
GridCompute Documentation
Release 0.2

Boris Dayma

September 07, 2014

Contents

1 Contents 3
1.1 Overview . 3
1.2 Tutorial . 4
1.3 Specifications . 7
1.4 Development . 11
1.5 Source code layout . 13
1.6 License . 21

Python Module Index 27

i

ii

GridCompute Documentation, Release 0.2

GridCompute is an open-source cross-platform tool that implements quickly distributed computing over a local grid.

The objective is to distribute resource intensive calculations over a local network to greatly reduce time needed, with
a minimal work required for implementing it.

It can be particularly useful for engineering companies or universities.

Please see below useful links.

Documentation http://gridcompute.readthedocs.org

Source code http://github.com/borisd13/GridCompute

Binaries http://github.com/borisd13/GridCompute/releases

For any question, please contact the author Boris Dayma at boris@dayma.cc

Contents 1

http://gridcompute.readthedocs.org
http://github.com/borisd13/GridCompute
http://github.com/borisd13/GridCompute/releases
mailto:boris@dayma.cc

GridCompute Documentation, Release 0.2

2 Contents

CHAPTER 1

Contents

1.1 Overview

1.1.1 Description

GridCompute is a cross-platform tool that implements quickly distributed computing over a local grid.

Gridcompute is easy to setup. You just need a shared folder and a database server. It can be adapted to any application
through the use of python scripts.

1.1.2 Simple Workflow

The applicaiton follows the workflow:

• send calculations to the network

• scan network for calculations to perform, execute them and send results to network

• retrieve results

A very simplified workflow is represented herebelow:

3

GridCompute Documentation, Release 0.2

For more details, refer to Specifications.

1.1.3 Applications of interest

Software can be used easily if:

• Calculations performed can be divided into multiple independent calculations, even if a final step is required to
merge all results.

• Calculations can be started through the use of an external command line or python script.

• Calculations do not interfere with user interface, ie graphic, mouse, keyboard...

1.1.4 Interface functionalities

GridCompute interface has following functionalites:

• Submit cases to the network.

• Specify number of processes my computer can use to process cases from the network.

• Modify the number of processes during execution to pause, resume or cancel processes.

• Monitor status of user cases.

• Monitor status of user processes.

• Create a report of all the cases from same user group present on the network.

• Detect failed processes and retry to launch them.

• Specify which machines can perform calculations depending on application required.

1.2 Tutorial

Note: This section only intends to give a quick presentation of GridCompute through the use of a very simple demo
application Random Counter.

This application takes a file as input, performs a countdown from a random number, and returns the time needed for
that countdown, along with the name of the input file. This output is then added to a file in the home directory of the
person who requested the process.

1.2.1 Create GridCompute database

GridCompute requires a MongoDB server to store all cases related information.

Create a MongoDB server

In this section, we are going to detail two possible scenarios: using a private server or using a specialized host.

4 Chapter 1. Contents

http://www.mongodb.org/

GridCompute Documentation, Release 0.2

Option 1: Create a private MongoDB server

In this example, we are going to assume that you want to use a Ubuntu server in a virtual machine created with
VirtualBox. You can adapt it to install on a different OS and use of a virtual machine is only optional.

1. Install VirtualBox.

2. Create a virtual machine in VirtualBox with at least 512MB RAM and 8Go drive.

3. Install Ubuntu server. Activate option “Open-SSH Server” during installation for convenient access to your
server.

4. Set up port forwarding in VirtualBox:

• host=22 (or 2222 for Ubuntu host), guest=22 if you want to access to your machine by ssh

• host=27017, guest=27017 for access to Mongo database

5. From host, connect to guest through ssh.

On Ubuntu: ssh -p 2222 GUEST_USERNAME@HOST_MACHINE_NAME

On Windows: you can use a program such as putty

6. Update Ubuntu packages and reboot.

>>> sudo apt-get update
>>> sudo apt-get upgrade
>>> sudo sudo reboot

7. Install MongoDB per instructions from MongoDB tutorial.

8. In file /etc/mongod.conf, comment line bindip [...]

9. Run sudo service mongod start

10. Create a new database called gridcompute

>>> mongo
>>> use gridcompute

11. Add the user you will use from gridcompute. For example, for user Group1 with password gridcompute:

>>> db.createUser({user:"Group1", pwd:"gridcompute", roles:["readWrite"]})
>>> quit()

12. Set up MongoDB server.

Option 2: Use a specialized host

MongDB server instance can be hosted by a specialized website such as Compose or Mongolab.

