

GridAPPS-D’s Documentation

[image: _images/GridAPPS-D_Logo.png]

	Overview
	Conceptual Design Summary

	Architecture

	Definition of Terms

	References

	Release History

	Contact Us

	Installing GridAPPS-D
	Requirements

	Docker and prerequisite install on OS X

	Clone or download the repository

	Install Docker on Ubuntu

	Start the docker container services

	Start gridappsd

	Exiting the container and stopping the containers

	Restarting the containers

	Using GridAPPS-D
	Start GridAPPS-D platform

	Start a Simulation

	Stop GridAPPS-D platform

	Adding Events

	Uploading Model into Blazegraph

	Inserting Measurements into Blazegraph

	Using Platform API

	Powergrid Model API

	Configuration File API

	Logging API

	Simulation API

	Timeseries API

	Services

	Hosting Application

	System Configurations

	GridAPPS-D Development Resources
	Design

	Eclipse IDE Setup

	Execution Workflow

	CIM Documentation

	Platform UML Diagrams

	CIM Validation

	Data Model
	IEEE 8500-Node Test Feeder

	Integrated Applications
	Volt-var Optimization (VVO)

	Visualization

	State Estimator Service

	Model Validation Application

	Transactive Systems Application

	Distribution Optimal Power Flow for Real-Time Setpoint Dispatch

	Short-Term Grid Forecasting

	Solar Forecasting Application

	API Documentation
	GridAPPS-D

	GOSS

	FNCS

	VVO

	GridLAB-D

	gov.pnnl.gridlabd.cim

	License

Indices and tables

	Index

	Module Index

	Search Page

Overview

Through a series of industry centric meetings and workshops, the U.S.
Department of Energy Office of Electricity Delivery and Energy Reliability
(DOE-OE) gathered input from utilities throughout the United States on
their experiences in implementing, or planning to implement, ADMS. The
results of these meetings are documented in a February 2015 report titled Voices of
Experience: Insights into Advanced Distribution Management Systems [https://www.smartgrid.gov/files/ADMS-Guide_2-11.2015.pdf].

The report documents the potential benefits to utilities in implementing
ADMS applications, and underscores the need for more affordability, a
timely path for deploying ADMS, and the development and deployment of ADMS
applications. The high cost and amount of time required for ADMS
deployment and application development was highlighted.

In response to these needs, DOE-OE has established an ADMS program with
this project specifically tasked with developing an open-source, standards
based ADMS application development platform - GridAPPS-D.

Conceptual Design Summary

A conceptual design for GridAPPS-D was created at the beginning of the project. The conceptual design is summarized below. The full design document may be downloaded from this link - GridAPPS-D Conceptual Design [http://www.pnnl.gov/main/publications/external/technical_reports/PNNL-26340.pdf]

This document provides a high level, conceptual view of the platform and provides related background and contextual information. This document is intended to both educate readers about the technical work of the project and to serve as a point of reference for the project team. The document will be updated as the project progresses.

Architecture

A conceptual architecture for the system has five key functional elements as shown in
Figure 1:

	Tools help developers enhance the functionality of their applications. Examples might include off-line power flow, optimization tool boxes, state estimators, statistical processing, etc.

	I/O allows convenient access to the power system model and data through standards-based queries and messages. Conversely, applications can send control signals to the simulator using standard message schemas.

	Development utilities include loggers, debuggers, access control, test managers, user interface toolkits, and other application support functions.

	Data bus is based on industry standards like IEC 61968 and 61970 (i.e. the Common Information Model), plus more to be identified.

	Distribution simulator represents the power system operating in real time. Initially, this will be GridLAB-D, but future versions may include EPRI’s OpenDSS, ns-3 for communications, and other federated co-simulators.

Figure 1 also shows the relationships between GridAPPS-D, the ADMS
application developer and commercial tools. Two different classes of data
flow are shown:

	Control and configuration data are shown with dashed lines; this allows the application developer to manage the platform.

	Data flowing as a part of an application are shown with solid lines.

For more detailed information about the architecture and design, see UML from the Functional Specification

[image: conceptual_design]

Figure 1: GridAPPS-D provides a method for developers (top) to run their
new applications on a real-time simulator with extensive modeling and tool
support (heavy box). GridAPPS-D is built around standard data models like
the CIM (center). It readily interfaces to existing software products
(right), which may also 1) use components of GridAPPS-D and 2) supplement or
replace the built-in distribution simulator (bottom), facilitating the
deployment of new ADMS applications to existing software products.

Definition of Terms

Process Manager - Process Manager keeps track of all the processes running on the platform. These processes may include simulators, requests, applications and other managers. It is also the starting point for a request received by the platform.

Configuration Manager - It receives simulation configuration request from Process Manager and parses it to build the necessary configuration files.

Data Manager - The data manager accesses the database to build the model files used by the simulator.

Simulation Manager - The simulation manager launches the simulator and other required applications such as the FNCS bridge, FNCS, and the VoltVar application. It is in charge of managing the timing of the simulation and reporting output from the simulation out to the simulation status topic.

FNCS-GOSS Bridge - Serves as a bridge between FNCS and Simulation Manager.

FNCS - FNCS is a network co-simulator used to communicate between simulator and FNCS-GOSS bridge

Platform - Refers to GridAPPS-D platform.

RC1 - Release Cycle 1.

Simulation - A real world distribution system currently done by GridLAB-D

Simulator - In current release GridLAB-D serves as the simulator.

VoltVar Application -

Vizualization - A web-based visualization application is developed in RC1 to view power system model with real time values from simulation result.

GOSS - Grid Optics Software System is a middleware architecture designed as a prototype future data analytics and integration platform

GridLAB-D - GridLAB-D is a distribution level powerflow simulator. It acts as the real world distribution system in GridAPPS-D.

Power System Model - IEEE 8500 model is used in RC1.

Model - See Power System Model

CIM - Common Information Model is a standard for representing electrical network and exchange information.

References

	CIT1

	W. H. Kersting, “Radial distribution test feeders,” in 2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194), 2001, pp. 908-912 vol.2.

	CIT2

	R. F. Arritt and R. C. Dugan, “The IEEE 8500-node test feeder,” in IEEE PES T&D 2010, 2010, pp. 1-6.

	CIT3

	M. E. Baran and H. Ming-Yung, “Volt/VAr control at distribution substations,” in IEEE Transactions on Power Systems, vol. 14, pp. 312-318, 1999.

	CIT4

	V. Borozan, M. E. Baran, and D. Novosel, “Integrated volt/VAr control in distribution systems,” in 2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194), 2001, pp. 1485-1490 vol.3.

	CIT5

	K. P. Schneider and J. C. Fuller, “Voltage control devices on the IEEE 8500 node test feeder,” in IEEE PES T&D 2010, 2010, pp. 1-6.

	CIT6

	I. Gorton et al., “GridOPTICS(TM) A Novel Software Framework for Integrating Power Grid Data Storage, Management and Analysis,” in System Sciences (HICSS), 2013 46th Hawaii International Conference on, 2013, pp. 2167-2176.

	CIT7

	S. Ciraci, J. Daily, J. Fuller, A. Fisher, L. Marinovici, and K. Agarwal, “FNCS: a framework for power system and communication networks co-simulation,” in Proceedings of the Symposium on Theory of Modeling & Simulation - DEVS Integrative, Tampa, Florida, 2014, pp. 1-8.

	CIT8

	D. P. Chassin, J. C. Fuller, and N. Djilali, “GridLAB-D: An agent-based simulation framework for smart grids,” in Journal of Applied Mathematics, vol. 2014, no. 492320, pp. 1-12, 2014.

Release History

Version: Release Cycle 1 (RC1)

Release Date: May 2017

Version description: This is the first version for internal release of GridAPPS-D platform.
This is not ready for public use yet.

Functional requirements covered in this release:

	102/202 Command Interface

	301 Real-time Simulation Data

	310 Hosted Application, but short-cutting the registration process (partial)

	401 Distribution Co-Simulator (partial)

	402 Process Manager (partial)

	404 Data Manager (partial)

	405 Simulation Manager (partial)

	406 Power System Model Manager (partial)

	413 Platform Manager (encapsulating 401 and 403-406)

Version: 2019.01.0

Release Date: January 2019

GridAPPS-D v2019.01.0 release contains following features/updates:

	Platform updates:

	Simulation can run as fast as possible as well as real-time (every 3 seconds)

	Simulation can run with houses if present in the model.

	
	Following components can be controlled while the simulation is running:

	
	Open or close capacitors

	Open or close switches

	Change tap setting for regulators

	Changing control modes for regulators

	Change inverter P & Q output

	Set control modes for regulators and capacitors

	Simulation request creates the input weather file.

	
	gridappsd-python:

	
	(@Craig: list out updates here)

	
	cim2glm:

	
	Optional house cooling load components

	Single-phase power electronics and fuse ratings

	Inverter parameters changed from rotating machines to power electronics

	Solar and storage

	Measurements exported to the circuit metadata (JSON file); SimObject identifies the corresponding GridLAB-D object

	Supplemental scripts to populate feeder with measurements and houses

	Rotating machines, only parameters essential for the UAF lab microgrid

	In GridLAB-D export of loads, each node or triplex_node will have separate submeters for houses, PV inverters, battery inverters and rotating machines, i.e., not patterned after net metering

	Data updates:

2.1 Power grid models:

	Power grid models are stored in blazegraph database in its own docker container.

	
	Following models are pre-loaded

	
	EPRI_DPV_J1

	IEEE123

	IEEE13

	R2_12_47_2

	IEEE8500

	IEEE123_pv

	User can upload customized model (@Tara: attach readthedocs link)

2.2 Weather:

	Weather data in stored in InfluxDB using Proven.

	InfluxDB has its own docker container with pre-loaded weather data.

	API added to query weather data.

	Feature added to create weather file for a simulation

	Details of pre-loaded weather data in current release: (@Eric: meta-data details please)

2.3 Simulation Input

	Simulation input commands sent by applications/services are stored in InfluxDB using Proven.

	API added to query input data.

2.4 Simulation Output

	Output from simulator is stored in InfluxDB using Proven.

	API added to query output data.

2.5 Logs

	API added for query based on pre-defined filters or custom SQL string.

	Changed logs to have epoch time format.

	Applications and Services:

3.1 Viz

	User can select to run simulation at real-time or as fast as possible

	User can select to add houses in the simulation

	User can open or close switches and capacitors by clocking on them

	Cleaner display of log messages while simulation is running

	User can query simulation logs after simulation is done.

	Toggle switches open/close

	Querying logs through Viz (still working on this)

	
	Bug fixes

	
	fixed the stomp client in Viz,

	added missing capacitor labels

	redirect non-root urls to root (localhost:8080)

3.2 Sample application: (@Craig/Andy: please review/add)

	Source code at https://github.com/GRIDAPPSD/gridappsd-sample-app

	Sample app runs in its own container

	Register with gridapps-d platform when platform start.

	Re-register automatically if platform restart.

	Redundant log messages removed.

	Works with user selected model instead of hard-coded ones.

3.3 State Estimator (TODO: @Andrew)

3.4 RDRD(WSU) (TODO: @Anamika/Shiva)

3.5 DER Dispatch (@TODO: @Jeff)

3.6 VVO (@TODO: @Brandon)

	Source Code:

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.01.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.01.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.01.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.01.0

	proven-cluster - https://github.com/pnnl/proven-cluster (@Eric: link for release branches)

	proven-docker - https://github.com/GRIDAPPSD/proven-docker

	proven-client - https://github.com/pnnl/proven-client

	proven-message - https://github.com/pnnl/proven-message

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.01.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/feature/1146

	sample-app https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.01.0

	Docker Container:

GridAPPS-D creates and starts following docker containers:

	
	gridappsd/gridappsd:2019.01.0 - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.01.0

	
	proven-client - https://github.com/pnnl/proven-client

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.01.0

	gridappsd/gridappsd-base:master - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.01.0

	zeromq - http://download.zeromq.org/zeromq-4.0.2.tar.gz

	zeromq_czmq - https://archive.org/download/zeromq_czmq_3.0.2/czmq-3.0.2.tar.gz

	activemq - http://mirror.olnevhost.net/pub/apache/activemq/activemq-cpp/3.9.4/activemq-cpp-library-3.9.4-src.tar.gz

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/feature/1146

	
	gridappsd/influxdb:2019.01.0 - https://github.com/GRIDAPPSD/gridappsd-data/tree/releases/2019.01.0

	
	influxdb:latest - https://hub.docker.com/_/influxdb

	
	gridappsd/blazegraph - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.01.0

	
	lyrasis/lbazegraph:2.1.4 - https://hub.docker.com/r/lyrasis/blazegraph

	
	gridappsd/proven - https://github.com/GRIDAPPSD/proven-docker

	
	proven-cluster - https://github.com/pnnl/proven-cluster/tree/v1.3.3

	proven-message - https://github.com/pnnl/proven-message/tree/v1.3.1

	
	gridappsd/sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.01.0

	
	gridappsd/app-container-base - (TODO: @Craig can you provide the repository?)

	gridappsd/viz:2019.01.0 - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.01.0

	redis:3.2.11-alpine - https://hub.docker.com/_/redis

	mysql/mysql-server:5.7 - https://hub.docker.com/_/mysql

Version: 2019.02.0

Release Date: Feb 2019

	Fixed Bugs:

	PROVEN - It can now store simulation input and output which can scale for IEEE8500 model.

	PROVEN - It can store data with real-time simulation run.

	PROVEN - Increased max data limit to unlimited.

	FNCS Goss Bridge - Corrected the timestamp format in simulation logs.

	New Features:

	Viz - User can query log data from MySQL using Viz menu.

	Viz - Added menu to operate switches.

	FNCS GOSS bridge can do execute pause, resume and stop operations for simulation.

	Update PROVEN docker container for automated builds.

	Source Code:

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.02.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.02.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.02.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.02.0

	proven-cluster - 1.3.4 https://github.com/pnnl/proven-cluster/releases/tag/v1.3.4

	proven-client - 1.3.4 https://github.com/pnnl/proven-client/releases/tag/v1.3.4

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.1

	proven-docker - https://github.com/GRIDAPPSD/proven-docker

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.02.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/feature/1146

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.02.0

	Docker Container:

GridAPPS-D creates and starts following docker containers:

	
	gridappsd/gridappsd:2019.01.0 - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.01.0

	
	proven-client - https://github.com/pnnl/proven-client

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.01.0

	gridappsd/gridappsd-base:master - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.01.0

	zeromq - http://download.zeromq.org/zeromq-4.0.2.tar.gz

	zeromq_czmq - https://archive.org/download/zeromq_czmq_3.0.2/czmq-3.0.2.tar.gz

	activemq - http://mirror.olnevhost.net/pub/apache/activemq/activemq-cpp/3.9.4/activemq-cpp-library-3.9.4-src.tar.gz

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/feature/1146

	
	gridappsd/influxdb:2019.01.0 - https://github.com/GRIDAPPSD/gridappsd-data/tree/releases/2019.01.0

	
	influxdb:latest - https://hub.docker.com/_/influxdb

	
	gridappsd/blazegraph - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.01.0

	
	lyrasis/lbazegraph:2.1.4 - https://hub.docker.com/r/lyrasis/blazegraph

	
	gridappsd/proven - https://github.com/GRIDAPPSD/proven-docker

	
	proven-cluster - https://github.com/pnnl/proven-cluster/tree/v1.3.3

	proven-message - https://github.com/pnnl/proven-message/tree/v1.3.1

	
	gridappsd/sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.01.0

	
	gridappsd/app-container-base - (TODO: @Craig can you provide the repository?)

	gridappsd/viz:2019.01.0 - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.01.0

	redis:3.2.11-alpine - https://hub.docker.com/_/redis

	mysql/mysql-server:5.7 - https://hub.docker.com/_/mysql

Version 2019.03.0

	Bugs Fixed

	Sending a command to change set point to the PV inverter has no effect.

	Time series query return no data after simulation run.

	Viz: Switch operations not working on Firefox browser. Time on x-axis on plots is not displayed correctly.

	New Features

	GridAPPS-D – VOLTTRON initial interface created. https://github.com/VOLTTRON/volttron/tree/rabbitmq-volttron/examples/GridAPPS-DAgent

	Fault injection: Simulator can receive faults. Fault schema created in Test Manager. Workflow for fault processing documented on readthedocs.

	Viz: Created menu for capacitors, regulators.

	Proven: Facilitates direct disclosure of JSON messages to Proven via Hazelcast or REST; eliminating need for the proven-message library. Improved throughput and scalability for Proven’s data disclosure component. Disclosed data is now distributed or staged across the cluster to be used by future JET processing pipelines.

	Documentation

	CIM100 documented

	Steps added for creating and testing an application

	Updated documentation on Simulation API

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.03.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.03.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.03.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.03.0

	proven-cluster - 1.3.4 https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.3

	proven-client - 1.3.4 https://github.com/pnnl/proven-client/releases/tag/v1.3.4

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.3

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.03.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.03.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/feature/1146

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.03.0

Version 2019.06.0

	Bugs Fixed

	Updated configuration, power grid model and simulation API for CIM100 and app evaluation features addition.

	All logs are being published to topic instead of queue.

	Fixed TypError bug in gridappsd-sensor-service.

	New Features

	Communication outages: Platform supports input and/or output outage request with simulation for all or some selected power grid components. Outages are initiated and removed at the requested start and end time.

	Fault injection: Platform can receive faults with simulation request and forwards them to co-simulator.

	Viz UI updated: Input form added for communication outage and fault parameter selection. Input form moved from single page to separate tabs.

	CIM version update: Updated CIM version to CIM100. Added support for Recloser and Breaker in model parsing.

	New methods in Python wrapper: Capability added in gridappsd-python to start, stop and run a simulation directly from python using yaml or json.

	Sample app container move to Python 3.6 as default. Updated gridappsd-sample-app to use updated container.

	Debug scripts added: Added scripts in gridappsd-docker to run platform, co-simulator and simulator in separate terminals for debugging purposes.

	Sensor service in available in gridappsd container by default. Sensor service is no longer required to be added in gridappsd container via docker-compose file.

	Default log level is changed from DEBUG to ERROR for limiting the amount of log messages on terminal.

	Breaking API change - Simulation input and output topics changed in gridappsd-python from FNCS_INPUT_TOPIC to SIMULATION_INPUT_TOPIC and FNCS_OUTPUT_TOPIC to SIMULATION_OUTPUT_TOPIC.

	Breaking API change - Simulation request return a json with simulation id and list of events with their uuids instead of just simulation id.

	Documentation

	Using GridAPPS-D documentation section updated for new UI input form with communication outages and faults selection.

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.06.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.06.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.06.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.06.0

	proven-cluster - 1.3.4 https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.3

	proven-client - 1.3.4 https://github.com/pnnl/proven-client/releases/tag/v1.3.4

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.3

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.06.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.06.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/feature/1146

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.06.0

Version 2019.07.0

	Bugs Fixed

	Time series query filter are updated in the API as well documentation.

	Selecting houses is now working with the simulation.

	Following bugs resolved for Viz

	Line name is not based on previously selected values.

	Removing a selected app-name closes input form

	Change Event Id to Event tag

	Change attribute to a multi-value select box

	Help-text ‘Add input item’ does not go away on CommOutage tab

	Object mrid is not correct for multiple phases selection.

	Pos added for load break switches

	New Features

	Platform now stores input and output from services and applications output/input in time series data store.

	Simulation can run with new 9500 node model

	Support for synchronous machines added in CIM model in blazegraph.

	End-to-end fault injecting and processing pipeline is now working.

	Powergrid api added to query object id, object dictionary and object measurements.

	New keys added in glm file to support faults.

	Viz can display plot for new 9500 model.

	Added log api in gridappsd-python

	Measurement for switch positions for all models

	Explicit setting for manual mode in reg and capacitora in the RegulatingControl.mode attribute.

	GridAPPS base constainer has folowwing changes

	Switch to openjdk

	New version of fncs

	CZMQ_VERSION changeed to 4.2.0

	ZMQ_VERSION changes to 4.3.1

	GridLAB-D switched from feature/1146 to develop

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.07.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.07.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.07.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.07.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.4

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.5

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.06.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.07.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.07.0

Version 2019.08.0

	New Features

	Viz added capability to select power/voltage/tap measurments for custom plotting

	Control attributes are back for Capacitors

	Added Voltage Violation service that publishes list of measurement ids with per unit voltages that are out of range every 15 minutes

	Viz added display for Voltage Violation service output

	Viz can display Lot/Long coordinated for 9500 node model.

	Breaking Change: JSON format for timeseries query response is flattend out

	Resolved 500 Internal server error for storing simulation input.

	Houses are created and uploaded to Blazegraph for 123 node model

	Additonal column process_type added for logs to distinguish process id for simulation

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.08.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.08.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.08.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.08.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.5

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.5

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.08.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.08.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.08.0

Version 2019.08.1

	New Features

	Viz: Change simulation pause button to start button when simulation completes.

	Bug fix: Simulation id dropdown is not showing selected id in Browse-data-logs.

	Bug fix: Timeseries queries returning same object multiple times.

	Bug fix: Weather file containes only 10 minute data even if simulation duration is longer.

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.08.1

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.08.1

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.08.1

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.08.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.5

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.5

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.08.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.08.1

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.08.1

Version 2019.09.0

	New Features

	Fault Processing: Faults are working on radial feeders.

	Note: Faults are not working on meshed systems. If you have a meshed system then send switch open message to simulate the fault.

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.09.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.09.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.09.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.09.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.5

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.5

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.09.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.09.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.09.0

Version 2019.09.1

	New Features

	BREAKING CHANGE: Measurements in simulation output message changed from array to dictionary.

	Simulation are now working for 9500 model with houses.

	Added missing measurement in blazegraph for houses.

	Voltage violation service and Viz app updated to work with new simulation output format.

	Faults are working with 9500 model.

	Viz app: User can select services and their input parameters in simulation request form.

	Viz app: Y-axis label corrected if plot value is same during the simulation run.

	Simulation request API updated to take user input parameters for services.

	Timezone corrected for pre-loaded weather data.

	Operational limit set on the power grid models in blazegraph.

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.09.1

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.09.1

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.09.1

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.09.1

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.7

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.09.1

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.09.1

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.09.1

Version 2019.10.0

	New Features

	Alarms service created. It publishes alarm whenver a switch or capacitor is opened or closed. It is added as a pre-requisite for sample app.

	Load profile data pre-loaded in timeseries data store InfluxDB.

	Load profile file ieeezipload.player is created dynamically based on simulation start time and duration.

	API updated in platform and Proven to query load profile data.

	Timeseries API updated to accept timestamps in seconds instead of micro or nanosecond.

	Timeseries API updated to accept query filters in an array instead of single value.

	Viz app: User can search and highlight objects on network by name and mrid.

	Viz app: User can re-center network graph.

	Viz app: Displays alarms in a saperate tab when simulation is running. Notifies when a new alarm is received in alarm tab.

	Viz app: User can upload scheduled commands json file with communication outage and faults.

	Viz app: Switches are displayed as closed/opened based on simulation output value.

	Viz app: Display image for switches are changes to green/red squares and moved between nodes.

	Bug fixes in DSS configuration.

	GridLAB-D updated to latest develop version.

	OpenDSSCmd updated to 1.2.3.

	Powergrid models - Updated Generator.dss to include kVA for generators.

	Added kva base to glm file, so setting kw=0 does not make the kva base also 0.

	Internal house loads added. Schedule file is created for simulation when useHouses=true.

	Sensor service bugs fixed.

	API added to export Vnom opendss file.

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.10.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.10.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.10.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.10.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.7

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.10.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.10.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.10.0

Version 2019.12.0

	New Features

	Updated and documented MRID UUID generator to ensure compliance with UUID 4

	Integrate DNP3 service with GridAPPS-D container

	Created API to get user role based on login

	Added a user for testmanager to distinguish between simulation commands and alarms

	Removed hardcoded corrdinate identifcation from Viz

	Added capability to change model state before starting a simulation.

	Added feature on UI to upload a file with faults and comunication output

	Created user login page on UI

	Added light/dark toggle themeon UI

	Wrote a SWING_PQ node for each potential island in power grid model.

