starting from this item. (defaults to the first
stored item)

12 Chapter 3. API Reference

h5features Documentation, Release 1.2.2

• to_item (str) – Optional. Read the data until reaching the item. (defaults to from_item
if it was specified and to the last stored item otherwise)

• from_time (float) – Optional. (defaults to the beginning time in from_item) the speci-
fied times are included in the output

• to_time (float) – Optional. (defaults to the ending time in to_item) the specified times
are included in the output

• index (int) – Optional. For faster access. TODO Document and test this.

Returns

A tuple (times, features) such as:

• time is a dictionary of 1D arrays values (keys are items).

• features: A dictionary of 2D arrays values (keys are items) with the ‘feature’ dimension
along the columns and the ‘time’ dimension along the lines.

Note: Note that all the files that are present on disk between to_item and from_item will be loaded and returned.
It’s the responsibility of the user to make sure that it will fit into RAM memory.

h5features.h5features.simple_write(filename, group, times, features, item=’item’, mode=’a’)
Simplified version of write() when there is only one item.

h5features.h5features.write(filename, groupname, items, times, features, dformat=’dense’,
chunk_size=0.1, sparsity=0.1, mode=’a’)

Write h5features data in a HDF5 file.

This function is a wrapper to the Writer class. It has three purposes:

• Check parameters for errors (see details below),

• Create Items, Times and Features objects

• Send them to the Writer.

Parameters

• filename (str) – HDF5 file to be writted, potentially serving as a container for many
small files. If the file does not exist, it is created. If the file is already a valid HDF5 file, try
to append the data in it.

• groupname (str) – Name of the group to write the data in, or to append the data to if the
group already exists in the file.

• items (list of str) – List of files from which the features where extracted. Items
must not contain duplicates.

• times (list of 1D or 2D numpy arrays) – Time value for the features array.
Elements of a 1D array are considered as the center of the time window associated with the
features. A 2D array must have 2 columns corresponding to the begin and end timestamps
of the features time window.

• features (list of 2D numpy arrays) – Features should have time along the lines
and features along the columns (accomodating row-major storage in hdf5 files).

• dformat (str) – Optional. Which format to store the features into (sparse or dense).
Default is dense.

• chunk_size (float) – Optional. In Mo, tuning parameter corresponding to the size of
a chunk in the h5file. Ignored if the file already exists.

3.1. Top-level modules 13

h5features Documentation, Release 1.2.2

• sparsity (float) – Optional. Tuning parameter corresponding to the expected propor-
tion (in [0, 1]) of non-zeros elements on average in a single frame.

• mode (char) – Optional. The mode for overwriting an existing file, ‘a’ to append data to
the file, ‘w’ to overwrite it

Raises

• IOError – if the filename is not valid or parameters are inconsistent.

• NotImplementedError – if dformat == ‘sparse’

3.2 Low-level modules

3.2.1 h5features.entry module

Provides the Entry class to the h5features package.

class h5features.entry.Entry(name, data, dim, dtype, check=True)
Bases: object

The Entry class is the base class of h5features.Data entries.

It provides a shared interface to the classes Items, Times and Features which all together compose a
Data.

append(entry)
Append an entry to self

clear()
Erase stored data

is_appendable(entry)
Return True if entry can be appended to self

h5features.entry.nb_per_chunk(item_size, item_dim, chunk_size)
Return the number of items that can be stored in one chunk.

Parameters

• item_size (int) – Size of an item’s scalar componant in Bytes (e.g. for np.float64 this
is 8)

• item_dim (int) – Items dimension (length of the second axis)

• chunk_size (float) – The size of a chunk given in MBytes.

3.2.2 h5features.features module

Provides Features class to the h5features module.

class h5features.features.Features(data, check=True, sparsetodense=False)
Bases: h5features.entry.Entry

This class manages features in h5features files

Parameters

• data (list of 2D numpy arrays) – Features must have time along the lines and
features along the columns (accomodating row-major storage in hdf5 files).

14 Chapter 3. API Reference

h5features Documentation, Release 1.2.2

• sparsetodense (bool) – If True convert sparse matrices to dense when writing. Used
for compatibility with 1.0.