1. Register to the host of your choice.

2. Create a new database named “gridcompute”.

3. Add the user you will use from gridcompute. For example, user Group1 with password gridcompute.

4. Set up MongoDB server.

1.2. Tutorial 5

http://www.ubuntu.com/server
https://www.virtualbox.org/
https://www.virtualbox.org/
http://www.ubuntu.com/server
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-ubuntu/
https://www.compose.io/mongodb/
https://mongolab.com/

GridCompute Documentation, Release 0.2

Set up MongoDB server

The main purpose is only to define what version of gridcompute can work with the database.

Note: This section is optional. If you don’t set up the database, a warning message will appear to notify you that the
program version is not controlled by the server but the program will still work.

1. Open script source/admin/database_management.py.

2. Edit the variables under if __name__ == "__main__".

3. Run the script with python 3.

1.2.2 Set-up of GridCompute

Before starting the program, you should follow these steps:

1. Download latest version of GridCompute binary. Choose the version associated to your OS.

2. Create a shared folder accessible (read and write) to every person that will use the program.

3. Copy folder template/Shared_Folder from source code to the shared folder you are going to use with GridCom-
pute.

4. At the root folder of GridCompute executable, there should be a file server.txt. Open it and copy the path to
GridCompute shared folder. Ex: \\Server010\...\Shared_Folder.

5. Edit settings.txt from the template folder with applicable parameters (refer to settings.txt specifications)

6. Edit Software_Per_Machine.csv from the template folder (for more details refer to Software_Per_Machine.csv
specifications):

• Add the name of your machine in the first column

• Enter 1 for application Random Counter on the row corresponding to your machine name

• Save as csv

1.2.3 Test GridCompute

The following section will give you a brief overview of the program.

1. Run GridCompute executable. You will see the main window of the program.

2. Check at the bottom of the application that you can run Random_Counter as selected in Soft-
ware_Per_Machine.csv.

3. Click on the application checkbox and select Random Counter.

4. Click on add cases and select 10-20 files (they will not be modified).

5. Check that cases have been added to the interface.

6. Click on submit list to server and confirm.

7. Click on the tab my cases and button refresh now. You will see the status of all your cases.

8. Increase the number of processes allowed to run.

9. While process are running, click on refresh now to see their status.

10. Go to the tab my processes to see what is happening on your computer.

6 Chapter 1. Contents

https://github.com/borisd13/GridCompute/releases
https://github.com/borisd13/GridCompute

GridCompute Documentation, Release 0.2

11. Random Counter demo application has been set-up so that outputs are added to the file gridcompute_output.txt
present in your home folder.

1.3 Specifications

1.3.1 Detailed workflow

The sequence of events is represented with numbered arrows herebelow:

1.3. Specifications 7

GridCompute Documentation, Release 0.2

8 Chapter 1. Contents

GridCompute Documentation, Release 0.2

1.3.2 Architecture of shared folder

In the same folder as main script or program, there is a file named “server.txt” which contains only the network path of
main shared folder between all users used by GridCompute (folder that contains “Settings”, “Cases” and “Results”).
Ex: \\Server010\\Folder\\GridCompute.

This shared folder has following architecture:

• Settings folder (to be at least read-only for users, read-write for administrators)

– Software_Per_Machine.csv: This file contains machine names and corresponding applications installed
(using unique ID per application). The program looks for the 1 in the matrix.

Ex:

Machine name,Software 1,Software 2,Software 3
Machine 1,1,1,1
Machine 2,0,1,0
Machine 3,0,0,0

Note: This file is only used to detect what machine can run process functions. All machines can submit
or receive cases.

