
(GSoC 2019) CPU-GPU Response Time
and Mapping Analysis

Release 1.0

Nov 21, 2019

Contents

1 Motivation 3

2 Contents 5
2.1 Intention . 5
2.2 Contribution & Benefits for The Community . 5
2.3 Milestone with The Goal of Each Phase . 6

2.3.1 Phase 1 (May 27 - June 24) . 6
2.3.2 Phase 2 (June 25 - July 22) . 6
2.3.3 Phase 3 (July 23 - August 25) . 7

2.4 Approached Theories . 7
2.4.1 Basic RTA . 7
2.4.2 End-to-End Latency . 9

2.5 Class Tree with Implemented Methods . 11
2.5.1 Key Classes . 12
2.5.2 Supplementary Classes (Out of scope) . 17

2.6 User Interface (APP4RTA) . 18
2.6.1 Set Up . 18
2.6.2 Search Amalthea . 19
2.6.3 Direct & Select Amalthea . 20
2.6.4 UI Features (RTA) . 21
2.6.5 Select an Event-Chain . 22
2.6.6 UI Features (E2ELatency) . 23

2.7 Future Work . 23
2.7.1 1. Reaction Update . 23
2.7.2 2. Blocking . 23
2.7.3 3. Scheduling mode: EDF . 24
2.7.4 4. Read & Write latency setting feature . 24
2.7.5 5. Data Age metrics should be organized . 24

2.8 Repositories . 24
2.8.1 Eclipse Contribution Tagged Repo . 24
2.8.2 ReadTheDocs Repo . 24

2.9 Reference . 24
2.10 Contact . 25

i

ii

(GSoC 2019) CPU-GPU Response Time and Mapping Analysis, Release 1.0

Contents 1

(GSoC 2019) CPU-GPU Response Time and Mapping Analysis, Release 1.0

2 Contents

CHAPTER 1

Motivation

Through one of the subjects in my Master’s course, I carried on a project analyzing metrics of Software Models and
visualizing it in APP4MC.

It was quite challenging as I was not very familiar with the Amalthea model and its APP4MC platform at first. But
soon I was able to understand the concepts and started enjoying it. The project resulted in completing an applica-
tion delivering performance and reliability metrics of a given Software Model. This is basically my motivation for
participating in this Eclipse GSoC project, “CPU-GPU Response Time and Mapping Analysis”.

Since the topic’s ultimate goal is to achieve systems’ real-time determinism for modern HPC (High Performance
Computing) applications, analyzing response times is essential and my basic knowledge in regard to, e.g., timing
constraints or end-to-end event chain latency values according to the different communication paradigms (direct,
implicit, LET: Logical Execution Time) which I obtained through my Master’s study were very helpful for me in order
apply for and luckily realize this project.

Now that the industry’s interest has moved on to “Heterogeneous Systems”, I do hope that my GSoC work would be
helpful for other researchers in this regard and make a contribution to the further development of the platform.

Ki, Junhyung

3

(GSoC 2019) CPU-GPU Response Time and Mapping Analysis, Release 1.0

4 Chapter 1. Motivation

CHAPTER 2

Contents

2.1 Intention

The current APP4MC APIs provide several methods for getting execution time for a task, a runnable or ticks (pure
computation) through the util package.

However, APIs for response time analysis do not exist yet. The reason why is that response time analysis results highly
vary depending on the analyzed model properties such as the scheduling, the mapping, and others.

Since the trends are evolving from homogeneous to heterogeneous platforms, the analysis methodologies have become
much more sophisticated. A generic form of CPU response time analysis, which can be used for different mapping
models with different types of processing units (e.g., GPU), is though reasonable across modern analysis techniques.

Additionally, this project also aims to offer end-to-end event-chain latency analyses that incorporate a distinct concepts
such as reaction & age which will be outlined in this documentation. Such analyses are intended to help users to
analyze how much time would be taken for some data to be propagated from the beginning to the end of a given chain
of tasks.

2.2 Contribution & Benefits for The Community

In this project, a standardized response time analysis methodology (Mathai Joseph and Paritosh Pandya, 1986) is
used. Not only this, but a class, CPURta which can be used with various implementations (e.g. a Genetic Mapping
Algorithm), is also provided.

Since a heterogeneous platform requires different analysis methodologies for processing units, a class that has a built-
in response-time calculation algorithm is very helpful and makes the entire developing circle quicker.

Another class, RTARuntimeUtil supports the CPURta class by providing several ways to calculate the execution
time of a task. The methodology for deriving execution time changes depending on the execution case (e.g., Worst
Case, Best Case, Average Case), the offloading mechanism (e.g., Synchronous, Asynchronous), and the mapping
model. This class can be modified and reused for other models under analysis simply by adjusting a single method
which takes care of memory accessing time (because memory accessing time can be different according to the target
hardware).

5

https://academic.oup.com/comjnl/article/29/5/390/486162

(GSoC 2019) CPU-GPU Response Time and Mapping Analysis, Release 1.0

Furthermore, this GSoC project provides a small GUI implementation, which visually describes the mapping model
with information about schedulability, the corresponding response times for each task, and E2E latency analysis results
(E2ELatency) according to each task chain.

