

Gridgo Official Documentation - latest

Welcome to the official documentation of Gridgo, a platform to create distributed system easier. We provides the manual, tutorials and examples on this documentation.

Note

All contributions are welcome. Make sure you read the contribution guideline [https://github.com/gridgo/gridgo/wiki/contribution-guideline] before start making changes.

The table of contents below and in the sidebar should let you easily access the documentation for your topic of interest. You can also use the search function in the top left corner.

Tip

If you are new to Gridgo, please read the first section about basic principles and terminologies first.

The main documentation for the site is organized into the following sections:

General

	Introduction

Getting started

	Installing Gridgo

	Creating first application

	Bean Basics

	Gateway Basics

Advanced topics

	Bean Advanced
	Thread-safe

	Pluggable serialization

	Default binary serializer

	Schema and schema-less
	Schema

	Schema-less

	Pre-support serialization
	Gson

	Protobuf

	Avro

	Write out binary

	Gateway Advanced
	Multiple connectors per gateway

	Returning responses to connectors

	Configuring an execution policy

	Instrumenters
	Execution Strategy Instrumenters

	Producer Instrumenters

	Transaction in Processors
	Creating and processing transactions

	Context Advanced
	Using configuration with Gridgo
	Key-value configuration

	Object-based configuration

	Creating GridgoContext from configuration

	Using a custom Registry

	Bridge and Switch

Gridgo Boot

	Gridgo Boot Documentation
	Gridgo Boot Overview
	Install

	Getting started

	Gridgo Boot Initializers
	Registry Initializers

	Gridgo Boot Dependency Injection

	Gridgo Boot Tutorials
	Using Prometheus instrumenters with Gridgo Boot

Examples

	Examples

References

	Gridgo Connectors [https://github.com/gridgo/gridgo-connector/tree/master/connectors]

	Gridgo Core Javadoc [http://javadoc.io/doc/io.gridgo/gridgo-core/0.1.2]

	Gridgo Connector Core Javadoc [http://javadoc.io/doc/io.gridgo/gridgo-connector-core/0.1.0]

Introduction

This page aims at providing basic principles and terminologies of Gridgo.
It is recommended if you are new to Gridgo.

About Gridgo

Gridgo is a platform to create distributed systems easier with asynchronous I/O
connectors and event driven programming. Gridgo handles the heavylift work of I/O
and thread routing so you can focus on designing network topologies and implementing
business logic.

Gridgo Principles

Everyone has principles, so does Gridgo. Gridgo follows and strongly recommends
several principals, which are:

	Fluent API

	Most Gridgo APIs are fluent. You can perform successive operations within
a single method calls chain.

	Asynchronous over Synchronous

	It is as straightforward as it sounds. Most of the operations in Gridgo are
asynchronous, even for remote-procedure calls. Asynchronous operations will
give you a Promise, which you can be notified when it is fulfilled or
rejected. Some operations which need response from you will give you a Deferred
that you can fulfill or reject it. Your method also should not block.

	Think topology over protocol

	Instead of focusing on the actual protocol, you should focus on designing the network
or computing topology. All I/O operations are abstracted using Connector or
Gateway.

Gridgo Components

The main components of Gridgo are:

	Connector

	This is the most basic abstraction level in Gridgo. It provides easy-to-use
I/O connection (sending and receiving messages). Each type of connector is
uniquely represented by an endpoint. An example might be
“kafka:mytopic?brokers=127.0.0.1”. Connector consists of Producer and
Consumer

	Producer

	The outgoing part of connector. It allows you to send messages to the
remote service with fire-and-forget or RPC styles.

	Consumer

	The incoming part of connector. It allows you to subscribe and handling
messages. Consumer can be two-way, which means it can also send response back
to the caller.

	Gateway

	This is the bridge between Connector and application logic. It allows you
to subscribe for messages from and send messages to the underlying connectors.
Gateways are always accessed by name.

	Application Context

	This is the highest level component, which will connect all other components,
like opening gateways, resolving connectors, etc. You can create any number of
contexts inside a single JVM process.

Installing Gridgo

Gridgo requires Java 11 so you should make sure JDK 11 [https://www.oracle.com/technetwork/java/javase/downloads/index.html] is installed. Gridgo is tested with Oracle JDK but any other JDK should be fine.

Gridgo itself can be easily installed using Maven. It is also split into
several independent components that can be installed separately:

Install gridgo-core

This is the recommended package, which provides the most functionalities of Gridgo (Gateway, Application Context)

<dependency>
 <groupId>io.gridgo</groupId>
 <artifactId>gridgo-core</artifactId>
 <version>0.1.2</version>
</dependency>

Install gridgo-connector-core

Install this if you want to only work with the I/O abstraction layer (Connector)

<dependency>
 <groupId>io.gridgo</groupId>
 <artifactId>gridgo-connector-core</artifactId>
 <version>0.1.0</version>
</dependency>

Note

To work with a specific connector type (e.g gridgo-kafka) you
also need to install it separately:

<dependency>
 <groupId>io.gridgo</groupId>
 <artifactId>gridgo-kafka</artifactId>
 <version>same as gridgo-connector-core</version>
</dependency>

A full list of supported connectors can be found on the
GitHub repository [https://github.com/gridgo/gridgo-connector/tree/master/connectors]

Creating first application

This article will help you creating your first Gridgo application. This simple application will do the following:

	Create a new application context

	Open a gateway and attach a HTTP server to it (using gridgo-vertx-http)

	Start listening for incoming HTTP requests and return the same as responses.