– settings.txt: contains parameters of database on each line under the form: parameter name:
value. Parameters to define are the following:

* mongodb server: address of the mongo instance including connection port containing gridcompute
database

Ex: mongodbserver.com:888 or 10.0.0.1:888 or Machine123:888

* user group: Login used to connect on mongo database.

* password: Password used to connect on mongo database.

* instance: Data instance to consider. Example: 0 or debug.

– Applications folder

* One file per application with unique ID (ex: Software 1).

Warning: The folder name cannot contain a dot.

It contains:

· send.py: Defines how to select input and send calculations.

· process.py: Will run when analysis are executed based on input received and will create output
files.

· receive.py: Will run when output files are present on server.

More details are provided in Application-specific scripts.

• Cases folder: Contains one folder per user and inside, one folder per machine (so that user can see easily his
files) storing each case as a zip file that has all input files/folders required.

• Results folder: Contains one folder per user and inside, one folder per machine storing each result as a zip file
that has all output files/folders required.

Note: A template folder is present in source code in template folder and can be used to set up the shared folder.

1.3. Specifications 9

GridCompute Documentation, Release 0.2

1.3.3 Architecture of Mongo Database

GridCompute communicates with a mongo database that contains all the details on cases. Following entries are
present:

• collection cases

– _id: Unique Object Id based on timestamp of the case.

– user_group: User group. Ex: ENGINEERING DEPARTMENT.

– instance: Instance used to isolate grids. Ex: 0 or debug.

– status: Current status of the case. It can be to process, processing, processed or received.

– last_heartbeat: Timestamp of last heartbeat sent to notify the database that the process is still alive.

– application: Application associated to the case.

– path: Path on file server refering to input/output case.

– origin: Machine/User who submitted the case to the database.

* machine

* user

* time

· start: Time the case has been submitted to server.

· end: Time the results have been retrieved from server.

– processors

* processor_list: List of Machine/Users who tried to process the case (some attempts to process may
have failed).

· machine

· user

* time (start and end) for the last attempt to process

· start: Time of the last attempt to process.

· end: Time the process returned.

• collection versions (optional)

– _id: Versions of program recognized by database.

– status: Can be either allowed, warning or refused.

– message: Message to be displayed when status is not allowed.

1.3.4 Application-specific scripts

Applications can easily take advantage of distributed computing by creating 3 scripts, as detailed in following sections.

Note: Some examples are present in template/Shared_Folder/Settings/Applications.

10 Chapter 1. Contents

GridCompute Documentation, Release 0.2

send.py

This script is executed when submitting cases to server. It takes as input a file selected by the user and returns one or
several cases to submit to the server.

send.select_input_files(filepath)
Submit a case to the grid.

This function returns, from a selected file, one or several cases to run. Each case can be made of several input
files.

Parameters filepath (str) – Path of the file selected.

Returns str list: A list (or tuple) of cases. Each case is a list (or tuple) of input files required to
process a case.

process.py

This script is used to process cases. Its input is the ordered list of files submitted in send.py script. At the end of
execution, a list of output files is returned, which is submitted to the server.

process.process_case(input_files)
Process a case and return its results.

This function process a case from the grid and returns a list of output files that are sent back to the server.
Process is executed in a temporary folder where all files are copied.

Parameters input_files (str list) – ordered list (or tuple) of input files path.

Returns str list: An ordered list (or tuple) of output files to return to the server.

receive.py

This script is used to receive cases that have been processed, ie to specify what we want to do with the output files
returned from process.py script.

receive.receive_case(output_files)
Receive a case from the grid.

This function receives a case that has been processed on the grid. Process is executed in a temporary folder
where all files are copied.

Parameters output_files (str list) – ordered list (or tuple) of output files path.

Returns None.

1.3.5 Main code layout

For details on GridCompute source code layout, refer to Source code layout.