Raises IOError – if features are badly formatted.

create_dataset(group, chunk_size)
Initialize the features subgoup

is_appendable_to(group)
Return True if features are appendable to a HDF5 group

is_sparse()
Return True if features are sparse matrices

write_to(group, append=False)
Write stored features to a given group

class h5features.features.SparseFeatures(data, sparsity, check=True)
Bases: h5features.features.Features

This class is specialized for managing sparse matrices as features

create_dataset(group, chunk_size)
Initializes sparse specific datasets

write_to(group, append=False)
Write stored features to a given group

h5features.features.contains_empty(features)
Check features data are not empty

Parameters features (list of numpy arrays.) – The features data to check.

Returns True if one of the array is empty, False else.

h5features.features.parse_dformat(dformat, check=True)
Return dformat or raise if it is not ‘dense’ or ‘sparse’

h5features.features.parse_dim(features, check=True)
Return the features dimension, raise if error

Raise IOError if features have not all the same positive dimension. Return dim (int), the features dimension.

h5features.features.parse_dtype(features, check=True)
Return the features scalar type, raise if error

Raise IOError if all features have not the same data type. Return dtype, the features scalar type.

3.2.3 h5features.index module

Provides indexing facilities to the h5features package.

This index typically allows a faster read access in large datasets and is transparent to the user.

Because the h5features package is designed to handle large datasets, features and times data is internally stored in a
compact indexed representation.

h5features.index.create_index(group, chunk_size)
Create an empty index dataset in the given group.

h5features.index.cumindex(features)
Return the index computed from features.

3.2. Low-level modules 15

h5features Documentation, Release 1.2.2

h5features.index.read_index(group, version=’1.1’)
Return the index stored in a h5features group.

Parameters

• group (h5py.Group) – The group to read the index from.

• version (str) – The h5features version of the group.

Returns a 1D numpy array of features indices.

h5features.index.write_index(data, group, append)
Write the data index to the given group.

Parameters

• data (h5features.Data) – The that is being indexed.

• group (h5py.Group) – The group where to write the index.

• append (bool) – If True, append the created index to the existing one in the group. Delete
any existing data in index if False.

3.2.4 h5features.items module

Provides the Items class to the h5features package.

class h5features.items.Items(data, check=True)
Bases: h5features.entry.Entry

This class manages items in h5features files.

Parameters data (list of str) – A list of item names (e.g. files from which the features
where extracted). Each name of the list must be unique.

Raises IOError – if data is empty or if one or more names are not unique in the list.

create_dataset(group, chunk_size)

is_appendable_to(group)

is_valid_interval(lower, upper)
Return False if [lower:upper] is not a valid subitems interval. If it is, then returns a tuple of (lower index,
upper index)

write_to(group)
Write stored items to the given HDF5 group.

We assume that self.create() has been called.

h5features.items.read_items(group, version=’1.1’, check=False)
Return an Items instance initialized from a h5features group.

3.2.5 h5features.labels module

Provides the Labels class to the h5features module.

class h5features.labels.Labels(labels, check=True)
Bases: h5features.entry.Entry

This class manages labels related operations for h5features files

Parameters

16 Chapter 3. API Reference

h5features Documentation, Release 1.2.2

• labels (list of numpy arrays) – Each element of the list contains the labels of
an h5features item. Empty list are not accepted. For all t in labels, we must have t.ndim to
be either 1 or 2.

– 1D arrays contain the center labelstamps of each frame of the related item.

– 2D arrays contain the begin and end labelstamps of each items’s frame, thus having t.ndim
== 2 and t.shape[1] == 2.

• check (bool) – If True, raise on errors

Raises IOError – if the time format is not 1 or 2, or if labels arrays have different dimensions.

Returns The parsed labels dimension is either 1 or 2 for 1D or 2D labels arrays respectively.

static check(labels)
Raise IOError if labels are not correct

labels must be a list of sorted numpy arrays of equal dimensions (must be 1D or 2D). In the case of 2D
labels, the second axis must have the same shape for all labels.

create_dataset(group, per_chunk)

is_appendable_to(group)

static parse_dim(labels)
Return the labels vectors dimension

write_to(group)

3.2.6 h5features.version module

Provides versioning facilities to the h5features package.

This module manages the h5features file format versions, specified as strings in the format ‘major.minor’. File format
versions are independant of the h5feature package version (but actually follow the same numerotation scheme).