Tip

The full source code for this example can be found in the Examples section

The entry-point of a Gridgo application is the GridgoContext. A GridgoContext will act as a standalone component which will have its own configuration and be started/stopped independently regardless of where it’s running. While a JVM process is a physical entity, a GridgoContext is a logical one, and in fact, you can have multiple instances of GridgoContext inside a single JVM process.

GridgoContext can be created using a GridgoContextBuilder, which currently supports DefaultGridgoContextBuilder

// create the context using default configuration
var context = new DefaultGridgoContextBuilder().setName("application").build();

GridgoContext allows you to open Gateway. Gateway is the abstraction level between the I/O layer (Connector) and business logic code. It allows you to write code in event-driven paradigm. You can also think of Gateway as the bridge between your application business logic and the external (remote or local) endpoints.

Gateways are asynchronous in nature, which all interactions are handled using Promise.

The following code will open a new gateway, attach an I/O connector to it and subscribe for incoming messages.

var gateway = context.openGateway("myGateway")
 .attachConnector("vertx:http://127.0.0.1:8080/") // attach a web server connector
 .subscribe(this::handleMessages) // subscribe for incoming messages
 .finishSubscribing().get();

More about Connector and available endpoints can be found here [https://github.com/gridgo/gridgo-connector]

handleMessages is actually a implementation of Processor, which will take 2 arguments: a RoutingContext containing information about the current request and the GridgoContext the request is associated with.

private void handleMessages(RoutingContext rc, GridgoContext gc) {
 var msg = rc.getMessage();
 var deferred = rc.getDeferred();

 // using the same request body as response
 deferred.resolve(Message.newDefault(Payload.newDefault(msg.getPayload.getBody())));
}

After you have configured the context, you need to call its start() method, which will in turn starting gateways. If the attached connector supports a Consumer, it will listen for incoming messages and route them to the matching Processors.

context.start();

// Register a shutdown hook to stop the context
Runtime.getRuntime().addShutdownHook(new Thread(context::stop));

After you have run the application (e.g using a public static void main(String[] args) method), you can access the application in http://localhost:8080

Well done! You have created your first Gridgo application with just a few lines of code. More hand-on tutorials can be found at the /tutorials/index section, or you can go to the next section for more advanced topics.

Bean Basics

Overview

Beans are the abstract data structure of Gridgo aim to transparent data format and make easier to sending via network.

Bean’s structure is json-like, which support reference in additional.

To use bean in your project, just add maven dependency:

<dependency>
 <groupId>io.gridgo</groupId>
 <artifactId>gridgo-bean</artifactId>
 <version>${gridgo.bean.version}</version>
</dependency>

Hierarchy

BElement -- AbstractBElement
 | |
 | +-------------+------------+
 | | | |
 +-- BValue ----------------------------------- MutableBValue | |
 | | |
 +-- BReference --- MutableBReference |
 | |
 +-- BContainer -- AbstractBContainer
 | |
 | +-----------+-----------+
 | | |
 +-- BObject -- AbstractBObject |
 | | | |
 | +-- WrappedBObject ----+ +-----------+----------+ |
 | | | | | |
 | +-- ImmutableBObject --+------ WrappedImmutableBObject MutableBObject |
 | |
 +-- BArray -- AbstractBArray
 | |
 +-- WrappedBArray -----+ +-----------+-----------+
 | | | |
 +-- ImmutableBArray ---+---------------------------- WrappedImmutableBArray MutableBArray

Definition

	BElement

	is the ancestor of all bean types. It’s useful if you want to create a bean from any type.

	BReference

	wraps any object as a reference.

	BValue

	wraps any value which is primitive: Boolean, Character, String, Number (byte, short, int, long, float, double, BigInteger, BigDecimal), raw binary (byte[]). BValue can also convert any primitive to other (primitive) types.

	BContainer

	base class for any BElement type which can contains other BElement.

	BObject

	defines a key-value data structure.

	BArray

	defines a sequence data structure.

Usage

Using static methods define in top interface to create correlative instance:

Mutable instances

	BReference.of(data): create a mutable instance of BReference

	BValue.of(data): create a mutable instance of BValue which wrap data as its source.

	BObject.ofEmpty(), BObject.of(Map<?,?>): create a mutable instance of BObject which is empty or auto convert map to a BObject

	BArray.ofEmpty(), BArray.of(collection or array): create a mutable instance of BArray which is empty or auto convert (collection | array) into a BArray

in case you don’t know which type of data want to convert to BElement, use: BElement.ofAny(data)

Immutable instances

	BObject.wrap(map): wrap the input map in a WrappedImmutableBObject

	BArray.wrap(collecion or array): wrap the input (collection or array) in a WrappedImmutableBArray

In case you don’t know which kind of data which want to wrap, use: BElement.wrapAny(data)

Working with pojo

If you have a pojo object and want to convert it to BObject, you can use BObject.ofPojo().

Serialization

BElement support multi kind of data serialization:

Built-in

	
	JSON

	can be accessed by BElement.toJson() and BElement.fromJson(...)

	
	XML

	can be accessed by BElement.toXml() and BElement.fromXml(...)

	
	Msgpack

	can be accessed by BElement.toBytes() and BElement.fromBytes(...) (msgpack set as default binary serializer if the system property name gridgo.bean.serializer.binary.default is unset)

Gateway Basics

Gateway is a level of abstraction above Connector. It is the bridge between Connector and Handler, making it easier to create event-driven application. Several connectors can be attached to one gateway, after which any requests routed to the gateway will be multicasted to the attached connectors’ producers.