1.4 Development

This section details how to use source code for developers. You can get latest code and binaries at:
http://github.com/borisd13/GridCompute

1.4. Development 11

http://github.com/borisd13/GridCompute

GridCompute Documentation, Release 0.2

1.4.1 Requirements

The following is required to use the source code:

• python version 3.4.0 or superior

• tkinter (should be included in python installation)

• pip for python3 (should be included in python installation)

• pymongo version 2.7.1 or superior

• psutil version 2.1.1 or superior

Install requirements on Ubuntu

Enter below commands in prompt:

>>> sudo apt-get install python3-pip
>>> sudo pip3 install pymongo
>>> sudo pip3 install psutil
>>> sudo apt-get install python3-tk

Install requirements on Windows

Follow below instructions:

1. download and install python 3.4.1 (64 bit version). Make sure to enable “Add python.exe to Path”

2. download and install pymongo

3. download and install psutil

1.4.2 Build application

GridCompute is meant to be run easily on computers that don’t have any python environment. This is achieved by
creating binaries of the application with the help of cx_Freeze.

Note: Building the application is not required for executing the program.

To build the application:

1. Use the OS you plan to build the application for.

2. Install cx_Freeze from source.

Warning:
On Ubuntu, you might need to apply fix for issue 32.
On Windows, you may have to install Visual Studio C++ 2010.

3. Go to the main folder of GridCompute source code and run python setup.py build.

Warning: On Ubuntu, you will also need to apply fix for issue 95.

12 Chapter 1. Contents

https://www.python.org/
http://api.mongodb.org/python/current/
https://github.com/giampaolo/psutil
https://www.python.org/
https://pypi.python.org/pypi/pymongo/
https://pypi.python.org/pypi/psutil/2.1.1
http://cx-freeze.sourceforge.net/
https://bitbucket.org/anthony_tuininga/cx_freeze/src
https://bitbucket.org/anthony_tuininga/cx_freeze/issue/32/cant-compile-cx_freeze-in-ubuntu-1304#comment-11181579
https://bitbucket.org/anthony_tuininga/cx_freeze/issue/95/

GridCompute Documentation, Release 0.2

1.4.3 Build documentation

Documentation is generated through the use of sphinx. To build documentation, you need to install following depen-
dencies:

>>> pip3 install sphinx
>>> pip3 install sphinxcontrib-napoleon
>>> pip3 install sphinx-rtd-theme

You can then go to docs folder and run make html.

1.4.4 Execute application

From source, run python 3 on main.py.

From executable, run GridCompute executable.

1.5 Source code layout

The source code of GridCompute is split into following modules:

1.5.1 main.py

This module is the start-up script used to launch GridCompute.

It first ensures that there is only one instance running, then creates the interface and initializes all parameters required
to run the program. To finish, it runs the main loop associated to interface.

main.ensure_single_instance(current_pid, event_queue)
Ensure that only one instance of the program is running.

Check current pid against a configuration file that will contain pid of other running instance if any.

Parameters

• current_pid (int) – pid of current process.

• event_queue (Queue) – queue of events to process by gui.

main.start(gui, current_pid)
Start the program.

Ensures there is only one instance, initialize all server related parameters and populate interface.

Parameters

• gui (GUI) – GUI instance handling program interface.

• current_pid (int) – pid of main thread.

1.5.2 g_config.py

This module gathers configuration variables used in the other modules.

It is used to share global variables and edit configuration variables easier.

1.5. Source code layout 13

http://sphinx-doc.org/

GridCompute Documentation, Release 0.2

g_config.program_name
Name of the program.

g_config.version
Current version.

g_config.author
Author of the program.

g_config.copyright
Copyright.

g_config.title_windows
Title displayed on windows.

g_config.max_number_process
Maximal number of parallel process that can be executed on this computer.

g_config.gui_refresh_interval
Refresh rate of interface in milliseconds.

g_config.db_connect_frequency
Time in seconds before database is accessed again if no case/result is found.

g_config.db_heartbeat_frequency
Frequency in seconds that heartbeat are sent on running processes to notify database that they are still alive.

g_config.db_heatbeat_dead
Time in seconds without heartbeat after which we consider a process is dead.

g_config.daemon_pause
Time in seconds between each process of daemons.

g_config.log_path
Path of the log file.

g_config.pid_file
Path of the file keeping pid of the program to ensure there is only one single instance running.

