
h5cube File Specification
Release All Versions

Brian Skinn

21 Jul 2017

Contents

1 Contents 3
1.1 Gaussian CUBE File Format . 3
1.2 h5cube File Specifications . 6
1.3 References . 9

Bibliography 11

i

ii

h5cube File Specification, Release All Versions

Gaussian CUBE files are a common format for storing molecular geometric and volumetric field data from quan-
tum/computational chemical calculations. The data in these files is stored as plain text, and thus their compressibility
by standard tools such as gzip and bzip2 is limited, even in cases where the numerical structure of the dataset itself
might be well suited for greater compression by other means.

It is the purpose of this document to define a file specification for storing the data contained in Gaussian CUBE files
in the binary HDF5 format. HDF5 was chosen due to its acceptance across numerous disciplines as a standardized,
cross-platform data storage format, and for the free, cross-platform compression algorithms integrated into it (see
here). In circumstances where ‘semi-lossy’ compression (e.g., truncation of precision and/or data thresholding) is
acceptable, particularly large reductions in file size are feasible. Documentation at the companion Python project
h5cube (ReadTheDocs | GitHub) will eventually illustrate representative compression factors achievable in the
h5cube file format; preliminary data can be found at this Google Spreadsheet .

Definition of an explicit specification for the h5cube format is anticipated to facilitate direct, cross-platform binary
read and write of CUBE data. Particular advantages should be observed by applications aware of the HDF5 format
and of this specification when reading data, gained from rapid retrieval of individual data points or subsets directly
from h5cube files without the need to load the full dataset. Even in instances where the full dataset must be loaded into
memory, the disk usage will still be significantly reduced in most cases, since it should be unnecessary to recreate an
intermediate uncompressed CUBE file.

The Gaussian CUBE file format itself is also delineated here, using a “field”-style syntax for convenient cross-reference
from the various version(s) of the h5cube specification.

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC 2119.
The specification versioning follows in the spirit of Semantic Versioning; see the root specifications page for more
information.

Contents 1

https://support.hdfgroup.org/HDF5/
https://support.hdfgroup.org/hdf5-quest.html#gcomp
http://h5cube.readthedocs.io/en/stable/
https://github.com/bskinn/h5cube
https://docs.google.com/spreadsheets/d/1AajEYpacgq48X72_HuarVLVA517ZY4htaEWf1tLY5Cc/edit#gid=0
https://tools.ietf.org/html/rfc2119.html
http://semver.org

h5cube File Specification, Release All Versions

2 Contents

CHAPTER 1

Contents

Gaussian CUBE File Format

Disclaimer

The CUBE file format as described here is NOT an official specification, sanctioned by Gaussian, Inc. It is instead a
best effort to define the contents of a representative subset of CUBE files in circulation. FILES FORMATTED TO
THIS SPECIFICATION MAY NOT BE COMPATIBLE WITH ALL SOFTWARE SUPPORTING CUBE FILE
INPUT.

Overview

The CUBE file format is described on the Gaussian webpage as part of the documentation of the cubegen utility
[Gau16]. As noted there, all data in CUBE files MUST be stored in atomic units (electrons and Bohrs, and units
derived from these).

The format specification on the webpage of the VMD visualization program [UIUC16] provides a cleaner layout
of one possible arrangement of CUBE file contents. In particular, the Gaussian specification is ambiguous about
whitespace requirements, so parsing of CUBE files SHOULD accommodate some variation in the format, including
(i) variable amounts/types of whitespace between the values on a given line, and (ii) the presence of leading and/or
trailing whitespace on a given line.

The CUBE file format as laid out below uses tagged fields ({FIELD (type)}) to indicate the types of the various
data elements and where they are located in the file. Descriptions of the fields are provided below the field layout.
Lowercase algebraic symbols (𝑥 , 𝑦, 𝑧) indicate coordinates in the frame of the molecular geometry, whereas uppercase
algebraic symbols (𝑋 , 𝑌 , 𝑍) indicate coordinates in the voxel grid defined by {XAXIS}, {YAXIS}, and {ZAXIS}.

All fields except for {DSET_IDS} and {NVAL} MUST be present in all files.

{DSET_IDS} MUST be present if {NATOMS} is negative; it MUST NOT be present if {NATOMS} is positive.

{NVAL} MAY be omitted if its value would be equal to one; it MUST be absent or have a value of one if {NATOMS}
is negative.