The complete architecture of gateways is:

[image: ../../_images/gateway.png]
Gateway comprises of Incoming Sink and Outgoing Sink:

Incoming sink

This sink accepts events from various types of dispatcher, including consumers, timers, producer and programmatically from handlers.

	Consumers:

	Consumers read messages from a datasources (file, message queues, etc.) or accept messages from external system (e.g using a web server), then convert it to a Message and put into the Gateway’s incoming sink. Consumer can sometimes be a timer which schedules messages to be generated and be put into the incoming sink. Each timer will accept a Supplier<Message>.

	Producers:

	Response from the producers can be put it into the incoming sink, making them available to be consumed by other handlers.

	Handlers:

	Handlers can manually create the message and programmatically put it into the incoming sink.

After a message is put into the incoming sink, it will be routed to different handlers based on the configured policies and rules. The corresponding handlers will then be executed with the following parameters:

	executionContext:

	contains the Message to be consumed, the DeferredObject to be fulfilled and the caller (the gateway that this message comes from). Only the first call to resolve() or reject() will be considered, after that all subsequent calls are ignored.

	applicationContext

	contains all application-related information, including access to gateways, configurations, etc.

Outgoing sink

Execution strategies

Using gateways

To create a gateway, attach connectors and bind handlers

var appContext = new GridgoContext();
var connector = appContext.openGateway("Orders")
 .attachConnector("kafka:orders?brokers=127.0.0.1")
 .attachConnector(someConnector)
 .subscribe(handler1).withPolicy(somePolicy).finishSubscribing()
 .subscribe(handler2).when(someCondition).with(someStrategy).finishSubscribing();

Attempting to open gateway with the same name will cause a DuplicateGatewayException

To access an opened gateway:

var gateway = appContext.findGateway("Orders"); // return a Optional<Gateway>
if (gateway.isPresent()) {
 // do some works with the gateway
}

or access the list of opened gateway

var gateways = appContext.getGateways(); // return a List<Gateway>

Bean Advanced

This section will discuss about advanced topics when using Gridgo Bean

	Thread-safe

	Pluggable serialization

	Default binary serializer

	Schema and schema-less

	Pre-support serialization

	Write out binary

Gateway Advanced

This section will discuss about advanced topics when using Gateway

	Multiple connectors per gateway

	Returning responses to connectors

	Configuring an execution policy

	Instrumenters

	Transaction in Processors

Context Advanced

This section will discuss about advanced topics when using GridgoContext

	Using configuration with Gridgo

	Creating GridgoContext from configuration

	Using a custom Registry

	Bridge and Switch

Thread-safe

By default, all BElement created using default static methods of[...]() are always non thread-safe.

To create a thread-safe BElement, use BObject.withHolder(<holder_map>) or BArray.withHolder(<holder_list>). Where the parameter is instance of a thread-safe type (e.g ConcurrentHashMap).

Pluggable serialization

Every serialization format implements BSerializer, include all of the built-in ones.

For example, instead of using BElement.ofJson(json) you can also use a more generalized approach: BElement.fromBytes(bytes, "json"). The second parameter is the name of the BSerializer you registered in the Serialization Registry (more on this later). json, xml, default or msgpack is built-in, which means they are implicity registered.

To write you own serializer, create a class which implements BSerializer and annotate it by @BSerializationPlugin(name). After that, register it with BSerializerRegistry by calling:

BFactory.DEFAULT.getSerializerRegistry().scan(<package_name_of_your_serializer>);

or

BFactory.DEFAULT.getSerializerRegistry.register(<name>, <BSerializer instance>);

By default BFactory.DEFAULT.getSerializerRegistry() auto scan package io.gridgo.serialization, so that if your custom serializer located in that package and loaded in the same class loader with BElement, you don’t need to call register.

Note

your custom BSerializer must be thread-safe.

Default binary serializer

Bean using a system property named gridgo.bean.serializer.binary.default to take default binary serializer name, if it’s unset, msgpack will be used.

Default serializer will be used in toBytes(), writeBytes(...) and fromBytes(...) methods.

You can, for example, change the default binary format to avro by providing the correct system property value when starting the JVM:

-Dgridgo.bean.serializer.binary.default=avro

Schema and schema-less

Schema

There are a lot of binary serialization format which based on a schema - generally understood as a value object.

To serialize an object with a schema serialization format, the object’s type must be registered with the serializer.

Generally, all schema format supports 2 modes: single and multi. You use single format if your whole application only works with one schema (which is usually not the case). If you works with multiple schemas, there are 2 ways you can do:

	Use multi schemas mode: Using this you need to register the schemas with the serializer. The serialized data will then be prepended with a type header (commonly using 4 bytes integer), which might not be inter-operable.

	Use many single-schema mode: Using this you need to create individual serializer for each schema. The advantage is that the data won’t be prepended with a type header, thus it’s more inter-operable.

There are 2 interfaces for schema serialization: io.gridgo.bean.serialization.MultiSchemaSerializer<S> and io.gridgo.bean.serialization.SingleSchemaSerializer<S>

Schema-less

JSON, XML, msgpack (all of the built-in formats) are schema-less, which mean they don’t need a pre-defined schema class.