1.5.3 g_interface.py

This module contains all GUI functionalities.

It generates the main interface and handles any event that needs to be communicated to the user.

class g_interface.GUI
Class handling GridCompute interface.

It contains every parameter and module required for GUI. At creation, it displays a progress bar.

Parameters

• root – main Tk instance

• application – application selected in gui

• app_combobox – widget associated with application

• cases_dict (dict) – dictionary where key is the id of tree item and value is the list of input
files associated to the case

• cases_refresh_label – label identifying time of refresh of “my cases”

• cases_status_label – label identifying status of refresh of “my cases”

14 Chapter 1. Contents

GridCompute Documentation, Release 0.2

• dedicated_process – number of dedicated process selected in gui

• event_queue – queue of events to process by gui

• log – gui element associated to logging

• my_process_pid_id (dict) – dictionary of pid to gui id for treeview in “my processes”

• progress_bar – progress bar in progress window

• progress_label – text present on progress window

• progress_window – top level window showing progress of current task set to None if
progress window not existing or closed

• server – Server instance containing main functionalities

• tree_cases – widget containing cases to submit

• tree_my_cases – widget containing “my cases”

• tree_my_process – widget containing “my processes”

add_cases()
Display a window to select cases to submit to server and adds them on the list.

askokcancel(msg)
Ask a question to user.

Parameters msg (str) – Message to be displayed.

Returns True if user enters “ok”, False otherwise.

Return type bool

create_progress_window(progress_mode, progress_text, progress_max=100)
Create a progress window.

The progress window can be controlled afterwards through the event_queue parameter. Refer to function
“handle_next_event”.

Parameters

• progress_mode (str) – “determinate” if progress level evolution needs to be controlled or
“indeterminate”.

• progress_text (str) – text displayed initially on the progress window.

• progress_max (int) – argument equal to maximal progress value when complete.

create_report()
Create a full report from database containing all cases from same “user group”. Ask user where he wants
to save the report.

error(msg)
Display error on screen.

Parameters msg (str) – Message to be displayed.

exit_program()
Communicate to processes to exit program.

handle_next_event()
Handles the next event from communicated to the GUI through event_queue variable.

Each element in event_queue is a dictionary. Action performed depends on value of type key:

•log_file_only: log a message in the log file, no display in gui

1.5. Source code layout 15

GridCompute Documentation, Release 0.2

•warning: display a warning

•info: display an information in gui, optionally creating an info box

•error: display an error

•critical: display an error and exit program

•change progress max: change value of progress window corresponding to completion

•change progress: modify progress bar level and text

•close progress: close progress window

•add case: add a case in “send cases” tab

•submitted case: show a case as submitted

•terminate process?: ask user if he wants to terminate all processes

•send answer through the connection pipe to daemon process

•add my case: add a case in “my cases” tab

•add my process: add a process in “my processes” tab

•remove my process: remove a process from “my processes” tab

•change my process: change the status of a process in “my processes” tab

•populate: GUI can be fully populated

•exit: close main window

Raises queue.empty: event_queue is empty, there are no more events to process. –

info(msg)
Display info on screen

Parameters msg (str) – Message to be displayed.

link_server(server)
Associate GUI to a Server instance.

Parameters server – Server instance.

open_about()
Display program information.

open_help()
Display a help message.

open_license()
Display licenses used by the program.

populate()
Populate GUI during loading of program.

refresh()
Refresh GUI at regular intervals.

refresh_my_cases()
Refresh the list of “my cases”.

Access database and display details of user cases that have not been received yet.

16 Chapter 1. Contents

GridCompute Documentation, Release 0.2

remove_selected()
Removes selected cases to submit from the list.

submit_to_server()
Send all cases (not yet submitted) from the list to the server.

warning(msg)
Display warning on screen

Parameters msg (str) – Message to be displayed.

g_interface.init_log()
Initialize logging in file.

Create necessary directory structure and remove previous log file.

g_interface.write_log(log_message, gui_log=None)
Write log messages in log file and in GUI.

Parameters

• log_message – message to be displayed.

• gui_log – widget receiving log message. None if message not to be displayed in gui.