3

h5cube File Specification, Release All Versions

Field Layout

{COMMENT1 (str)}
{COMMENT2 (str)}
{NATOMS (int)} {ORIGIN (3x float)} {NVAL (int)}
{XAXIS (int) (3x float)}
{YAXIS (int) (3x float)}
{ZAXIS (int) (3x float)}
{GEOM (int) (float) (3x float)}

.

.
{DSET_IDS (#x int)}

.

.
{DATA (#x scinot)}

.

.

Table of Contents

{COMMENT1} and {COMMENT2} {NATOMS} {ORIGIN} {NVAL} {XAXIS} {YAXIS} {ZAXIS} {GEOM}
{DSET_IDS} {DATA}

Field Descriptions

{COMMENT1 (str)} and {COMMENT2 (str)}

Two lines of text at the head of the file. Per VMD [UIUC16], by convention {COMMENT1} is typically
the title of the system and {COMMENT2} is a description of the property/content stored in the file, but
they MAY be anything. For robustness, both of these fields SHOULD NOT be zero-length. As well, while
there is no defined maximum length for either of these fields, both SHOULD NOT exceed 80 characters
in length.

{NATOMS (int)}

The absolute value of this first field on the third line indicates the number of atoms 𝑁𝐴 present in the
system. A negative value indicates the CUBE file MUST contain the {DSET_IDS} line(s); a positive value
indicates the file MUST NOT contain this/these lines.

The value of 𝑁𝐴 also specifies the number of rows of molecular geometry data that MUST be present in
{GEOM}.

The CUBE specification is silent as to whether a zero value is permitted for {NATOMS}; regardless, it is
probable that many applications do not support CUBE files with no atoms. Accordingly, this specification
hereby declares that {NATOMS} MUST be nonzero.

{ORIGIN (3x float)}

This set of three fields defines the displacement vector from the geometric origin of the system (0, 0, 0) to
the reference point (𝑥0, 𝑦0, 𝑧0) for the spanning vectors defined in {XAXIS}, {YAXIS}, and {ZAXIS}.

{NVAL (int)}

If {NATOMS} is positive, this field indicates the number of data values 𝑁𝑉 that are recorded at each point
in the voxel grid; it MAY be omitted, in which case a value of one is assumed.

If {NATOMS} is negative, this field MUST be either absent or have a value of one.

4 Chapter 1. Contents

h5cube File Specification, Release All Versions

{XAXIS (int) (3x float)}

The first field on this line is an integer indicating the number of voxels 𝑁𝑋 present along the 𝑋-axis of
the volumetric region represented by the CUBE file. This value SHOULD always be positive; whereas
the input to the cubegen [Gau16] utility allows a negative value here as a flag for the units of the axis
dimensions, in a CUBE file distance units MUST always be in Bohrs, and thus the ‘units flag’ function of
a negative sign is superfluous. It is prudent to design applications to handle gracefully (viz., disregard the
sign of) a negative value here, however.

The second through fourth values on this line are the components of the vector �⃗� defining the voxel 𝑋-
axis. As noted in the Gaussian documentation [Gau16], the voxel axes need neither be orthogonal nor
aligned with the geometry axes. However, many tools only support voxel axes that are aligned with the
geometry axes (and thus are also orthogonal). In this case, the first float value (𝑋𝑥) will be positive
and the other two (𝑋𝑦 and 𝑋𝑧) will be identically zero.

{YAXIS (int) (3x float)}

This line defines the 𝑌 -axis of the volumetric region of the CUBE file, in nearly identical fashion as for
{XAXIS}. The key differences are: (1) the first integer field 𝑁𝑌 MUST always be positive; and (2) in
the situation where the voxel axes aligned with the geometry axes, the second float field (𝑌𝑦) will be
positive and the first and third float fields (𝑌𝑥 and 𝑌𝑧) will be identically zero.

{ZAXIS (int) (3x float)}

This line defines the 𝑍-axis of the volumetric region of the CUBE file, in nearly identical fashion as for
{YAXIS}. The key difference is that in the situation where the voxel axes are aligned with the geometry
axes, the third float field (𝑍𝑧) will be positive and the first and second float fields (𝑍𝑥 and 𝑍𝑦) will
be identically zero.

{GEOM (int) (float) (3x float)}

This field MUST have 𝑁𝐴 rows of the below composition.