Pre-support serialization

Gson

By default, json serializer using json-smart lib, but if you have your own reason to use gson, you can do it by add maven dependency:

<dependency>
 <groupId>io.gridgo</groupId>
 <artifactId>gridgo-bean-gson</artifactId>
 <version>x.x.x</version>
</dependency>

Then, you can serialize using gson by calling: BElement.toBytes('gson');

Protobuf

Protobuf is a popularly serialization format. Gridgo-bean already support it with a dependency:

<dependency>
 <groupId>io.gridgo</groupId>
 <artifactId>gridgo-bean-protobuf</artifactId>
 <version>x.x.x</version>
</dependency>

Protobuf serializer support 2 modes:

	Single schema:

First you need to register the schema once when you start the application:

ProtobufSingleSchemaSerializer protobufSerializer = BFactory.DEFAULT.getSerializerRegistry().lookup(ProtobufSingleSchemaSerializer.NAME);
protobufSerializer.setSchema(Person.class);

Then you can start using it:

// create a person instance
Person p = createPerson();
BElement ele = BElement.ofAny(p);

// serialize the person instance using Protobuf format
byte[] bytes = ele.toBytes(ProtobufSingleSchemaSerializer.NAME);

// deserialize it
BElement unpackedEle = BElement.ofBytes(bytes, ProtobufSingleSchemaSerializer.NAME);
Person p2 = unpackedEle.asReference().getReference();

// the two should be equals
Assert.assertEquals(p, p2);

	Multi schema:

First you need to register the schema once when you start the application. You need to associate the schema with a type (an integer):

ProtobufMultiSchemaSerializer protobufSerializer = BFactory.DEFAULT.getSerializerRegistry().lookup(ProtobufMultiSchemaSerializer.NAME);
protobufSerializer.registerSchema(Person.class, 1);

Then you can start using it as normal:

Person p = createPerson();

BElement ele = BElement.ofAny(p);
byte[] bytes = ele.toBytes(ProtobufMultiSchemaSerializer.NAME);

BElement unpackedEle = BElement.ofBytes(bytes, ProtobufMultiSchemaSerializer.NAME);
Person p2 = unpackedEle.asReference().getReference();

assertEquals(p, p2);

Person is a protobuf generated class.

Note

you must register the schema class before using protobuf serialization format. Only BReference contains registered schema can be serialized/deserialized

Avro

Like protobuf, Avro is also a widely-used serialization format. To use it, add below lines to your pom.xml:

<dependency>
 <groupId>io.gridgo</groupId>
 <artifactId>gridgo-bean-avro</artifactId>
 <version>x.x.x</version>
</dependency>

Avro serializier also support 2 modes:

	Single schema:

AvroSingleSchemaSerializer avroSerializer = BFactory.DEFAULT.getSerializerRegistry().lookup(AvroSingleSchemaSerializer.NAME);
avroSerializer.setSchema(Person.class);

Person p = createPerson();
byte[] bytes = BElement.ofAny(p).toBytes(AvroSingleSchemaSerializer.NAME);

BElement unpackedEle = BElement.ofBytes(bytes, AvroSingleSchemaSerializer.NAME);
Person p2 = unpackedEle.asReference().getReference();

assertEquals(p, p2);

	Multi schema:

AvroMultiSchemaSerializer avroSerializer = BFactory.DEFAULT.getSerializerRegistry().lookup(AvroMultiSchemaSerializer.NAME);
avroSerializer.registerSchema(Person.class, 1);

Person p = createPerson();
byte[] bytes = BElement.ofAny(p).toBytes(AvroMultiSchemaSerializer.NAME);

BElement unpackedEle = BElement.ofBytes(bytes, AvroMultiSchemaSerializer.NAME);
Person p2 = unpackedEle.asReference().getReference();

assertEquals(p, p2);

where Person is a avro generated class.

Note

you must register the schema class before use avro serialization format. Only BReference contains registered schema can be serialized/deserialized

Write out binary

To work with I/O, data should be written to an output stream. There are 2 ways to do that:

	convert to byte[] using BElement.toBytes() then append that bytes to output stream.

	write directly to output stream using BElement.writeBytes(outputStream).

The second way is highly recommended because it save one mem-copying and will make your code faster.

Multiple connectors per gateway

It is possible to attach multiple connectors to a single Gateway. Doing so will make incoming messages from all attached Connectors to be routed to the Processors. One more interesting thing is that when you send messages to Gateway (using either send(), sendWithAck(), call() or callAndPush()), the messages will also be multiplexed to all Connectors.

So what is the response if you make RPC calls to a Gateway having multiple Connectors? Well, Gridgo allows you choose the strategy to compose the response, using ProducerTemplate. There are 3 built-in types of ProducerTemplate:

	SingleProducerTemplate: which will keep the first Connector response and discard all others, this is the default template

	JoinProducerTemplate: which will merge all responses into a single MultipartMessage

	MatchingProducerTemplate: similar to JoinProducerTemplate, but allows you to use a Predicate to filter what Connector to be called. Responses are also merged into a single MultipartMessage

Returning responses to connectors

Many Connectors require responses or acknowledgements from Processors, e.g in a
HTTP server, you need to send the response back to client, or in Kafka you need
to send acknowledgement back to KafkaConnector, so it will commit the message.
This is done using the Deferred object in RoutingContext

private void handleMessages(RoutingContext rc, GridgoContext gc) {
 try {
 // do some work to get the response
 // Gridgo favors asynchronous over synchronous, so your method shouldn't block
 rc.getDeferred().resolve(response);
 } catch (Exception exception) {
 // or reject the request with some exception
 rc.getDeferred().reject(exception);
 }
}

Note

Only the first call to either resolve() or reject() will work.
Subsequent calls will be ignored.

