

 Navigation

 	
 index

 	
 next |

 	H1DS 0.9a documentation

Welcome

H1DS is an extensible web interface designed for data from
magnetically confined plasma experiments.

Contents:

	Installing H1DS

	Overview of H1DS

	H1DS Concepts

	Configuration

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, David Pretty.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	H1DS 0.9a documentation

Installing H1DS

H1DS is designed to run within virtualenv [http://www.virtualenv.org]
(a python virtual environment). The installation process should
therefore be quite similar between different operating systems. To date,
H1DS has only been used with Linux, but with modest changes to the code
it should run on any other operating system supported by Python
(Windows, Linux/Unix, Mac OS X).

H1DS currently supports python 2.6.5+ and 2.7.x

Currently MDSplus [http://www.mdsplus.org] is the only supported data
system. While H1DS is designed to be modular such that it will work
with data systems other than MDSplus, there are no immediate plans to
support other systems. If you are interested in using H1DS with a
non-MDSplus system, I’d be happy to help you with the required code
changes.

Prerequisites

In theory, these prerequisites should be the only part of the
installation process which depends on the operating system. However,
H1DS has only been tested on Linux (Ubuntu and Arch Linux), so you may
encounter some issues on other platforms.

Ubuntu 12.04 LTS

First, install git [http://git-scm.com/], virtualenv and the python
header files (needed for compiling some python libraries). Currently we
also need openssh server, as the script which deploys the production
server over ssh is also used to set up the development server on the
local computer (H1DS issue #10 [https://github.com/h1ds/h1ds/issues/10]). We also install
gfortran and libatlas-base-dev so we can build numpy in our
virtualenv, and libfreetype6-dev and libpng12-dev so we can
build matplotlib. mercurial is needed to fetch the source for
django-python-code-field:

$ sudo apt-get install git python-virtualenv python-dev ssh gfortran build-essential libatlas-base-dev libfreetype6-dev libpng12-dev mercurial

We also use virtualenvwrapper [http://virtualenvwrapper.readthedocs.org] to manage the python
virtual environments. Unfortunately, the recent versions of Ubuntu have
a problem with the Ubuntu packaged version of virtualenv [https://bugs.launchpad.net/ubuntu/+source/virtualenvwrapper/+bug/870097]
which causes problems for H1DS. Instead, we install virtualenvwrapper
via the pip installer [http://pip-installer.org] (which should have
been installed as a dependency of python-virtualenv):

$ sudo pip install virtualenvwrapper

Note

The Ubuntu virtualenv package only causes a problem when it is used
with sudo, which is required when deploying a production server
(e.g. when we need to reload the webserver). If you are looking to
run H1DS just on your own computer you might be able to use the
Ubuntu package. However, to keep things simple here we’ll assume
virtualenv has been installed via pip.

Now add the following to both your ~/.bashrc and ~/.profile
files, replacing my_username with your own username (you can use
whatever you like for $WORKON_HOME, it will be where all your
virtualenvs are stored):

if [$USER == my_username]; then
 export WORKON_HOME=$HOME/v
 source /usr/local/bin/virtualenvwrapper.sh
fi

Then, either start a new terminal or read in your .bashrc file:

$ source ~/.bashrc

The ~/.profile is read when you run the Fabric script (which uses a
login shell, and therefore checks ~/.profile (or
~/.bash_profile) rather than ~/.bashrc, which is read for
non-login shells.

If you don’t already have MDSplus installed, follow the installation
instructions for Ubuntu which you can find here:
http://www.mdsplus.org/index.php/Latest_Ubuntu_Packages

Setting up the development environment

We’ll first create our python virtual environment. The mkvirtualenv
command will activate the new virtualenv for you, and prefixes the
virtualenv name to the shell prompt. The cdvirtualenv command takes
you to the virtualenv directory (here it’s
$WORKON_HOME/h1ds_development).

$ mkvirtualenv h1ds_development
(h1ds_development)$ cdvirtualenv

Note

If you have an old version of virtualenv (before version 1.7) you may
need to include the --no-site-packages flag

We’ll be using Fabric [http://fabfile.org] to automate much of the
installation process, so let’s install it into our virtualenv now:

(h1ds_development)$ pip install fabric

Now grab the H1DS project from the git repository:

(h1ds_development)$ git clone https://github.com/h1ds/h1ds.git
(h1ds_development)$ cd h1ds

In the H1DS project we need to create a couple of initial configuration
files from the provided templates; the H1DS fabric script (they call it
a fabfile) and the Django project settings file:

(h1ds_development)$ cp fabfile.py{.template,}
(h1ds_development)$ cp h1ds/h1ds/settings/development.py{.template,}

Open up development.py in an editor and change the
SECRET_KEY to something unique and unguessable. For other options in the configuration file, see settings_(development|staging|production).py.