Each row of this field provides atom identity and position information for an atom in the molecular system
of the CUBE file:

• (int) - Atomic number of atom 𝑎

• (float) - Nuclear charge of atom 𝑎 (will deviate from the atomic number when an ECP is used)

• (3x float) - Position of the atom in the geometric frame of reference (𝑥𝑎, 𝑦𝑎, 𝑧𝑎)

{DSET_IDS (#x int)}

This field is only present if {NATOMS} is negative

This field comprises one or more rows of integers, representing identifiers associated with multiple
{DATA} values at each voxel, with a total of 𝑚 + 1 values present. The most common meaning of
these identifiers is orbital indices, in CUBE files containing wavefunction data. The first value MUST
be positive and equal to 𝑚, to indicate the length of the rest of the list. Each of these 𝑚 values may be
any integer, with the constraint that all values SHOULD be unique. Further, all 𝑚 values SHOULD be
non-negative, as unpredictable behavior may result in some applications if negative integers are provided.

{DATA (#x scinot)}

This field encompasses the remainder of the CUBE file. Typical formatted CUBE output has up to six val-
ues on each line, in whitespace-separated scientific notation. Non-numeric data values are not supported
and MUST NOT be present.

If {NATOMS} is positive, a total of 𝑁𝑋𝑁𝑌 𝑁𝑍𝑁𝑉 values should be present, flattened as follows (in the
below Python pseudocode the for-loop variables are iterated starting from zero):

1.1. Gaussian CUBE File Format 5

h5cube File Specification, Release All Versions

for i in range(NX):
for j in range(NY):

for k in range(NZ):
for l in range(NV):

write(data_array[i, j, k, l])
if (k*NV + l) mod 6 == 5:

write('\n')

write('\n')

If {NATOMS} is negative and 𝑚 datasets are present (see {DSET_IDS} above), a total of 𝑁𝑋𝑁𝑌 𝑁𝑍𝑚
values should be present, flattened as follows:

for i in range(NX):
for j in range(NY):

for k in range(NZ):
for l in range(m):

write(data_array[i, j, k, l])
if (k*m + l) mod 6 == 5:

write('\n')

write('\n')

The sequence of the data values along the last (l) dimension of the data array for each i, j, k MUST
match the sequence of the identifiers provided in {DSET_IDS} in order for the dataset to be interpreted
properly.

Regardless of the sign of {NATOMS}, as illustrated above a newline is typically inserted after the block of
data corresponding to each (𝑋𝑖, 𝑌𝑗) pair.

h5cube File Specifications

This page collates all existing versions of the h5cube file specification for convenient access. The versioning scheme
used here follows the spirit of Semantic Versioning but in a revised syntax:

• Specification version numbers are of the form 𝑣𝑥.𝑦𝑟𝑒𝑣, where 𝑥 and 𝑦 indicate major and minor categories of
changes, and is a revision number.

• An increment in the revision number indicates minor editorial fix(es), such as correcting typos or introducing
clarification(s) that do not affect the semantic content of the specification.

• An increment in the minor version level indicates that new field(s) or other semantic content have been added to
the specification, but existing fields/content are unchanged.

• An increment in the major version level indicates that existing field(s)/content have been removed/changed.
New field(s)/content may also have been added.

Based upon the above, it is expected that applications built against the specific version 𝑣𝑋.𝑌 should be compatible
with the versions 𝑣𝑥.𝑦 where 𝑥 = 𝑋 and 𝑦 ≥ 𝑌 . Applications may or may not be compatible with versions 𝑥 > 𝑋 ,
depending on the particular changes introduced with that major version increment.

Specification Versions

6 Chapter 1. Contents

http://semver.org

h5cube File Specification, Release All Versions

h5cube Specification v1.0 - Description

Only scalar volumetric data... and other commentary

Todo

Complete this description.

Test substitution of autogen spec dataset reference: [GEOM]v1.0r1

h5cube Specification v1.0 rev1

Datasets

[VERSION] [COMMENT1] [COMMENT2] [NATOMS] [ORIGIN] [XAXIS] [YAXIS] [ZAXIS] [GEOM]
[NUM_DSETS] [DSET_IDS] [SIGNS] [LOGDATA]

Dataset Descriptions

[VERSION]

𝐼𝑛𝑡𝑒𝑔𝑒𝑟2,

h5cube specification version met by the file, where the first and second elements are the major and minor
version numbers, respectively:

𝑣𝑥.𝑦 → (𝑥, 𝑦)

This dataset MAY be absent for specification v1.0 only.