1.5.4 g_server_management.py

This module contains all server related functionalities.

It creates server variables associated to file server and mongo database and handle the communication with them.

class g_server_management.Server(event_queue, dedicated_process)
Class handling server-related functionalities.

File server path is taken from “server.txt” present at root of program. Settings are taken from “settings.txt”
present on the file server.

Server properties are set at initialization.

Parameters

• event_queue – queue of events to process by gui

• gui_dedicated_process – number of dedicated process selected in gui

• daemon_dedicated_process – number of dedicated process communicated to daemon pro-
cess

• exit_program – variable scanned by daemons to know when to exit

• gui_answer – notify when gui answered a question

• server_path – path of file server as defined in “server.txt” file

• app_path – path of applications-specific scripts

• settings_path – path of settings.txt file

• settings – list of settings from settings.txt on file server including:

– mongodb server: Address of the mongo instance including connection port con-
taining “gridcompute” like mongodbserver.com:888 or 10.0.0.1:888 or
Machine123:888.

– user group: Login used to connect on mongo database.

1.5. Source code layout 17

GridCompute Documentation, Release 0.2

– password: Password used to connect on mongo database.

– instance: Data instance to consider like 0 or debug.

• mongodb – Connection to mongo database

• server_functions – Dictionary of application-specific scripts. The key is application name
and value is a dictionary of following keys:

– path: path of application folder

– send, process, receive: booleans corresponding to existence of these functions

• software_allowed_to_run – set of applications that can run as defined in “Soft-
ware_Per_Machine.csv”

access_mongodb()
Access the mongo database.

add_cases(files_selected, application, keep_running=True)
Add a list of cases to interface from files selected by user.

A file selected can correspond to one or several cases to run. Each case being a list of input files. Those
cases are sent to the interface which displays the first input file of each case. The application specific
“send.py” function is used on each file selected.

Parameters

• files_selected – Files selected by user

• application – Application associated to input files

• keep_running – Argument that can be associated to the state of a variable. When this
variable is False, function ends. It is used to catch when user closes the progress window.

applications_with_process()
Return a dictionary of applications that have a process function.

The key is the application name and the value is the script path.

applications_with_receive()
Return a dictionary of applications that have a receive function.

The key is the application name and the value is the script path.

applications_with_send()
Return a dictionary of applications that have a send function.

The key is the application name and the value is the script path.

create_daemons()
Create daemons required in the application.

Two daemons are created:

•Daemon process: scans continuously database to check if there are new calculations to perform (if
number of processes selected allows it).

•Daemon receive: scans continuously database to check if there are new results to receive.

create_report(file_report, keep_running=True)
Create a report of cases present on database.

Display cases and their details from database, limited to the ones from same “user group”.

Parameters keep_running – Argument that can be associated to the state of a variable. When
this variable is False, function ends. It is used to catch when user closes the progress window.

18 Chapter 1. Contents

GridCompute Documentation, Release 0.2

exit_processes()
Terminate program.

Ensure daemon process (and its child processes) and daemon receive terminate properly.

get_settings()
Initialize settings variable from “settings.txt” present on server.

get_software_allowed_to_run()
Return the list of software allowed to run on this machine per “Software_Per_Machine.csv” present on file
server.

handle_software_permissions()
Verify that mongo database allows current version of program to run.

This is based on the collection “versions” present in mongo database. If “versions” collection is not
present, a warning is displayed.

notify_number_process_daemon(*args)
Notify the daemon process of a change of number of processes selected in GUI.

refresh_my_cases(keep_running=True)
Refresh “my cases” list.

Access mongo database to display all user cases that have not been totally processed yet (ie not received
by user).

Parameters keep_running – Argument that can be associated to the state of a variable. When
this variable is False, function ends. It is used to catch when user closes the progress window.

scan_applications()
Scan application specific scripts present on file server.

submit_to_server(cases_to_submit, application, keep_running=True)
Submit cases to the server.

Input files are zipped and copied to the file server. Cases are entered in mongo database.

Parameters

• cases_to_submit – List of cases. Each case is a list of input files associated to a case.