Configuring an execution policy

When subscribing to Gateway’s incoming messages, you can optionally configure an
Execution Policy. Execution policies allow you to control in which condition
and how the processors will be executed. For example, to only execute a processor
in a particular condition:

var gateway = context.openGateway("myGateway")
 .attachConnector("kafka:mytopic")
 .subscribe(this::handleMessages)
 .when("payload.body.data > 1") // only execute the Processor if payload body is numeric and greater than 1
 .finishSubscribing().get();

Or, to execute the processor using a particular strategy, ExecutorService for instance:

var gateway = context.openGateway("myGateway")
 .attachConnector("kafka:mytopic")
 .subscribe(this::handleMessages)
 .when("payload.body.data > 1")
 .using(new ExecutorExecutionStrategy(8))
 .finishSubscribing().get();

Calling .subscribe() will actually return a HandlerSubscription, which you
can call .when() and .using() upon. This is called fluent-style API. To return
the flow back to Gateway, you will call .finishSubscribing().

Instrumenters

Instrumentering is a mechanism to alter a class behavior without directly modifying it. There are two types of instrumenters in Gridgo: Execution Strategy Instrumenter and Producer Instrumenter.

Execution Strategy Instrumenters

Execution strategy instrumenters are used with gateway processors to alter their behaviors. When you attach an instrumenter to a processor, all handling will be routed to the it instead of the processor. Some examples of instrumenters might be:

	Calculate the throughput and latency of a processor via Prometheus integration.

	Apply access control going through a processor.

There are several instrumenters already available for use, e.g:

	WrappedExecutionStrategyInstrumenter: Wrap several instrumenters into a single one. Wrapped instrumenters will be executed sequentially.

	Prometheus-integration instrumenters: Integrate with Prometheus functionality. Can be used to calculate throughput and latency of a processor.

Producer Instrumenters

Producer instrumenters are used with producers to alter their behaviors. Some examples of producers instrumenters might be:

	Calculate the throughput and latency of a producer (e.g a JDBC producer)

	Add a cache layer to the producer

	Add a mockup layer to the producer

Transaction in Processors

Gridgo supports asynchronous transaction through messaging. If a gateway is attached with a connector which supports Transaction (more on this later), a Processor can use it to call requests, commit or rollback the transaction.

Transactions are done through io.gridgo.connector.support.transaction.Transaction object. To make gateway agnostic of transaction, the creation of the Transaction object is done via Message (see Behind the scene section). A Processor can also implements TransactionProcessor interface, which provides utility methods for handling transactions.

Creating and processing transactions

There are several ways to create and process transactions. All of the following code are valid and are exactly the same. createTransaction and withTransaction methods are provided by TransactionProcessor

	Create, commit and rollback transaction manually

createTransaction(gateway).done(transaction -> {
 // use the Transaction object to query and commit/rollback manually
 transaction.callAny("insert into some_table values(..)")
 .pipeDone(result -> doSomethingWithResult())
 .done(result -> transaction.commit())
 .fail(ex -> transaction.rollback());
}).fail(ex -> logger.error("Cannot create transaction", ex));

	Create transaction automatically but commit/rollback manually

// create transaction automatically but still commit/rollback manually
withTransaction(gateway, transaction -> {
 transaction.callAny("insert into some_table values(..)")
 .pipeDone(result -> doSomethingWithResult())
 .done(result -> transaction.commit())
 .fail(ex -> transaction.rollback())
}).fail(ex -> logger.error("Cannot create transaction", ex));

	Create transaction manually and use provided deferred to commit/rollback

// create transaction automatically and use provided deferred to commit/rollback
// the transaction will be committed when deferred is resolved, and rolled back
// when it is rejected
withTransaction(gateway, (transaction, deferred) -> {
 transaction.callAny("insert into some_table values(..)")
 .pipeDone(result -> doSomethingWithResult())
 .forward(deferred);
}).fail(ex -> logger.error("Cannot create transaction", ex));

	Create transaction automatically and return a promise to commit/rollback

// create transaction automatically and return a promise to let Gridgo knows
// when to commit/rollback the transaction.
withTransaction(gateway, transaction -> {
 return transaction.callAny("insert into some_table values(..)")
 .pipeDone(result -> doSomethingWithResult());
}).fail(ex -> logger.error("Cannot create transaction", ex));

Using configuration with Gridgo

Gridgo supports two types of configuration: a key-value config and an object-based config. Key-value configurations are usually good for storing application settings, similar to a properties file, or bean registration, similar to Spring bean. Object-based configurations on the other hand suitable for storing complex data structure, like when configuring GridgoContext. Refer to each section below to get more details about each type of configuration.

Key-value configuration

Key-value configurations in Gridgo are called Registry. A registry stores a mapping between a String and an arbitrary object. Two most basic operations are lookup() and register(), e.g:

var registry = new SimpleRegistry();
registry.register("numbers", new int[] {1, 2, 3});
var numbers = registry.lookup("numbers");

You can also pass a type to the lookup method, so result will be automatically casted the specified type:

var numbers = registry.lookup("numbers", int[].class);

And substitute placeholders in strings using values from Registry:

var someString = "mongodb://${mongodb.host}:${mongodb.port}";
var parsedString = registry.substitute(someString);

Some of the supported registries are:

	SimpleRegistry: a registry backed by a HashMap

	PropertiesFileRegistry: a registry backed by a properties file

	SystemEnvRegistry: a registry which corresponds to the system environment variables

	SystemPropertyRegistry: a registry which corresponds to the Java properties (e.g when using -D option)

	MultiSourceRegistry: a registry which contains other registries, so you can use multiple registries as if it was a single one.