2.3 Milestone with The Goal of Each Phase

2.3.1 Phase 1 (May 27 - June 24)

1. Structuring classes based on the abstraction layers (Top: End-to-End latency / Mid Layer: Response Time / Low
Layer: Task & Runnable Execution Time)

Layer Responsibility
Top End-to-End Latency
Mid Task Response Time
Low Task & Runnable Execution Time

2. Developing task and runnable level execution time methods with taking memory access cost and offloading
mechanisms into account

3. Testing

4. Documenting

The main focus of phase 1 is to implement the basis framework and map each and every functionality to the classes.
In this way, the entire system becomes organized which eases refactoring and debugging.

2.3.2 Phase 2 (June 25 - July 22)

1. Developing interfaces between classes

2. Implementation of response time analysis algorithms according to different communication paradigms, i.e.,
direct and implicit communication)

3. Structuring and developing basic user interface class

4. Testing

5. Documenting

The main focus of phase 2 is to provide a stable response time method which can be used for several models under
various configuration settings.

6 Chapter 2. Contents

(GSoC 2019) CPU-GPU Response Time and Mapping Analysis, Release 1.0

2.3.3 Phase 3 (July 23 - August 25)

Refine Previous Phase and E2E Latency Foundation (IC, LET) / Documenting

1. Implementation of E2E latency analysis methodologies according to the concepts such as age, reaction, and
propagation under different communication paradigms such as direct, implicit, and LET = Logical Execution
Time.

2. Extend and finalize the UI part

3. Testing

4. Final documenting (Through Sphinx & readthedocs)

The main focus of phase 3 is to implement newly defined concepts of end-to-end latency methodologies in line with the
implicit and LET communication paradigms. As a consequence, users gain much more task chain metrics in addition
to data propagation only.

Moreover, by using the provided GUI, user can investigate mapping scenarios and analyze response times & E2E
latency metrics without diving into java implementations.

2.4 Approached Theories

2.4.1 Basic RTA

• Table of Notation for Basic RTA

Description Symbol
Task 𝑖

WC Response time 𝑅+
𝑖

WC Execution time 𝐶+
𝑖

Period 𝑇𝑖

Frequency in Hz 𝑓𝑚
Latency 𝐿
Read Latency 𝐿↑𝑚→𝑙

Write Latency 𝐿↓𝑚→𝑙

Read labels ℛ𝑖

Written Labels 𝒲𝑖

Label ℒ
Label Size 𝒮

Memory Access Cost

Memory access time is different depending on the target hardware. In this project, the memory access time is defined
based on NVIDIA-TX2 platform. The equation for deriving this is referenced the WATERS19 projects namely CPU-
GPU Response Time and Mapping Analysis for High-Performance Automotive Systems

2.4. Approached Theories 7

https://www.ecrts.org/forum/viewtopic.php?f=43&t=134&sid=777ff03160a9434451d721748c8a8aea#p264
https://www.ecrts.org/forum/viewtopic.php?f=43&t=134&sid=777ff03160a9434451d721748c8a8aea#p264

(GSoC 2019) CPU-GPU Response Time and Mapping Analysis, Release 1.0

𝐿+
𝑎,𝑖 =

∑︀
𝑥∈ℛ𝑖

(︀⌈︀𝒮𝑥

64

⌉︀)︀
· 𝐿↑𝑚→𝑙

𝑓𝑚
+
∑︀

𝑦∈𝒲𝑖

(︁⌈︁
𝒮𝑦

64

⌉︁)︁
· 𝐿↓𝑚→𝑙

𝑓𝑚

Here, the constant 64 is used as the baseline derived from the WATERS19 challenge description. 𝑙𝑠 denotes the label
size and 𝑟𝑙 and 𝑤𝑙 define given read label and write label latencies specified in the given AMALTHEA model.

To find relevant methods, see CPU Task Execution Time.

Synchronous & Asynchronous Mechanism

In the provided AMALTHEA WATERS19 model, some of the tasks that are mapped to CPU trigger tasks mapped to
GPU. In this case, the execution or response time can be different according to the offloading mechanism.

• Synchronous

The triggering task triggers its target GPU task when it reaches InterProcessTrigger and actively waits until it
receives the triggered task’s result after the response from the triggered GPU task. Then it finishes the remaining job.

• Asynchronous

The triggering task triggers its target GPU task when it reaches InterProcessTrigger and passively waits for
the response from the triggered GPU task and finishes the remaining job. During the passive waiting phase, other
lower priority tasks can execute on the processor. The asynchronous methodology described here can be modified
according to the user’s interpretation.

This concept is used in two of the four execution cases introduced by a method, CPU Task Execution Time.

Response Time

The response time analysis approach implemented here is not only designed for Multi-core Systems but also for
Heterogeneous Systems. Basically, the following classical response time analysis equation is used.