	Fixed issues for app eveluations as reported by app developers or evluation team

	Updated ci/cd scripts for repositories to support travis.ci updates

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.12.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.12.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.12.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.12.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.7

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.12.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.12.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.12.0

Version 2020.01.0

	New Features

	Alarms are varified before publishing.

	Fixed floating switches issue on Viz app.

	Release process documeted at gridappsd-docker-build repository readme

	Created an automated, repeatable way to upload data in blazegraph

	Documented model state update for starting a simulation

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2020.01.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2020.01.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2020.01.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2020.01.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.7

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2020.01.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2020.01.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2020.01.0

Version 2020.02.0

	New Features

	Alarms status is published as Open/Close instead of 0/1.

	Added resume/pause-at API for simulation.

	Added the EnergyConsumer.p attribute as a writable property in the FNCS GOSS Bridge

	Fixed floating switches issue on Viz app.

	Added units on the plots.

	Viz allow user to go to nodes by clicking on plots.

	Labels added for overlapping line on Viz plots.

	Operator login issue resolved.

	First integration test added in gridappsd-testing repo.

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2020.02.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2020.02.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2020.02.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2020.02.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.7

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2020.02.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2020.02.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2020.02.0

Version 2020.03.0

	New Features

	Viz app can display lines and nodes with power outage.

	Changes are made in Viz app to start and show data from State Estimator service.

	Viz app can render battery nad solar panel shapes.

	Fixes are made to support no player file in simulation config.

	Timestamp display added for voltage violation on Viz.

	Viz can start and subscribe to State-Estimator service.

	Integration tests created for simulation api.

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2020.03.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2020.03.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2020.03.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2020.03.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.7

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2020.03.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2020.03.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2020.03.0

Version 2020.04.0

	New Features

	Updated Cim2GLM library version to 18.0.3

	Added Configuration handler for generating limits.json file

	Increased web socket message size

	Corrected issue where phase count is incorrect for phase s1, s2 loads

	Corrected json parse method for TimeSeriesRequest class.

	Viz app: Updated to use simulation timestamp for voltage violation instead of current time.

	Viz app: Show “Simulation starting” message before simulation is started and hide the Pause/Stop buttons.

	Powergrid model: Added scripts and *uuid.dat files to maintain persistent mRID values

	Powergrid model: Supporting OverheadLineUnbalanced, ganged regulators and unknown spacings for 1-phase and 2-phase line.

	Integration testing infrastructure create with PyTest and Travis.

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2020.04.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2020.04.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2020.04.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2020.04.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.7

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2020.04.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2020.04.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2020.04.0

Version 2020.05.0

	New Features

	Updated YBus export to include model_id as parameter

	Made changed to work with multiple load profiles measurements in InfluxDB.

	Corrected issue of no player file if schedule name is not passed in request.

	Fix stomp client initialization problem for Viz app on firefox where it was getting stuck in connecting state for a long time.

	Testing summary added to integration testing.

	Integration tests added for power grid and simulation API.

	AWS summary web page added for integration testing report.

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2020.05.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2020.05.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2020.05.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2020.05.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.7

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2020.05.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2020.05.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2020.05.0

Version 2020.07.0

	New Features

	Updated opendss to version 1.2.11

	
	Added PAUSEd to ProcessStatus list to resolve testing issue.

	
	Updated TestManager to include comparing expected results between output of 2 simulations.

	Updated TestManager to include comparing currently running simulation to result of previously ran simulation.

	Added a new setting to Viz UI that allows toggling logging.

	Fixed the problem in Viz where unselecting selected services didn’t remove them from the simulation configuration object

	Powergrid model: Bumped mysql-connector-java from 5.1.40 to 8.0.16 in /CIM/cim-parser

	More integration tests added for power grid and simuation API.

	Integration tests added for alarms and timeseries API.

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2020.07.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2020.07.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2020.07.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2020.07.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.7

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2020.07.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2020.07.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2020.07.0

Version 2020.08.0

	New Features

	Storing alarms data in timeseries data store InfluxDB.

	Converted all simulation id to string

	Updated version of Cim2glm library

	Viz: Upgraded dependency to fix security alert reported by GitHub

	Viz: Added an input box to change the response topic for stomp client UI

	Viz: Implemented expected results view

	Cim2glm: Wrote VLL for primary_voltge and secondary_voltage of 3-phase transformers

	Cim2glm: added bus name and coordinates to the voltage limit dictionary

	Cim2glm: Fixed a case sensitivity for Ubuntu

	Cim2glm: Filled missing coordinates on transactive123. Optimized the XY coordinates in voltage limit dictionary

	Cim2glm: Created script that inserts DER from a text file. Able to insert, drop and re-insert DER

	Cim2glm: Fixed bug in adding a DER terminal with wrong mRID

	Cim2glm: Added documentation to insert DER

	Cim2glm: Fixed the conversion of open switches. Fixed the shorting of fuses

	Cim2glm: Added temporary fix for two-phase transformers that are missing one phase’stransformer code

	Cim2glm: Added method to support buildlimitmaps with just two parameters

	Cim2glm: Added bus name and coordinates to the voltage limit dictionary

	Cim2glm: Fixed capacitor naming - no impact on power flow - previously lines / switches numbered 1-3 but caps numbered 0-2.

	Cim2glm: Renamed Loads.dss to BalancedLoads.dss

	Sample app: Calling get_message function with simulation timesatamp instead of current time.

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2020.08.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2020.08.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2020.08.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2020.08.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.7

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2020.08.0

Version 2020.09.0

	New Features

	Reduced log published based on log level

	Changed default log level to INFO

	Added additional code for SoC measurement translations

	Publishing simulation started message as log level INFO

	Fixed type for SoC measurement translation in fncs bridge.

	Updated proven version for storing simulationid and current time

	Added support for SoC measurement

	Viz: Fixed code that detects whether the response body can be converted to CSV or not

	Viz: Changed how simulation statuses STARTED and PAUSED are detected

	Viz: Add a button to upload simulation configuration object

	Viz: Attaching Magnitude or Angle to plot name if it doesn’t have those suffixes already

	Viz: Rendering min/average/max voltages and load demand plots

	Viz: Rendering power flow direction indicators for edges/switches/capacitors/regulators during a simulation

	Viz: Plotting percentages of nominal voltage by taking the average of Alo and Ahi then divide by sqrt(3)

	Cim2glm: Support added for battery SoC measurement insertion and dictionary

	Cim2glm: Added a query to list XY coordinates for buses

	Cim2glm: Added support to insert synchronous machine

	Cim2glm: Updated cim2glm version to 19.1.1

	GridAPPS-D docker: Updated proven version to 1.3.7

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2020.09.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2020.09.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2020.08.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2020.09.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.7

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.7

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.7

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2020.09.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2020.08.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2020.09.0

Version 2020.11.0

	New Features

	Querying simulation file to use weather data for startime-1 minute

	Moved state-estimator to gridappsd base container

	Integration tests added for APIs

	Viz: Changes made to notifications UI

	Viz: Updated rendering positions for reverse arrows for transformers

	Viz: Added buttons to zoom in and out on plots

	gridappsd-python: Updates made for integration test runs

	Cim2glm: Added repeatable randomization and reusable mRID for houses

	Cim2glm: Saved JSON files with all node coordinates

	Cim2glm: added missing s2 phase

	Cim2glm: Made the SoC meaurement mRID persistent

	Cim2glm: Fixes made for maven builds

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2020.11.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2020.11.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2020.11.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2020.11.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.7

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2020.11.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2020.11.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2020.11.0

Version 2020.12.0

	New Features

	Increase AMQ topic permissions for all users until more specific permissions have been defined

	Update configs to support the token based authentication

	Updated to new version of cim2glm

	Updated to support change in goss-core where it makes the decision to use a token in the gossclient a variable that must be set

	Fixed sendError change that hadn’t been updated in ProcessEvent

	Updated log api to include process type

	Viz: Updated to use token-based authentication

	Viz: Added functionality to automatically reconnect to the platform when it is restarted

	Viz: Fixed partial powerflow highlighting of lines

	Viz: Corrected the values of capacitor for open and close

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2020.12.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2020.12.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2020.12.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2020.12.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.7

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2020.12.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2020.12.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2020.12.0

Version 2021.02.0

	New Features

	Added HELICS as a simulator. This included adding HELICS in GridAPPS-D docker container and adding HELICS service configuration file

	Added HELICS-GOSS bridge to translate control and measurement messages between HELICS and platform.

	Generated HELICS configurations for GridLAB-D

	Added unit testing framework for the HELICS-GOSS bridge

	Added SoC support to the HELICS-GOSS bridge.

	Updated Test Manager to publish results as they are processed intead of at the end of the simulation.

	Updated services to use platform log level

	Added test users to test various roles

	Updated to use username/password from environment variables instead of hardcoded in soruce code

	Fixed APIs where response was not correct when selecting response format as XML

	Added OCHRE house simulator in the GridAPPSD docker container. Tested it with GridLAB-d and HELICS.

	Corrected naming of S2 69kV breaker names to match sub-transmission diagram

	Updated IEEE 13Assets model. Line length issue was fixed in opendsscmd 1.2.15

	Viz: Switched the arrow directions of selected lines and switches to display power flow direction.

	Viz: Plotting the Time Series Simulation Vs. Time Series Simulation results.

	Sample app updated to use token-based authentication.

	Updated gridappsd-python library for token-based authentication

	Added tests for configuration and power grid APIs

	

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2020.02.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2020.02.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2020.02.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2020.02.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.7.3

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2020.02.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2020.02.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2020.02.0

Version 2021.03.0

	New Features

	Platform switched from using Cim2Glm to CimHub library for power grid APIs.

	Powergrid-Models repository refactored to contianer only models.

	CimHub repository refactored to contain CimHub library and related utility functions

	Resolved issue regarding clean exit of HELICS on simulation stopped by user

	Resolved issue with Proven storing test manager input messages

	Viz: added timezome support

	Viz: Resolved issues with powerflow direction arrows

	Updated documentaiton on CimHub

	Added integration tests for configuration and alarm API

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2021.03.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2021.03.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2021.03.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2021.03.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.7.4

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2021.03.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2021.03.0

	gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

	sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2021.03.0

Version 2021.04.0

	New Features

	Platform added the capability for Applications to send Ochre commands to the simulations.

	Powergrid-Models added IEEE 13 OCHRE model update.

	Resolved issue with Proven write simultion input

	Source Code

	goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2021.04.0

	gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2021.04.0

	gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2021.04.0

	cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2021.04.0

	proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.8.1

	proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

	proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

	proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2021.04.0

	fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

	gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2021.04.0

Contact Us

GridAPPS-D team can be reached at gridappsd@pnnl.gov

Installing GridAPPS-D

GridAPPS-D is available using docker containers

Requirements

	git

	docker version 17.12 or higher

	docker-compose version 1.16.1 or higher

Docker and prerequisite install on OS X

	
	git

	
	OS X requires xcode

xcode-select --install

Clone or download the repository

git clone https://github.com/GRIDAPPSD/gridappsd-docker
cd gridappsd-docker

Install Docker on Ubuntu

	run the docker-ce installation script

./docker_install_ubuntu.sh

	log out of your Ubuntu session and log back in to make the docker groups change active

Start the docker container services

./run.sh

	The run.sh does the following

	
	download the mysql dump file

	download the blazegraph data

	start the docker containers

	ingest the blazegraph data

	connect to the gridappsd container

Start gridappsd

Now we are inside the executing container

root@737c30c82df7:/gridappsd# ./run-docker.sh

Open your browser to http://localhost:8080/

Exiting the container and stopping the containers

Use Ctrl+C to stop gridappsd from running
exit
./stop.sh

Restarting the containers

./run.sh

Reconnecting to the running gridappsd container

user@foo>docker exec -it gridappsddocker_gridappsd_1 bash

Using GridAPPS-D

Start GridAPPS-D platform

Connect to the running GridAPPS-D container

user@foo>docker exec -it gridappsddocker_gridappsd_1 bash

Now we are inside the executing container. Start the platform.

root@737c30c82df7:/gridappsd# ./run-docker.sh

Open your browser to http://localhost:8080/ and click the menu button.

[image: home-image]

Start a Simulation

Choose Simulations from the menu.

[image: menu-image]

To run a demo simulation keep the selected and entered values as it is. Otherwise select/enter Powergrid, Simulation and Application configuration values.
Click the submit button to save the configuration.

[image: config-image]

[image: config-image]

[image: config-image]

Click the triangle to start the simulation.

[image: start-image]

The demo simulation runs 2 minutes of load variations with the sample-app
controlling capacitor banks on the IEEE 8500-node test system [CIT2].
Most of Figure 1 is devoted to a map layout view of the test circuit, with updated
labels for capacitor banks and voltage regulators. On the right-hand side, strip
chart plots of the phase ABC voltages at capacitors and regulators, phase
ABC substation power levels, and phase ABC regulator taps are continually
updated. Capacitor bank labels on the circuit map view change between
OPEN and CLOSED to show the bank status as load varies and the VVO
application issues control commands. While GridAPPS-D runs the demo,
GridLAB-D [CIT8] simulates power system operation and exchanges
information with the sample-app using GOSS [CIT6] and FNCS [CIT7].

Following image shows the demo simulation output of the sample-app running on the IEEE 8500-node test system.
Simulation Status at the bottom of the screen will display the simulation log messages. The simulation can be paused or stopped using the play and stop button.

[image: rc3_overview_image0]

Stop GridAPPS-D platform

For an orderly shutdown of the platform:

Use Ctrl+C to stop gridappsd from running

Adding Events

Communication outage and fault events can be added using the Test Configuration page

Select the CommOutage radio button for adding Communication Outage Events

[image: config-image]

Select the Fault radio button for adding Fault Events

[image: config-image]

Added events can be viewed in a tabular format on the right side of the page

[image: config-image]

The added events for a simulation can be seen in the events view

[image: config-image]

Uploading Model into Blazegraph

With the platform running, use curl to load the file into Blazegraph.

curl -s -D- -H 'Content-Type: application/xml' --upload-file 'model.xml' -X POST 'http://localhost:8889/bigdata/sparql'

Once the model is uploaded to Blazegraph, the new model will be shown in the Simulation Configuration Form in the visualization under the line name dropdown. If the Viz app was already open, you will need to restart the browser to see the new model(This is due to caching).

[image: blazegraph_model_viz-image]

Inserting Measurements into Blazegraph

Clone the Powergrid-Models repository

git clone https://github.com/GRIDAPPSD/Powergrid-Models.git

Install the required python module

pip install SPARQLWrapper

Modify the Powergrid-Models/Meas/constants.py file. Change the blazegraph_url to “http://localhost:8889/bigdata/sparql”.

Create a temporary directory for the measurements files

mkdir tmp
cd tmp

List the feeder and feeder id

python3 ../Powergrid-Models/Meas/ListFeeders.py

Generate the measurements file using the feeder and feeder id from the previous step

python3 ../Powergrid-Models/Meas/ListMeasureables.py ieee123pv _E407CBB6-8C8D-9BC9-589C-AB83FBF0826D

Load the measurements into Blazegraph

for f in `ls -1 *txt`; do
 python3 ../Powergrid-Models/Meas/InsertMeasurements.py $f
done

Using Platform API

Applications and services can use either publish/subscribe mechanism or Python API to interact with GridAPPS-D platform.

Publish/Subscribe mechanism can be implemented using any of the language bindings for ActiveMQ messaging framework.

Python API wraps the publish/subscribe messaging and makes the interaction easier for Python apps/services.
For more information on Python API and how to use it, look at https://github.com/GRIDAPPSD/gridappsd-python and
https://github.com/GRIDAPPSD/gridappsd-sample-app.

Following sections describe the messaging APIs and the corresponding Python API function to interact with platform.
Where no Python API function is mentioned, following generic functions can be used.

send(self, topic, message)
get_response(self, topic, message, timeout=5)
subscribe(self, topic, callback, id=None)

Powergrid Model API

The Powergrid Model Data Manager API allows you to query the powergrid model data store.

Query Request Queue

Query request should be sent on following queue: goss.gridappsd.process.request.data.powergridmodel

Query Model Info

Returns list of names/ids for models, substations, subregions, and regions for all available feeders.

Allowed parameter is:

	Result Format – XML/JSON/CSV, Will return results as a list in the format selected.

Example Request:

{
 "requestType": "QUERY_MODEL_INFO",
 "resultFormat": "JSON"
}

Example Response for result format JSON:

{
 "models": [{
 "modelName": "ieee123",
 "modelId": "_C1C3E687-6FFD-C753-582B-632A27E28507",
 "stationName": "ieee123_Substation",
 "stationId": "_FE44B314-385E-C2BF-3983-3A10C6060022",
 "subRegionName": "large",
 "subRegionId": "_1CD7D2EE-3C91-3248-5662-A43EFEFAC224",
 "regionName": "ieee",
 "regionId": "_24809814-4EC6-29D2-B509-7F8BFB646437"
},

Query Model Names

Returns list of names for all available models.

Allowed parameter is:

	Result Format – XML/JSON/CSV, Will return results as a list in the format selected.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
 "requestType": "QUERY_MODEL_NAMES",
 "resultFormat": "JSON"
}

Example Response for result format JSON:

{
 "modelNames": ["_49AD8E07-3BF9-A4E2-CB8F-C3722F837B62",
 "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
 "_5B816B93-7A5F-B64C-8460-47C17D6E4B0F",
 "_67AB291F-DCCD-31B7-B499-338206B9828F",
 "_9CE150A8-8CC5-A0F9-B67E-BBD8C79D3095",
 "_C1C3E687-6FFD-C753-582B-632A27E28507"]
}

Python API function:

query_model_names(self, model_id=None)

Query

Returns results from a generic SPARQL query against one or all models.

Allowed parameters are:

	modelId (optional) - when specified it searches against that model, if empty it will search against all models

	queryString - SPARQL query, for more information see https://www.w3.org/TR/rdf-sparql-query/ See below for example.

	resultFormat – XML/JSON , The format you wish the result to be returned in. Can be either JSON or XML. Will return result bindings based on the select part of the query string. See below for example.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
 "requestType": "QUERY",
 "resultFormat": "JSON",
 "queryString": "select ?feeder_name ?subregion_name ?region_name WHERE {?line r:type c:Feeder.?line c:IdentifiedObject.name ?feeder_name.?line c:Feeder.NormalEnergizingSubstation ?substation.?substation r:type c:Substation.?substation c:Substation.Region ?subregion.?subregion c:IdentifiedObject.name ?subregion_name .?subregion c:SubGeographicalRegion.Region ?region . ?region c:IdentifiedObject.name ?region_name}"
}

Example Response:

{
"head": {
 "vars": ["line_name" , "subregion_name" , "region_name"]
 } ,
"results": {
 "bindings": [
 {
 "line_name": { "type": "literal" , "value": "ieee8500" } ,
 "subregion_name": { "type": "literal" , "value": "ieee8500_SubRegion" },
 "region_name": { "type": "literal" , "value": "ieee8500_Region" }
 }
]
}
}

Python API function:

query_data(self, query, database_type=POWERGRID_MODEL, timeout=30)

Query Object

Returns details for a particular object based on the object Id.

Allowed parameters are:

	modelId (optional) - when specified it searches against that model, if empty it will search against all models

	objectID – mrid of the object you wish to return details for.

	resultFormat – XML/JSON , Will return result bindings based on the select part of the query string.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
 "requestType": "QUERY_OBJECT",
 "resultFormat": "JSON",
 "objectId": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3"
}

Example Response:

{
 "head": {
 "vars": ["property" , "value"]
 } ,
 "results": {
 "bindings": [
 {
 "property": { "type": "uri" , "value": "http://iec.ch/TC57/2012/CIM-schema-cim17#Feeder.NormalEnergizingSubstation" } ,
 "value": { "type": "uri" , "value": "http://localhost:9999/blazegraph/namespace/kb/sparql#_F1E8E479-5FA0-4BFF-8173-B375D25B0AA2" }
 } ,
 {
 "property": { "type": "uri" , "value": "http://iec.ch/TC57/2012/CIM-schema-cim17#IdentifiedObject.mRID" } ,
 "value": { "type": "literal" , "value": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3" }
 } ,
 {
 "property": { "type": "uri" , "value": "http://iec.ch/TC57/2012/CIM-schema-cim17#IdentifiedObject.name" } ,
 "value": { "type": "literal" , "value": "ieee8500" }
 } ,
 {
 "property": { "type": "uri" , "value": "http://iec.ch/TC57/2012/CIM-schema-cim17#PowerSystemResource.Location" } ,
 "value": { "type": "uri" , "value": "http://localhost:9999/blazegraph/namespace/kb/sparql#_AD650B25-8A04-EA09-95D4-4F78DD0A05E7" }
 } ,
 {
 "property": { "type": "uri" , "value": "http://www.w3.org/1999/02/22-rdf-syntax-ns#type" } ,
 "value": { "type": "uri" , "value": "http://iec.ch/TC57/2012/CIM-schema-cim17#Feeder" }
 }
]
 }
}

Python API function:

query_object(self, object_id, model_id=None):

Query Object Types

Returns the available object types in the model

Allowed parameters are:

	modelId (optional) - when specified it searches against that model, if empty it will search against all models

	resultFormat – XML/JSON /CSV, Will return results as a list in the format selected.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
 "requestType": "QUERY_OBJECT_TYPES",
 "modelId": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
 "resultFormat": "JSON"
}

Example Response:

{
 "objectTypes": ["http://iec.ch/TC57/2012/CIM-schema-cim17#ConnectivityNode",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#TransformerTank",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#PowerTransformer",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#LinearShuntCompensator",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#EnergySource",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#ACLineSegment",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#LoadBreakSwitch",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#EnergyConsumer"]
}

Python API function:

query_object_types(self, model_id=None)

Query Model

Returns all or part of the specified model. Can be filtered by object type

Allowed parameters are:

	modelId - when specified it searches against that model, if empty it will search against all models

	objectType (optional) – type of objects you wish to return details for.

	filter – SPARQL formatted filter string

	resultFormat – XML/JSON, Will return result in the format selected.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
 "requestType": "QUERY_MODEL",
 "modelId": "_49AD8E07-3BF9-A4E2-CB8F-C3722F837B62",
 "resultFormat": "JSON",
 "filter": "?s cim:IdentifiedObject.name '650z'",
 "objectType": "http://iec.ch/TC57/CIM100#ConnectivityNode"
}

Example Response:

[{
 "id": "_0F9BF9EE-B900-71C2-B892-0287A875A158",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#ConnectivityNode.ConnectivityNodeContainer": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#ConnectivityNode.TopologicalNode": "_AE5EDB3A-9177-AEA6-78EF-3DDBA4557D94",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#IdentifiedObject.mRID": "_0F9BF9EE-B900-71C2-B892-0287A875A158",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#IdentifiedObject.name": "q14733",
 "http://www.w3.org/1999/02/22-rdf-syntax-ns#type": "http://iec.ch/TC57/2012/CIM-schema-cim17#ConnectivityNode"
}]

Query Object Ids

Returns details for a particular object based on the object Id.

Allowed parameters are:

	modelId - when specified it searches against that model, if empty it will search against all models

	objectType (optional) – type of objects you wish to return details for.

	resultFormat – XML/JSON/CSV , Will return result bindings based on the select part of the query string.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
 "modelId": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
 "requestType": "QUERY_OBJECT_IDS",
 "resultFormat": "JSON",
 "objectType": "LoadBreakSwitch"
}

Example Response:

{
 "objectIds": [
 "_0D2157F2-CD4D-9F68-9212-F663C472AF1C",
 "_18D43D9E-36D1-3A2C-AC8F-439232FC1EE2",
 "_323C2BDB-69AA-A10C-CEC5-628C77B83268",
 "_D7AA7B55-E700-F1E8-B3EB-CB2FB07F8A37",

]
}

Query Object Dictionary

Returns details for either all objects of a particular type or a particular object based on the object Id. Either the object type or id is required, but not both.