There are some registries supported in gridgo-extras:

	SpringRegistry: a registry which is backed by Spring ApplicationContext

	TypeSafeRegistry: a registry which is backed by typesafe/config

Object-based configuration

Object-based configurations in Gridgo are called Configurator. They are a bit more advanced than Registry which can support hot-reload. But they don’t support looking up individual key inside the configurations. Rather they will return the whole configuration as a BElement.

// create an instance of configurator using TypeSafe
var configurator = TypeSafeConfigurator.ofResource("application.conf");

// register for configuration event
configurator.subscribe(event -> {
 if (event.isLoaded())
 System.out.println("Event loaded: " + event.asLoaded().getConfigObject());
 else if (event.isReloaded())
 System.out.println("Event reloaded: " + event.asLoaded().getConfigObject());
 else if (event.isFailed())
 event.asFailed().getCause().printStackTrace();
});

// start the configurator
configurator.start();

The configurator needs more work than Registry because it can support hot-reload and remote configuration (e.g using a Database or Zookeeper)

Some currently supported configurator

	TypeSafeConfigurator: configurator backed by TypeSafe, supporting JSON, HOCON

	YamlConfigurator: configurator using YAML format

	JsonConfigurator: configurator using JSON format

Tip

Most configurators are extended from ReplayEventDispatcher, that means you can subscribe whenever you want, all events will be replayed every time you subscribe.

Creating GridgoContext from configuration

It is very convenient to create GridgoContext using configuration, whether it is HOCON, JSON or YAML. The code is very simple:

// create a configurator using TypeSafe, which supports JSON and HOCON
var configurator = TypeSafeConfigurator.ofResource("gridgo-context.conf");

// create the context using the configurator
var context = new ConfiguratorContextBuilder().setRegistry(registry)
 .setConfigurator(configurator)
 .build();

Following are an example of a conf file:

the application name
applicationName = "helloworld"

list of gateways
gateways {

 # define a gateway with name "test" and one subscriber
 test.subscribers += "class:io.gridgo.example.TestProcessor"

 # add another gateway with name "another" and one subscriber
 # with a custom execution strategy and condition
 another.subscribers += {
 processor = "class:io.gridgo.example.AnotherProcessor"
 executionStrategy = "bean:myExecutionStrategy"
 condition = "payload.body.data not empty"
 }

 # add another gateway with 2 connectors and autoStart false
 alsoAnother {
 autoStart = false
 connectors += "kafka:topic1?brokers=localhost:9092"

 # this connector will have a custom ConnectorContextBuilder
 connectors += {
 endpoint = "vertx:http://localhost:8080"
 contextBuilder = "bean:myConnectorContextBuilder"
 }
 subscribers += "class:io.gridgo.example.AlsoAnotherProcessor"
 }
}

list of components
components += "bean:myComponent"

This is the same configuration using YAML

applicationName: "helloworld"

gateways:
 test:
 subscribers:
 - "class:io.gridgo.example.TestProcessor"
 another:
 subscribers:
 - processor: "class:io.gridgo.example.AnotherProcessor"
 executionStrategy: "bean:myExecutionStrategy"
 condition: "payload.body.data not empty"
 alsoAnother:
 autoStart: false
 connectors:
 - "kafka:topic1?brokers=localhost:9092"
 - endpoint: "vertx:http://localhost:8080"
 contextBuilder: "bean:myConnectorContextBuilder"
 subscribers:
 - "class:io.gridgo.example.AlsoAnotherProcessor"
components:
 - "bean:myComponent"

As you can see the syntax very flexible: for subscribers, connectors you can use either String or Object. The syntax is based on HOCON format, a superset of JSON, which is optimized for human.

For processor, you can either use a bean or a class. If you use a bean, it must be registered in the Registry object passed to the ConfiguratorContextBuilder. If you use a class, it must have exactly one constructor, preferrably non-args. If you use args constructor, the arguments will be looked up from the Registry based on their types. If there are multiple beans applicable for one arguments, it will throw a AmbigiousException.

Using a custom Registry

Normally connectors will only require simple key-value configuration to work, but
some might require specific bean instances. Bean are created and registered in
Registry, where they can be lookup later. One example is the MongoDBConnector
which requires an instance of MongoClient. To use those connectors, you will need
to create the bean instances and register them inside the Registry.

// create the MongoClient bean
var mongoClient = MongoClient.create();

// register the bean
var myRegistry = new SimpleRegistry().register("mongoBean", mongoClient);

// create the context with the custom registry
var context = new DefaultGridgoContextBuilder().setName("application").setRegistry(myRegistry).build();

// later on you can look up the bean using the provided name
mongoClient = context.getRegistry().lookup("mongoBean", MongoClient.class);

Another use case of Registry is to store some settings, which can be required for
application to run. Since 0.2.0 you can also substitute the settings value in a
connector endpoint.

Note

Since 0.2.0, you can register new entry after creating the Registry.