The module provides functions to list supported versions, read a version from a h5features file or check a specific
version is supported.

h5features.version.is_same_version(version, group)
Return True if version and read_version(group) are equals.

h5features.version.is_supported_version(version)
Return True if the version is supported by h5features.

h5features.version.read_version(group)
Return the h5features version of a given HDF5 group.

Look for a ‘version’ attribute in the group and return its value. Return ‘0.1’ if the version is not found. Raises
an IOError if it is not supported.

h5features.version.supported_versions()
Return the list of file format versions supported by h5features.

3.2. Low-level modules 17

h5features Documentation, Release 1.2.2

18 Chapter 3. API Reference

CHAPTER 4

What’s new ?

4.1 h5features-1.2.2

• bugfix: broken test on python-3.6.3.

• bugfix: missing files in MANIFEST.in for installation with pip install h5features.

4.2 h5features-1.2.1

• The script convert2h5features is now installed by the setup script.

4.3 h5features-1.2

• Breaking change Labels associated with features data must be sorted in increasing order. This is convenient to
use with timestamps and improve reading huge datasets with long labels.

• Breaking change Appending new data to an exisiting item is no more allowed.

Suppose a h5f file with 3 items ['a', 'b', 'c'], in 1.1 it was possible to append 3 items ['c', 'd',
'e'], giving a file with the 5 items ['a', 'b', 'c', 'd', 'e'], where the item 'c' being the con-
catenation of original and appended data. That facility was messy and is removed in 1.2.

• Bugfix when writing unidimensional features

• Bugfix when reading from time/to time in Reader

• Safely overwrite existing groups in h5features files with mode=’w’

• Now more than 100 test cases

19

h5features Documentation, Release 1.2.2

4.4 h5features-1.1

The main goal of the 1.1 release is to provide a better, safer and clearer code than previous release whithout changing
the front-end API.

• Object oriented refactoring

An object oriented architecture have been coded. The main entry classes are Data, Reader and Writer.

• Distinct overwrite/append mode

Appending to an existing file is now optional. This allow minor optimzations but that make sense
when data is big.

• Change in the HDF5 file structure

With group as the h5features root in a HDF5 file, the structure evolved from group/[files, times,
features, file_index] to group/[items, labels, features, index]. These changes are done for clarity and
consistency with code and usage.

• Change in times/labels

You can now write 2D labels to h5features.

• Test suite

The project is now endowed with a pytest suite of more than 50 unit tests.

• Improved documentation

This is what you are reading now!

4.5 h5features-1.0

Over the previous development release (0.1), the 1.0 release changes the underlying HDF5 file structure, add a version
attribute and improve the index facilities.

4.6 TODO list

4.6.1 For a future release

• Converter: Possibility to specify other names than ‘labels’, ‘features’ for the input files

• Test convertion from h5features old versions

• read/write bigger than RAM -> catch MemoryError when np.concatenate on writing.

• labels can be of arbitrary type (optionally sorted)

• Have a h5features.File class inspired by h5py.File

– Make Data a dict with the following syntax:

reader = h5f.Reader(file, group)
reader['item'][from_time:to_time]
reader['item'].features
reader['item'].labels
reader.keys()

20 Chapter 4. What’s new ?

http://www.pytest.org

h5features Documentation, Release 1.2.2

– Make an Item class wrapping Labels and Features

• Implement sparse functionalities

• Handle h5py MPI driver for concurent reading

• Enable autochunking from h5py (with chunk=None)

• Allow data compression as an option for the writer

4.6. TODO list 21

h5features Documentation, Release 1.2.2

22 Chapter 4. What’s new ?

CHAPTER 5

License and copyright

This package is developed whithin the Bootphon project.

Copyright 2014-2016 Thomas Schatz, Mathieu Bernard, Roland Thiolliere.

h5features is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later
version.

h5features is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with h5features. If not, see http://www.
gnu.org/licenses/.