Allowed parameters are:

	modelId - model that you wish to return objects from.

	objectType (not required if objectId is set) – type of object you wish to return details for.

	objectId (not required if objectType is set) - mrid of the object you wish to return details for, if set this will override objectType.

	resultFormat – XML/JSON , Will return result bindings based on the select part of the query string.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
 "modelId": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
 "requestType": "QUERY_OBJECT_DICT",
 "resultFormat": "JSON",
 "objectType": "LinearShuntCompensator",
 "objectId": "_EF2FF8C1-A6A6-4771-ADDD-A371AD929D5B"
}

Example Response:

{
 [
 {
 "id": "_2199D08B-9352-2085-102F-6B207E0BEBA3",
 "ConductingEquipment.BaseVoltage": "_C0A00494-BB68-7476-57E3-9741545AE287",
 "Equipment.EquipmentContainer": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
 "IdentifiedObject.mRID": "_2199D08B-9352-2085-102F-6B207E0BEBA3",
 "IdentifiedObject.name": "capbank0a",
 "PowerSystemResource.Location": "_19B9D45D-F556-01D4-8094-3AE64D5E63A0",
 "LinearShuntCompensator.b0PerSection": "100",
 "LinearShuntCompensator.bPerSection": "0.0077160494",
 "LinearShuntCompensator.g0PerSection": "0",
 "LinearShuntCompensator.gPerSection": "0",
 "ShuntCompensator.aVRDelay": "100",
 "ShuntCompensator.grounded": "true",
 "ShuntCompensator.maximumSections": "1",
 "ShuntCompensator.nomU": "7200",
 "ShuntCompensator.normalSections": "1",
 "ShuntCompensator.phaseConnection": "PhaseShuntConnectionKind.Y",
 "type": "LinearShuntCompensator"
 },....
]
}

Query Object Measurements

Returns details for measurements within a model, can be for all objects of a particular type or for those connected to a particular object based on the objectId. If neither objectType or objectId is provided it will provide all measurements belonging to the model.

Allowed parameters are:

	modelId - model that you wish to return measurements from.

	objectType (optional) – type of object you wish to return measurements for.

	objectId (optional) - mrid of the object you wish to return measurements for. If set this will override objectType.

	resultFormat – XML/JSON , Will return result bindings based on the select part of the query string.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
 "modelId": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
 "requestType": "QUERY_OBJECT_MEASUREMENTS",
 "resultFormat": "JSON",
 "objectType": "LinearShuntCompensator",
 "objectId": "_2199D08B-9352-2085-102F-6B207E0BEBA3"
}

Example Response:

 [
{
 "measid": "_59d526ff-32c0-4947-ab58-45f283636786",
 "type": "PNV",
 "class": "Analog",
 "name": "ACLineSegment_ln5532752-2_Voltage",
 "bus": "m1047534",
 "phases": "A",
 "eqtype": "ACLineSegment",
 "eqname": "ln5532752-2",
 "eqid": "_7A02B3B0-2746-EB24-45A5-C3FBA8ACB88E",
 "trmid": "_6B5B889C-E7E1-3444-CC63-7A589AC0DA8F"
 },....
]

Put Model

Note

Future Capability. Not yet available.

Inserts a new model into the model repository. This could validate model format during insertion Keep cim/model version in mind

Allowed parameters are:

	modelId – id to store the new model under, or update existing model

	modelContent – expects either RDF/XML or JSON formatted powergrid model

	inputFormat – XML/JSON

Configuration File API

Request all GridLAB-D configuration files

Generates all configuration files necessary to run a sumulation using the GridLAB-D simulator. Returns the diretory where all of the configuration files are stored.

	Required: configurationType, parameters[model_id,directory,simulationname,simulation_start_time,simulation_duration,simulation_id,simulation_broker_host,simulation_broker_port]

	Optional: parameters[i_fraction, p_fraction, z_fraction, load_scaling_factor, schedule_name,solver_method]

Request: goss.gridappsd.process.request.config

{
 "configurationType": "GridLAB-D All",
 "parameters": {
 "load_scaling_factor": "1.0",
 "i_fraction": "1.0",
 "model_id": "_C1C3E687-6FFD-C753-582B-632A27E28507",
 "p_fraction": "0.0",
 "simulation_id": "12345",
 "z_fraction": "0.0",
 "simulation_broker_host": "localhost",
 "simulation_name": "ieee8500",
 "simulation_duration": "60",
 "simulation_start_time": "1518958800",
 "solver_method": "NR",
 "schedule_name": "ieeezipload",
 "simulation_broker_port": "61616",
 "directory": "/tmp/gridlabdsimulation/"
 }
}

Response:
<directory where files have been stored>

Request GridLAB-D Base File

Generates the main GLM file required by the GridLAB-D simulator

	Required: configurationType, parameters[model_id]

	Optional: parameters[simulation_id, i_fraction, p_fraction, z_fraction, load_scaling_factor, schedule_name]

Request: goss.gridappsd.process.request.config

{
 "configurationType": "GridLAB-D Base GLM",
 "parameters": {
 "i_fraction": "1.0",
 "z_fraction": "0.0",
 "model_id": "_C1C3E687-6FFD-C753-582B-632A27E28507",
 "load_scaling_factor": "1.0",
 "schedule_name": "ieeezipload",
 "p_fraction": "0.0"
 }
}

Response:

object regulator_configuration {
name "rcon_reg1a";
connect_type WYE_WYE;
 Control MANUAL; // LINE_DROP_COMP;
.......

Request GridLAB-D Symbols File

Generates the symbols file with XY coordinates used by the GridLAB-D simulator

	Required: configurationType, parameters[model_id]

	Optional: parameters[simulation_id]

Request: goss.gridappsd.process.request.config

{
 "configurationType": "GridLAB-D Symbols",
 "parameters": {
 "model_id": "_C1C3E687-6FFD-C753-582B-632A27E28507"
 }
}

Response:
::
{“feeders”:[

	{“name”:”ieee123”,

	“mRID”:”_C1C3E687-6FFD-C753-582B-632A27E28507”,
“substation”:”IEEE123”,
“substationID”:”_FE44B314-385E-C2BF-3983-3A10C6060022”,
“subregion”:”Medium”,
“subregionID”:”_1CD7D2EE-3C91-3248-5662-A43EFEFAC224”,
“region”:”IEEE”,
“regionID”:”_73C512BD-7249-4F50-50DA-D93849B89C43”,
“swing_nodes”:[
{“name”:”source”,”bus”:”150”,”phases”:”ABC”,”nominal_voltage”:2401.8,”x1”:100.0,”y1”:1500.0}
],
“synchronousmachines”:[
],
“capacitors”:[

Request CIM Dictionary file

Generates a dictionary file which maps between the mrid identifiers used by the CIM model and the other names of model objects used by simulators.

	Required: configurationType, parameters[model_id]

	Optional: parameters[simulation_id]

Request: goss.gridappsd.process.request.config

{
 "configurationType":"CIM Dictionary",
 "parameters":{"model_id":"_C1C3E687-6FFD-C753-582B-632A27E28507"}
 }

Response:

{"feeders":[
 {"name":"ieee123",
 "mRID":"_C1C3E687-6FFD-C753-582B-632A27E28507",
 "substation":"IEEE123",
 "substationID":"_FE44B314-385E-C2BF-3983-3A10C6060022",
 "subregion":"Medium",
 "subregionID":"_1CD7D2EE-3C91-3248-5662-A43EFEFAC224",
 "region":"IEEE",
 "regionID":"_73C512BD-7249-4F50-50DA-D93849B89C43",
 "synchronousmachines":[
],
 "capacitors":[
 {"name":"c83","mRID":"_232DD3A8-9A3C-4053-B972-8A5EB49FD980","CN1":"83","phases":"ABC","kvar_A":200.0,"kvar_B":200.0,"kvar_C":200.0,"nominalVoltage":4160.0,"nomU":4160.0,"phaseConnection":"Y","grounded":true,"enabled":false,"mode":null,"targetValue":0.0,"targetDeadband":0.0,"aVRDelay":0.0,"monitoredName":null,"monitoredClass":null,"monitoredBus":null,"monitoredPhase":null},
 {"name":"c88a","mRID":"_9A74DCDC-EA5A-476B-9B99-B4FB90DC37E3","CN1":"88","phases":"A","kvar_A":50.0,"kvar_B":0.0,"kvar_C":0.0,"nominalVoltage":4160.0,"nomU":2402.0,"phaseConnection":"Y","grounded":true,"enabled":false,"mode":null,"targetValue":0.0,"targetDeadband":0.0,"aVRDelay":0.0,"monitoredName":null,

.......
]
}]}

Request CIM Feeder Index file

Generates a list of the feeders available powergrid model data store

	Required: configurationType, parameters[model_id]

	Optional: parameters[simulation_id]

Request: goss.gridappsd.process.request.config

{
 "configurationType":"CIM Feeder Index",
 "parameters":{"model_id":"_C1C3E687-6FFD-C753-582B-632A27E28507"}
 }

Response:

{"feeders":[

{“name”:”test9500new”,”mRID”:”_AAE94E4A-2465-6F5E-37B1-3E72183A4E44”,”substationName”:”ThreeSubs”,”substationID”:”_40485321-9B2C-1B8C-EC33-39D2F7948163”,”subregionName”:”Large”,”subregionID”:”_A1170111-942A-6ABD-D325-C64886DC4D7D”,”regionName”:”IEEE”,”regionID”:”_73C512BD-7249-4F50-50DA-D93849B89C43”},
{“name”:”ieee123”,”mRID”:”_C1C3E687-6FFD-C753-582B-632A27E28507”,”substationName”:”IEEE123”,”substationID”:”_FE44B314-385E-C2BF-3983-3A10C6060022”,”subregionName”:”Medium”,”subregionID”:”_1CD7D2EE-3C91-3248-5662-A43EFEFAC224”,”regionName”:”IEEE”,”regionID”:”_73C512BD-7249-4F50-50DA-D93849B89C43”},

]}

Request Simulation Output Configuration file

Generates file containing objects and properties with measurements avilable in the selected model

	Required: configurationType, parameters[model_id]

	Optional: parameters[simulation_id]

Request: goss.gridappsd.process.request.config

{
 "configurationType":"GridLAB-D Simulation Output",
 "parameters":{"model_id":"_C1C3E687-6FFD-C753-582B-632A27E28507"}
 }

Response:

{
 "cap_capbank0a": [
 "switchA",
 "shunt_A",
 "voltage_A"
],

 "cap_capbank1b": [
 "switchB",
 "voltage_B",
 "shunt_B"
],
 "cap_capbank2c": [
 "voltage_C",
 "switchC",
 "shunt_C"
],
 "cap_capbank0b": [
 "voltage_B",
 "switchB",
 "shunt_B"
],.......

Request all OpenDSS configuration files

Generates all configuration files necessary to run a sumulation using the OpenDSS simulator. Returns the diretory where all of the configuration files are stored.

	Required: configurationType, parameters[model_id,directory,simulationname,simulation_start_time,simulation_duration,simulation_id,simulation_broker_host,simulation_broker_port]

	Optional: parameters[i_fraction, p_fraction, z_fraction, load_scaling_factor, schedule_name,solver_method]

Request: goss.gridappsd.process.request.config

{
 "configurationType": "DSS All",
 "parameters": {
 "load_scaling_factor": "1.0",
 "i_fraction": "1.0",
 "model_id": "_C1C3E687-6FFD-C753-582B-632A27E28507",
 "p_fraction": "0.0",
 "simulation_id": "12345",
 "z_fraction": "0.0",
 "simulation_broker_host": "localhost",
 "simulation_name": "ieee8500",
 "simulation_duration": "60",
 "simulation_start_time": "1518958800",
 "solver_method": "NR",
 "schedule_name": "ieeezipload",
 "simulation_broker_port": "61616",
 "directory": "/tmp/dsssimulation/"
 }
}

Response:
<directory where files have been stored>

Request OpenDSS Base File

Generates the main GLM file required by the OpenDSS simulator

	Required: configurationType, parameters[model_id]

	Optional: parameters[simulation_id, i_fraction, p_fraction, z_fraction, load_scaling_factor, schedule_name]

Request: goss.gridappsd.process.request.config

{
 "configurationType": "DSS Base",
 "parameters": {
 "i_fraction": "1.0",
 "z_fraction": "0.0",
 "model_id": "_C1C3E687-6FFD-C753-582B-632A27E28507",
 "load_scaling_factor": "1.0",
 "schedule_name": "ieeezipload",
 "p_fraction": "0.0"
 }
}

Response:

clear
new Circuit.source phases=3 bus1=150 basekv=4.160 pu=1.00000 angle=0.00000 r0=0.00000 x0=0.00010 r1=0.00000 x1=0.00010
new Linecode.11 nphases=1 units=mi rmatrix=[1.32920] xmatrix=[1.34750] cmatrix=[11.9873]
new Linecode.1 nphases=3 units=mi rmatrix=[0.457600 | 0.156000 0.466600 | 0.153500 0.158000 0.461500] xmatrix=[1.07800 | 0.501700 1.04820 | 0.384900 0.423600 1.06510] cmatrix=[15.0567 | -4.85904 15.8641 | -1.85195 -3.08879 14.3156]

.......

Request OpenDSS Coordinates File

Generates the symbols file with XY coordinates used by the OpenDSS simulator

	Required: configurationType, parameters[model_id]

	Optional: parameters[simulation_id]

Request: goss.gridappsd.process.request.config

{
 "configurationType": "DSS Coordinate",
 "parameters": {
 "model_id": "_C1C3E687-6FFD-C753-582B-632A27E28507"
 }
}

Response:

88,2950.0,1300.0
89,2775.0,1125.0
197,3525.0,2200.0
110,4275.0,3050.0
111,4275.0,3625.0
112,4275.0,2925.0
113,4800.0,2925.0
114,5125.0,2925.0
90,2775.0,900.0
61s,3175.0,1300.0
91,2550.0,1125.0
92,2550.0,825.0
93,2325.0,1125.0
94,2325.0,850.0
95,2025.0,1125.0
96,2025.0,925.0
97,3525.0,2100.0
98,3800.0,2100.0
10,1450.0,2150.0
99,4350.0,2100.0
11,950.0,2150.0

Request YBus Export Configuration file

Generates file containing ybus configuration for the given model or simulation.

Request: goss.gridappsd.process.request.config

{
 "configurationType":"YBus Export",
 "parameters":{"simulation_id":"12345"}
 }

If requested for a simulation then simulation id is mandatory.
Otherwise use model_id as mentioned next.

{
"configurationType": "YBus Export",
"parameters": {
 "model_id": "_C1C3E687-6FFD-C753-582B-632A27E28507"
 }
 }

Additional paramters can be provided with model_id as mentioned in next request.

 {
 "configurationType": "YBus Export",
 "parameters": {
 "i_fraction": "1.0",
 "z_fraction": "0.0",
 "model_id": "_C1C3E687-6FFD-C753-582B-632A27E28507",
 "load_scaling_factor": "1.0",
 "schedule_name": "ieeezipload",
 "p_fraction": "0.0"
 }
}

Response:

{
 "yParse": [
 "Row,Col,G,B",
 "1,1,517.6253721,-539.2591296",
 "2,1,-3.438703156,9.070554234",
 "3,1,-5.837170999,11.07061383",
 "4,1,-500,500",
 "84,1,-9.232329792,20.56428834",
 "85,1,1.801223903,-4.751238599",
 "86,1,3.057563114,-5.798887966"

],
 "nodeList": [
 "\"97.1\"",
 "\"97.2\"",

],
 "summary": [
 "DateTime,
]
 }

Logging API

All applications and services should publish their log messages using using paltform;s log API.

Publishing Logs:

Log messages should be published on the following topic. Simulation id should be attached to the topic at the end.

goss.gridappsd.simulation.log.[simulation_id]

Message structure for publishing logs :

{
 "source": "",
 "processId": "",
 "timestamp": "long",
 "processStatus": "[STARTED|STOPPED|RUNNING|ERROR|PASSED|FAILED]",
 "logMessage": "",
 "logLevel": "[INFO|DEBUG|ERROR]",
 "storeToDb": [true|false]
}

where,

source is the filename publishing log message.

processId is the simulation id.

timestamp is in epoch format.

storeToDb is true if you want to store this message in log database for later.

Subscribing to Logs:

For the currently running simulation, subcribe to following topic with simulation id appended at the end to receive real time logs:

goss.gridappsd.simulation.log.[simulation_id]

Querying Logs:

Query request should be sent at following topic:

goss.gridappsd.process.request.data.log

User can query log data by sending either custom SQL query string or using query filters.

	Custom query string:

Logs are stored in MySQL database in a table named log with following columns:
source, processId,timestamp, processStatus, logMessage, logLevel.
User can create custom SQL query string to get log data:

{"query":"select * from log"}

Custom query response:

{ "data": [
 { "process_id": "", "process_status": "RUNNING", "log_level": "INFO", "log_message": "Starting gov.pnnl.goss.gridappsd.app.AppManagerImpl", "id": "1", "source": "gov.pnnl.goss.gridappsd.app.AppManagerImpl", "timestamp": "2018-11-14 21:51:11.0", "username": "system" },
 { "process_id": "", "process_status": "RUNNING", "log_level": "INFO", "log_message": "Found 0 applications", "id": "2", "source": "gov.pnnl.goss.gridappsd.app.AppManagerImpl", "timestamp": "2018-11-14 21:51:14.0", "username": "system" },
], "responseComplete": true, "id": "1792453601" }

	Query filters:

An example for query filters are

{
 "source": "ProcessEvent",
 "processId": "12345678",
 "processStatus": "DEBUG",
 "logLevel": "DEBUG"
}

For more details on log message filter look at ‘Publishing Logs’ section.

Custom query response:

{ "data": [
 { "process_id": "414798372", "process_status": "RUNNING", "log_level": "DEBUG", "log_message": "New rewuest received", "id": "8", "source": "ProcessEvent", "timestamp": "2018-11-14 21:51:29.0", "username": "system" },
 { "process_id": "", "process_status": "RUNNING", "log_level": "DEBUG", "log_message": "Running application", "id": "2", "source": "ProcessEvent", "timestamp": "2018-11-14 21:51:30.0", "username": "system" },
], "responseComplete": true, "id": "1792453601" }

Simulation API

Start a Simulation

Returns simulation id.

Queue:

goss.gridappsd.process.request.simulation

Example Request:

{

power_system_config: the CIM model to be used in the simulation

"power_system_config": {
 "GeographicalRegion_name": "ieee8500nodecktassets_Region",
 "SubGeographicalRegion_name": "ieee8500nodecktassets_SubRegion",
 "Line_name": "ieee8500"
},

simulation_config: the paramaters used by the simulation

"simulation_config": {
 "start_time": "2009-07-21 00:00:00",
 "duration": "120",
 "simulator": "GridLAB-D",
 "timestep_frequency": "1000",
 "timestep_increment": "1000",
 "simulation_name": "ieee8500",
 "power_flow_solver_method": "NR",

simulation_output: the objects and fields to be returned by the simulation

"simulation_output": {
 "output_objects": [{
 "name": "rcon_FEEDER_REG",
 "properties": ["connect_type",
 "Control",
 "control_level",
 "PT_phase",
 "band_center",
 "band_width",
 "dwell_time",
 "raise_taps",
 "lower_taps",
 "regulation"]
 },
 ]
},

model creation config: the paramaters used to generate the input file for the simulation

 "model_creation_config": {
 "load_scaling_factor": "1",
 "schedule_name": "ieeezipload",
 "z_fraction": "0",
 "i_fraction": "1",
 "p_fraction": "0",
 "model_state":{
 "synchronousmachines":[
 {"name":"diesel590","p":100.000,"q":140.000},
 {"name":"diesel620","p":150.000,"q":500.000}
],
 "switches":[
 {"name":"2002200004641085_sw","open":true},
 {"name":"2002200004868472_sw","open":true},
 {"name":"l9407_48332_sw","open":true},
 {"name":"tsw568613_sw","open":false}
]
 }
 }
},

application config: inputs to any other applications that should run as part of the simluation, in this case the voltvar application

"application_config": {
 "applications": [{
 "name": "vvo",
 "config_string": "{\"static_inputs\": {\"ieee8500\" : {\"control_method\": \"ACTIVE\", \"capacitor_delay\": 60, \"regulator_delay\": 60, \"desired_pf\": 0.99, \"d_max\": 0.9, \"d_min\": 0.1,\"substation_link\": \"xf_hvmv_sub\",\"regulator_list\": [\"reg_FEEDER_REG\", \"reg_VREG2\", \"reg_VREG3\", \"reg_VREG4\"],\"regulator_configuration_list\": [\"rcon_FEEDER_REG\", \"rcon_VREG2\", \"rcon_VREG3\", \"rcon_VREG4\"],\"capacitor_list\": [\"cap_capbank0a\",\"cap_capbank0b\", \"cap_capbank0c\", \"cap_capbank1a\", \"cap_capbank1b\", \"cap_capbank1c\", \"cap_capbank2a\", \"cap_capbank2b\", \"cap_capbank2c\", \"cap_capbank3\"], \"voltage_measurements\": [\"nd_l2955047,1\", \"nd_l3160107,1\", \"nd_l2673313,2\", \"nd_l2876814,2\", \"nd_m1047574,3\", \"nd_l3254238,4\"], \"maximum_voltages\": 7500, \"minimum_voltages\": 6500,\"max_vdrop\": 5200,\"high_load_deadband\": 100,\"desired_voltages\": 7000, \"low_load_deadband\": 100,\"pf_phase\": \"ABC\"}}}"
 }]
}

Subscribe to Simulation Output

Topic:

/topic/goss.gridappsd.simulation.output.[simulation_id]

Where simulation_id is response from start simulation API.

Example Message:

{
 "simulation_id" : "12ae2345",
 "message" : {
 "timestamp" : "1357048800",
 "measurements" : {
 "123a456b-789c-012d-345e-678f901a234b":{
 "measurement_mrid" : "123a456b-789c-012d-345e-678f901a234b"
 "magnitude" : 3410.456,
 "angle" : -123.456
 }
 }
}

Subscribe to Simulation Logs

Topic:

/topic/goss.gridappsd.simulation.log.[simulation_id]

Where simulation_id is response from start simulation API.

Example Message:

{
 "source": "",
 "processId": "",
 "timestamp": "",
 "processStatus": "[STARTING|STARTED|STOPPED|RUNNING|ERROR|CLOSED|COMPLETE]",
 "logMessage": "",
 "logLevel": "[INFO|DEBUG|ERROR]",
 "storeToDb": [true|false]
}

Send Input to Simulation

Topic:

/topic/goss.gridappsd.simulation.input.[simulation_id]

Example Message:

{
 "command": "update",
 "input": {
 "simulation_id": "123456",
 "message": {
 "timestamp": 1357048800,
 "difference_mrid": "123a456b-789c-012d-345e-678f901a235c",
 "reverse_differences": [{

 "object": "61A547FB-9F68-5635-BB4C-F7F537FD824E",
 "attribute": "ShuntCompensator.sections",
 "value": 1
 },
 {

 "object": "E3CA4CD4-B0D4-9A83-3E2F-18AC5F1B55BA",
 "attribute": "ShuntCompensator.sections",
 "value": 0
 }
],
 "forward_differences": [{

 "object": "61A547FB-9F68-5635-BB4C-F7F537FD824E",
 "attribute": "ShuntCompensator.sections",
 "value": 0
 },
 {

 "object": "E3CA4CD4-B0D4-9A83-3E2F-18AC5F1B55BA",
 "attribute": "ShuntCompensator.sections",
 "value": 1
 }
]
 }
 }
}

Pause Simulation

Topic:

/topic/goss.gridappsd.simulation.input.[simulation_id]

Example Message:

{
 "command": "pause"
}

Resume Simulation

Topic:

/topic/goss.gridappsd.simulation.input.[simulation_id]

Example Message:

{
 "command": "resume"
}

Resume and Pause the Simulation after a Specified Number of Seconds

Topic:

/topic/goss.gridappsd.simulation.input.[simulation_id]

Example Message:

{
 "command": "resumePauseAt",
 "input": {
 "pauseIn": 10
 }
}

Timeseries API

The Timeseries Data API allows you to query the timeseries data such as weather, simulation output and input.

Query Request Queue

Query request should be sent on following queue: goss.gridappsd.process.request.data.timeseries

Query Weather data

The weather data is based on exported data collected from the Solar Radiation Research Laboratory (39.74N,105.18W,1829 meter elevation) January - December 2013. The original dataset was based in Mountain Standard Time (MST).