Bridge and Switch

Sometimes, you want a message coming from a Gateway’s incoming sink to be automatically routed to another Gateway, then Bridge and Switch will come in handy. Some examples might be:

	Retrieve messages from Kafka, do some transformation and store it in Mongo

	Retrieve messages from incoming HTTP requests and routed it to a business logic Gateway

The different between Bridge and Switch is that Bridge will route the messages to the target Gateway’s outgoing sink (using send(), while a Switch will route the messages to the target Gateway’s incoming sink (using push()).

For example, the following code will use Bridge to store messages coming from Kafka to MongoDB:

context.openGateway("kafka")
 .attachConnector("kafka:someTopic?...");
context.openGateway("mongo")
 .attachConnector("mongo:mongoClient/test_db/test_collection?...");
context.attachComponent(new BridgeComponent("kafka", "mongo", this::transformMessage));

Note that the transformMessage() method will convert the message from Kafka format to MongoDB format.

Gridgo Boot Documentation

Gridgo Boot aims at providing a more convenient convention when working with Gridgo, using annotation instead of configuration.

	Gridgo Boot Overview

	Gridgo Boot Initializers

	Gridgo Boot Dependency Injection

	Gridgo Boot Tutorials

Gridgo Boot Overview

Gridgo Boot is a framework to facilitate getting up and running with Gridgo. It provides an annotation-based approach, similar to Spring Boot to eliminate boilerplate code and tedious configurations.

Install

To install Gridgo Boot with Maven:

<dependency>
 <groupId>io.gridgo</groupId>
 <artifactId>gridgo-boot</artifactId>
 <version>${gridgo.version}</version>
</dependency>

Getting started

To start using Gridgo Boot, you need a Java main class.

@EnableComponentScan
@Registries(defaultProfile = "local")
public class Main {

 public static void main(String[] args) {
 GridgoApplication.run(Main.class, args);
 }
}

@EnableComponentScan will instruct Gridgo Boot to scan for any Gridgo components and start instantiating it. These includes:

	@Gateway

	Annotating that the class represents a Gateway, which can be attached with @Connector. If the class is an implementation of Processor, it will be subscribed to the gateway automatically too. This class will be scanned further for additional field annotations (e.g @RegistryInject, @ComponentInject…). Full documentation will be covered at the Dependency Injection section.

	@DataAccessObject

	Annotating that the class represents a DAO. The class must be an interface. Full documentation will be covered at the Gridgo Data section.

	@Component

	Annotating that the class represents a generic component. It will then be available for dependency injection using @ComponentInject. The class instance’s properties can also be injected the same way as @Gateway.

Gridgo Boot Initializers

Registry Initializers

By default, Gridgo Boot will create a MultiSourceRegistry with the following child registries in that order:

	SystemPropertyRegistry: Using Java system properties.

	SystemEnvRegistry: Using system environment variables.

	Profile-specific PropertiesFileRegistry: Based on the defaultProfile settings or the Java system property gridgo.profile or the environment variable gridgo_profile.

	Application PropertiesFileRegistry: Using application.properties

If you want to register custom beans into the registry, add a public static method with @RegistryInitializer in the Main class:

@RegistryInitializer
public static void initRegistry(Registry registry) {
 // Register your custom beans here
 registry.register("someBean", new SomeBean());
}

If you want to add more registries, add a public static method with @RegistryFactory in the Main class:

@RegistryFactory
public static Registry createRegistry(Registry registry) {
 return new MyRegistry();
}

The added registries will take precedence over the default ones.

Gridgo Boot Dependency Injection

Gridgo Boot supports a simple built-in DI mechanism. First you create a class annotated with one of the following: @Component, @Gateway, @DataAccessObject. Then that class will be available to be injected into other classes using @ComponentInject, @GatewayInject and @DataAccessInject, respectively.

Examples:

	Inject a @Component class:

@Component
class Foo {

}

Now inject Foo to other classes. Only classes annotated with @Component or @Gateway can be injected into

@Component
class Bar {

 @ComponentInject
 private Foo foo;
}

@Gateway("a_gateway")
@Connect("a_connector")
class SomeProcessor implements Processor {

 @ComponentInject
 private Foo foo;
}

	Inject a @Gateway producer class

@Gateway("foo_gateway")
@Connect("a_connector_with_producer")
class SomeProducer {
}

Now inject the producer to another class. Only classes annotated with @Component or @Gateway can be injected into

@Gateway("bar_gateway")
@Connect("bar_connector")
class SomeProducer implements Processor {

 @GatewayInject("foo_gateway")
 private Gateway foo;
}

You may notice that in case of @GatewayInject, we need to specify the gateway name, and use io.gridgo.core.Gateway for the injected property instead of the actual gateway class. This is because it doesn’t make any sense, since the class is usually an empty class anyway.

	Inject a @DataAccessObject class

Gridgo Boot Tutorials

These are tutorials that might be helpful when working with Gridgo Boot

	Using Prometheus instrumenters with Gridgo Boot

Using Prometheus instrumenters with Gridgo Boot

This tutorial will help you get up and running with Gridgo Boot Prometheus instrumenters. It is recommended that you read the instrumenters basic first. What it’ll do:

	Create a Prometheus instrumenter to measure a processor throughput and latency.

	Expose Prometheus metrics through a HTTP endpoint.

	Utilize the metrics in Grafana dashboard.