23

http://www.lscp.net/persons/dupoux/bootphon/
http://www.gnu.org/licenses/
http://www.gnu.org/licenses/

h5features Documentation, Release 1.2.2

24 Chapter 5. License and copyright

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

25

h5features Documentation, Release 1.2.2

26 Chapter 6. Indices and tables

Python Module Index

h
h5features.converter, 11
h5features.data, 9
h5features.entry, 14
h5features.features, 14
h5features.h5features, 12
h5features.index, 15
h5features.items, 16
h5features.labels, 16
h5features.reader, 10
h5features.version, 17
h5features.writer, 11

27

h5features Documentation, Release 1.2.2

28 Python Module Index

Index

A
append() (h5features.data.Data method), 9
append() (h5features.entry.Entry method), 14

C
check() (h5features.labels.Labels static method), 17
clear() (h5features.data.Data method), 9
clear() (h5features.entry.Entry method), 14
close() (h5features.converter.Converter method), 12
close() (h5features.reader.Reader method), 10
close() (h5features.writer.Writer method), 11
contains_empty() (in module h5features.features), 15
convert() (h5features.converter.Converter method), 12
Converter (class in h5features.converter), 11
create_dataset() (h5features.features.Features method),

15
create_dataset() (h5features.features.SparseFeatures

method), 15
create_dataset() (h5features.items.Items method), 16
create_dataset() (h5features.labels.Labels method), 17
create_index() (in module h5features.index), 15
cumindex() (in module h5features.index), 15

D
Data (class in h5features.data), 9
dict_features() (h5features.data.Data method), 9
dict_labels() (h5features.data.Data method), 9

E
Entry (class in h5features.entry), 14

F
Features (class in h5features.features), 14
features() (h5features.data.Data method), 9

H
h5features.converter (module), 11
h5features.data (module), 9
h5features.entry (module), 14

h5features.features (module), 14
h5features.h5features (module), 12
h5features.index (module), 15
h5features.items (module), 16
h5features.labels (module), 16
h5features.reader (module), 10
h5features.version (module), 17
h5features.writer (module), 11
h5features_convert() (h5features.converter.Converter

method), 12

I
index_read() (h5features.reader.Reader method), 10
init_group() (h5features.data.Data method), 9
is_appendable() (h5features.entry.Entry method), 14
is_appendable_to() (h5features.data.Data method), 9
is_appendable_to() (h5features.features.Features

method), 15
is_appendable_to() (h5features.items.Items method), 16
is_appendable_to() (h5features.labels.Labels method), 17
is_empty() (h5features.data.Data method), 10
is_same_version() (in module h5features.version), 17
is_sparse() (h5features.features.Features method), 15
is_supported_version() (in module h5features.version),

17
is_valid_interval() (h5features.items.Items method), 16
Items (class in h5features.items), 16
items() (h5features.data.Data method), 10

L
Labels (class in h5features.labels), 16
labels() (h5features.data.Data method), 10

M
mat_convert() (h5features.converter.Converter method),

12

N
nb_per_chunk() (in module h5features.entry), 14

29

h5features Documentation, Release 1.2.2

npz_convert() (h5features.converter.Converter method),
12

P
parse_dformat() (in module h5features.features), 15
parse_dim() (h5features.labels.Labels static method), 17
parse_dim() (in module h5features.features), 15
parse_dtype() (in module h5features.features), 15

R
read() (h5features.reader.Reader method), 10
read() (in module h5features.h5features), 12
read_index() (in module h5features.index), 15
read_items() (in module h5features.items), 16
read_version() (in module h5features.version), 17
Reader (class in h5features.reader), 10

S
simple_write() (in module h5features.h5features), 13
SparseFeatures (class in h5features.features), 15
supported_versions() (in module h5features.version), 17

W
write() (h5features.writer.Writer method), 11
write() (in module h5features.h5features), 13
write_index() (in module h5features.index), 16
write_to() (h5features.data.Data method), 10
write_to() (h5features.features.Features method), 15
write_to() (h5features.features.SparseFeatures method),

15
write_to() (h5features.items.Items method), 16
write_to() (h5features.labels.Labels method), 17
Writer (class in h5features.writer), 11

30 Index

	Package overview
	Brief
	Description
	Command line converter
	Basic usage

	Installation
	Getting the source
	Installing
	Testing
	Building the documentation

	API Reference
	Top-level modules
	Low-level modules

	What’s new ?
	h5features-1.2.2
	h5features-1.2.1
	h5features-1.2
	h5features-1.1
	h5features-1.0
	TODO list

	License and copyright
	Indices and tables
	Python Module Index