The original column names included engineering units, but could not be included on the import. Below is a mapping between the exported column headers and the fields in the Influx database management system.

Original Exported Data Influx Measurement Field Key Field Type
------------------------------------ ---------------------------- ----------
DATE (MM/DD/YYYY) DATE String
MST MST String
Global CM22 (vent/cor) [W/ft^2] GlobalCM22 Float
Direct CH1 [W/ft^2] DirectCH1 Float
Diffuse CM22 (vent/cor) [W/ft^2] Diffuse Float
Tower Dry Bulb Temp [deg F] TowerDryBulbTemp Float
Tower RH [%] TowerRH Float
Avg Wind Speed @ 42ft [MPH] AvgWindSpeed Float
Avg Wind Direction @ 42ft [deg from N] AvgWindDirection Float

Original Exported Data Influx Measurement Tag Type
------------------------------------ ---------------------------- ----------
n/a lat String
n/a long String
n/a place String

Influx database details:

Database name: “proven”, Measurement name: “weather”

Example Request:

{"queryMeasurement":"weather",
"queryFilter":{"startTime":"1357048800000000",
 "endTime":"1357048860000000"},
"responseFormat":"JSON"}

Example Response for result format JSON:

{ "data": [{ "Diffuse": 2.5305959999999996,
 "AvgWindSpeed": 0,
 "TowerRH": 70.65,
 "long": "105.18 W",
 "MST": "08:00",
 "TowerDryBulbTemp": 16.124,
 "DATE": "1/1/2013",
 "DirectCH1": 0.08549150370000001,
 "GlobalCM22": 2.53962588,
 "AvgWindDirection": 0,
 "time": 1357048800,
 "place": "Solar Radiation Research Laboratory",
 "lat": "39.74 N" },
 { "Diffuse": 2.6431350599999996,
 "AvgWindSpeed": 0,
 "TowerRH": 70.41,
 "long": "105.18 W",
 "MST": "08:01",
 "TowerDryBulbTemp": 15.908,
 "DATE": "1/1/2013",
 "DirectCH1": 0.045951777299999996,
 "GlobalCM22": 2.6501118499999996,
 "AvgWindDirection": 0,
 "time": 1357048860,
 "place": "Solar Radiation Research Laboratory",
 "lat": "39.74 N" }],
 "responseComplete": true,
 "id": "1998314042" }

Allowed values for queryFilter are:

startTime[epoch number]
endTime[epoch number]
AvgWindDirection[number]
AvgWindSpeed[number]
Diffuse[number]
DirectCH1[number]
GlobalCM22[number]
MST[number]
TowerDryBulbTemp[number]
TowerRH[number]
lat[string]
long[string]
place[string]

Query Simulation Data

Returns simulation input or output data based on query filters

Example Request:

{"queryMeasurement": "simulation",
"queryFilter": {"simulation_id": "582881157"},
"responseFormat": "JSON"}

Example Response for result format JSON:

{
"data": { "measurements": [{ "name": "simulation",
 "points": [{ "row": { "entry": [
 { "key": "hasMeasurementDifference", "value": "FORWARD" },
 { "key": "hasSimulationMessageType", "value": "INPUT" },
 { "key": "difference_mrid", "value": "c65d4ba9-8689-4838-970c-2983b54ed2e6" },
 { "key": "simulation_id", "value": "582881157" },
 { "key": "time", "value": "1562614884" },
 { "key": "attribute", "value": "ShuntCompensator.sections" },
 { "key": "value", "value": "0.0" },
 { "key": "object","value": "_5405BE1A-BC86-5452-CBF2-BD1BA8984093" }]}},
 { "row": { "entry": [
 { "key": "hasMeasurementDifference", "value": "FORWARD" },
 { "key": "hasSimulationMessageType", "value": "INPUT" },
 { "key": "difference_mrid", "value": "c65d4ba9-8689-4838-970c-2983b54ed2e6" },
 { "key": "simulation_id", "value": "582881157" },
 { "key": "time", "value": "1562614884" },
 { "key": "attribute", "value": "ShuntCompensator.sections" },
 { "key": "value", "value": "0.0" },
 { "key": "object", "value": "_8D0EAC3F-AD56-C5A6-ED03-863DBB4A8C5F"}]}}
"responseComplete": true,
"id": "1927836780" }

Allowed values for queryFilter are:

Both input and output message type:
starttime [number]
endtime [number]
measurement_mrid [string] or [array of string values]
simulation_id [string]
hasSimulationMessageType ["OUTPUT" | "INPUT"]

Ouput message type:
angle [number]
magnitude [number]

Input Message type:
hasMeasurementDifference ["FORWARD" | "REVERSE"]
attribute [string]
difference_mrid [string]
object [string]
value [number]

Please find some sample requests with various query filters

{"queryMeasurement": "simulation",
"queryFilter": {"simulation_id": "582881157", "hasSimulationMessageType": "INPUT"},
"responseFormat": "JSON"}

{"queryMeasurement": "simulation",
"queryFilter": {"simulation_id": "582881157", "angle": 23.706919634782313},
"responseFormat": "JSON"}

{"queryMeasurement":"simulation",
"queryFilter":{"simulation_id":"1743450224",
"measurement_mrid":["_01625641-d9ae-4c34-8302-69a9620ec69d","_ffd6abc7-159d-4f6d-868b-7bf7b087ab85"]},
"responseFormat":"JSON"}

Query Sensor Service Data

Returns output of sensor sensor service.

Example Request:

{"queryMeasurement": "gridappsd-sensor-simulator",
"queryFilter": {"simulation_id": "582881157"},
"responseFormat": "JSON"}

Example Response for result format JSON:

{
 "data": {
 "measurements": [
 {
 "name": "gridappsd-sensor-simulator",
 "points": [
 {
 "row": {
 "entry": [
 {
 "key": "instance_id",
 "value": "gridappsd-sensor-simulator-1564186315783"
 },
 {
 "key": "hasSimulationMessageType",
 "value": "OUTPUT"
 },
 {
 "key": "measurement_mrid",
 "value": "_0009caa4-23ef-41b9-9db7-624f3f47460c"
 },
 {
 "key": "angle",
 "value": "-152.44531328865978"
 },
 {
 "key": "magnitude",
 "value": "2470.4939175057075"
 },
 {
 "key": "simulation_id",
 "value": "1512566584"
 },
 {
 "key": "time",
 "value": "1564186297"
 }
]
 }
 },.........]}]
 },
 "responseComplete": true,
 "id": "597021681"
}

Allowed values for queryFilter are:

starttime [number]
endtime [number]
measurement_mrid [string]
simulation_id [string]
instance_id
angle [number]
magnitude [number]
value [number]

Query Historical Sensor Service Data

A docker image is available that containes the pre-populated historical data generated from sensor service for 9500 node model.
It containes data with following details:

	Start time: Saturday, July 13, 2013 8:00:02 AM (1373727602)

	End time: Friday, July 19, 2013 3:12:23 PM (1374271943).

	Simulation Id: 890162203

Follow these steps to access historical data:

	Clone gridappsd-docker repo

	Change the influxdb image in docker-compose.yml file to gridappsd/influxdb:historical

	Execure ./run.sh -t <release tag>

	Use Query Sensor Service Data API to request data.

Services

Sensor Simulator Service [https://gridappsd-sensor-simulator.readthedocs.io]
The GridAPPSD’s Sensor Simulator simulates real devices based upon the magnitude of “prestine” simulated values.
Currently the sensor service supports angle and magnitude measurements.

‘_GridAPPS-D DNP3 Service <https://gridappsd-dnp3.readthedocs.io/en/develop/>’__
The GridAPPS-D DNP3 Service integrates GridAPPS-D with DNP3 based commercial tools to enable the CIM and DNP3 data exchange of the devices.

Hosting Application

Supported Application or Service Types

	Python

	EXE

Hosting Application

Developers can create application using GridAPPS-D API and use following instruction to host it with the platform.
Applications run in their own Docker contianer.
For example of an application working with GridAPPS-D, please see: https://github.com/GRIDAPPSD/gridappsd-sample-app.

1. Create proper folder structure for the application

Following is the recommended structure for applications working with GridAPPS-D using gridappsd-sample-app as an example:

.
└── gridappsd-sample_app
 ├── sample-app
 │ ├── [application exe or pythod code]
 ├── requirements.txt
 ├── sample_app.config
 ├── Dockerfile
 └── setup.py

Where,

	gridappsd-sample-app is a folder and name of the application.

	sample-app is a folder that contains the application’s source/build code.

	requirements.txt is required for Python based application and lists all the pre-requisite packages.

	sample_app.config is a file used by GridAPPS-D to launch the application from inside application container. More details are provided in Step 2.

	Dockerfile contains all the commands to assemble a Docker image for the application. More details are provided in Step 3.

	setup.py is build script file for python based applications.

2. Create config file for application

Config file is used by GridAPPS-D platform to register and launch the application.
Here is the config file example using gridappsd-sample-app:

{
 "id":"sample-app",
 "description":"GridAPPS-D Sample Application app",
 "creator":"PNNL",
 "inputs":[],
 "outputs":[],
 "options": ["(simulationId)"],
 "type":"PYTHON",
 "execution_path": "sample_app/runsample.py",
 "launch_on_startup":false,
 "prereqs":["gridappsd-state-estimator"],
 "multiple_instances":false
}

Where,

	id is the name of the application and should match the name of the config file.

	description is a string that describes the application.

	creator is the organization/developer name

	inputs is the list of input topics application is listening to. For future use. Leave it as in the example for now.

	outputs is the list of input topics application is publishing to. For future use. Leave it as in the example for now.

	options are the run time arguments required by the application. Available options are: (i) simulationId: Unique identifier for the simulation, (ii) request: Simulation request sent by the user.

	type defines the type fo the application which can be PYTHON or EXE.

	execution_path is the path of the main file that starts the application relative to the top-most folder. In this example it would be the path relative to gridappsd-sample-app folder.

	launch_on_startup is true if application needs to be started as the platform starts and false if application needs to be started with a simulation.

	prereqs is list of GridAPPS-D services that need to be started before starting the application. Leave it as empty list [] if no such services are required.
Services such as FNCS and FNCS-GOSS-BRIDGE are started by default with a simuolation so not needed to be specified here.

	multiple_instances is true if multiple instances of this application can be started for a single simulation otherwise false.

3. Create Dockerfile for application

Copy Dockerfile from https://github.com/GRIDAPPSD/gridappsd-sample-app/blob/master/Dockerfile.
In the file replace gridappsd-sample with your applcation name and sample_app.config with the name of the config file of your application.
You can add more commands in the file if needed for your application.

4. Build the Docker container for application

docker build --network=host -t sample-app .

Where,

	sample-app is the image name. Change it to your application name.

5. Clone gridappsd-docker repository

Clone this repository outside any application folder.

git clone https://github.com/GRIDAPPSD/gridappsd-docker.git

6. Add application to platform

In order to add your application to the GridAPPS-D platform you will need to modify the docker-compose.yml file included in the gridappsd-docker repository.
Add the following to the file:

sample_app:
image: sample_app
environment:
 GRIDAPPSD_URI: tcp://gridappsd:61613
depends_on:
 - gridappsd

Use image name from step 4 instead of sample_app in line 1 and 2.

7. Start platform and application container

cd gridappsd-docker
./run.sh

This script starts application container along with platform.
Application container has built-in code that allows application to register with GridAPPS-D platform when it starts.

8. Verify that application container is running

Use following command to list all Docker container which should include application container with running status.

docker ps -a

Optional - You can go inside the application container to check its content.

docker exec -it sample_app bash

Where,

	sample_app is the name of the container. Replace it with your application container name.

Execute exit to get out of the application container.

9. Varify that application is hosted correctly

	Go to http://localhost:8080

	Login with default user credetials already provided in login screen.

	Press Menu on the top-left corner

	Press Configure New Simulation menu item

	Go to Application Configuration tab

	Look for the application name in the drop down box.

If your application is available in that drop down box then application is hosted correctly with the platform.

For next step see documentation under Using GridAPPS-D –> Start a Simulation

Hosting Service

Developers can create a platform service using GridAPPS-D API and use following instruction to host it with the platform.
For example of an service working with GridAPPS-D, please see: https://github.com/GRIDAPPSD/gridappsd-state-estimator.

1. Create proper folder structure for the service.

Following is the recommended structure for services working with gridappsd using gridappsd-state-estimator as an example:

 .
 └── gridappsd-state-estimator
 ├── state-estimator
 │ ├── [service exe or pythod code]
 ├── requirements.txt
 ├── state-estimator.config
 └── setup.py

- **gridappsd-state-estimator** is a folder and name of the service.
- **state-estimator** is a folder that contains the service's source/build code.
- **requirements.txt** is required for Python based service and lists all the pre-requisite packages.
- **state-estimator.config** is a file used by GridAPPS-D to launch the service from inside GridAPPS-D container. More details are provided in Step 2.
- **setup.py** is build script file for python based applications.

2. Create config file for service

Config file is used by GridAPPS-D platform to register and launch the service.
Here is the config file example using gridappsd-state-estimator:

	::

	
	{

	“id”:”state-estimator”,
“description”:”State Estimator”,
“creator”:”PNNL”,
“inputs”:[“/topic/goss.gridappsd.fncs.output”,”/topic/goss.gridappsd.se.input”],
“outputs”:[“/topic/goss.gridappsd.se.requests”,”/topic/goss.gridappsd.se.system_state”],
“static_args”:[“(simulationId)”,”(request)”],
“execution_path”:”services/gridappsd-state-estimator/state-estimator/bin/state-estimator”,
“type”:”EXE”,
“launch_on_startup”:false,
“prereqs”:[],
“multiple_instances”:true,
“environmentVariables”:[],
“user_input”: {

	“use-sensors-for-estimates”: {

	“help”: “Use measurements from the sensor-simulator service, if the sensor-simulator is configured, to generate state estimates rather than using simulation measurements”,
“help_example”: false,
“default_value”: true,
“type”: “bool”

}

}

}

Where,

	id is the name of the service and should match the name of the config file.

	description is a string that describes the service.

	creator is the organization/developer name

	inputs is the list of input topics service is listening to. For future use. Leave it as in the example for now.

	outputs is the list of input topics service is publishing to. For future use. Leave it as in the example for now.

	options are the run time arguments required by the service. Available options are: (i) simulationId: Unique identifier for the simulation, (ii) request: Simulation request sent by the user.

	type defines the type fo the service which can be PYTHON or EXE.

	execution_path is the path of the main file that starts the service relative to the top-most folder. In this example it would be the path relative to gridappsd-sample-app folder.

	launch_on_startup is true if service needs to be started as the platform starts and false if service needs to be started with a simulation.

	prereqs is list of GridAPPS-D services that need to be started before starting the service. Leave it as empty list [] if no such services are required.
Services such as FNCS and FNCS-GOSS-BRIDGE are started by default with a simuolation so not needed to be specified here.

	multiple_instances is true if multiple instances of this service can be started for a single simulation otherwise false.

Example config for service:

{
 "id":"state-estimator",
 "description":"State Estimator",
 "creator":"PNNL",
 "inputs":["/topic/goss.gridappsd.fncs.output","/topic/goss.gridappsd.se.input"],
 "outputs":["/topic/goss.gridappsd.se.requests","/topic/goss.gridappsd.se.system_state"],
 "static_args":["(simulationId)"],
 "execution_path":"service/bin/state-estimator.out",
 "type":"EXE",
 "launch_on_startup":false,
 "prereqs":[],
 "multiple_instances":true,
 "environmentVariables":[]
}

	Clone the repository https://github.com/GRIDAPPSD/gridappsd-docker (refered to as gridappsd-docker repository) next to this repository (they should both have the same parent folder)

.
├── gridappsd-docker
└── gridappsd-sample-app

	Add service or service to platform

In order to add your service/service to the container you will need to modify the docker-compose.yml file included in the gridappsd-docker repository.
Under the gridappsd service there is an example volumes leaf that is commented out. Uncomment and modify these lines to add the path for your service and config file.
Adding these lines will mount the service/service on the container’s filesystem when the container is started.

For service:

volumes:
- ~/git/gridappsd-sample-app/sample_app:/gridappsd/services/sample_app
- ~/git/gridappsd-sample-app/sample_app/sample_app.config:/gridappsd/services/sample_app.config

 volumes:
 - ~/git/[my_app_directory]/[my_app]:/gridappsd/services/[my_app]
 - ~/git/[my_app_directory]/[my_app]/[my_app.config]:/gridappsd/services/[my_app.config]

For service:

volumes:
- ~/git/gridappsd-sample-app/sample_app:/gridappsd/services/sample_app
- ~/git/gridappsd-sample-app/sample_app/sample_app.config:/gridappsd/services/sample_app.config

 volumes:
 - ~/git/[my_service_directory]/[my_service]:/gridappsd/services/[my_service]
 - ~/git/[my_service_directory]/[my_service]/[my_service.config]:/gridappsd/services/[my_service.config]

How to start a service

Note: This process will be simplified in future releases so user could start a service through API and UI for a simulation with or without an service.

Currently a service will be started by the platform only if it is a requirement for an service as described in the service config file under prereqs key.
By default gridappsd-sensor-service and gridappsd-voltage-violation services are available in GridAPPS-D docker container.

In order to start a service with an service (sample app in this example) follow these steps:

1. Go into sample app container by executing

docker exec -it gridappsddocker_sample_app_1 bash

2. Inside sample app container execute following commands

apt-get update

apt-get install vim

4. Edit sample_app.config and add service id to the prereqs as shown below:

"prereqs":["gridappsd-sensor-simulator"]

Note: Service id should match the value of “id” in service config file.

	Exit sample app container

6. Restart sample app docker container by executing

docker restart gridappsddocker_sample_app_1

7. Go into GridAPPS-D docker container by executing

docker exec -it gridappsddocker_gridappsd_1 bash

8. Start platform by executing
:

./run-gridappsd.sh

Now when you start a simulation with sample app the service defined in prereqs will start as well.

System Configurations

TODO default values and description (conf under GOSS-GridAPPS-D, FNCS ports and simulator count)

GridAPPS-D Development Resources

This section is useful for developers for understanding or changing platform’s internal workings and for those wishing to develop their own applications for GridAPPS-D.
For developing application for GridAPPS-D platform see Using GridAPPS-D .

Design

Design section desribes the conceptual design of GridAPPS-D’s managers. Each manager is resposible for executing specific groupd of functions.

Process Manager

Process Manager is responsible for starting, managing and stopping processes.
All the requests to start a process like starting a simulation or querying a data store is received by Process Mananger.
After receiving a request to start a process it forwards the request to corresponding manager for execution.
Process Manager keeps track of all the processes and reports their status when requested.

This implements Internal Function Definition- 402 Process Manager

Log Manager

TBD

Simulation Manager

TBD

Configuration Manager

TBD

Eclipse IDE Setup

	
	Download or clone the repository from github

	
	Install github desktop https://desktop.github.com/ or sourcetree https://www.atlassian.com/software/sourcetree/overview and Clone the GOSS-GridAPPS-D repository (https://github.com/GRIDAPPSD/GOSS-GridAPPS-D)

	Or download the source (https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/archive/master.zip)

	Install java 1.8 SDK and set JAVA_HOME variable

	Install Eclipse http://www.eclipse.org/downloads/packages/release/Mars/1 (Mars 4.5.1 or earlier, 4.5.2 appears to have bugs related to bundle processing) TODO what about neon?

	Open eclipse with workspace set to GOSS-GridAPPS-D download location, eg. C:UsersusernameDocumentsGOSS-GridAPPS-D

	Install BNDTools plugin: Help->Install New Software->Work with: http://dl.bintray.com/bndtools/bndtools/3.0.0 and Install Bndtools 3.0.0 or earlier

	
	Import projects into workspace

	
	File->Import General->Existing Projects into workspace

	Select root directory, GOSS-GridAPPS-D download location

	Select cnf, pnnl.goss.gridappsd

	If errors are detected, Right click on the pnnl.goss.gridappsd project and select release, then release all bundles

	
	If you would like to you a local version of GOSS-Core (Optional)

	
	Update cnf/ext/repositories.bnd

	Select source view and add the following as the first line

	aQute.bnd.deployer.repository.LocalIndexedRepo;name=GOSS Local Release;local=/GOSS-Core2/cnf/releaserepo;pretty=true,

	verify by switching to bndtools and verify that there are packages under GOSS Local Relase

	Open pnnl.goss.gridappsd/bnd.bnd, Rebuild project, you should not have errors

	Open pnnl.goss.gridappsd/run.bnd.bndrun and click Run OSGI

Execution Workflow

[image: ../_images/RC1_workflow.png]
Process Manager - The workflow begins when a simulation request is sent to the request topic monitored by the Process Manager, the process manager gathers the necessary configurations from the Configuration Manager. Then sends the configuration to the simulation manager to run the simulation.

Configuration Manager - The configuration manager parses the request and builds the necessary configuration files. It also uses the data manager to pull the model data from the CIM database.

Data Manager - The data manager accesses the CIM database to build the model files used by the simulator.

Simulation Manager - The simulation manager launches the simulator and other required applications such as the FNCS bridge, FNCS, and the VoltVar application. It is in charge of managing the timing of the simulation and reporting output from the simulation out to the simulation status topic.

FNCS Bridge - Serves as input and output from the simulator to the rest of GridAPPS-D, receives initialization, timestep, update, and finalize requests from the simulation manager and other applications, such as voltvar. It also publishes output from the simulator on a pre-defined topic for the simulation manager and other applications to subscribe to.

Simulator - In this case GridLAB-D serves as the simulator.

Hosted Application - Applications can be developed to use the data generated by the simulation and submit feedback and updates to the simulator. Two examples of this have been developed in RC1, the VoltVar application and a vizualization application

Log Manager - Process Manager recieves a log message. It retrieves the username associated with the message and forwards the message and username to Log Manager. Log Manager writes the message on a file and if store_to_db key is true in log message then log manager calls the data manager to store the log message in the database.

CIM Documentation

This section summarizes the use of a reduced-order CIM 1 to support
feeder modeling for the North American circuits and use cases considered
in GridAPPS-D. The full CIM includes over 1100 tables in SQL, each one
corresponding to a UML class, enumeration or datatype. RC1 used
approximately 100 such entities, mapped onto 100+ tables in SQL.
Subsequent versions of GridAPPS-D use a triple-store database, which is
better suited for CIM [ref].

The CIM subset described here is based on
iec61970cim17v23a_iec61968cim13v11, which formed the basis of a release
candidate for CIM100. This candidate CIM100 already includes changes
proposed from the GridAPPS-D project.

Class Diagrams for the Profile

Figure 1 through Figure 17 present the UML class diagrams generated from
Enterprise Architect 2. These diagrams provide an essential roadmap
for understanding:

	How to ingest CIM XML from various sources into the database

	How to generate native GridLAB-D input files from the database

For those unfamiliar with UML class diagrams:

	Lines with an arrowhead indicate class inheritance. For example, in
Figure 1, ACLineSegment inherits from Conductor, ConductingEquipment,
Equipment and then PowerSystemResource. ACLineSegment inherits all
attributes and associations from its ancestors (e.g., length), in
addition to its own attributes and ancestors.

	Lines with a diamond indicate composition. For example, in Figure 1,
Substations make up a SubGeographicalRegion, which then
make up a GeographicRegion.

	Lines without a terminating symbol are associations. For example, in
Figure 1, ACLineSegment has (through inheritance) a BaseVoltage,
Location and one or more Terminals.

	Italicized names at the top of each class indicate the ancestor (aka
superclass), in cases where the ancestor does not appear on the
diagram. For example, in Figure 1, PowerSystemResource inherits from
IdentifiedObject.

Please see GridAPPSD_RC4.eap 3 in the repository 4 on GitHub
for the latest updates. The EnterpriseArchitect file includes a
description of each class, attribute and association. It can also
generate HTML documentation of the CIM, with more detail than provided
here.

The diagrammed UML associations have a role and cardinality at each end,
source and target. In practice, only one end of each association is
profiled and implemented in SQL. In some cases, the figure captions
indicate which end, but see the CIM profile for specific definitions, as
described in the object diagram section. Usually, the end with 0..1
multiplicity is implemented instead of the end with 0..* or 1..*
multiplicity.