𝑅+
𝑖 = 𝐶+

𝑖 +
∑︀

𝑗∈ℎ𝑝(𝑖)

⌈︂
𝑅+

𝑖−1

𝑇𝑗

⌉︂
𝐶+

𝑗

The equation is based on RMS (Rate Monotonic Scheduling) which means that static priorities are assigned to tasks
according to their period. A task with the shorter period results in a higher task priority. Here, 𝑅𝑖 denotes the response
time of task 𝜏𝑖 and ℎ𝑝(𝑖) is the set of tasks indexes (j) which have a priority higher than task i.

8 Chapter 2. Contents

(GSoC 2019) CPU-GPU Response Time and Mapping Analysis, Release 1.0

To find relevant methods, see Response Time Sum.

2.4.2 End-to-End Latency

The approach and its equations used here are referenced from a yet-unpublished paper, “Model-based Task Chain
Latency and Blocking Analysis for Automotive Software” by the same authors who published CPU-GPU Response
Time and Mapping Analysis for High-Performance Automotive Systems.

• Table of Notation for End-to-End Latency

Symbol Description
Task 𝜏
Response time 𝑅
Execution time 𝐶
Period 𝑇
Task chain 𝛾
Latency 𝛿
implicit communication 𝜄
LET communication 𝜆
Age latency 𝛼
Reaction latency 𝜌
Reaction update 𝜐

Task Chain Reaction

The time between the task chain’s first task release to the earliest task response of the last task in the chain.

Task Chain Reaction (Implicit)

• Best-case Task-Chain Reaction (Implicit Communication Paradigm)

𝛿−𝛾,𝜌,𝜄 =
∑︀

𝑗 𝑅
−
𝑗 with 𝜏𝑗 ∈ 𝛾

The best-case task chain reaction latency for implicit communication can be calculated by considering the sum of all
task’s best case response times within task chain. Here, 𝛾 refers to a task chain, 𝜌 corresponds the reaction latency,
and 𝜄 outlines that this latency considers the implicit communication paradigm.

• Worst-case Task-Chain Reaction (Implicit Communication Paradigm)

𝛿+𝛾,𝜌,𝜄 =
∑︀𝑗=|𝛾|−2

𝑗=0

(︀
𝑇𝑗 +𝑅+

𝑗

)︀
+𝑅+

𝑗=|𝛾|−1 with 𝜏𝑗 ∈ 𝛾

To find relevant methods, see Task Chain Reaction (Implicit Communication Paradigm).

2.4. Approached Theories 9

https://www.ecrts.org/forum/viewtopic.php?f=43&t=134&sid=777ff03160a9434451d721748c8a8aea#p264
https://www.ecrts.org/forum/viewtopic.php?f=43&t=134&sid=777ff03160a9434451d721748c8a8aea#p264

(GSoC 2019) CPU-GPU Response Time and Mapping Analysis, Release 1.0

Task Chain Reaction (LET)

• Best-case Task-Chain Reaction (Logical Execution Time)

𝛿−𝛾,𝜌,𝜆 =
∑︀

𝑗 𝑇𝑗 with 𝜏𝑗 ∈ 𝛾

The best-case task chain reaction latency for LET communication is the sum of all task’s periods within task chain 𝛾.

• Worst-case Task-Chain Reaction (Logical Execution Time)

𝛿+𝛾,𝜌,𝜆 = 𝑇𝑗=0 +
∑︀𝑗=|𝛾|−1

𝑗=1 (2 · 𝑇𝑗) with 𝜏𝑗 ∈ 𝛾

To find relevant methods, see Task Chain Reaction (Logical Execution Time Communication Paradigm).

Task Chain Age

“The time a task chain result is initially available until the next task chain instance’s initial results are available. In
other words, the task chain age latency is the maximal time a task chain’s results based on the same input persist in
memory.”

Early Reaction

𝛿−𝛾,𝜌0,𝜄 =
∑︀

𝑗=0

𝛿+𝛾,𝜌0,𝜄 = 𝑅𝛾0 +
∑︀𝑗=|𝛾|−2

𝑗=0 𝑇𝑗+1 +min(𝑇𝑗+1, 𝜖𝑗 +𝑅𝑗+1)

𝜖𝑗 = 2 · 𝑇𝑗 −𝑅𝑗 − 𝑇𝑗+1 − 𝜖𝑗−1 with 𝜖−1 = 0

To find relevant methods, see Task Chain Early Reaction.

• Worst-case Task-Chain Age (Implicit)

𝛿+𝑖,𝛼,𝜄 = 𝑇𝑗=0 + 𝛿+𝑖,𝜌0,𝜄
− 𝛿−𝑖,𝜌0,𝜄

• Worst-case Task-Chain Age (LET)

𝛿+𝑖,𝛼,𝜆 = 𝑇𝑗=0 + 𝛿−𝑖,𝜌,𝜆 − 𝛿+𝑖,𝜌,𝜆

To find relevant methods, see Task Chain Age.

10 Chapter 2. Contents

(GSoC 2019) CPU-GPU Response Time and Mapping Analysis, Release 1.0

Data Age

It describes the longest time some data version persists in memory. This is independent of task chains and simply
depends on the period of entities writing a particular label (i.e. data).