• application – Application associated to input files.

• keep_running – Argument that can be associated to the state of a variable. When this
variable is False, function ends. It is used to catch when user closes the progress window.

g_server_management.check_quit_program(exit_program)
Function used by daemons to check if they need to terminate and kill their child processes.

Parameters exit_program – Variable scanned by daemons to know when to exit.

g_server_management.launch_process(case, event_queue, server_path, settings)
Launch one process from database.

Mongo database is updated when process finishes.

Parameters

• case – case to process obtained from mongo database.

• event_queue – queue of events to process by gui.

• server_path – path of file server as defined in “server.txt” file.

• settings – list of settings from settings.txt on file server.

1.5. Source code layout 19

GridCompute Documentation, Release 0.2

g_server_management.refresh_status_daemon_process(alive_process, dedicated_process,
event_queue, exit_program,
gui_answer, paused_process)

Refresh status variables used by daemon process.

Parameters

• alive_process – List of processes alive.

• dedicated_process – Number of dedicated process selected in gui.

• event_queue – Queue of events to process by gui.

• exit_program – Variable scanned by daemons to know when to exit.

• gui_answer – Notify when gui answered a question.

• paused_process – List of processes currently on pause.

g_server_management.return_module(application, function)
import app-specific function send, process or receive

g_server_management.run_daemon_process(applications_with_process, dedicated_process,
event_queue, exit_program, gui_answer,
server_path, settings, software_allowed_to_run)

Run “daemon process” that launches new processes when possible.

Daemon process runs continuously and check on database if processes are available to launch when user allows
it.

Parameters

• applications_with_process – dictionary of applications that have a process function

• dedicated_process – number of dedicated process selected in gui

• event_queue – queue of events to process by gui

• exit_program – variable scanned by daemons to know when to exit

• gui_answer – notify when gui answered a question

• server_path – path of file server as defined in “server.txt” file

• settings – list of settings from settings.txt on file server

• software_allowed_to_run – set of applications that can run as defined in “Soft-
ware_Per_Machine.csv”

g_server_management.run_daemon_receive(applications_with_receive, event_queue,
exit_program, server_path, settings)

Run “daemon receive” that retrieve back cases from server after they have been processed.

Daemon receive runs continuously and check on database if output files are available.

Parameters

• applications_with_receive – dictionary of applications that have a process function.

• event_queue – queue of events to process by gui.

• exit_program – variable scanned by daemons to know when to exit.

• server_path – path of file server as defined in “server.txt” file.

• settings – list of settings from settings.txt on file server.

20 Chapter 1. Contents

GridCompute Documentation, Release 0.2

1.5.5 setup.py

This script is used for building the executuble with cx_Freeze.

Please refer to the section “Development” of the documentation for building the application.

1.5.6 database_management.py

This module contains administrator functions for database management.

database_management.set_up_mongodb_server(mongodb_server, login, password, versions)
Sets up a mongodb server for GridCompute.

Mongo database “gridcompute” is initialized and the “versions” collection is created to specify the program
versions that are authorized by the database.

The “gridcompute” database must be present on the server. Any collection in it will be removed.

Parameters

• mongodb_server – Address of the mongo instance including connection port contain-
ing gridcompute database like mongodbserver.com:888 or 10.0.0.1:888 or
Machine123:888

• login – Login used to connect on mongo database.

• password – Password used to connect on mongo database.

• versions – List of versions of gridcompute that the mongo database recognizes defined by:

– _id: version number (ex: ‘0.1’).

– status: either “allowed”, “warning” or “refused”.

– message: message to be displayed when status is not “allowed” like:

[{’_id’:’0.1’, status:"warning", message:"Beta version},
{’_id’:’1.0’, status:"allowed"}]

1.6 License

1.6.1 GridCompute

Copyright 2014 Boris Dayma

GridCompute is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, version 3 of the License.

GridCompute is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GridCompute. If not, see <http://www.gnu.org/licenses/>.

For any question, please contact Boris Dayma at boris.dayma@gmail.com

1.6. License 21

GridCompute Documentation, Release 0.2

1.6.2 Third-party tools

Please note that this program uses 3rd party tools whose licenses have been reproduced herebelow.