Installation

To start using Prometheus instrumenters, first you need to add it in your pom.xml

<dependency>
 <groupId>io.gridgo</groupId>
 <artifactId>gridgo-extras-prometheus</artifactId>
 <version>${gridgo.version}</version>
</dependency>

Create and register an instrumenter

The next step is to create and register the instrumenter in Gridgo Registry. This can be done using a @RegistryInitializer method, which is probably placed inside your initialization class (the one you pass to GridgoApplication.run(…), usually Main class or Initializer)

@RegistryInitializer
public static void initRegistry(Registry registry) {
 // create a Prometheus summary instrumenter, referring to Prometheus documentation for more
 var instrumenter = new PrometheusSummaryTimeInstrumenter("my_summary", "My Summary");
 // register it in our registry
 registry.register("myInstrumenter", instrumenter);
}

Attach the registered instrumenter to the processor

Simply add a @Instrumenter to your processor class with name you registered earlier.

@Gateway("my_gateway")
@Connector("${my_connector_endpoint}")
@Instrumenter("myInstrumenter")
public class MyProcessor extends AbstractProcessor {

 @Override
 public void process(RoutingContext rc, GridgoContext gc) {
 // handle the message as usual
 }
}

Expose the metrics via a HTTP endpoint

Now everything is setup, but Prometheus is pull-based, so you need to expose metrics via a HTTP endpoint so that the Prometheus server can scrape it. The MetricsProcessor is already provided for your convenience. my_metrics_endpoint might be something like vertx:http://0.0.0.0:8080/metrics

@Gateway("metrics")
@Connector("${my_metrics_endpoint}")
public class MyMetricsProcessor extends MetricsProcessor {

 public MyMetricsProcessor() {
 super("my_metrics");
 }
}

When you run the application, it should be accessible by going to http://localhost:8080/metrics

Visualize the metrics

Ask your administrator or infrastructure team to scrape it using the endpoint you have specified earlier. Then you can query it use something like:

rate(my_metrics_my_summary_time_count[30s]): Return the average throughput of last 30 seconds
rate(my_metrics_my_summary_time_sum[30s]) / rate(my_metrics_my_summary_time_count[30s]): Return the average latency of last 30 seconds

Examples

Below are the list of examples with their descriptions:

	gridgo-example-first-app:

	This application will start a web server at port 8080, listen for incoming HTTP
requests and response with the same content

Link: https://github.com/gridgo/gridgo-examples/tree/master/gridgo-example-first-app

	gridgo-example-mongodb-vertx

	This application will start a web server at port 8088, listen for incoming HTTP
requests and response with a whole collection of MongoDB. It requires a MongoDB
server running at port 27017

Link: https://github.com/gridgo/gridgo-examples/tree/master/gridgo-example-mongodb-vertx

	gridgo-example-tik-tac-toe

	This application will create a simple tik-tac-toe game, with a websocket & HTTP gateway, and
some support gateway to handle game logic.

Link: https://github.com/gridgo/gridgo-examples/tree/master/gridgo-example-tik-tac-toe

	gridgo-example-kafka-consumer

	This application will create a simple kafka producer and consumer to send and receive
a message.

Link: https://github.com/gridgo/gridgo-examples/tree/master/gridgo-example-kafka-consumer

	gridgo-example-gridgoboot

	This application simulates a simple making an order flow at the restaurant, your order
will be placed in a queue and then process asynchronously. You could request a meal by making
a HTTP POST request to local webserver at port 8080. This example bases on gridgoboot
feature.

Link: https://github.com/gridgo/gridgo-examples/tree/master/gridgo-example-gridgoboot

Index

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Gridgo Official Documentation - latest

 		
 Introduction

 		
 About Gridgo

 		
 Gridgo Principles

 		
 Gridgo Components

 		
 Installing Gridgo

 		
 Creating first application

 		
 Bean Basics

 		
 Overview

 		
 Hierarchy

 		
 Definition

 		
 Usage

 		
 Mutable instances

 		
 Immutable instances

 		
 Working with pojo

 		
 Serialization

 		
 Built-in

 		
 Gateway Basics

 		
 Incoming sink

 		
 Outgoing sink

 		
 Execution strategies

 		
 Using gateways

 		
 Bean Advanced

 		
 Thread-safe

 		
 Pluggable serialization

 		
 Default binary serializer

 		
 Schema and schema-less

 		
 Schema

 		
 Schema-less

 		
 Pre-support serialization

 		
 Gson

 		
 Protobuf

 		
 Avro

 		
 Write out binary

 		
 Gateway Advanced

 		
 Multiple connectors per gateway

 		
 Returning responses to connectors

 		
 Configuring an execution policy

 		
 Instrumenters

 		
 Execution Strategy Instrumenters

 		
 Producer Instrumenters

 		
 Transaction in Processors

 		
 Creating and processing transactions

 		
 Context Advanced

 		
 Using configuration with Gridgo

 		
 Key-value configuration

 		
 Object-based configuration

 		
 Creating GridgoContext from configuration

 		
 Using a custom Registry

 		
 Bridge and Switch

 		
 Gridgo Boot Documentation

 		
 Gridgo Boot Overview

 		
 Install

 		
 Getting started

 		
 Gridgo Boot Initializers

 		
 Registry Initializers

 		
 Gridgo Boot Dependency Injection

 		
 Gridgo Boot Tutorials

 		
 Using Prometheus instrumenters with Gridgo Boot

 		
 Examples

_static/ajax-loader.gif

_images/gateway.png
Consumers

Gateway

timer event

Executor Agents

push

Execution Strategies

Routing Rules

send.

Outgoing Sink

send (end)

Producer

- - return by promise (end)- - - - { RPC Producer

call without promise

call with promise——

Handlers