• Best-case Task Age

𝛿−𝑖,𝛼 = 𝑇𝑖 −𝑅+
𝑖 +𝑅−

𝑖

• Worst-case Task Age

𝛿+𝑖,𝛼 = 𝑇𝑖 −𝑅−
𝑖 +𝑅+

𝑖

• Best-case Data Age

𝛿−𝑙,𝛼 = min𝑖 𝛿
−
𝑖,𝛼 with 𝜏𝑖 being any task that accesses label 𝑙.

• Worst-case Data Age

𝛿+𝑙,𝛼 = min𝑖 𝛿
+
𝑖,𝛼 with 𝜏𝑖 being any task that accesses label 𝑙.

To find relevant methods, see Data Age.

2.5 Class Tree with Implemented Methods

The above UML class diagram describes the project’s implementation in a hierarchical way.

2.5. Class Tree with Implemented Methods 11

(GSoC 2019) CPU-GPU Response Time and Mapping Analysis, Release 1.0

2.5.1 Key Classes

E2ELatency

The top layer takes care of the end-to-end latency calculation of the observed task-chain based on the analyzed response
time from the CPURta class. It includes calculating E2E latency values according to the concepts stated in the theory
part (e.g., Reaction, Age).

Task Chain Reaction (Implicit Communication Paradigm)

public Time getTCReactionBC(final EventChain ec, final ComParadigm paradigm, final
→˓CPURta cpurta)

This method derives the given event-chain’s best-case end-to-end latency based on the reaction concept for the direct
and implicit communication paradigms.

Code Reference

public Time getTCReactionWC(final EventChain ec, final ComParadigm paradigm, final
→˓CPURta cpurta)

This method derives the given event-chain’s worst-case end-to-end latency value based on the reaction concept for the
direct and implicit communication paradigms.

Code Reference

For the details, see Task Chain Reaction (Implicit) and UI Features (E2ELatency).

Task Chain Reaction (Logical Execution Time Communication Paradigm)

public Time getLetReactionBC(final EventChain ec, final CPURta cpurta)

This method derives the given event-chain’s best-case end-to-end latency value based on the reaction concept for LET
communication.

Code Reference

public Time getLetReactionWC(final EventChain ec, final CPURta cpurta)

This method derives the given event-chain’s worst-case end-to-end latency based on the reaction concept for LET
communication.

12 Chapter 2. Contents

https://git.eclipse.org/c/app4mc/org.eclipse.app4mc.tools.git/tree/eclipse-tools/responseTime-analyzer/plugins/org.eclipse.app4mc.gsoc_rta/src/org/eclipse/app4mc/gsoc_rta/E2ELatency.java?h=gsoc19RTAFinal#n147
https://git.eclipse.org/c/app4mc/org.eclipse.app4mc.tools.git/tree/eclipse-tools/responseTime-analyzer/plugins/org.eclipse.app4mc.gsoc_rta/src/org/eclipse/app4mc/gsoc_rta/E2ELatency.java?h=gsoc19RTAFinal#n196
https://git.eclipse.org/c/app4mc/org.eclipse.app4mc.tools.git/tree/eclipse-tools/responseTime-analyzer/plugins/org.eclipse.app4mc.gsoc_rta/src/org/eclipse/app4mc/gsoc_rta/E2ELatency.java?h=gsoc19RTAFinal#n246

(GSoC 2019) CPU-GPU Response Time and Mapping Analysis, Release 1.0

Code Reference

For the details, see Task Chain Reaction (LET) and UI Features (E2ELatency).

Task Chain Age

public Time getTaskChainAge(final EventChain ec, final TimeType executionCase, final
→˓ComParadigm paradigm, final CPURta cpurta)

This method derives the given event-chain latency based on the age concept. By changing TimeType
executionCase parameter, the latency in the best-case or the worst-case can be derived.

Code Reference

For the details, see Task Chain Age and UI Features (E2ELatency).

Task Chain Early Reaction

public Time getEarlyReaction(final EventChain ec, final TimeType executionCase, final
→˓ComParadigm paradigm, final CPURta cpurta)

This is a method to be pre-executed for getting the reaction-update latency values. The best-case and worst-case early-
reaction latency values should be derived first and then the reaction update latency can be calculated. By changing
TimeType executionCase parameter, the latency in the best-case or the worst-case can be derived.

Code Reference

For the details, see Early Reaction and UI Features (E2ELatency).

Data Age

public Time getDataAge(final Label label, final EventChain ec, final TimeType
→˓executionCase, final ComParadigm paradigm, final CPURta cpurta)

This method derives the given label’s age latency. If the passed event-chain does not contain the observed label, null
is returned. By changing TimeType executionCase parameter, the latency in the best-case or the worst-case
can be derived.

Code Reference

For the details, see Data Age and UI Features (E2ELatency).