It is also recommended that you use use a database server such as Postgres or MySQL, rather than the default SQLite. For instructions on how to configure for various databases, see `https://docs.djangoproject.com/en/1.5/ref/settings/#databases`_.

Currently H1DS requires MDS, so you’ll need to install the MDS python bindings into your virtualenv.

(h1ds_development)$ mkdir $VIRTUAL_ENV/src
(h1ds_development)$ cp -rp /usr/local/mdsplus/mdsobjects/python $VIRTUAL_ENV/src/python-mdsplus
(h1ds_development)$ cd $VIRTUAL_ENV/src/python-mdsplus
(h1ds_development)$ python ./setup.py install

Then, install the rest of the required software using the fabric script:

(h1ds_development)$ fab dev update

Note

If the above doesn’t work, make sure you added the virtualenvwrapper
code in your ~/.profile or ~/.bash_profile file and you have
ssh installed):

During the update you’ll be asked if you want to create a Django
superuser account. Answer yes and provide the requested details
(name, email etc).

You can now start the development server via:

(h1ds_development)$ export PYTHONPATH=$VIRTUAL_ENV/h1ds/h1ds:$PYTHONPATH
(h1ds_development)$ export DJANGO_SETTINGS_MODULE=h1ds.settings.development
(h1ds_development)$ django-admin.py runserver

You can update H1DS any time by repeating the fab dev update command.

Setting up a staging environment

If you are making changes to the H1DS code for a production server, it
helps to have the production environment replicated in a staging server
so you can make sure your code changes behave as expected before
changing the code on your public website.

Here we use VirtualBox [https://www.virtualbox.org/] to replicate the
production server, run on the development system (i.e. laptop) with a
host-only network connection between the development system and staging
server. We will use Ubuntu 12.04 LTS for the staging server.

First, you’ll need to install VirtualBox and start a new Ubuntu 12.04
guest operating system. There are plenty of resources on the web to help
you with that, so I won’t go into any detail here on how to do it. Once
you have your Ubuntu virtual server working, follow the prerequisite
steps above (see Prerequisites).

You can set up H1DS to use either the Nginx or Apache web servers. Nginx
is recommended, as it better handles long connections and server side
events, which allow us to have server-side events and data
streaming. For an Nginx setup, edit your fabfile.py settings to
include:

STAGING_WEBSERVER = "nginx"

For Apache, use:

STAGING_WEBSERVER = "apache"

Using Nginx (recommended)

You’ll need to install the nginx webserver:

$ sudo apt-get install nginx

As Nginx acts as a reverse proxy, we need a server running the actual
django code. We’ll use gunicorn and gevent, which the fabfile will
install into the virtualenv. However, to build gevent we need to install
another system library:

$ sudo apt-get install libevent-dev

The default Nginx install includes a default site configuration which we
need to remove. We remove the symbolic line from
/etc/nginx/sites-enabled, the original file can be found at
/etc/nginx/sites-available/default if you need to refer to it at a
later time:

$ sudo rm /etc/nginx/site-enabled/default

Using Apache (deprecated & no longer tested)

You’ll need to install the apache webserver and wsgi module:

$ sudo apt-get install apache2 libapache2-mod-wsgi

Also deactivate the default apache site on your staging server:

$ sudo a2dissite 000-default
$ sudo service apache2 reload

Next, set up a host-only network connection for your staging server. You
may need to load the vboxnetadp and vboxnetflt kernel modules on
your host (development) system. Then, in the general VirtualBox settings
(File -> Preferences...) go to the network settings and create a new
host-only network. Then in the VirtualBox settings for your staging
server select Network and add a new adapter attached to host-only
adapter and select the newly created host-only network as its name (you
may need to power off the virtual machine to edit the settings).

With your staging server powered up, type ip addr to find the IP
address of your staging server on the host-only network, it should be
something like 192.168.56.101, and will likely be eth1. Edit
the staging server settings in fabfile.py in your development
environment:

STAGING_USER = "username" # user on VirtualBox guest system
STAGING_HOST = "192.168.56.101" # Host-only IP address of VirtualBox guest system

Next, in your development virtualenv, run:

(h1ds_development)$ fab staging setup
(h1ds_development)$ cd h1ds/h1ds/settings
(h1ds_development)$ cp staging.py{.template,}

Make any desired changes to staging.py – you should at
least edit SECRET_KEY to something unique and unguessable. Then
update the staging server:

(h1ds_development)$ fab staging update

You should be able to see H1DS running in a browser at the host-only
IP address of the staging server (i.e. http://192.168.56.101).