Nearly every CIM class inherits from IdentifiedObject, from which we use
two attributes:

	mRID is the “master identifier” that must be unique and persistent
among all instances. It’s often used as the RDF resource identifier,
and is often a GUID.

	Name is a human-readable identifier that need not be unique.

Figure 1 shows how equipment is organized into a Feeder. Each piece of
Equipment has Terminals that connect at ConnectivityNodes, which represent
the “buses”. Please note that in GridAPPS-D, we do not use
TopologicalNode at all. In some CIM use cases, primary for transmission,
the TopologicalNode coalesces ConnectivityNodes that are connected by
buswork and closed switches into a single connection point. Instead,
substation buswork models need to explicitly include the low-impedance
branches and switches between ConnectivityNodes. We assume that modern
distribution power flow solvers have no need of TopologicalNode.

[image: imgcim0]

Figure 1: Placement of ACLineSegment into a Feeder. In GridAPPS-D, the
Feeder is the EquipmentContainer for all power system components and the
ConnectivityNodeContainer for all nodes. It’s energized from a
Substation, which is part of a SubGeographicalRegion and
GeographicalRegion for proper context with other CIM models. For
visualization, ACLineSegment can be drawn from a sequence of
PositionPoints associated via Location. The Terminals are free-standing;
two of them will “reverse-associate” to the ACLineSegment as
ConductingEquipment, and each terminal also has one ConnectivityNode. The
Terminal:phases attribute is not used; instead, phases will be defined in
the ConductingEquipment instances. The associated
BaseVoltage:nominalVoltage attribute is important for many of the classes
that don’t have their own rated voltage attributes, for example,
EnergyConsumer.

[image: imgcim1]

Figure 2: There are four different ways to specify ACLineSegment
impedances. In all cases, Conductor:length is required. The first way is
to specify the individual ACLineSegment attributes, which are sequence
impedances and admittances, leaving PerLengthImpedance null. The second
way is to specify the same attributes on an associated
PerLengthSequenceImpedance, in which case the ACLineSegment attributes
should be null. The third way is to associate a PerLengthPhaseImpedance,
leaving the ACLineSegment attributes null. Only conductorCount from 1 to
3 is supported, and there will be 1, 3 or 6 reverse-associated
PhaseImpedanceData instances that define the lower triangle of the Z and Y
matrices per unit length. The row and column attributes must agree with
ACLineSegmentPhase:sequenceNumber. The fourth way to specify impedance is
by wire/cable and spacing data, by association to WireSpacingInfo and
WireInfo. If there
are ACLineSegmentPhase instances reverse-associated to the ACLineSegment,
then per-phase modeling applies. There are several use cases for
ACLineSegmentPhase: 1) single-phase or two-phase primary, 2) low-voltage
secondary using phases s1 and s2, 3) associated WireInfo data where the
WireSpacingInfo association exists, 4) assign specific phases to the
matrix rows and columns in PerLengthPhaseImpedance. It is the
application’s responsibility to propagate phasing through terminals to
other components, and to identify any miswiring. (Note: this profile does
not use WireAssemblyInfo, nor the fromPhase and toPhase attributes of
PhaseImpedanceData.)

[image: imgcim2]

Figure 3: The EnergySource is balanced three-phase, balanced two-phase or
single-phase Thevenin source. GridAPPS-D use a three-phase EnergySource
to represent the transmission system. See Figures 13-14 for DER modeling.
The EnergyConsumer is a ZIP load, possibly unbalanced, with an associated
LoadResponse instance defining the ZIP coefficients. For three-phase
delta loads, the phaseConnection is D and the three reverse-associated
EnergyConsumerPhase instances will have phase=A for the AB load, phase=B
for the BC load and phase=C for the AC load. A three-phase wye load may
have either Y or Yn for the phaseConnection. Single-phase and two-phase
loads, including secondary loads, should have phaseConnection=I (for
individual).

[image: imgcim3]

Figure 4: There are eight different kinds of Switch supported in the CIM,
and all of them have zero impedance. They would all behave the same in
power flow analysis, and all would require many more attributes than are
defined in CIM to support protection analysis. The use cases for
SwitchPhase include 1) single-phase, two-phase and secondary switches, 2)
one or two conductors open in a three-phase switch or 3) transpositions,
in which case phaseSide1 and phaseSide2 would be different. RatedCurrent
may different among the phases, e.g., individual fuses on the same pole
may have different ratings.

[image: imgcim4]

Figure 5: On the left, LinearShuntCompensator and
LinearShuntCompensatorPhase define capacitor banks, in a way very similar
to EnergyConsumer in Figure 3. The kVAR ratings must be converted to
susceptance based on the nominal voltage, nomU. Note that aVRDelay is
really a capacitor control parameter, to be used in conjunction with
RegulatingControl on the right-hand side. The RegulatingControl
associates to the controlled capacitor bank via RegulatingCondEq, and to
the monitored location via Terminal. There is no support for a PT or CT
ratio, so targetDeadband and targetValue have to be in primary volts,
amps, vars, etc. Capacitor banks may _respond_ to any of the
RegulatingControlModeKind choices, but it’s not expected that capacitor
switching will successfully regulate to the targetValue.

[image: imgcim5]

Figure 6: PowerTransformers may be modeled with or without tanks, and in
both cases vectorGroup should be specified according to IEC transformer
standards (e.g., Dy1 for many substation transformers). The case without
tanks is most suitable for balanced three-phase transformers that won’t
reference catalog data; any other case should use tank-level modeling. In
the tankless case, each winding will have a PowerTransformerEnd that
associates to both a Terminal and a BaseVoltage, and the parent
PowerTransformer. The impedance and admittance parameters are defined by
reverse-associated TransformerMeshImpedance between each pair of windings,
and a reverse-associated TransformerCoreAdmittance for one winding. The
units for these are ohms and siemens based on the winding voltage, rather
than per-unit. WindingConnection is similar to PhaseShuntConnectionKind,
adding Z and Zn for zig-zag connections and A for autotranformers. If the
transformer is unbalanced in any way, then TransformerTankEnd is used
instead of PowerTransformerEnd, and then one or more TransformerTanks may
be used in the parent PowerTransformer. Some of the use cases are 1)
center-tapped secondary, 2) open-delta and 3) EHV transformer banks.
Tank-level modeling is also required if using catalog data, as described
with Figure 9. (TransformerStarImpedance and several PowerTransformer
attributes are not used. Star impedance attributes on PowerTransformerEnd
and magnetic saturation attributes on TransformerEnd are not used.)

[image: imgcim6]

Figure 7: A RatioTapChanger can represent a transformer tap changer on the
associated TransformerEnd. The RatioTapChanger has some parameters
defined in a direct-associated TapChangerControl, which inherits from
RegulatingControl some of the same attributes used in capacitor controls
(Figure 5). Therefore, a line voltage regulator in CIM includes a
PowerTransformer, a RatioTapChanger, and a TapChangerControl. The CT and
PT parameters of a voltage regulator can only be described via the
AssetInfo mechanism, described with Figure 8. The RegulationControl.mode
must be voltage. (Note: RegulationSchedule, RatioTapChangerTable and
PhaseTapChanger are not used.)

[image: imgcim7]

Figure 8: Many distribution software packages use the concept of catalog
data, aka library data, especially for lines and transformers. We use the
AssetInfo package to implement this in CIM. Here, the TapChangerInfo
class includes the CT rating, CT ratio and PT ratio parameters needed for
line drop compensator settings in voltage regulators. Catalog data is a
one-to-many relationship. In this case, many TapChangers can share the
same TapChangerInfo data, which saves space and provides consistency.
Older versions of CIM had many-to-many catalog relationships, but now only
one AssetDataSheet may be associated per Equipment. (Note: many datasheet
attributes are not shown here and not yet used in GridAPPS-D).

[image: imgcim8]

Figure 9: The catalog mechanism for transformers will associate a
TransformerTank (Figure 6) with TransformerTankInfo (here), via the
AssetDataSheet mechanism described in Figure 8. The PowerTransformerInfo
collects TransformerTankInfo by reverse association, but it does not link
with PowerTransformer. In other words, the physical tanks are cataloged
because transformer testing is done on tanks. One possible use for
PowerTransformerInfo is to help organize the catalog. It’s important
that TransformerEndInfo:endNumber (here) properly match the
TransformerEnd:endNumber (Figure 6). The shunt admittances are defined by
NoLoadTest on a winding / end, usually just one such test. The impedances
are defined by a set of ShortCircuitTests; one winding / end will be
energized, and one or more of the others will be grounded in these tests.
(OpenCircuitTest is not used, nor are the current, power and voltage
attributes of ShortCircuitTest).

[image: imgcim9]

Figure 10: The catalog / library mechanism for ACLineSegment will have a
WireSpacingInfo associated as in Figure 9. This will indicate whether the
line is overhead or underground. phaseWireCount and phaseWireSpacing
define optional bundling, so these will be 1 and 0 for distribution. The
number of phase and neutral conductors is actually defined by the number
of reverse-associated WirePosition instances. For example, a three-phase
line with neutral would have four of them, sequenceNumber from 1 to 4.
Each WirePosition’s phase is determined by the ACLineSegmentPhase with
matching sequenceNumber, i.e., the phases need not be numbered in any
particular order. On the left-hand side, concrete classes
OverheadWireInfo, TapeShieldCableInfo and ConcentricNeutralCableInfo may
be associated to ACLineSegmentPhase. It’s the application’s
responsibility to calculate impedances from this data. In particular,
soil resistivity and dielectric constants are not included in the CIM.
Typical dielectric constant values might be defined for each
WireInsulationKind.

[image: imgcim10]

Figure 11: The CIM state variables package was designed to report power
flow solution values on the distribution system. It could also report
state estimator solutions as a special case of power flow solutions.
Voltages are measured on ConnectivityNodes (i.e., not TopologicalNodes),
power flows are measured at Terminals into the ConductingEquipment, step
positions are measured on TapChangers, status is measured on
ConductingEquipment, and on/off state is measured on ShuntCompensators for
Switches. The “injections” have been included here, but there may not
be a use case for them in distribution. On the other hand, solution
values for current are very common in distribution system applications.
These should be represented as SvPowerFlow values at the solved SvVoltage.

[image: imgmeas]

Figure 12: Measurements are defined in the Meas package. They differ from
the state variables package, in that the values are measured here and not
calculated or estimated. Each Measurement is associated to a
PowerSystemResource, and in GridAPPS-D for now, also a Terminal that
belongs to the same PowerSystemResource. (Non-electrical measurements,
for example weather, would not have the Terminal). The measurementType is
a string code from IEC 61850, with PNV, VA, A and POS currently supported.
The Measurement has a name, mRID, and phases. In GridAPPS-D, each phase
is measured individually so multi-phase codes like ABC should not be used.
Pos measurements will be Discrete, for such things as tap position, switch
position, or capacitor bank position. The others will be Analog, with
magnitude and optional angle in degrees. Each MeasurementValue will have
a timeStamp and mRID inherited from IdentifiedObject, so the values can be
traced. (Note: IOPoint is a placeholder class with no attributes,
inherting from IdentifiedObject. Further, it’s acceptable to supply an
empty or short non-unique name for each MeasurementValue.)

[image: imginverters]

Figure 13: Power Electronics attributes are the minimum needed to support
a time series power flow solution. For simple short-circuit calculations,
maxIFault is provided as the inverter fault contribution in per-unit of
rated current. When PowerElectronicsConnectionPhase is not present, the
inverter is assumed to be balanced three-phase. The type of associated
PowerElectronicsUnit determines whether the inverter is for solar or
storage (wind is not currently used in GridAPPS-D). If the inverter
employs a SmartInverterMode of voltVar, voltWatt or loadFollowing (storage
only), then a Terminal should be associated through RegulatingControl,
especially for loadFollowing. If the inverter will regulate its own
Terminal, then the explicit Terminal association may not be needed.
However, there are more attributes needed in CIM to define smart inverter
functions. This might be done in harmonization with IEC 61850, which does
define smart inverter function parameters. The existing CIM
RegulatingControl attributes are probably not applicable, so they have
been hidden in Figure 13.

[image: imgmachines]

Figure 14: Rotating Machines are three-phase balanced, either synchronous
or asynchronous. The SynchronousMachine ikk attribute and most of the
AsynchronousMachine attributes are provided to support short-circuit
calculations according to IEC 60909. The GeneratingUnit class is needed
to define minimum and maximum power limits. In the full CIM,
GeneratingUnit is an abstract class with descendants HydroUnit,
ThermalUnit and NuclearUnit, but in GridAPPS-D we don’t currently
distinguish between those types. If the SynchronousMachine regulates
voltage, then the RegulatingControl (with attribute values) and Terminal
associations need to be provided.

[image: imgcim1547]

Figure 15: The IEEE1547Info class describes nameplate information,
including ratings, which shall be available for DER that complies
with IEEE Std. 1547-2018. Both inverters (Figure 13) and rotating
machines (Figure 14) can reference this class for nameplate information
in the network model. Preliminary values for these attributes would be
available from an application to interconnect DER, and then updated as
the project moves through commissioning to operational status.

[image: imghouses]

Figure 16: Houses are used to create 2nd-order thermal models of the
building envelope, with internal ThermostatController and heating/cooling
systems. The purpose is to introduce realistic load stochastic behaviors
that are independent from and faster-moving than data typically available
to an electric utility. To enable repeatable simulations, the House data
structures have been defined here as a CIM extension. The House must be
attached to one EnergyConsumer that incorporates other end-use loads, and
connects to the distribution system. The House attributes are the minimum
necessary to define a GridLAB-D house model, and during simulation, the
house heating/cooling system will add to the ServicePanel loads.
Therefore, the application should reduce the nominal value of
EnergyConsumer.p in order to “make room” for the heating/cooling load that
will switch on and off, responding to the ThermostatController and the
weather. The ThermostatController contains the minimum attributes needed
for PNNL’s double-ramp, double-auction market mechanism. In the future,
this will be harmonized with CIM market structures in the 62235 package.

[image: imgfaults]

Figure 17: Faults include open conductors and short circuits (optionally
including ground) on any combination of phases. In GridAPPS-D, every
Fault will be an EquipmentFault associated to a Terminal (i.e., we are not
using LineFault, which requires a lengthFromTerminal1 attribute). The
occurredDateTime supports the scripting of fault sequences. The
stopDateTime is optional. If provided, it will be the time at which a
sustained fault has been repaired. If not provided, then the fault is
temporary and will clear itself as soon as it’s been deenergized.

Typical Queries

These queries focus on requirements of the first volt-var application.

	Capacitors (Figure 5, Figure 18, Figure 19, Figure 20)

	Create a list of capacitors with bus name (Connectivity Node in
Figure 1), kVAR per phase, control mode, target value and target
deadband

	For a selected capacitor, update the control mode, target value,
and target deadband

	Regulators (Figure 7, Figure 8, Figure 18, Figure 35)

	List all transformers that have a tap changer attached, along with
their bus names and kVA sizes

	Given a transformer that has a tap changer attached, list or
update initialDelay, step, subsequentDelay, mode, targetDeadband,
targetValue, limitVoltage, lineDropCompensation, lineDropR,
lineDropX, reverseLineDropR and reverseLineDropX

	Transformers (Figure 6, Figure 9)

	Given a bus name or load (Figure 3), find the transformer serving
it (Figure 22, Figure 25)

	Find the substation transformer, defined as the largest
transformer (by kVA size and or highest voltage rating)

	List the transformer catalog (Figure 9, Figure 26) with name,
highest ratedS, list of winding ratedU in descending order, vector
group (https://en.wikipedia.org/wiki/Vector_group used with
connectionKind and phaseAngleClock), and percent impedance

	List the same information as in item c, but for transformers
(Figure 6) and also retrieving their bus names. Note that a
transformer can be defined in three ways

	Without tanks, for three-phase, multi-winding, balanced
transformers (Figure 22 and Figure 23).

	With tanks along with TransformerTankInfo (Figure 9) from a
catalog of “transformer codes”, which may describe balanced
or unbalanced transformers. See Figure 25 and Figure 26.

	With tanks for unbalanced transformers, and
TransformerTankInfo created on-the-fly. See Figure 25 and
Figure 26.

	Given a transformer (Figure 6), update it to use a different
catalog entry (TransformerTankInfo in Figure 9)

	Lines (Figure 2, Figure 10, Figure 18)

	List the line and cable catalog entries that meet a minimum
ratedCurrent and specific WireUsageKind. For cables, be able to
specify tape shield vs. concentric neutral, the
WireInsulationKind, and a minimum insulationThickness. (Figure 33)

	Given a line segment (Figure 2) update to use a different linecode
(Figure 10, Figure 32)

	Given a bus name, list the ACLineSegments connected to the bus,
along with the length, total r, total x, and phases used. There
are four cases as noted in the caption of Figure 2, and see Figure
29 through Figure 32.

	Given a bus name, list the set of ACLineSegments (or
PowerTransformers and Switches) completing a path from it back to
the EnergySource (Figure 3). Normally, the applications have to
build a graph structure in memory to do this, so it would be very
helpful if a graph/semantic database can do this.

	Voltage and other measurements (Figure 1, Figure 11)

	Given a bus, attach a voltage solution point (SvVoltage, Figure
36)

	List all voltage solution points and their buses, and for each
bus, list the phases actually present

	For tap changer position (SvTapStep, Figure 37), attach and list
values as in items a and b

	For capacitor switch status (SvShuntCompensatorSections, Figure
38), attach and list values as in items a and b

	Loads (Figure 3, Figure 34)

	Given a bus name, list and total all of the loads connected by
phase, showing the total p and q, and the composite ZIP
coefficients

	Switching (Figure 4, Figure 28)

	Given a bus name, trace back to the EnergySource and list the
switches encountered, grouped by type (i.e. the leaf class in
Figure 4). Also include the ratedCurrent, breakingCapacity if
applicable, and open/close status. If SwitchPhase is used, show
the phasing on each side and the open/close status of each phase.

	Given switch, toggle its open/close status.

Object Diagrams for Queries

This section contains UML object diagrams for the purpose of
illustrating how to perform typical queries and updates. For those
unfamiliar with UML object diagrams:

	Each object will be an instance of a class, and more than one
instance of a class can appear on the diagram. For example, Figure 18
shows two ConnectivityNode instances, one for each end of a
ConductingEquipment.

	The object name (if specified and important) appears before the colon
(:) above the line, while the UML class appears after the colon.
Every object in CIM will have a unique ID, and a name (not
necessarily unique), even if not shown here.

	Some objects may be shown with run-time state below the line. These
are attribute value assignments, drawn from those available in the
UML class or one of the class ancestors. The object may have more
attribute assignments, but only those directly relevant to the figure
captions are shown in the diagrams of this section.

	Object associations are shown with solid lines, role names, and
multiplicities similar to the UML class diagrams. One important
difference is that only one way of navigating a particular
association will be defined in the profile. For example, the lower
left corner of Figure 1 shows a two-way link between Terminal
and ConnectivityNode in the UML class diagram. However, Figure 18
shows that only one direction has been defined in the profile. Each
Terminal has a direct reference to its corresponding
ConnectivityNode. In order to navigate the reverse direction from
ConnectivityNode to Terminal, some type of conditional query
would be required. In other words, the object diagrams in this
section indicate which associations can actually be used in
GridAPPS-D.

	In some cases, the multiplicities on the object diagrams are more
restrictive than on the class diagrams, due to profiling. For
example, EnergyConsumer and ShuntCompensator must have exactly one Terminal, not 1..*.

The object diagrams are intended to help you break down the CIM queries
into common sub-tasks. For example, query #1 works with capacitors. It’s
always possible to select a capacitor (aka LinearShuntCompensator) by
name. In order to find the capacitor at a bus, say “bus1” in Figure 12,
one would retrieve all Terminals having a ConnectivityNode reference to
“bus1”. Each of those Terminals will have a ConductingEquipment
reference, and you want the Terminal(s) for which that reference is
actually a LinearShuntCompensator. In this CIM profile, only leaf
classes (e.g. LinearShuntCompensator) will be instantiated, never base
classes like ConductingEquipment. There can be more than one capacitor
at a bus, more than one load, more than one line, etc.

[image: imgcim11]

Figure 18: In order to traverse buses and components, begin with a
ConnectivityNode (left). Collect all terminals referencing that
ConnectivityNode; each Terminal will have one-to-one association with
ConductingEquipment, of which there are many subclasses. In this example,
the ConductingEquipment has a second terminal referencing the
ConnectivityNode called bus2. There are applications for both Depth-First
Search (DFS) and Bread-First Search (BFS) traversals. Note 1: the
Terminals have names, but these are not useful. In some cases, the
Terminal sequenceNumber attribute is needed to clearly identify ends of a
switch. Note 2: in earlier versions of GridAPPS-D, we had one-to-one
association of TopologicalNode and ConnectivityNode, but these are no
longer necessary. Note 3: transformers are subclasses of
ConductingEquipment, but we traverse connectivity via transformer ends
(aka windings). This is illustrated later.

In order to find capacitors (or anything else) associated with a
particular “feeder”, Figure 19 shows that you would query for objects
having EquipmentContainer reference to the Feeder object. In GridAPPS-D,
we only use Feeder for equipment container in CIM, and this would
correspond to one entire GridLAB-D model. There is also a BaseVoltage
reference that will have the system nominal voltage for the capacitor’s
location. However, in order to work with equipment ratings you should use
ratedS and ratedU attributes where they exist, particularly for capacitors
and transformers. These attributes are often slightly different than the
“system voltage”. Most of the attribute units in CIM are SI, with a
few exceptions like percent and kW values on transformer test sheets
(i.e., CIM represents the test sheet, not the equipment).

[image: imgcim12]

Figure 19: All conducting equipment lies within an EquipmentContainer,
which in GridAPPS-D, will be a Feeder object named after the feeder. It
also has reference to a BaseVoltage, which is typically one of the ANSI
preferred system voltages. Power transformers are a little different, in
that each winding (called “end” in CIM) has reference to a BaseVoltage.
Note that equipment ratings come from the vendor, and in this case
ratedU is slightly different from nominalVoltage. All conducting
equipment has a Location, which contains XY coordinates (see Figure 1).
The Location is useful for visualization, but is not essential for a
power flow model.

Completing the discussion of capacitors, Figure 20 provides two examples
for single-phase, and three-phase with local voltage control. As shunt
elements, capacitors have only one Terminal instance. Loads and sources
have one terminal, lines and switches have two terminals, and
transformers have two or more terminals. Examples of all those are shown
later. In Figure 20, the capacitor’s kVAR rating will be based on its
nameplate ratedU, not the system’s nominalVoltage.

Often, the question will arise “what phases exist at this bus?”.There
is no phasing explicitly associated with a ConnectivityNode, and we don’t
use the Terminal phases attribute in preference to the “wires phase model”
classes. For example, thephases at a line segment terminal can always be
obtained from the ACLineSegmentPhase instances. To answer the question
about bus phasing, we’d have to query for all ConductingEquipment
instances having Terminals connected to that bus, as in Figure 18. The
types of ConductingEquipment that may have individual phases include
LinearShuntCompensators (Figure 20), ACLineSegments, PowerTransformers
(via TransformerEnds), EnergyConsumers, EnergySources,
PowerElectronicsConnections, and descendants of Switch. If the
ConductingEquipment has such individual phases, then add those phases to
list of phases existing at the bus. If there are no individual phases,
then ABC all exist at the bus. Note this doesn’t guarantee that all
wiring to the bus is correct; for example, you could still have a
three-phase load served by only a two-phase line, which would be a
modeling error. In Figure 20, we’d find phase C at Bus611 and phases
ABC at Bus675. Elsewhere in the model, there should be ACLineSegments,
PowerTransformers or Switch descendants delivering phase C to Bus611, all
three phases ABC to Bus675.