2.5. Class Tree with Implemented Methods 13

https://git.eclipse.org/c/app4mc/org.eclipse.app4mc.tools.git/tree/eclipse-tools/responseTime-analyzer/plugins/org.eclipse.app4mc.gsoc_rta/src/org/eclipse/app4mc/gsoc_rta/E2ELatency.java?h=gsoc19RTAFinal#n274
https://git.eclipse.org/c/app4mc/org.eclipse.app4mc.tools.git/tree/eclipse-tools/responseTime-analyzer/plugins/org.eclipse.app4mc.gsoc_rta/src/org/eclipse/app4mc/gsoc_rta/E2ELatency.java?h=gsoc19RTAFinal#n304
https://git.eclipse.org/c/app4mc/org.eclipse.app4mc.tools.git/tree/eclipse-tools/responseTime-analyzer/plugins/org.eclipse.app4mc.gsoc_rta/src/org/eclipse/app4mc/gsoc_rta/E2ELatency.java?h=gsoc19RTAFinal#n366
https://git.eclipse.org/c/app4mc/org.eclipse.app4mc.tools.git/tree/eclipse-tools/responseTime-analyzer/plugins/org.eclipse.app4mc.gsoc_rta/src/org/eclipse/app4mc/gsoc_rta/E2ELatency.java?h=gsoc19RTAFinal#n467

(GSoC 2019) CPU-GPU Response Time and Mapping Analysis, Release 1.0

CPURta

The middle layer takes care of analyzing task response times. It is responsible for calculating response times according
to the communication paradigm (Direct or Implicit communication paradigm).

Response Time Sum

public Time getCPUResponseTimeSum(final TimeType executionCase)

This method derives the sum of all the tasks’ response times according to the given mapping model (which is described
as an integer array). The method can be used as a metric to assess a mapping model.

Code Reference

Response Time (Direct Communication Paradigm)

public Time preciseTestCPURT(final Task task, final List<Task> taskList, final
→˓TimeType executionCase, final ProcessingUnit pu)

This method derives the response time of the observed task according to the classic response time equation. The
response time can be different depending on the passed taskList which is derived from the mapping model. Here,
we are concerning response time for RMS (Rate Monotonic Scheduling). It means that a task with the shorter period
obtains a higher priority. Before the taskList is passed to the method, it should be sorted in the order of shortest to
longest and this job is done by taskSorting(List<Task> taskList) which is a private method.

Code Reference

Response Time (Implicit Communication Paradigm)

public Time implicitPreciseTest(final Task task, final List<Task> taskList, final
→˓TimeType executionCase, final ProcessingUnit pu, final CPURta cpurta)

This method derives the response time of the task parameter according to the classic response time equation but in
the implicit communication paradigm. In the implicit communication paradigm which is introduced by AUTOSAR.
A task copies in its required data (labels) to its local memory at the beginning of its execution, computes in the local
memory and finally copies out the result to the shared memory. Due to these copy-in & copy-out costs, extra time
must be added to the task’s execution time which is done by getLocalCopyTimeArray (for the details, see Local
Copy Cost for the Implicit Communication Paradigm) which is a method from the RTARuntimeUtil class. As a
result, the task’s execution time gets longer while its period should stays the same. Once the local-copy cost is taken
into account, the remaining process is the same as Response Time (Direct Communication Paradigm)

Code Reference

14 Chapter 2. Contents

https://git.eclipse.org/c/app4mc/org.eclipse.app4mc.tools.git/tree/eclipse-tools/responseTime-analyzer/plugins/org.eclipse.app4mc.gsoc_rta/src/org/eclipse/app4mc/gsoc_rta/CPURta.java?h=gsoc19RTAFinal#n411
https://git.eclipse.org/c/app4mc/org.eclipse.app4mc.tools.git/tree/eclipse-tools/responseTime-analyzer/plugins/org.eclipse.app4mc.gsoc_rta/src/org/eclipse/app4mc/gsoc_rta/CPURta.java?h=gsoc19RTAFinal#n502
https://git.eclipse.org/c/app4mc/org.eclipse.app4mc.tools.git/tree/eclipse-tools/responseTime-analyzer/plugins/org.eclipse.app4mc.gsoc_rta/src/org/eclipse/app4mc/gsoc_rta/CPURta.java?h=gsoc19RTAFinal#n618

(GSoC 2019) CPU-GPU Response Time and Mapping Analysis, Release 1.0

For the details, see Response Time and UI Features (RTA).

RTARuntimeUtil

The bottom layer takes care of task and runnable execution time. It is responsible for calculating memory access costs,
execution ticks or execution needs, and computation time.

CPU Task Execution Time

public Time getExecutionTimeforCPUTask(final Task task, final ProcessingUnit pu,
→˓final TimeType executionCase, final CPURta cpurta)

This method derives the execution time of the task parameter under one of the following cases:

• The CPU task triggers a GPU task in the synchronous offloading mode

• The CPU task triggers a GPU task in the asynchronous offloading mode

(For the details, see Synchronous & Asynchronous Mechanism.)

• The GPU task is mapped to a CPU

According to the WATERS challenge, a triggering task (PRE_..._POST) can be ignored if the triggered task is
mapped to a CPU.