[COMMENT1]

𝑆𝑡𝑟𝑖𝑛𝑔

First comment line of the CUBE file. Corresponds to {COMMENT1}.

[COMMENT2]

𝑆𝑡𝑟𝑖𝑛𝑔

Second comment line of the CUBE file. Corresponds to {COMMENT2}.

[NATOMS]

𝐼𝑛𝑡𝑒𝑔𝑒𝑟

Corresponds directly to {NATOMS}, where the absolute value equals 𝑁𝐴, the number of atoms in the
system. The value here may be negative, with the same semantic implications as in the case of {NATOMS}.
See [NUM_DSETS] and [DSET_IDS] for more details.

This value MUST be nonzero.

[ORIGIN]

𝐹𝑙𝑜𝑎𝑡3,

Vector pointing from the origin of the system geometry frame to the reference point (𝑥0, 𝑦0, 𝑧0) of the
vectors spanning the CUBE voxel grid. Corresponds directly to {ORIGIN}.

[XAXIS]

1.2. h5cube File Specifications 7

h5cube File Specification, Release All Versions

𝐹𝑙𝑜𝑎𝑡4,

Corresponds directly to {XAXIS}. The first element is the number of voxels along the 𝑋-axis of the
volumetric grid, 𝑁𝑋 , and MUST be a positive integer value, despite the 𝐹𝑙𝑜𝑎𝑡 type of the dataset. The
remaining three elements are the vector �⃗� defining the voxel 𝑋-axis. See {XAXIS} for more information
about the semantics of these values.

[YAXIS]

𝐹𝑙𝑜𝑎𝑡4,

Corresponds directly to {YAXIS}. The first element is the number of voxels along the 𝑌 -axis of the
volumetric grid, 𝑁𝑌 , and MUST be a positive integer value, despite the 𝐹𝑙𝑜𝑎𝑡 type of the dataset. The
remaining three elements are the vector �⃗� defining the voxel 𝑌 -axis. See {YAXIS} for more information
about the semantics of these values.

[ZAXIS]

𝐹𝑙𝑜𝑎𝑡4,

Corresponds directly to {ZAXIS}. The first element is the number of voxels along the 𝑍-axis of the
volumetric grid, 𝑁𝑍 , and MUST be a positive integer value, despite the 𝐹𝑙𝑜𝑎𝑡 type of the dataset. The
remaining three elements are the vector �⃗� defining the voxel 𝑍-axis. See {ZAXIS} for more information
about the semantics of these values.

[GEOM]

𝐹𝑙𝑜𝑎𝑡𝑁𝐴, 5

Corresponds directly to {GEOM}. The first element of each of the 𝑁𝐴 lines (see [NATOMS]) indicates the
atomic number of atom a, and MUST be an 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 value. The second element of each line indicates the
nuclear charge of atom a, and will generally be (i) equal to the atomic number and (ii) an integer quantity.
This value will deviate from the atomic number when an ECP [WP_PP] is used on atom a.

The remaining three 𝐹𝑙𝑜𝑎𝑡 elements of each line provide the coordinates (𝑥𝑎, 𝑦𝑎, 𝑧𝑎) of atom a in the
geometric frame of reference.

[NUM_DSETS]

𝐼𝑛𝑡𝑒𝑔𝑒𝑟

Corresponds to the first value in {DSET_IDS}, indicating the number 𝑚 of dataset identifiers provided in
the remainder of {DSET_IDS}. This value 𝑚 also specifies the required size of [DSET_IDS].

[DSET_IDS]

𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝑚,

An array of 𝑚 values indicating the identifiers associated with the multiple data values provided at each
voxel in [SIGNS] and [LOGDATA].

As noted in {DSET_IDS}, each of these values SHOULD be unique within the array, and SHOULD be
non-negative. Otherwise, they can be any 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 value.

[SIGNS]

[NATOMS] > 0𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝑁𝑋 , 𝑁𝑌 , 𝑁𝑍 [NATOMS] < 0𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝑁𝑋 , 𝑁𝑌 , 𝑁𝑍 ,𝑚

This dataset combines with [LOGDATA] to define the value of the volumetric data at each voxel (𝑋,𝑌, 𝑍).
This dataset contains the arithmetic signs of the data values, as per the standard mathematical signum ()
function [WP_Sign]. Thus, if [NATOMS] > 0:

[SIGNS]𝑋,𝑌,𝑍 = [Φ(𝑋,𝑌, 𝑍)]

and if [NATOMS] < 0:

8 Chapter 1. Contents

h5cube File Specification, Release All Versions

[SIGNS]𝑋,𝑌,𝑍,𝑖 = [Φ𝑖(𝑋,𝑌, 𝑍)]

where Φ𝑖 is the 𝑖th dataset included in the CUBE file.