Python

Copyright © 2001-2014 Python Software Foundation. All rights reserved.
Copyright © 2000 BeOpen.com. All rights reserved.
Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

PSF LICENSE AGREEMENT FOR PYTHON 3.4.1

This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or Organization (“Licensee”) accessing and otherwise using Python 3.4.1 software in source or binary form and its associated documentation.
Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare derivative works, distribute, and otherwise use Python 3.4.1 alone or in any derivative version, provided, however, that PSF’s License Agreement and PSF’s notice of copyright, i.e., “Copyright © 2001-2014 Python Software Foundation; All Rights Reserved” are retained in Python 3.4.1 alone or in any derivative version prepared by Licensee.
In the event Licensee prepares a derivative work that is based on or incorporates Python 3.4.1 or any part thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to include in any such work a brief summary of the changes made to Python 3.4.1.
PSF is making Python 3.4.1 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 3.4.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.
PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.4.1 FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.4.1, OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.
This License Agreement will automatically terminate upon a material breach of its terms and conditions.
Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or joint venture between PSF and Licensee. This License Agreement does not grant permission to use PSF trademarks or trade name in a trademark sense to endorse or promote products or services of Licensee, or any third party.
By copying, installing or otherwise using Python 3.4.1, Licensee agrees to be bound by the terms and conditions of this License Agreement.

Pymongo

Copyright 2008 - 2014, MongoDB, Inc

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.

You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Zlib

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided ’as-is’, without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

22 Chapter 1. Contents

GridCompute Documentation, Release 0.2

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

Cx_Freeze

* Copyright © 2007-2014, Anthony Tuininga.

* Copyright © 2001-2006, Computronix (Canada) Ltd., Edmonton, Alberta, Canada.

* All rights reserved.

NOTE: this license is derived from the Python Software Foundation License
which can be found at http://www.python.org/psf/license

License for cx_Freeze

1. This LICENSE AGREEMENT is between the copyright holders and the Individual
or Organization ("Licensee") accessing and otherwise using cx_Freeze
software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, the
copyright holders hereby grant Licensee a nonexclusive, royalty-free,
world-wide license to reproduce, analyze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use cx_Freeze
alone or in any derivative version, provided, however, that this License
Agreement and this notice of copyright are retained in cx_Freeze alone or in
any derivative version prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates cx_Freeze or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to cx_Freeze.

4. The copyright holders are making cx_Freeze available to Licensee on an
"AS IS" basis. THE COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES,
EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, THE COPYRIGHT
HOLDERS MAKE NO AND DISCLAIM ANY REPRESENTATION OR WARRANTY OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
CX_FREEZE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. THE COPYRIGHT HOLDERS SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF
CX_FREEZE FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS
A RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING CX_FREEZE, OR ANY
DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach
of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship
of agency, partnership, or joint venture between the copyright holders and
Licensee. This License Agreement does not grant permission to use
copyright holder’s trademarks or trade name in a trademark sense to endorse
or promote products or services of Licensee, or any third party.

8. By copying, installing or otherwise using cx_Freeze, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

1.6. License 23

GridCompute Documentation, Release 0.2

Computronix® is a registered trademark of Computronix (Canada) Ltd.

Psutil

psutil is distributed under BSD license reproduced below.

Copyright (c) 2009, Jay Loden, Dave Daeschler, Giampaolo Rodola’
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name of the psutil authors nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name of the psutil authors nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Many thanks to below people who contributed to the development of the program:

• Bruno Guigon

24 Chapter 1. Contents

GridCompute Documentation, Release 0.2

• Vianney Da Costa

1.6. License 25

GridCompute Documentation, Release 0.2

26 Chapter 1. Contents

Python Module Index

d
database_management, 21

g
g_config, 13
g_interface, 14
g_server_management, 17

m
main, 13

p
process, 11

r
receive, 11

s
send, 11
setup, 21

27

	Contents
	Overview
	Tutorial
	Specifications
	Development
	Source code layout
	License

	Python Module Index