For example, the following Figure shows the SFM task which is mapped to the GPU by default.

If the task is mapped to CPU, the offloading runnables (SFM_host_to_device, SFM_device_to_host) which
are in charge of offloading workload to GPU and copying back to CPU are obsolete.

2.5. Class Tree with Implemented Methods 15

(GSoC 2019) CPU-GPU Response Time and Mapping Analysis, Release 1.0

Instead, the labels from runnables before (Pre-processing) & after (Post-processing) the
InterProcessTrigger are considered. For the runnable, Pre-processing, read labels and read la-
tency values are taken into account. For the runnable, Post-processing, write labels and write latency values are
taken into account. This job is done by the private method getExecutionTimeForGPUTaskOnCPU().

• Task with only Ticks (pure computation)

When a CPU task without any triggering behavior is passed, only the execution time that corresponds to the task’s
ticks is considered.

Code Reference for getExecutionTimeforCPUTask

Except for the very last case (Task with only Ticks), the task execution time calculation always in-
cludes memory accessing costs. Calculating memory accessing costs is taken care of by methods such as
getExecutionTimeForRTARunnable, getRunnableMemoryAccessTime which are defined as private.

Code Reference for getExecutionTimeForRTARunnable Code Reference for getRunnableMemoryAccessTime

For the details, see Memory Access Cost.

Local Copy Cost for the Implicit Communication Paradigm

public Time[] getLocalCopyTimeArray(final Task task, final ProcessingUnit pu, final
→˓TimeType executionCase, final CPURta cpurta)

As it is introduced in Response Time (Implicit Communication Paradigm), label copy-in and copy-out costs should be
calculated and added to the total execution time of the target task.

The following equation from End-To-End Latency Characterization of Implicit and LET Communication Models is
used to calculate these costs.

𝐶0
𝑖 =

∑︀
𝑙∈𝐼𝑖

𝜉𝑙(𝑥)

Where 𝐶0
𝑖 denotes the execution time of the runnable tau_0, 𝐼𝑖 represents the inputs (read labels) of the considered

task and 𝜉𝑙(𝑥) denotes the time it takes to access a shared label 𝑙 from memory 𝑥.

𝐶𝑙
𝑖𝑎𝑠𝑡 =

∑︀
𝑙∈𝑂𝑖

𝜉𝑙(𝑥)

Where 𝐶𝑙
𝑖𝑎𝑠𝑡 denotes the execution time of the runnable tau_last, 𝑂𝑖 represents the outputs (write labels) of the

considered task and 𝜉𝑙(𝑥) denotes the time it takes to access a shared label 𝑙 from memory 𝑥.

For the copy-in cost, only read labels should be taken into account. The copy-in cost time is stored on index 0 of
the return array. This will later be considered as the execution time of the copy-in runnable which is added to the
beginning of the task execution.

For the copy-in cost, only write labels should be taken into account. The copy-in cost time is stored on index 1 of the
return array. This will later be considered as the execution time of the copy-out runnable which is added to the end of
the task execution.

Code Reference

16 Chapter 2. Contents

https://git.eclipse.org/c/app4mc/org.eclipse.app4mc.tools.git/tree/eclipse-tools/responseTime-analyzer/plugins/org.eclipse.app4mc.gsoc_rta/src/org/eclipse/app4mc/gsoc_rta/RTARuntimeUtil.java?h=gsoc19RTAFinal#n55
https://git.eclipse.org/c/app4mc/org.eclipse.app4mc.tools.git/tree/eclipse-tools/responseTime-analyzer/plugins/org.eclipse.app4mc.gsoc_rta/src/org/eclipse/app4mc/gsoc_rta/RTARuntimeUtil.java?h=gsoc19RTAFinal#n335
https://git.eclipse.org/c/app4mc/org.eclipse.app4mc.tools.git/tree/eclipse-tools/responseTime-analyzer/plugins/org.eclipse.app4mc.gsoc_rta/src/org/eclipse/app4mc/gsoc_rta/RTARuntimeUtil.java?h=gsoc19RTAFinal#n414
https://www.ecrts.org/forum/viewtopic.php?f=32&t=91
https://git.eclipse.org/c/app4mc/org.eclipse.app4mc.tools.git/tree/eclipse-tools/responseTime-analyzer/plugins/org.eclipse.app4mc.gsoc_rta/src/org/eclipse/app4mc/gsoc_rta/RTARuntimeUtil.java?h=gsoc19RTAFinal#n474

(GSoC 2019) CPU-GPU Response Time and Mapping Analysis, Release 1.0

2.5.2 Supplementary Classes (Out of scope)

SharedConsts

This class is in charge of setting configuration variables. The user can set the offloading mechanism and the execution
case (WC, AC, BC) by changing synchronousOffloading and timeType respectively. Also, all file paths for
every Amalthea model can be saved as String type constants here so that the user can change the target Amalthea
model by switching these constants.

CommonUtils

public static List<ProcessingUnit> getPUs(final Amalthea amalthea)

This method derives a list of processing units of the target Amalthea model. It places CPU type processing units in
the front and that of GPU type in the tail (end) of the list.