[LOGDATA]

[NATOMS] > 0𝐹𝑙𝑜𝑎𝑡𝑁𝑋 , 𝑁𝑌 , 𝑁𝑍 [NATOMS] < 0𝐹𝑙𝑜𝑎𝑡𝑁𝑋 , 𝑁𝑌 , 𝑁𝑍 ,𝑚

This dataset combines with [SIGNS] to define the value of the volumetric data at each voxel (𝑋,𝑌, 𝑍).
This dataset contains the common logarithms [WP_log10] of the data values. Thus, if [NATOMS] > 0:

[LOGDATA]𝑋,𝑌,𝑍 = log10 [Φ(𝑋,𝑌, 𝑍)]

and if [NATOMS] < 0:

[LOGDATA]𝑋,𝑌,𝑍,𝑖 = log10 [Φ𝑖(𝑋,𝑌, 𝑍)]

where Φ𝑖 is the 𝑖th dataset included in the CUBE file.

Syntax and Conventions

The HDF5 dataset names defined by these specifications are formatted in fixed-font, with surrounding square brackets
(e.g., [GEOM]). This distinguishes them from the fields in the CUBE file specification, which use curly braces (e.g.,
{GEOM}). All of the dataset names are strings, and thus to access the [GEOM] dataset in Python, use code like the
following:

>>> import h5py as h5
>>> hf = h5.File('file.h5cube')
>>> hf['GEOM'].value
array([...])

Todo

• Description of the syntax/formatting of the dataset descriptions residing in the subpages here. In particular, a
brief overview of the HDF5 datatypes and the ‘lumped’ approach taken in the spec layouts. (Fig. 6-4, Tbl. 6-1).

• Python tuple syntax for dataset dimensions.

• The data type provided on the first line under a given dataset name is the data type it must be present as in an
h5cube file.

• The formula for generating the non-logscale data from the [SIGNS] and [LOGDATA].

References

1.3. References 9

h5cube File Specification, Release All Versions

10 Chapter 1. Contents

Bibliography

[Bou03] Bourke, P. “Gaussian Cube Files.” Dec 2003. Online resource: http://paulbourke.net/dataformats/cube/. Ac-
cessed 11 Dec 2016.

[Gau16] “cubegen.” Website of the Gaussian program package. http://gaussian.com/cubegen/. Accessed 8 Feb 2017.

[HDF5-6] “6. HDF5 Datatypes.” Web version of the HDF5 User’s Guide. https://support.hdfgroup.org/HDF5/.... Ac-
cessed 15 Mar 2017.

[UIUC16] “Cube Plugin, Version 1.1.” Website of the Theoretical and Computational Biophysics Group, University
of Illinois at Urbana-Champaign. http://www.ks.uiuc.edu/Research/vmd/.... Accessed 11 Dec 2016.

[WP_log10] “Common logarithm.” Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/.... Link is to arti-
cle version as of 19 Jun 2017, accessed 20 Jul 2017.

[WP_PP] “Pseudopotential.” Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/.... Link is to article ver-
sion as of 26 Jun 2017, accessed 20 Jul 2017.

[WP_Sign] “Sign function.” Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/.... Link is to article ver-
sion as of 28 Apr 2017, accessed 10 May 2017.

11

http://paulbourke.net/dataformats/cube/
http://gaussian.com/cubegen/
https://support.hdfgroup.org/HDF5/doc/UG/HDF5_Users_Guide-Responsive%20HTML5/index.html#t=HDF5_Users_Guide%2FDatatypes%2FHDF5_Datatypes.htm
http://www.ks.uiuc.edu/Research/vmd/plugins/molfile/cubeplugin.html
https://en.wikipedia.org/w/index.php?title=Common_logarithm&oldid=786513164
https://en.wikipedia.org/w/index.php?title=Pseudopotential&oldid=787559932
https://en.wikipedia.org/w/index.php?title=Sign_function&oldid=777649951

h5cube File Specification, Release All Versions

12 Bibliography

Index

R
RFC

RFC 2119, 1

13

	Contents
	Gaussian CUBE File Format
	h5cube File Specifications
	References

	Bibliography