[image: imgcim13]

Figure 20: Capacitors are called LinearShuntCompensator in CIM. On the
left, a 100 kVAR, 2400 V single-phase bank is shown on phase C at bus
611. bPerSection = 100e3 / 2400^2 [S], and the bPerSection on
LinearShuntCompensatorPhase predominates; these values can differ among
phases if there is more than one phase present. On the right, a balanced
three-phase capacitor is shown at bus 675, rated 300 kVAR and 4160 V
line-to-line. We know it’s balanced three phase from the absence of
associated LinearShuntCompensatorPhase objects. bPerSection = 300e4 /
4160^2 [S]. This three-phase bank has a voltage controller attached with
2400 V setpoint and 240 V deadband, meaning the capacitor switches ON if
the voltage drops below 2280 V and OFF if the voltage rises above 2520
V. These voltages have to be monitored line-to-neutral in CIM, with no
VT ratio. In this case, the control monitors the same Terminal that the
capacitor is connected to, but a different conducting equipment’s
Terminal could be used. The control delay is called aVRDelay in CIM, and
it’s an attribute of the LinearShuntCompensator instead of the
RegulatingControl. It corresponds to “dwell time” in GridLAB-D.

Figure 21 through Figure 26 illustrate the transformer query tasks, plus
Figure 35 for attached voltage regulators. The autotransformer example is
rated 500/345/13.8 kV and 500/500/50 MVA, for a transmission system. The
short circuit test values are ZHL=10%, ZHT=25% and
ZLT=30%. The no-load test values are 0.05% exciting current
and 0.025% no-load losses. These convert to r, x, g and b in SI units,
from ZLT= Urated* Urated/ Srated, where Sratedand Uratedare based on
the “from” winding (aka end). The same base quantities would be used
to convert r, x, g and b back to per-unit or percent. The open wye –
open delta impedances are already represented in percent or kW, from the
test reports.

[image: imgcim14]

Figure 21: Autotransformer with delta tertiary winding acts like a
wye-wye transformer with smaller delta tertiary. The vector group would
be Yynd1 or Yyd1. For analyses other than power flow, it can be
represented more accurately as the physical series (n1) – common (n2)
connection, with a vector group Yand1. In either case, it’s a
three-winding transformer.

[image: imgcim15]

Figure 22: A three-winding autotransformer is represented in CIM as a
PowerTransformer with three PowerTransformerEnds, because it’s balanced
and three-phase. The three Terminals have direct ConductingEquipment
references to the PowerTransformer, so you can find it from bus1, busX or
busY. However, each PowerTransformerEnd has a back-reference to the same
Terminal, and it’s own reference to BaseVoltage (Figure 13); that’s
how you link the matching buses and windings, which must have compatible
voltages. Terminals have a sequenceNumber, but the PowerTransformerEnd’s
endNumber is what establishes correct linkage to catalog data as discussed
later. By convention, ends with highest ratedU have the lowest endNumber,
and endNumber establishes that end’s place in the vectorGroup.

[image: imgcim16]

Figure 23: Power transformer impedances correspond to the three-winding
autotransformer example of Figure 15 and Figure 16. There are three
instances of TransformerMeshImpedance connected pair-wise between the
three windings / ends. The x and r values are in Ohms referred to the
end with highest ratedU in that pair. There is just one
TransformerCoreAdmittance, usually attached to the end with lowest
ratedU, and the attribute values are Siemens referred to that end’s
ratedU.

[image: imgcim17]

Figure 24: Open wye - open delta transformer banks are used to provide
inexpensive three-phase service to loads, by using only two single-phase
transformers. This is an unbalanced transformer, and as such it requires
tank modeling in CIM. Physically, the two transformers would be in
separate tanks. Note that Tank A is similar to the residential
center-tapped secondary transformer, except the CIM phases for the
secondary would include s1 and s2 instead of A and B.

[image: imgcim18]

Figure 25: Unbalanced PowerTransformer instances comprise one or more
TransformerTanks, which own the TransformerTankEnds. Through the ends,
wdgHi collects phases ABN and busLo collects phases ABCN. Typically,
phase C will also exist at wdgHi, but this transformer doesn’t require
it. We still assign vectorGroup Yd1 to the supervising PowerTransformer,
as this is the typical case. The modeler should determine that. By
comparison to Figure 24, there is a possible ambiguity in how endA3
represents the polarity dot at the neutral end of Wdg A3. An earlier CIM
proposal would have assigned phaseAngleClock = 6 on wdgA3, but the
attribute was removed from TransformerTankEnd. It may not be possible to
infer the correct winding polarities from the vectorGroup in all cases.
There is a phaseAngleClock attribute on TransformerTankEndInfo, but that
represents a shelf state of the tank, not necessarily connections in the
field. Therefore, it may be necessary to propose the phaseAngleClock
attribute for TransformerTankEnd.

[image: imgcim19]

Figure 26: This Asset catalog example defines the impedances for Tank B of
the open wye – open delta bank. This is a 50 kVA, 7200 / 240 V
single-phase transformer. It has 1% exciting current and 0.4 kW loss in
the no-load test, plus 2.1% reactance and 0.5 kW loss in the short-circuit
test. A multi-winding transformer could have more than one grounded end
in a short-circuit test, but this is not common. The catalog data is
linked with an AssetDataSheet association shown to the left. Furthermore,
endNumber on the TransformerEndInfo has to match endNumber on the
TransformerTankEnd instances associated to Tank B. Instead of catalog
information, we could have used mesh impedance and core admittance as in
Figure 18, but we’d have to convert the test sheets to SI units and we
could not share data with other TransformerTank instances, both of which
are inconvenient.

Figure 27 through Figure 33 illustrate the query tasks for
ACLineSegments and Switches, which will define most of the circuit’s
connectivity. The example sequence impedances were based on Z1
= 0.1 + j0.8 Ω/mile and Z0 = 0.5 + j2.0 Ω /mile. For
distribution systems, use of the shared catalog data is more common,
either pre-calculated matrix (Figure 31) or spacing and conductor
(Figure 32 and Figure 33). In both cases, impedance calculation is
outside the scope of CIM (e.g. GridLAB-D internally calculates line
impedance from spacing and conductor data).

[image: imgcim20]

Figure 27: An ACLineSegment with two phases, A and C. If there are no
ACLineSegmentPhase instances that associate to it, assume it’s a
three-phase ACLineSegment. This adds phases AC to bus671 and bus684.

[image: imgcim21]

Figure 28: This 50-Amp load break switch connects phases AC between
busLeft and busRight. Without associated SwitchPhase instances, it would
be a three-phase switch. This switch also transposes the phases; A on
side 1 connects with C on side 2, while C on side 1 connects with A on
side 2. This is the only way of transposing phases in CIM. Note the
Terminal.sequenceNumber is essential to differentiate phaseSide1 from
phaseSide2. Also note that LoadBreakSwitch has the open attribute
inherited from Switch, while SwitchPhase has the converse closed
attribute. In order to open and close the switch, these attributes would
be toggled appropriately. See Figure 4 for other types of switch.

[image: imgcim22]

Figure 29: This is a balanced three-phase ACLineSegment between bus632
and bus671, 2000 feet or 609.6 m long. Sequence impedances are specified
in ohms, as attributes on the ACLineSegment. This is a typical pattern
for transmission lines, but not distribution lines.

[image: imgcim23]

Figure 30: The impedances from Figure 24 were divided by 609.6 m, to
obtain ohms per meter for seqCat1. Utilities often call this a “line
code”, and other ACLineSegment instances can share the same
PerLengthImpedance. A model imported into the CIM could have many line
codes, not all of them used in that particular model. However, those
line codes should be available for updates by reassigning
PerLengthImpedance.

[image: imgcim24]

Figure 31: This is a two-phase line segment from bus671 to bus684 using a
line code, which has been specified using a 2x2 symmetric matrix of phase
impedances per meter, instead of sequence impedances per meter. This is
more common for distribution than either Figure 29 or Figure 30. It’s
distinguished from Figure 30 by the fact that PerLengthImpedance
references an instance of PerLengthPhaseImpedance, not
PerLengthSequenceImpedance. The conductorCount attribute tells us it’s
a 2x2 matrix, which will have two unique diagonal elements and one
distinct off-diagonal element. The elements are provided in three
PhaseImpedanceData instances, which are named here for clarity as Z11, Z12
and Z22. However, only the row and column attributes are meaningful to
identify the matrix element. In this example, Z11 and Z22 are slightly
different. In order to swap phases A and C, we would swap the
sequenceNumber values on the ACLineSegmentPhase instaces. As presented
here, mtx604 can apply to phasing AB, BC or AC.

[image: imgcim25]

Figure 32: The two-phase ACLineSegment impedance defined by sharing wire
and spacing data from a catalog. Each ACLineSegmentPhase links to an
OverheadWireInfo instance via the AssetDataSheet association. If the
neutral (N) is present, we have to specify its wire information for a
correct impedance calculation. In this case, ACN all use the same wire
type, but they can be different, especially for the neutral. Similarly,
the WireSpacingInfo associates to the ACLineSegment itself via a
AssetDataSheet assocation.

[image: imgcim26]

Figure 33: The upper five instances define catalog attributes for Figure
27. The WirePosition xCoord and yCoord units are meters, not feet, and
they include sequenceNumber assignments to match ACLineSegmentPhase
sequenceNumbers. The phaseWireSpacing and phaseWireCount attributes are
for sub-conductor bundling on EHV and UHV transmission lines; bundling is
not used on distribution. The number of WirePositions that reference
spc505acn determine how many wires need to be assigned. Eliminating the
neutral, this would produce a 2x2 phase impedance matrix. Although the
pattern appears general enough to support multiple neutrals and
transmission overbuild, the CIM doesn’t actually have the required
phasing codes. When isCable is true, the WirePosition yCoord values would
be negative for underground depth. To find overhead wires of a certain
size or ampacity, we can put query conditions on the ratedCurrent
attribute. To find underground conductors, we query the
ConcentricNeutralCableInfo or TapeShieldCableInfo instead of
OverheadWireInfo. All three inherit the ratedCurrent attribute from
WireInfo. Cables don’t yet have a voltage rating in CIM AssetInfo, but
you can use insulationThickness as a proxy for voltage rating in queries.
Here, 5.588 mm corresponds to 220 mils, which is a common size for
distribution.

Figure 34 illustrates the loads, which are called EnergyConsumer in CIM.
The houses and appliances from GridLAB-D are not supported in CIM. Only
ZIP loads can be represented. Further, any load schedules would have to
be defined outside of CIM. Assume that the CIM loads are peak values.

Figure 35 illustrates the voltage regulator function. Note that
GridLAB-D combines the regulator and transformer functions, while CIM
separates them. Also, the CIM provides voltage and current transducer
ratios for tap changer controls, but not for capacitor controls.

Figure 36 through Figure 38 illustrate how solved values can be attached
to buses or other components.

[image: imgcim27]

Figure 34: The three-phase load (aka EnergyConsumer) on bus671 is balanced
and connected in delta. It has no ratedU attribute, so use the referenced
BaseVoltage (Figure 19) if a voltage level is required. On the right, a
three-phase wye-connected unbalanced load on bus675 is indicated by the
presence of three EnergyConsumerPhase instances referencing
UnbalancedLoad. For consistency in searches and visualization,
UnbalancedLoad.p should be the sum of the three phase values, and likewise
for UnbalancedLoad.q. In power flow solutions, the individual phase
values would be used. Both loads share the same LoadResponse instance,
which defines a constant power characteristic for both P and Q, because
the percentages for constant impedance and constant current are all zero.
The two other most commonly used LoadResponseCharacteristics have 100%
constant current, and 100% constant impedance. Any combination can be
used, and the units don’t have to be percent (i.e., use a summation to
determine the denominator for normalization).

[image: imgcim28]

Figure 35: In CIM, the voltage regulator function is separated from the
tap-changing transformer. The IEEE 13-bus system has a bank of three
independent single-phase regulators at busRG60, and this example shows a
RatioTapChanger attached to the regulator on phase A, represented by the
TransformerTankEnd having phases=A or phases=AN. See Figure 25 for a more
complete picture of TransformerTankEnds, or Figure 22 for a more complete
picture of PowerTransformerEnds. Either one can be the TransformerEnd in
this figure, but with a PowerTransformerEnd, all three phase taps would
change in unison (i.e. they are “ganged”). Most regulator attributes
of interest are found in RatioTapChanger or TapChangerControl instances.
However, we need the AssetDataSheet mechanism to specify ctRatio, ptRatio
and ctRating values. These are inherent to the equipment, whereas the
attributes of RatioTapChanger and TapChangerControl are all settings per
instance. For the IEEE 13-bus example, there would be separate
RatioTapChanger and TapChangerControl instances for phases B and C.

[image: imgcim29]

Figure 36: In this profile, a solved voltage value attaches to
ConnectivityNode in GridAPPS-D. Positive sequence or phase A is implied,
unless the phase attribute is specified.

[image: imgcim30]

Figure 37: SvTapStep links to a TransformerEnd indirectly, through the
RatioTapChanger. There is no phasing ambiguity because
TransformerTankEnd has its phases attribute, while PowerTransformerEnd
always includes ABC. Units for SvTapStep.position are per-unit.

[image: imgcim31]

Figure 38: The on/off value for a capacitor bank attaches directly to
LinearShuntCompensator. If the phase attribute is not specified, then
this value applies to all phases.

Metering Relationship to Loads in the CIM

Figure 39 shows how emulated trouble calls will be connected to loads
(EnergyConsumers) for test scenarios. The TroubleTicket is associated
with Customer, CustomerAgreement and UsagePoint, which can then be
associated to Equipment or any of its descendants. Figure 39 shows the
linkage to EnergyConsumer or EnergySource, but it can also be linked to
RegulatingCondEq (e.g., rotating machine and inverter-based DER). There
are many attributes of Customer, CustomerAgreement and UsagePoint that are
not yet used in GridAPPS-D, and not shown in Figure 40. These would be
important for future metering and customer management applications. For
now, the only TroubleTicket attributes to be used are dateTimeOfReport,
resolvedDateTime and troubleKind. The PNNLTroubleCallKind was added
because the existing troubleCode attribute is a non-standardized String.
However, the comment attribute could be used for optional comments on
each TroubleTicket.

[image: imgcim33]

Figure 39: Trouble Calls route through Metering Usage Points to EnergyConsumers

CIM Enhancements for RC4

Possible CIM enhancements:

	Different on and off delay parameters for RegulatingControl (Figure
5)

	Current ratings for PerLengthImpedance (Figure 2). At present, some
users rely on associated WireInfo, ignoring all attributes except
currentRating.

	Transducers for RegulatingControl (Figure 5)

	Dielectric constant and soil resistivity (Figure 10)

	Clock angles for TransformerTankEnd (i.e. move phaseAngleClock from
PowerTransformerEnd to TransformerEnd (Figure 6)

	Add the Fault.stopDateTime attribute

	Single-phase asynchronous and synchronous machines.

CIM Profile in CIMTool

CIMTool was used to develop and test the profile for RC1, because it:

	Generates SQL for the MySQL database definition

	Validates instance files against the profile

The CIMTool developer will not be able to support the tool in future, so
we may use the new Schema Composer feature in Enterprise Architect when
it’s ready for CIM profiling.

In order to view the profile, import the archived Eclipse project
OSPRREYS_CIMTOOL.zip into CIMTool. Please see the CIM tutorial slides
provided by Margaret Goodrich for user instructions.

Four instance files were validated against the profile in CIMTool. In
order to generate them, we use a current version of OpenDSS with the
Export CDPSMcombined command on four IEEE test feeders that come with
OpenDSS:

	~/src/opendss/Test/IEEE13_CDPSM.dss is the IEEE 13-bus test
feeder with per-length phase impedance matrices and a delta tertiary
added to the substation transformer. PV and storage were also added.

	~/src/opendss/Test/IEEE13_Assets.dss is the IEEE 13-bus test
feeder with catalog data for overhead lines, cables and transformers.
Capacitor controls have also been added.

	~/src/opendss/Distrib/IEEETestCases/8500-Node/Master.dss is the
IEEE 8500-node test feeder with balanced secondary loads.

	~/src/opendss/Distrib/IEEETestCases/8500-Node/Master-unbal.dss is
the IEEE 8500-node test feeder with unbalanced secondary loads.

Either the 3rd or 4th feeder will be used for the
volt-var application. The 1st and 2nd feeders are used
to validate more parts of the CIM profile used in RC1. In all four
cases, CIMTool reports only two kinds of validation error:

	Isolated connectivity node: CIMTool expects two or more Terminals
per ConnectivityNode, but dead ended feeder segments will have only
one on the last node. This is not really an error, at least for
distribution systems.

	Minimum cardinality: For TapChangerControl instances, the
inherited RegulatingControl.RegulatingCondEq association is not
specified. This is not really an error, as the association is only
needed for shunt capacitor controls. Figure 40 shows that
RegulatingCondEq was not selected for TapChangerControl in the
profile, so this may reflect a defect in the validation code. Efforts
to circumvent it were not successful.

With these caveats, the profile and instances validate against each
other, for feeder models that solve in OpenDSS.

[image: imgcimtool]

Figure 40: Editing a Profile in CIMTool

Legacy Data Definition Language (DDL) for MySQL

As shown at the top of Figure 40, CIMTool builds RC1.sql to create
tables in a relational database, but the syntax doesn’t match that
required for MySQL. The following manual edits were made:

	Globally change CHAR VARYING(30) to varchar(50) with a blank
space pre-pended before the varchar

	Globally change “ to `

	In foreign keys to enumerations, change the referenced attribute
from mRID to name

	In foreign keys to EquipmentContainer or
ConnectivityNodeContainer, change the referenced table to
Line

	In foreign keys to ShuntCompensator, change the referenced table
to LinearShuntCompensator

	In foreign keys to TapChanger, change the referenced table to
RatioTapChanger.

	The CIM UML incorporates several polymorphic associations, which
can’t be implemented directly in SQL. Base parent class tables were
added for:

	AssetInfo, which can be referenced via the Parent attribute
from ConcentricNeutralCableInfo, TapeShieldCableInfo,
OverheadWireInfo, WireSpacingInfo, TapChangerInfo and
TransformerTankInfo

	TransformerEnd, which can be referenced via the Parent
attribute from PowerTransformerEnd and TransformerTankEnd

	PerLengthImpedance, which can be referenced via the Parent
attribute from PerLengthSequenceImpedance and
PerLengthPhaseImpedance

	Switch, which can be referenced via the SwtParent attribute
from Breaker, Fuse, Sectionaliser, Recloser, Disconnector, Jumper
and LoadBreakSwitch.

	ConductingEquipment, which can be referenced via the Parent
attribute from ACLineSegment, EnergySource, EnergyConsumer,
LinearShuntCompensator, PowerTransformer, and all of the Switch
types.

	The catalog data mechanism in Figure 8 required two new tables, one
for polymorphic associations and another for many-to-many joins:

	PowerSystemResource, which can be referenced via the PSR
attribute from ACLineSegment, ACLineSegmentPhase, RatioTapChanger
and TransformerTank.

	AssetInfoJoin, which references AssetInfo and
PowerSystemResource. This table actually supplants the Asset
class in Figure 8.

	The ShortCircuitTest in Figure 9 has a one-to-many association to
TransformerEndEnfo, and we need to implement the many side by
adding:

	GroundedEndJoin, which references TransformerEndInfo and
ShortCircuitTest.

	The ToTransformerEnd association in Figure 6 is one-to-many, so
CIMTool did not export it to SQL. Rather than create a join table, a
ToTransformerEnd attribute was added to TransformerMeshImpedance.
This supports only one-to-one association, which is justified
because the one-to-many case is very rare, and GridLAB-D cannot
model transformers having the one-to-many association. This
restriction may be removed in future versions having a semantic or
graph database.

Except for the first two items, all of these adjustments arose from
the absence of inheritance or polymorphism in SQL. These adjustments
will make the updates, queries and views more complicated. However,
they allow referential integrity to be enforced, which is one of the
most important reasons to use SQL and relational databases. Other
types of data store could be a more natural fit to the CIM UML, but
they may not have the performance of a relational database.

In GitHub:

	RC1.sql is the manually adjusted SQL export from CIMTool

	LoadRC1.sql will re-create the GridAPPS-D database in MySQL,
incorporate RC1.sql, and finally document the foreign keys. It
should run without error.

	1

	See http://cimug.ucaiug.org/default.aspx and the EPRI CIM Primer at:
http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=000000003002006001

	2

	Suggest “Corporate Edition” from http://www.sparxsystems.com/ for
working with CIM UML. The free CIMTool is still available at
http://wiki.cimtool.org/index.h tml, but support is being phased out.

	3

	OSPRREYS is an older name for GridAPPS-D

	4

	https://github.com/GRIDAPPSD/Powergrid-Models/CIM

Platform UML Diagrams

UML from the Functional Specification

This section presents a selection of GridAPPS-D domain (class) diagrams
to supplement the OSPRREYS Functional Specification document. The
purpose is to enhance understanding of the functional specification, by
providing graphical walkthroughs of some important use cases. The reader
should be familiar with definitions in the functional specification, and
with Universal Modeling Language (UML) diagrams.

GridAPPS-D is organized as a suite of internal function managers, twelve
of them composing the Platform Manager as shown in Figure 1. All
GridAPPS-D functions and interactions are mediated by one (or more) of
these function managers. When running, the GridAPPS-D 413 Platform
Manager will be composed of one (and only one) of each internal manager
numbered 401 – 412. These internal managers work together to accomplish
various GridAPPS-D functions.

[image: uml_image0]

Figure 1: Composition of the GridAPPS-D Platform Manager

Within each class block, some top-level attributes are listed with (-)
signs in the middle division, and some top-level methods are listed with
(+) signs in the lower division. For example, we already know that 401
Distribution Co-Simulator will need component simulators (i.e.
attributes) for buildings (open-source EnergyPlus), communications
(open-source ns-3), and the electric power distribution grid
(open-source GridLAB-D running in a real-time mode). It will also need
at least one method that runs the suite of simulators in a mode
emulating continuous real-time operation. Taking another example, 407
Service Manager also contains an attribute for GridLAB-D to provide
power flow calculations, but run as a service to applications.

As the design evolves, classes in Figure 1 will acquire many more
attributes and methods. The attributes themselves may reference
complicated classes and data structures. Therefore, the UML model will
expand each class into layer and sub-layer diagrams to more clearly show
these evolving details. We can still use the top-level diagrams to make
sure that the major components are in place for the important use cases.

Figure 2 illustrates the case of a user executing an application, in the
role of EF7 from the functional specification. We initially focused on
volt-var optimization (VVO), and then added a more complicated demand
response (DR) application that fits the same basic pattern. As a
prerequisite, some entity has provided both applications to GridAPPS-D
for registration and hosting, in a process detailed later. For now, we
assume the application(s) have been installed and will focus first on
running VVO.

[image: uml_image1]

Figure 2: Executing an application

All user interaction with GridAPPS-D occurs through a command interface,
numbered 202 when the user writes commands to GridAPPS-D, and numbered
102 when the user gets data from GridAPPS-D. To run VVO, the user will
issue 203 Model Configuration Setup and 204 Simulation Configuration
Setup to GridAPPS-D, which then delegates the commands to various
internal function managers (see Figure 1). The 203 Setup will probably
extract the feeder model of interest, set load and weather data, etc.
The 204 Setup will probably tell 401 to run GridLAB-D for a certain time
period, but not to run ns-3 or EnergyPlus. The exact composition of 203
and 204 Setups will be determined later in the design process. In a
process described later, internal functions 405 (Simulation Control
Manager) and 406 (Power System Model Manager) will transform 201, 203
and 204 into 305 and 306, which 401 can then read and run from directly.

When it runs, 401 will generate streams of data that mimic real-time
operation of the system, and these streams pass to the other parts of
GridAPPS-D as 301 Real-time Simulation Data. Some of the data streams
may also output to the user as 101 Real-time Simulation Data. The 310
VVO Application can act on this data to make decisions (e.g. switch
capacitor banks, change regulator taps, change solar inverter settings).
In this process, 310 VVO could invoke power flow calculations in
GridLAB-D via 407 Service Manager, but this is different from the way
401 Co-Simulator runs. The application may use 407 services to explore
alternatives or run contingency analysis, which could change the power
system model, but the 401 real-time simulations always take priority and
always use the “real” model.