Code Reference

public static Time getStimInTime(final Task t)

This method returns the periodic recurrence time of the target task. If the passed task is not a periodic task (e.g.,
GPU task), the recurrence time of a task which is periodic and triggers the target task is returned. Otherwise time 0 is
returned.

Code Reference

Contention

public Time contentionForTask(final Task task)

This method derives a memory contention time which represents the delay when more than one CPU core and/or the
GPU is accessing memory at the same time.

Code Reference

For the details, see Memory Contention Model.

2.5. Class Tree with Implemented Methods 17

https://git.eclipse.org/c/app4mc/org.eclipse.app4mc.tools.git/tree/eclipse-tools/responseTime-analyzer/plugins/org.eclipse.app4mc.gsoc_rta/src/org/eclipse/app4mc/gsoc_rta/CommonUtils.java#n75
https://git.eclipse.org/c/app4mc/org.eclipse.app4mc.tools.git/tree/eclipse-tools/responseTime-analyzer/plugins/org.eclipse.app4mc.gsoc_rta/src/org/eclipse/app4mc/gsoc_rta/CommonUtils.java#n452
https://git.eclipse.org/c/app4mc/org.eclipse.app4mc.tools.git/tree/eclipse-tools/responseTime-analyzer/plugins/org.eclipse.app4mc.gsoc_rta/src/org/eclipse/app4mc/gsoc_rta/Contention.java#n152
https://www.ecrts.org/forum/viewtopic.php?f=43&t=125&sid=0d17da7eba5419d1dc41d6d81dace278

(GSoC 2019) CPU-GPU Response Time and Mapping Analysis, Release 1.0

2.6 User Interface (APP4RTA)

2.6.1 Set Up

For analyzing response time & end-to-end event-chain latency

Before executing the code, please install the Java GUI softwares.

• To install Java GUI softwares:

18 Chapter 2. Contents

(GSoC 2019) CPU-GPU Response Time and Mapping Analysis, Release 1.0

1. Eclipse > Help

2. Install New Software > Work with: Eclipse Repository (http://download.eclipse.org/releases/oxygen)

3. General Purpose Tools > all click from Swing Designer to WindowBuilder XML Core
(requires Eclipse WTP/WST)

4. Next > Next > accept > Finish

2.6.2 Search Amalthea

2.6. User Interface (APP4RTA) 19

http://download.eclipse.org/releases/oxygen

(GSoC 2019) CPU-GPU Response Time and Mapping Analysis, Release 1.0

Run APP4RTA.java in org.eclipse.app4mc.gsoc_rta.ui package, then this window will show up.
Based on the horizontal line on the middle, the upper part is for response time & mapping analysis, and the lower
part is for end-to-end event-chain latency analysis. The first thing to do is deciding a target Amalthea model.

1. The window browser for searching Amalthea models shows up when the Search Amalthea button clicked.

2.6.3 Direct & Select Amalthea

2. When the search browser shows up, direct to the path where the target Amalthea model file is located and select the
model file.

3. Click the Open button.

20 Chapter 2. Contents

(GSoC 2019) CPU-GPU Response Time and Mapping Analysis, Release 1.0

2.6.4 UI Features (RTA)

Then the empty space will be filled with the the tasks and processing units of the selected model. On the left-hand
side, tasks’ names with empty boxes can be found. On the right-hand side, seven pairs of lists are seen (It means
the selected model has seven processing units). The list on the left side of each pair is for listing names of the tasks
which are mapped to the corresponding processing unit while one on the right side is for listing response times of the
corresponding tasks. Basically, we can map the tasks with these boxes by entering the number of each processing unit
which is stated on the top of the lists on the left-side.

4. The user can either manually type numbers for every box or simply click the Default IA button which would
automatically fill up every box with the pre-defined integer array values.

5. Once every PU Num box is filled, click Enter IA button to assign tasks to processing units according to each
integer value. Once this is done, the mapped tasks would appear on the left-side lists.

6. Choose the offloading mode between Synchronous case and Asynchronous case.

7. Choose the execution case between Worst case and Average case and Best case.

8. By clicking the Calculate button, all calculation results will be printed out on the text-fields
(Schedulability, Cumulated Memory-Access Cost, Cumulated Contention, Computation).

For the implementation details, see CPURta-reference.

2.6. User Interface (APP4RTA) 21

(GSoC 2019) CPU-GPU Response Time and Mapping Analysis, Release 1.0

2.6.5 Select an Event-Chain

The event-chain combo-box becomes visible once the user clicks Enter IA to assign tasks to processing units
according to each integer value in the boxes.

9. To analyze end-to-end event-chain latency, an event-chain in the combo-box should be selected first.

22 Chapter 2. Contents

(GSoC 2019) CPU-GPU Response Time and Mapping Analysis, Release 1.0

2.6.6 UI Features (E2ELatency)

10. Select the communication paradigm between direct Communication and implicit communication.

11. Finally, click the Calculate button.

Then all calculation results regarding reaction, age of data, task-chain in the worst and best cases will be printed out
to the corresponding text fields or lists.