If everything appears to be working, you probably won’t need the
graphical interface to your staging server as you really only need ssh
and tcp (for http) access. It may be more convenient to run VirtualBox
in headless mode. For example, if your staging server is called
Ubuntu 12.04 LTS this would be:

$ VBoxHeadless --startvm "Ubuntu 12.04 LTS"

When you want to close the virtual machine, without powering it off, type:

$ vboxmanage controlvm "Ubuntu 12.04 LTS" savestate

Setting up a production environment

The setup procedure for the production environment is essentially the
same as for the staging environment. You’ll just need to install the
prerequisites and Apache, edit the PRODUCTION_USER and
PRODUCTION_HOST in your fabfile.py, create
production.py from the template and run fab production
setup and fab production update from within your development
environment.

 Copyright 2013, David Pretty.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	H1DS 0.9a documentation

Overview of H1DS

 Copyright 2013, David Pretty.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	H1DS 0.9a documentation

H1DS Concepts

This page gives a brief overview of some of the central concepts behind H1DS.

Data access as a web service

A RESTful approach

Based on Django

Modular

 Copyright 2013, David Pretty.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	H1DS 0.9a documentation

H1DS configuration

settings_(development|staging|production).py

The settings_development.py, settings_staging.py and
settings_production.py files inherit from the standard django
settings.py. You should familiarise yourself with the available
Django settings at
https://docs.djangoproject.com/en/1.5/ref/settings/.

Listed below are module-specific configuration options for modules
used by H1DS. Defaults are those values specified in settings.py,
and are overridden by values in
settings_(development|staging|production).py.

Settings for h1ds

H1DS_EXTRA_SUBLINKS

Syntax: (name, url, description)

Default: (("Wiki", "/wiki", "Documentation wiki"), ("Activity", "/wiki/RecentChanges", "Latest changes to documentation"),)

Extra links to be displayed in the header and on the frontpage.

WIKI_ACL_RIGHTS_BEFORE

Default: u""

Example: WIKI_ACL_RIGHTS_BEFORE = u"BoydBlackwell:read,write,delete,revert,admin"

WIKI_ACL_RIGHTS_DEFAULT

Default: u""

Example: WIKI_ACL_RIGHTS_DEFAULT = u"EditorGroup:read,write,delete +All:read -All:write,delete,revert,admin"

Settings for h1ds_mdsplus

H1DS_MDSPLUS_ROOT_URL

Default: "mdsplus"

Root URL for module.

H1DS_MDSPLUS_NODE_BLACKLIST

Default: []

A list of any MDSPlus nodes to ignore (e.g. if they crash the server).

EXTRA_MDS_TREES

Default: [('test', os.path.join(VENV_DIR, 'test_mds_data'))]

list of extra mds trees to load into environment each entry should be a (name, path), for example EXTRA_MDS_TREES = [('extratree1', 'mdsserver::'), ('anothertree', '/data/tree'),]

DEFAULT_TREE

Default: "test"

SHOT_TRACKER

Default: "ping"

Method for tracking shot changes.

Options:

	“ping” - periodically ask MDSplus for the latest shot.

	“inotify” [not implemented] - (linux only) listen for changes to shotid.sys.

Settings for h1ds_summary

H1DS_SUMMARY_ROOT_URL

Default: "summary"

Root URL for module.

Settings for h1ds_configdb

H1DS_CONFIGDB_ROOT_URL

Default: "configurations"

Root URL for module.

Settings for django_openid_auth

OPENID_CREATE_USERS

Default: True

LOGIN_URL

Default: '/openid/login'

LOGIN_REDIRECT_URL

Default: '/'

Settings for djcelery

BROKER_URL

Default: "django://"

 Copyright 2013, David Pretty.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	H1DS 0.9a documentation

Index

 Copyright 2013, David Pretty.
 Created using Sphinx 1.2.2.

 _static/up.png

_static/comment-bright.png

_static/down.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		H1DS 0.9a documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, David Pretty.
 Created using Sphinx 1.2.2.

_static/down-pressed.png

_static/comment-close.png

_static/up-pressed.png

_static/comment.png

_static/file.png

_static/minus.png

_static/plus.png