When we considered adding the second and more complicated application,
310 DR, the structure of Figure 2 didn’t change very much. The
open-headed diamond symbols indicate that GridAPPS-D can host several
applications, which is UML aggregation. These applications may interact
via the GridAPPS-D command interface, if the applications and their
command sets have been designed for it. For example, the DR application
may use VVO to check and mitigate voltage limits.

A DR application is more likely than VVO to need EnergyPlus and ns-3 in
the co-simulation. In response, we added those attributes to 401, and
will add supporting attributes to 201, 203 and 204 as the design
evolves. It should also be recognized that more sophisticated VVO
applications might incorporate communications (ns-3) if available.

Figure 3 depicts the process of managing power system models, including
the schema and repository within 201 Distribution System Model. Because
it’s based on standards (e.g. IEC 61968) and open-source tools (e.g.
MySQL), the model can be created and maintained from outside GridAPPS-D,
directly by EF 21, the Model Manager. This is shown at the top of Figure
3. This process is out of GridAPPS-D scope but within project scope, and
it can leverage existing tools like Cimphony, Cimdesk, EA, etc.

For use by and within GridAPPS-D, all model configuration commands will
pass from EF21 through the command interface to function 406, the Power
System Model Manager. This function reads the base power system model
data from 201, and configures it into a three-phase load flow model for
solution in 106/306. The Distribution Co-Simulator uses 306, but the
user might want 106 for off-line use. Working with 404 Data Manager, the
406 Power System Model Manager may also write additional data (i.e. not
used in the load flow calculation) to 104/304. In this case, the 102
Model Output function will collect that data from both 104 and 106 for
reporting to the user, EF7, via the command interface. Note that the
base data, in 201, is not modified through this process. Instead, the
base data is treated as input to GridAPPS-D.

[image: uml_image2]

Figure 3: Internal model management

Figure 4 shows the internal Platform Manager flow when running
application tests. Compared to the case of normal usage in Figure 2,
this example shows additional control and output for testing. The test
commands include 203 and 204, as in Figure 2, but they also include:

	205 Test Scripts, for the sequence of steps to perform

	206 Test Configuration Setup, including initial conditions, etc.

	207 Expected Results, for comparison to the actual output

	210 Application Metadata, for information to run and instrument the
application

The 403 Test Manager orchestrates the steps to run the application and
collect results. As part of 103 Test Results, it will compare the
real-time data (101/301) to the expected results in 207. If the testing
user, EF8, requested logging, then the 409 Log Manager will create
109/309 System Logs for collection by 403 Test Manager. Logging is
optional, and should have been requested as part of the 206 Test Config
Setup or 204 Model Config Setup (this is not spelled out in the
functional specification).

[image: uml_image3]

Figure 4: Testing an application or the platform

Figure 5 shows some of the internal 413 Platform Manager detail when a
user, EF7, runs an application in debugging mode. Compared to Figure 2,
there is much more internal output. The 212 Debug Configuration will
include such things as breakpoints, watch variables, and logging
requests. When run in debug mode, the 408 Debug Manager will collect the
internal inputs and intermediate results from a variety of GridAPPS-D
modules, including the simulator, services in use, model data, and
access violations. The 404 Data Manager mediates most of this data
collection (and with a change to the specification it could also mediate
101/301). The 408 Debug Manager combines this into 108 Intermediate
Results, with 109 System Logs, for output to the user via the command
interface. Depending on the implementation of GridAPPS-D, interactive
debugging may also be supported, but is not shown in Figure 5.

[image: uml_image4]

Figure 5: Debugging an application

Figure 6 shows the process of registering or updating an application to
use with GridAPPS-D. The developer, in the role of EF13, must provide
the application itself (211) along with the application data schema
(208) and metadata (210). The data schema includes input and output
parameters. The metadata includes a user-friendly name, description,
calling parameters, command syntax, API functions used, etc. Using this
information, 410 Application Hosting Manager will install and register
the application, and its data, with 407 Service Manager and 404 Data
Manager. After completing these steps, 412 Version Manager will output
the current version information via the command interface; the current
version includes information about which applications are installed
along with the application versions.

In order to perform application management, EF13 also needs to provide
user credentials to be checked against the 209 Access Control List. If
these credentials are valid, the 411 SAC Manager will create 311 Access
Permission Verification for all of the internal Platform Manager
components. In Figure 6, the 410 Application Hosting Manager can pass
311 to 404, 407 and 412 as needed. Although not shown earlier, SAC is
actually incorporated into all GridAPPS-D processes this way.

[image: uml_image5]

Figure 6: Hosting an application

[image: uml_platform_objects]

Figure 7: Platform Objects

[image: uml_external_objects]

Figure 8: External Objects

UML for Release Cycle 4

Our objective is to demonstrate useful functionality, which is
standards-compliant, by the end of March 2017. A simple heuristic VVO
application will be running in GridAPPS-D. In terms of the Functional
Requirements, we will be implementing:

	102/202 Command Interface

	301 Real-time Simulation Data

	310 Hosted Application, but short-cutting the registration process

	401 Distribution Co-Simulator (partial)

	402 Process Manager (partial)

	404 Data Manager (partial)

	405 Simulation Manager (partial)

	406 Power System Model Manager (partial)

	413 Platform Manager (encapsulating 401 and 403-406)

This represents five out of twelve Internal Functions from the
Functional Requirements, in partial form. The deadline leaves four
months for detailed design and implementation, plus two months for
documentation and testing. Therefore, we have chosen a minimal set of
functions that can show end-to-end use of GridAPPS-D at the first
milestone.

In developing the work breakdown structure (WBS), we noted that
real-time simulation data is published with no time lags or errors in
Release 1. However, data flow in a real DMS is affected by sensor and
communication system performance, and also by the action of other
subsystems. In Release 2, this might be addressed through some
combination of:

	Communication and sensor models in the Distribution Co-Simulator

	Adding MDM and SCADA service attributes to the 407 Service Manager

	Filters on 301 Real-time Simulation Data

These decisions, and many others affecting Release 2 and Release 3, can
be deferred until we gain experience developing Release 1.

Figure 1 shows the software components planned for Release 1. Most of
these correspond to internal functions from the Functional Requirements,
with some relatively minor re-factoring. The Power System Model Manager
functionality has been split. The data store management and the creation
of a complete GridLAB-D model appear at the bottom. Once the simulator
is running, incremental changes are posted to the messaging bus.

Most of the “pink” components in Figure 1 are assigned to one task,
except:

	The 310 VVO is a sub-task of the Command Interface, due to the close
coupling of those efforts. The team on this task needs both power
system and software skills.

	A separate task has been added for some project-level items.

[image: rc1_tasks_image0]

Figure 1: Component Diagram for GridAPPS-D Release 1

Initial Work Breakdown for Release Cycle 1

The Release 1 work breaks down into seven tasks, listed below. Three
critical items must be completed first; these are highlighted in
red. There are other inter-task dependencies that have not yet been
called out. We plan to sequence the work over eight two-week “sprints”
within the four months allocated for detailed design and development,
using an agile process (Kanban).

	Project-level Elements

	Identify a power system model (note: IEEE-13 is already in
CIM/CDPSM)

	Design data store schema

	Manually ingest power system models

	Command Interface

	Design APIs

	For all configurations in Task 4

	For power system control actions (e.g. open/close switch)

	Select one language binding (e.g. Python, Java, C++, MATLAB)
and implement

	Develop a heuristic volt-var application (VVO) in the bound
language

	Integrate VVO into GridAPPS-D

	Messaging and Data Manager

	Select a messaging framework (eg. ZeroMQ)

	Create communication APIs

	Receives real-time data from simulator

	Receives power system control actions

	Handle communication between GridAPPS-D managers

	Log messages to file

	Configuration Manager (both Power System Config & Simulation Config)

	Receive configurations from command interface over message bus

	Translate configurations to native GridLAB-D

	Translate and publish incremental update messages

	Send configurations to Process Manager for simulation start

	Process Manager

	Receives configurations from the Configuration Manager

	Send configuration to the Distribution Co-Simulator

	Start Co-Simulation Process

	Create simulation data channels and inform application

	Stop simulation process

	Distribution Co-Simulator (wraps GridLAB-D)

	Accepts configurations from Process Manager

	Start simulation

	Produce and publish data in real time

	Accept changes in real time (e.g. capacitor switching) via message
bus

	Power System Model Manager

	Access the power system model in data store

	Create native GridLAB-D file for initial loading into the
simulator

CIM Validation

This section presents an overview of CIM Validation techniques that
will be expanded upon in the future. The purpose of CIM validation
is to assess the level of compliance GRIDAPPS-D is using in its
use of CIM version 100.

Introduction

In electrical power distribution and transmission the Common
Information Model (CIM) is a technology agnostic standard developed by
the International Electrotechnical Commission (IEC). CIM provides
the blueprints for application software like GridAPPS-D to represent
data structures, message payloads, and information exchanges between
applications.

To represent the model, CIM is written using the Unified Modeling
Language (UML) using Sparx Enterprise Architect. The model is stored
in a project file (*.eap extension file). GridAPPS-D extends the CIM
to meet its application specific needs. UML (Object Management Group
UML 2.5 Specification) profiles are secondary models, derived from
the primary information model. Profiles represent a portion of the
model to support GridAPPS-D application-specific structures and
exchanges. A profile operates within the scope of the information
model and is formed by extracting selected elements of the information
model. These extracted elements are filtered or constrained by
providing value ranges, reducing cardinality, and filtering structures.

UML profiles use stereotype notation <<>> to annotate information model
elements such as classes, associations, and attributes in a target domain
or technology. Stereotypes are either used to impose domain-specific
criteria (for example, <<CIM:Datatype>>) or technical criteria (for example,
<<table>>, <<primarykey>>) on UML elements. UML profiles are generated in a
variety of ways including use of tools such as Enterprise Architect (EA)
Schema Composer, CIMContextor, or CIMTool to define structural requirements.
The W3C Shape Constraint Language (SHACL) will be used as extensions to
further specify value constraints.

Currently GridAPPS-D is using UML diagrams as a human-readable intuitive profile
description of application-specific uses of the extended CIM. Future profiles
will be produced by CIMTool and SHACL to provide a more comprehensive blueprint
for application development that is machine readable to compliment the diagrams.

Extending CIM

CIM is built on universally understood power grid concepts which
means that the UML should be generally applicable, When the needs
go beyond the general purpose solution it is possible to extend CIM
for application specific purposes. When extending CIM to be compliant,
the extentions comply with the rules and organization of the existing
model. Otherwise an uncompliant application risks losing the advantage
of using the standard, particularly for information exchanges.

Techniques for extending the CIM will not be discussed here, however the
IEC TC 57 61970 part 301 document and the CIM Model Manager Guide (being
released Spring 2020 by the TC57 CIM Model Managers) provides excellent
guidance on best practices when extending the CIM.

Validation Techniques

Well-Formed UML Compliance

In the IEC TC 57 13, 14, and 16 Working Groups the CIM Model Managers are
relied upon for any updates to the UML. Before a release occurs the
JCleanCim tool (http://tanjakostic.org/jcleancim/index.html) is used
to validate UML package, class, and associations against agreed upon
rules for well-formed UML. The JCleanCim tool generates a log report
citing any non-compliance items along with other products. It is
basically like a software debug tool for CIM UML. For extensions the
JCimClean tool can be used to review GridAPPS-D extensions and flag
any problematic areas. In addition the JCimClean tool original log
report for CIM100 can be compared against the GridAPPS-D CIMv100.

Well-Formed and Valid Profile

CIMTool can not only create Resource Description Framework Schema (RDFS)
profiles from the CIM100 UML, it can also validate the generated profiles
or created RDF datasets against CIM100 schema. GridAPPS-D has plans to
extend the CIMTool Validation using SHACL to specify and constrain
value ranges or check regular expression patterns

Final Thoughts

This section is expected to evolve in 2020 with the
advancement of CIM Model Manager tools that were previously only accessible
to the model managers or based on advancements of validation techniques
in the profile development communities.

Data Model

IEEE 8500-Node Test Feeder

An IEEE Working Group specified a set of distribution test circuits [CIT1] and
we have chosen the largest one of these as a sample circuit for GridAPPS-D [CIT2].
The 8500-Node test feeder operates at 12.47 kV and has a peak load of about 11 MW,
including approximately 1100 single-phase, center-tapped transformers with triplex
service drops. Loads are balanced between the two center-tapped windings.

The circuit includes 4 shunt capacitor banks and 4 voltage regulator banks, making
it a reasonable test for solving voltage problems and for applying volt-var
optimization (VVO). The circuit is also relatively lossy at peak load.

The model in GridAPPS-D came from the IEEE 8500-Node input files distributed with
OpenDSS, exported to CIM from OpenDSS, and then imported to the GridAPPS-D data
manager. In this automated process, four changes were implemented:

	Use constant-current load models, rather than constant-power load models. This is necessary for the solution to converge at peak load. Voltages at peak load are low, and a constant-power load will draw more current under those conditions. Holding the current magnitude constant allows GridLAB-D to achieve convergence under a variety of operating conditions. This is an appropriate compromise in accuracy for real-time applications, which need to be robust through wide variations in voltage and load. In contrast, planning applications usually need more accurate load models, even at the possible expense of re-running some non-converged simulations.

	Disable automatic regulator and capacitor controls. The volt-var application, described below, will supersede these settings. If a developer or user is testing the GridLAB-D model outside of GridAPPS-D, these control settings should be re-enabled in order to solve the circuit at peak load. That requires manual un-commenting edits to the GridLAB-D input file.

	Substitute a variable called VSOURCE for the SWING bus nominal voltage. This needs to be set at 1.05 per-unit of nominal on the 115-kV system (i.e. 69715.065) in order to solve at peak load. Other conditions may require different source voltage values.

	Use a schedule for the loads so they can vary with time during GridAPPS-D simulation. The file should be named zipload_schedule.player.

Integrated Applications

Volt-var Optimization (VVO)

The sample VVO application is a Python implementation of a heuristic method that PNNL has
investigated before [CIT3], [CIT4], [CIT5]. There are more advanced VVO methods that
will be implemented in future work.

Visualization

We have created a web-based visualization of the sample VVO application.
The visualization displays the topology of the IEEE 8500-Node system as an
interactive graph. Capacitors and regulators are highlighted in the graph
and displayed alongside tables with current values for capacitor status
(OPEN or CLOSED), regulator voltage, and feeder power.

State Estimator Service

Given a perfect and complete set of voltage magnitude and angle
measurements, along with a detailed and accurate power system model, one
could calculate the real power, or any other electrical variable of
interest, anywhere in the system. In practice, measurements have errors,
time delays, and may even be missing. State estimation refers to the
process of minimizing the errors and filling in gaps [1]. One state
estimation method is called “weighted least squares”, and it’s analogous
to drawing the best-fit line through a set of scattered points. Other
methods may perform better [2]. Also, on distribution systems, it may be
better to estimate branch currents instead of node voltages, but the
principle is the same. In GridAPPS-D, the visualizations and
applications ought to use the best available state estimator outputs,
instead of raw SCADA values, for both accuracy and consistency.
Therefore, the state estimator is not an application but a service in
GridAPPS-D, sitting between emulated SCADA and the GOSS bus.

[image: image0]

Figure 1: The state estimator processes noisy and incomplete
measurements, then posting estimated voltage (V), current (I), real
power (P), reactive power (Q) and switch status (S) values onto the
GridAPPS-D message / data bus.

In Figure 1, the power system model (upper left) will include a limited
number of sensors, corresponding to actual voltage and current
transformers, line post sensors, wireless sensors, etc. In some
scenarios, smart meters can also be sensors. Each such sensor will have
different performance characteristics (e.g. precision, accuracy,
sampling rate). Distribution systems typically do not have enough
sensors to make the system observable, so there will be measurement gaps
in the topology. The state estimator might fill these gaps with
interpolation and graph-tracing methods on the power system model.

The supervisory control and data acquisition (SCADA) system in Figure 1
introduces more errors and failure points. Eventually, GridAPPS-D may
simulate these impacts by federating ns-3 as a co-simulator. Until then,
a placeholder module could be used to insert variable errors, time
delays and dropouts in each measurement, whether due to sensor
characteristics or the communication system. The output represents data
as it would come into an operations center, and feeds the state
estimator. Internally, the data flows between simulator, SCADA and state
estimator might be implemented with FNCS, but this is an implementation
detail. The state estimator will provide two outputs to the GOSS bus
used by all GridAPPS-D applications:

	At a time step configured by the platform, publish the best-estimate
VIPQS values wherever sensors actually exist in the model, with
quality attributes that still have to be established. Sensor
locations delineate circuit segments, and note that all VIPQS values
will be estimated at the boundaries, even if the sensor measures only
V or I, for example.

	Upon request by another application or service, publish the estimated
VIPQS values for all nodes and components in the model, even at
locations where no sensors exist. A variant is to publish the
estimates only for selected nodes and components.

As indicated in Figure 1, other applications need to obtain estimated
VIPQS values from the GOSS bus. Switch open/close states are a special
case; they might be considered known values, but in practice the switch
state is a measurement, which could lead to topology errors in the
model. For GridAPPS-D, switch state estimates need to be a point of
emphasis. Given that most distribution systems lack redundant
measurements, It would be possible for an application to query these
VIPQS values directly from the simulator or SCADA, bypassing the state
estimator, but this is “cheating” in most situations. However, in the
application development process, idealized VIPQS values could be
obtained through a combination of two methods:

	Add more sensors to the power system model

	Set the sensor and channel errors to zero

Because the sensor outputs in GridAPPS-D come from a power flow solution
that enforces Kirchhoff’s Laws, the state estimator will produce ideally
accurate values whenever the sensor and channel errors have been
specified to be zero. The state estimator may still exhibit
interpolation errors between sensor locations, but that is readily
mitigated for testing purposes by adding more sensors.

With reference to RC1, the visualization and VVO applications should now
subscribe to VIPQS values from the state estimator, not from the
distribution simulator. They may also use or display quality metrics on
the estimated values.

Design Objectives

State estimation is widely used in transmission system operations but is
less common in distribution system operations due to a relatively
limited value in traditional distribution systems, additional
computational complexity, and a lack of sensors. Advanced distribution
management platforms like GridAPPS-D provide access to model and sensor
data that can be leveraged to overcome barriers to adoption and open the
door to distribution system state estimators that are fast and accurate
enough to be useful in utility operations.

A distribution system state estimator computes the most likely state
given a set of present and/or past measurements. The full state of a
distribution system consists of either the full set of complex bus
voltages or the full set of complex branch currents; given the system
model (admittance matrix), the remaining system parameters can be
computed given the full system state.

Use Cases

	Assist power factor optimization: Utility objective is unity
power-factor at the substation.

	Assist voltage optimization (planning): Utility objective is 1 p.u.
voltage at last house primary.

	Real-time state estimation for advanced applications: applications
can access the state estimate at a sufficient resolution to capture
e.g. insolation variation caused by clouds.

Algorithms

State estimation uses system model information to produce an estimate of
the state vector x given a measurement vector z. The measurement vector
is related to the state vector and an error vector by the measurement
function, which may be non-linear.

\[z = h(x) + e\]

Multiple formulations of the distribution system state estimation
problem are possible:

	Node Voltage State Estimation (NVSE): The state vector consists of
node voltage magnitudes and angles for each node in the system (one
reference angle can be eliminated from the state vector). This
formulation of the state estimation problem is general to any
topology and it is the standard for transmission system state
estimation.

	Branch Current State Estimation (BCSE): Radial topology and
assumptions about shunt losses create a linear formulation of the
state estimation problem. The state vector contains branch currents
and, for a fully-constrained problem, requires one state per load,
which can be less than the number of branches in the system.

Different algorithms provide different advantages for distribution
system state estimation. A subset of the state estimation algorithms
below will be used to achieve these goals.

	Weighted Least Squares Estimation (WLSE): a concurrent set of
measurements are used to find a state vector that minimizes the
weighted least squares objective function. The algorithm is
memoryless with respect to previous solutions and measurements should
be synchronized.

	Kalman Filter Estimation (KFE) and Extended Kalman Filter Estimation
(EKFE): The Kalman filter provides a mechanism to consider past
state estimates alongside present measurements. This provides
additional noise rejection and allows asynchronous measurements can
be considered individually. KFE is appropriate for linear BCSE and
EKFE is compatible with nonlinear NVSE.

	Unscented Kalman Filter Estimation (UKFE): The unscented transform
estimates the expected value and variance of the system state by
observing the system outputs for inputs spanning the full
dimensionality of the measurement space. Again, the Kalman filter
provides a mechanism to consider past estimates.

TRL

The state estimator application will provide the capability to estimate
the full system state using asynchronous measurement data. In addition a
model order reduction technique will be implemented to greatly speed up
the state estimation computation and to reduce the dependence on
forecast-based pseudo-measurements. A paper (Reduced-Order State
Estimation for Power Distribution Systems with Sparse Sensing) is
targeted for IEEE Transactions on Power Systems.

Architecture

The state estimation service is being developed in c++. A modern c++
implementation allows the application to adapt to an evolving interface.
The program architecture is shown below.

[image: image1]

Topology Processor: initializes the measurement function and its
Jacobian and determines the size of the measurement vector, the
measurement covariance matrix, and the state vector.

Meter Interface: updates the measurement vector and the measurement
covariance matrix as new measurement data comes available.

State Estimator: performs the state estimation operation according to
the specified algorithm.

Output Interface: formats the state vector and any implicit states as an
output stream.

Inputs

Upon initialization, the topology processor will receive the Y-bus from
the GridLAB-D service and will query contextual information and sensor
locations from the CIM database.

Periodic measurement data, including any forecasts to be used a
pseudo-measurements will be required as inputs.

A “terminate” command from the platform will end the state estimation
process.

Outputs

The output will include the full system state (node voltages and/or
branch currents TBD).

Testing and Validation

Evaluation metrics

	State Error: compare state estimation output to “true” system state.

	Accuracy over baseline: compare state error of state estimator to
state error of a QSTS load-flow model.

	Execution Time

	Bad Sensor Detection (binary)

Scenarios

	Full sensor deployment: verify that the true system state can be
reproduced.

	Sparse sensor deployment: verify that the state estimator performs
better than a QSTS load-flow model.

	Breaker trip: verify that switch state can be detected even when it
is reported incorrectly.

	Bad sensor detection: verify that a sensor that is producing bad data
can be identified.

	Dependent application support: verify that the state estimator can
support e.g. the VVO application.

	Fault: for a radial system, determine the nearest common bus from
multiple emulated customer calls.

Operating/Running

The state estimator will execute the topology processor at
initialization and will enter a stat estimation loop. The state
estimation loop will exit and the process will end upon receiving a
‘terminate’ command from the platform.

At initialization, a configuration file will be read for:

	State estimation mode (state vector and algorithm) selection

	Normalized residual threshold for bad measurement / sensor detection

References

[1] T. E. McDermott, “Grid Monitoring and State Estimation,” in Smart Grid Handbook, ed: John Wiley & Sons, Ltd, 2016.

[2] A. Abur and A. Gómez Expósito, Power system state estimation : theory and implementation. New York, NY: Marcel Dekker, 2004.

[3] M. E. Baran and A. W. Kelley, “A branch-current-based state estimation method for distribution systems,” in IEEE Transactions on Power Systems, vol. 10, no. 1, pp. 483-491, Feb 1995.

[4] Z. Jia, J. Chen and Y. Liao, “State estimation in distribution system considering effects of AMI data,” 2013 Proceedings of IEEE Southeastcon, Jacksonville, FL, 2013, pp. 1-6.

[5] S. C. Huang, C. N. Lu and Y. L. Lo, “Evaluation of AMI and SCADA Data Synergy for Distribution Feeder Modeling,” in IEEE Transactions on Smart Grid, vol. 6, no. 4, pp. 1639-1647, July 2015.

[6] M. Kettner; M. Paolone, “Sequential Discrete Kalman Filter for Real-Time State Estimation in Power Distribution Systems: Theory and Implementation,” in IEEE Transactions on Instrumentation and Measurement, vol.PP, no.99, pp. 1-13, Jun. 2017.

[7] G. Valverde and V. Terzija, “Unscented kalman filter for power system dynamic state estimation,” in IET Generation, Transmission & Distribution, vol. 5, no. 1, pp. 29-37, Jan.