For the implementation details, see E2ELatency.

Download PDF file to see offline.

2.7 Future Work

Many implementations and tests have been left for the future due to the limited time but the topic has so much potential
to be developed further. The future work concerns the followings:

2.7.1 1. Reaction Update

The current implementation covers Early Reaction but does not cover Reaction Update. To calculate
Reaction Update, the number of sampled task-chain entity instances should be taken into account first, and
then Early Reaction can finally be utilized to get Reaction Update. For the details, see reaction-update.

2.7.2 2. Blocking

The current implementation only focuses on preemtive tasks but does not cover cooperative tasks. Preemptive tasks
preempt each other at any moment in time while cooperative tasks preempt each other at runnable boundaries. There-
fore, the preempting task should be blocked until the currently executing runnable of the preempted task to finish.

2.7. Future Work 23

(GSoC 2019) CPU-GPU Response Time and Mapping Analysis, Release 1.0

2.7.3 3. Scheduling mode: EDF

The type of real-time scheduling algorithm used in this project is RMS (Rate Monotonic Scheduling). Under RMS,
a task with the shorter period obtains a higher priority. To analyze different response times and mapping scenarios,
extending the current scheduling algorithm further to EDF (Earliest Deadline First) can be done. Under EDF, tasks
are sorted by using their deadlines. Therefore, a task which has the earliest deadline runs first.

2.7.4 4. Read & Write latency setting feature

The current implementation derives memory access costs with read and write latency attribute values from
the processing unit. If the selected model does not describe these attributes, the default latency value is assigned to the
processing unit and then the memory access costs is calculated. Therefore, having a GUI feature for assigning
these attribute values is reasonable and useful for users to analyze with different processing unit configurations.

2.7.5 5. Data Age metrics should be organized

Currently, the GUI features for Data Age latency are not well-designed because the list for label names and the rest
of the lists for latency values are not synchronized. Therefore, this should be restructured in a more tidy way to prevent
possible confusions.

With these extensions, APP4RTA users can analyze response times under more various configuration settings with the
better quality of GUI features.

2.8 Repositories

2.8.1 Eclipse Contribution Tagged Repo

Click Eclipse Contribution Tagged Repository

2.8.2 ReadTheDocs Repo

Click ReadTheDocs Documentation Repository

2.9 Reference

[1] Finding Response Times in a Real-Time System (Mathai Joseph and Paritosh Pandya, 1986)

[2] End-To-End Latency Characterization of Implicit and LET Communication Models (Jorge Martinez, Ignacio
Sanudo, Paolo Burgio and Marko Bertogna, 2017)

[3] CPU-GPU Response Time and Mapping Analysis for High-Performance Automotive Systems (Robert Höttger,
Junhyung Ki, The Bao Bui, Burkhard Igel and Olaf Spinczyk, 2019)

[4] Model-based Task Chain Latency and Blocking Analysis for Automotive Software (Robert Höttger, The Bao Bui,
Junhyung Ki, Burkhard Igel and Olaf Spinczyk, Not yet published)

24 Chapter 2. Contents

https://git.eclipse.org/c/app4mc/org.eclipse.app4mc.tools.git/tree/eclipse-tools/responseTime-analyzer/plugins/org.eclipse.app4mc.gsoc_rta?h=gsoc19RTAFinal
https://github.com/mrki102/gsoc_doc
https://academic.oup.com/comjnl/article/29/5/390/486162
https://www.ecrts.org/forum/viewtopic.php?f=32&t=91
https://www.ecrts.org/forum/viewtopic.php?f=43&t=134&sid=777ff03160a9434451d721748c8a8aea

(GSoC 2019) CPU-GPU Response Time and Mapping Analysis, Release 1.0

2.10 Contact

Name: Junhyung Ki

Personal Email: kijoonh91@gmail.com

Student Email: junhyung.ki001@stud.fh-dortmund.de

LinkedIn

2.10. Contact 25

mailto:kijoonh91@gmail.com
mailto:junhyung.ki001@stud.fh-dortmund.de
https://www.linkedin.com/in/junhyung-ki-1a7886131/

	Motivation
	Contents
	Intention
	Contribution & Benefits for The Community
	Milestone with The Goal of Each Phase
	Phase 1 (May 27 - June 24)
	Phase 2 (June 25 - July 22)
	Phase 3 (July 23 - August 25)

	Approached Theories
	Basic RTA
	End-to-End Latency

	Class Tree with Implemented Methods
	Key Classes
	Supplementary Classes (Out of scope)

	User Interface (APP4RTA)
	Set Up
	Search Amalthea
	Direct & Select Amalthea
	UI Features (RTA)
	Select an Event-Chain
	UI Features (E2ELatency)

	Future Work
	1. Reaction Update
	2. Blocking
	3. Scheduling mode: EDF
	4. Read & Write latency setting feature
	5. Data Age metrics should be organized

	Repositories
	Eclipse Contribution Tagged Repo
	ReadTheDocs Repo

	Reference
	Contact