Model Validation Application

The state estimator basically attempts to fit measured data to a power
flow model, usually assuming that the model is correct. However, a model
attribute (e.g. line impedance) could also be estimated by minimizing
its error residual in the state estimator’s power flow solution. This
process works best when applied to just one or a few suspect attributes,
and/or when an archive is available to provide enough redundant
measurements. The Model Validation Application will use these state
estimator features off-line to help identify and correct the following
types of model errors:

	Unknown or incorrect service transformer sizes

	Unknown or incorrect secondary circuit lengths

	Incorrect phase identification of single-phase components

	Phase wiring errors in line segments and switches

	Transformer connection errors, especially reversed primary and
secondary

	Primary conductor sizes that don’t decrease monotonically with
distance from the source

	Missing regulator and capacitor control settings (i.e. supply
defaults from heuristic rules)

	More than one of these on the same pole: recloser, line regulator,
capacitor

	Substation transformer impedance and turns ratio

These types of errors often appear upon the initial model import from a
geographic information system (GIS), or in periodic model updates from
GIS. Other error types may be added later. Many utilities do not have
their secondary circuits modeled at all, but this has an important
impact on AMI data. The service transformers and secondary circuits
insert significant impedance between AMI meters and the primary circuit,
where most of the other sensors are installed. Therefore, the first two
items will require AMI data, and also enable its more effective use.

As shown in Figure 1, the Model Validator integrates with GridAPPS-D as
a hosted application on the GOSS bus. Internally, it will use some of
the same algorithms as the State Estimator and may share some code or
binary files, but this is an implementation detail. It will need to
access an archive of state-estimated VIPQS data, which may include AMI
data. It will also use or incorporate an off-line power flow model, not
the same one running in the GridAPPS-D distribution simulator. This may
be EPRI’s OpenDSS simulator [1]; compared to GridLAB-D, it’s more
tolerant of model errors and provides more diagnostic information about
model errors.

[image: mv_image1]

Figure 1: The Model Validator works with an archive from the state
estimator, and an off-line power flow model.

Design Objectives

The model validator will detect and attempt to correct unreasonable
component interconnections and network parameters. The model validation
application will be implemented in Python.

Use Cases

	Valid transformer size and orientation (Utility): orientation is not
captured explicitly in their GIS system.

	Discover secondary line impedance parameters (Utility) conductor type
and line length are currently based on generic assumptions.

	Sanity check or estimate transformer size and impedance.

	Verify that the nominal voltage of nodes matches the base voltage of
the segment: generally the winding voltage of the upstream
transformer or swing bus voltage.

	Sanity check conductor sizes and line current ratings.

	Validate and fill in regulator and capacitor control settings.

	Check phase continuity (GridLAB-D may not model phase
discontinuities)

Inputs

The model validator will have access to the CIM database and archived
data from the state estimator.

Outputs

The model validator will one or both of the following outputs:

	Model status: log file or GUI pipe for identified issues.

	Model correction: CIM updates to correct identified issues.

Testing and Validation

Evaluation metrics

	Ability to detect known issues.

Scenarios

	Utility merger: models with different format may be interpreted
differently, creating issues a CIM model.

	Data entry issue: model update does not match upgrade performed in
the field

Operating/Running

The model validator script will execute once when called by the
platform.

At initialization, a configuration file will be read for:

	Mode (status, quiet, verbose; see outputs section)

	Selectable validation items (use cases)

References

[1] R. C. Dugan and T. E. McDermott, “An open source platform for collaborating on smart grid research,” in Power and Energy Society General Meeting, 2011 IEEE, 2011, pp. 1-7.

Transactive Systems Application

Transactive energy is a method of controlling loads and resources on the
distribution system, combining both market and electrical principles
[1]. One reason for including this application in DOE-funded GridAPPS-D
is that PNNL has made several technical contributions and led several
demonstration projects in transactive systems, also funded by DOE [2].

Application structure

This transactive systems application is to be implemented as a
modularized 2-layer 3-level structure, as seen from Figure 3. The layer
decomposition helps the control of various groups, with limited
information flow between different layers. With the predefined functions
in each agent type (Agent A, B, and C) in each level, the existing
transactive system related work can be conveniently integrated into the
application, and the new control features can be added into specific
control function in each type of the agent easily.

[image: TransactiveSystemAppStructure]

Figure 3: The structure of the modularized 2-layer 3-level transactive
system application

The modularized agents opens the door for integrating different control
mechanisms into the application. Users need to consider which level
their control algorithm fits into, and fill in the control function of
the Agent class in that level, without worrying about communications
between the agents. In each level, the same type of the agent may have
various control functions, which help combining benefits of different
control schemes together.

Agent A, B and C will be implemented as VOLTTRON applications. VOLTTRON
is an application platform for distributed sensing and control
applications [3]. With the capability of hardware-in-the-loop (HIL)
testing through VOLTTRON, the transactive systems application will be
tested using the actual devices. A GOSS-VOLTTRON Bridge is to be
implemented, for the communication between GridAPPS-D and the VOLTTRON
agents in the transactive systems application.

Application test cases

The hierarchical control framework introduced in [4] for integrated
coordination between distributed energy resources and demand response
will be implemented into the application. In addition, [4] has not
considered the power losses or power constrains, which will be taken
into consideration in this test case. The two-layer control mechanism,
including the coordination layer and device layer, fits the proposed
structure of the application well. The control in each level will be
implemented into corresponding function in each type of the agent. The
IEEE 123-node test feeder built in GridLAB-D will be used for testing
the application.

CIM extension for the Application

The latest versions of GridAPPS-D has used a reduced-order CIM to
support feeder modeling. With transactive system application included
into GridAPPS-D platform, more objects, such as house air conditioner
and water heater, need to be defined in CIM. Before the definition in
CIM, a simplified version of the house object and water heater object
are to be implemented in GridLAB-D.

References

[1] Gridwise Architecture Council. (2017). Transactive Energy. Available: http://www.gridwiseac.org/about/transactive_energy.aspx

[2] Pacific Northwest National Laboratory. (2017). Transactive Energy Simulation Platform (TESP). Available: http://tesp.readthedocs.io/en/latest/

[3] S. Katipamula, J. Haack, G. Hernandez, B. Akyol, and J. Hagerman, “VOLTTRON: An Open-Source Software Platform of the Future,” IEEE Electrification Magazine, vol. 4, pp. 15-22, 2016.

[4] Di Wu, Jianming Lian, Yannan Sun, Tao Yang, Jacob Hansen, “Hierarchical control framework for integrated coordination between distributed energy resources and demand response,” Electric Power Systems Research, pp. 45-54, May 2017.

Distribution Optimal Power Flow for Real-Time Setpoint Dispatch

Objectives

This application is designed to address the problem of optimizing the
operation of aggregations of heterogeneous energy resources connected to
a distribution system. We will focus on real=time optimization method
and the power setting points of the distributed energy resources (DERs)
will be updated on a second or subsecond timescale to maximize the
operational objectives while coping with the variability of ambient
conditions and noncontrollable energy assets [1]. In order to avoid
massive measurements and overcome the limitation caused by model
inaccuracy, this application will be implemented in a distributed
manner, and only local measurements and a feedback signal from the
substation aggregator are needed to determine the optimal setpoints for
each controlled DER unit.

[image: nrel_OPF_image0]

Figure 1 The conceptual framework of distribution OPF for real=time
setpoint dispatch.

Figure 1 shows the conceptual framework of this application, and this
application is targeting at TRL 3.

Design

Figure 2 describes the overall work flow of the application.
Distribution OPF algorithm requires real=time measurements, distribution
system model and power flow results, which will be obtained from
GridAPPS=D platform through GOSS/FNCS message bus. The optimization
problem formulation can be constructed using user=defined cost functions
for different controllable devices. Finally the optimal setpoints for
controllable devices will be solved based on the feedback information
from system measurements. These setpoints will be sent back to GridLab=D
grid model to update DER operations. Such a closed=loop control forms
the control iteration for the studied time point, and new setpoints for
the following time points will be determined in the same manner using
the updated model and measurements.

[image: nrel_OPF_image1]

Figure 2 The workflow of real=time setpoint dispatch application and
its interaction with GridApps=D.

Data requirements

The DER application requires p and q values from the inverters attached to PVs, loads, and capacitors.
The DER application also requires setting the p and q values of inverters attached to PVs.

Testing and Validation

Evaluation metrics of this application:

	Real/reactive power at the substation

	System loss

	Voltages across the entire distribution grid: voltage magnitude,
voltage fluctuation, voltage unbalance.

	Legacy control device operations: total control actions of all
capacitors and regulators

Scenarios:

	Optimal Dispatch for Distributed PV Systems

	Optimal Dispatch for Distributed PV + Energy Storage

	Etc. (will be added when implementing the application)

Operating/Running

This application will be developed using Python.

References

[1] E. Dall’Anese, A. Bernstein, and A. Simonetto, “Feedback=based
Projected=gradient Method for Real=time Optimization of Aggregations
of Energy Resources,” IEEE Global Conference on Signal and Information
Processing (GlobalSIP), Montreal, Canada, Nov. 2017.

Short-Term Grid Forecasting

Objectives

Today’s distribution systems have been experiencing a significant transformation due to an increasing amount of smart electric loads and distributed energy resources, such as electric vehicles, smart home appliances, rooftop photovoltaic systems, and energy storage. As more flexible resources integrated into distribution systems, coordination among various flexible resources plays an important role in distribution system operations to optimally manage distribution assets and flexible resources. On the other hand, with the increasing penetration of variable energy resources, it is crucial for system operators to not only monitor and estimate the current grid conditions but also forecast the future system status, which allows for proactive dispatch of controllable resources and better preparation for ever-changing grid conditions. This application develops predictive locational marginal prices (DLMPs) to proactively manage the distribution assets and flexible resources based on forecasted grid conditions. This application enables the distribution system operators to optimally incentivize individual resources to achieve system-level control objectives, such as minimizing total generation cost and optimizing the voltage profile; and it paves the way to a fully functional distribution market with granular prices that reflect the time- and location-specific values of individual participants.

Design

This application develops a high-resolution, short-term load forecasting method to accurately predict the power consumption of individual customers in distribution systems. Using historical load measurements as inputs, it trains a support vector regression model to forecast the future load. Based on the forecasted load in the short-term future, this application develops a three-phase AC optimal power flow problem to determine the predictive DLMPs in distribution systems. By accurately modeling the losses and the imbalances of distribution networks, it provides time- and location-specific pricing of individual resources.

[image: nrel_OPF_image0]

Operating/Running

The application was built using Python 3.6. It will be run from the platform GUI.

References

[1] H. Jiang, Y. Zhang, E. Muljadi, J. J. Zhang, and D. W. Gao, “A Short-Term and High-Resolution Distribution System Load Forecasting Approach Using Support Vector Regression with Hybrid Parameters Optimization,” in IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 3341-3350, July 2018.
[2] R. Yang and Y. Zhang, “Three-Phase AC Optimal Power Flow Based Distribution Locational Marginal Price,” IEEE Innovative Smart Grid Technologies, Arlington, VA, Apr. 2017.

Solar Forecasting Application

Objectives

When observations of solar radiation are limited,
persistence and smart persistence solar forecasting
techniques are frequently the easiest and most
effective methods to use. Often though, these techniques
suffer from having no information about current cloud properties,
which could improve the forecast. At NREL, a
Physics-based Smart Persistence model (PSPI)
[1] was created for intra-hour solar forecasting using only
GHI observations and a cloud retrieval technique.
This model breaks down common solar radiation components
such as GHI and solar zenith angle (SZA) using a
two-stream approximation [2] and methods used in [3]
to forecast future GHI, cloud fraction, and cloud albedo. With
this information, this technique can then be used to forecast
solar power (still in development).
Figure 1 below shows the conceptual framework for PSPI.

[image: nrel_solar_image0]
Figure 1 Conceptual framework for PSPI. PSPI breaks up the GHI and solar zenith angle (SZA) into cloud fraction and cloud albedo components.

Design

PSPI is designed to operate only using GHI observations.
Other atmospheric parameters, such as pressure and temperature,
can be ingested into the application as well if those
observations exist. Currently, site-specific annual averages of
these parameters are used. Other parameters, such as altitude of
the site of interest, need to be adjusted prior to running the
application. Whatever atmospheric variables are available via the
GridAPPS-D platform, they can be ingested into the PSPI based on
the user’s needs (still in development). Once all desired parameters
are chosen and the application is run, intra-hour GHI forecasts
can be made (5 to 60-minute forecasts) as frequently as observations
arrive (usually minutely).

Testing and Validation

PSPI was tested and validated using 10 years of GHI data at the
Solar Radiation Research Laboratory (SRRL) at NREL, in Golden, Colorado.
More information about this process can be found in [1].

Operating/Running

The application was built using Python 3.6. It will be run from the platform GUI.

References

[1] Kumler, A., Xie, Y., & Zhang, Y. (2019). A Physics-based Smart Persistence model for Intra-hour forecasting of solar radiation (PSPI) using GHI measurements and a cloud retrieval technique. Solar Energy, 177, 494-500.

[2] Sagan, C., & Pollack, J. B. (1967). Anisotropic nonconservative scattering and the clouds of Venus. Journal of Geophysical Research, 72(2), 469-477.

[3] Xie, Y., & Liu, Y. (2013). A new approach for simultaneously retrieving cloud albedo and cloud fraction from surface-based shortwave radiation measurements. Environmental Research Letters, 8(4), 044023.

API Documentation

GridAPPS-D

GOSS

The GridOPTICS Software System (GOSS) manages the platform data and message bus; its overall design is described in [CIT6].

FNCS

The Framework for Network Co-simulation (FNCS) manages the time clock and message traffic between platform simulators; its overall design is described in [CIT7].
For API documentation see https://github.com/FNCS/fncs/wiki .

VVO

GridLAB-D

GridLAB-D is the distribution grid simulator within the platform; its overall design is described in [CIT8].

gov.pnnl.gridlabd.cim

This Java package converts CIM RDF to GridLAB-D format.

	CDPSM_to_GLM

	CDPSM_to_GLM.GldNode

	CDPSM_to_GLM.SpacingCount

	SPARQLcimTest

CDPSM_to_GLM

	
public class CDPSM_to_GLM

	This class converts CIM (IEC 61968) RDF to GridLAB-D format

The general pattern is to retrieve iterators on the different types of objects (e.g. ACLineSegment) through simple SPARQL queries. Usually these iterators include just the mrID, or the mrID and name. Then Jena RDF model and resource functions are used to pull other properties from iterated objects, writing GridLAB-D input along the way. A future version will rely more heavily on SPARQL queries to do the selection and filtering, as the preferred pattern for developers working with CIM. In existing code, the EnergySource most closely follows this new preferred pattern.

Invoke as a console-mode program

	Author

	Tom McDermott

See also: CDPSM_to_GLM.main, CIM User Group [http://www.ucaiug.org/default.aspx], CIM Profile and Queries for Feeder Modeling in GridLAB-D [https://github.com/GRIDAPPSD/Powergrid-Models/blob/temcdrm/CIM/CDPSM_RC1.docx], GridLAB-D [http://www.gridlabd.org]

Fields

baseURI

	
static final String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] baseURI

	identifies gridlabd

mapNodes

	
static HashMap [http://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html]<String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html], GldNode> mapNodes

	to look up nodes by name

mapSpacings

	
static HashMap [http://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html]<String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html], SpacingCount> mapSpacings

	to look up line spacings by name

neg120

	
static final Complex neg120

	Rotates a phasor -120 degrees by multiplication

nsCIM

	
static final String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] nsCIM

	namespace for CIM; should match the CIM version used to generate the RDF

nsRDF

	
static final String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] nsRDF

	namespace for RDF

pos120

	
static final Complex pos120

	Rotates a phasor +120 degrees by multiplication

ptBaseNomV

	
 Property ptBaseNomV

	

ptEqBaseV

	
 Property ptEqBaseV

	

ptEquip

	
 Property ptEquip

	

ptLevBaseV

	
 Property ptLevBaseV

	

Methods

AccumulateLoads

	
static boolean AccumulateLoads(GldNode nd, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] phs, double pL, double qL, double Pv, double Qv, double Pz, double Pi, double Pp, double Qz, double Qi, double Qp)

	Distributes a total load (pL+jqL) among the phases (phs) present on GridLAB-D node (nd)

	Parameters

	
	nd – GridLAB-D node to receive the total load

	phs – phases actually present at the node

	pL – total real power

	qL – total reactive power

	Pv – real power voltage exponent from a CIM LoadResponseCharacteristic

	Qv – reactive power voltage exponent from a CIM LoadResponseCharacteristic

	Pz – real power constant-impedance percentage from a CIM LoadResponseCharacteristic

	Qz – reactive power constant-impedance percentage from a CIM LoadResponseCharacteristic

	Pi – real power constant-current percentage from a CIM LoadResponseCharacteristic

	Qi – reactive power constant-current percentage from a CIM LoadResponseCharacteristic

	Pp – real power constant-power percentage from a CIM LoadResponseCharacteristic

	Qp – reactive power constant-power percentage from a CIM LoadResponseCharacteristic

	Returns

	always true

Bus_ShuntPhases

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] Bus_ShuntPhases(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] phs, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] conn)

	appends N or D for GridLAB-D loads and capacitors, based on wye or delta connection

	Parameters

	
	phs – from CIM PhaseCode

	conn – contains w for wye connection and d for delta connection

	Returns

	phs with N or D possibly appended

CFormat

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] CFormat(Complex c)

	
	Parameters

	
	c – complex number

	Returns

	formatted string for GridLAB-D input files with ‘j’ at the end

Count_Phases

	
static int Count_Phases(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] phs)

	from the phase string, determine how many are present, but ignore D, N and S

	Parameters

	
	phs – the parsed CIM PhaseCode

	Returns

	(1..3)

FindBaseVoltage

	
static double FindBaseVoltage(Resource res, Property ptEquip, Property ptEqBaseV, Property ptLevBaseV, Property ptBaseNomV)

	Returns the nominal voltage for conduction equipment, from either its own or container’s base voltage. For example, capacitors and transformer ends have their own base voltage, but line segments don’t.

	Parameters

	
	res – an RDF resource corresponding to a ConductingEquipment instance; we need to find its base voltage

	ptEquip – an RDF property corresponding to the EquipmentContainer association

	ptEqBaseV – an RDF property corresponding to a possible BaseVoltage association on the equipment itself

	ptLevBaseV – an RDF property corresponding to the EquipmentContainer’s BaseVoltage association

	ptBaseNomV – an RDF property corresponding to the nominalVoltage attribute of a CIM BaseVoltage

	Returns

	the nominal voltage as found from the equipment or its container, or 1.0 if not found

FindConductorAmps

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] FindConductorAmps(Model mdl, Resource res, Property ptDataSheet, Property ptAmps)

	needs to return the current rating for a line segment ‘res’ that has associated WireInfo at ‘ptDataSheet’, which in turn has the current rating at ptAmps

TODO - this is not implemented; emitted syntax is for OpenDSS and the function call (below, in main) needs review

	Parameters

	
	mdl – an RDF model (set of statements) read from the CIM imput file

	res – an RDF resource corresponding to a CIM ACLineSegment

	ptDataSheet – an RDF property corresponding to CIM AssetDatasheet attribute

	ptAmps – an RDF property corresponding to CIM ratedCurrent attribute

	Returns

	unusable OpenDSS input

FirstPhase

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] FirstPhase(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] phs)

	
	Parameters

	
	phs – a parsed CIM PhaseCode

	Returns

	the first phase found as A, B, or C

GLDCapMode

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GLDCapMode(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] s)

	translate the capacitor control mode from CIM to GridLAB-D

	Parameters

	
	s – CIM regulating control mode enum

	Returns

	MANUAL, CURRENT, VOLT, VAR

GLD_ID

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GLD_ID(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] arg)

	parse the GridLAB-D name from a CIM name, based on # position

	Parameters

	
	arg – the CIM IdentifiedObject.name attribute, not the mrID

	Returns

	the compatible name for GridLAB-D

GLD_Name

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GLD_Name(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] arg, boolean bus)

	convert a CIM name to GridLAB-D name, replacing unallowed characters and prefixing for a bus/node

	Parameters

	
	arg – the root bus or component name, aka CIM name

	bus – to flag whether nd_ should be prepended

	Returns

	the compatible name for GridLAB-D

GetACLineParameters

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetACLineParameters(Model mdl, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] name, Resource r, double len, double freq, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] phs, PrintWriter [http://docs.oracle.com/javase/8/docs/api/java/io/PrintWriter.html] out)

	for a standalone ACLineSegment with sequence parameters, find GridLAB-D formatted and normalized phase impedance matrix

TODO - this is always three-phase, so we don’t need all 7 variations from GetSequenceLineConfigurations

	

	Parameters

	
	mdl – an RDF model (set of statements) read from the CIM imput file

	name – the root name of the line segment and its line_configuration

	r – an RDF resource corresponding to a CIM ACLineSegment

	len – the length of the ACLineSegment in feet

	freq – frequency in Hz for converting susceptance to capacitance

	phs – phasing for the written line_configuration (one of 7 variations) that needs to be referenced

	out – the PrintWriter instance opened from the main program, passed here so that we can share code in GetSequenceLineConfigurations

	Returns

	the name of the written line_configuration

GetBusName

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetBusName(Model mdl, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] eq_id, int seq)

	finds the bus (ConnectivityNode) name for conducting equipment

	Parameters

	
	mdl – an RDF model (set of statements) read from the CIM imput file*

	eq_id – the CIM mrID of the conducting equipment

	seq – equals 1 to use the first terminal found, or 2 to use the second terminal found

	Returns

	the GridLAB-D compatible bus name, or x if not found. As Terminals no longer have sequence numbers, the ordering of seq is unpredictable, so if there are two we can get bus 1 - bus 2 or bus 2 - bus 1

GetBusPositionString

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetBusPositionString(Model mdl, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] id)

	for a bus (ConnectivityNode), search for X,Y geo coordinates based on connected Terminals and equipment

	Parameters

	
	mdl – an RDF model (set of statements) read from the CIM imput file

	id – name of the bus to search from

	Returns

	X,Y coordinates in comma-separated value (CSV) format

GetCableData

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetCableData(Model mdl, Resource res)

	needs to return underground_line_conductor data in GridLAB-D format

TODO - this is not implemented; the emitted syntax is actually for OpenDSS

	

	Parameters

	
	mdl – an RDF model (set of statements) read from the CIM imput file

	res – an RDF resource corresponding to a CIM CableInfo (not a leaf/concrete class)

	Returns

	unusable OpenDSS input

GetCapControlData

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetCapControlData(Model mdl, Resource rCap, Resource ctl)

	
	Parameters

	
	mdl – an RDF model (set of statements) read from the CIM imput file

	rCap – an RDF resource corresponding to a CIM LinearShuntCompensator (aka capacitor)

	ctl – an RDF resource corresponding to the CIM RegulatingControl that was found attached to the LinearShuntCompensator

	Returns

	the embedded capacitor control data for a GridLAB-D capacitor object

GetEquipmentType

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetEquipmentType(Resource r)

	find the type of monitored equipment for controlled capacitors, usually a line or the capacitor itself

	Parameters

	
	r – an RDF resource, will have a CIM mrID, should be a LinearShuntCompensator, ACLineSegment, EnergyConsumer or PowerTransformer

	Returns

	cap, line, xf if supported in GridLAB-D; NULL or ##UNKNOWN## if unsupported

GetGldTransformerConnection

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetGldTransformerConnection(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html][] wye, int nwdg)

	Map CIM connectionKind to GridLAB-D winding connections. TODO: some of the returnable types aren’t actually supported in GridLAB-D

	Parameters

	
	wye – array of CIM connectionKind attributes per winding

	nwdg – number of transformer windings, also the size of wye

	Returns

	the GridLAB-D winding connection. This may be something not supported in GridLAB-D, which should be treated as a feature request

GetImpedanceMatrix

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetImpedanceMatrix(Model mdl, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] name, Property ptCount, Resource r, boolean bWantSec)

	Convert CIM PerLengthPhaseImpedance to GridLAB-D line_configuration

	Parameters

	
	mdl – an RDF model (set of statements) read from the CIM imput file

	name – root name of the line_configuration(s), should be the CIM name

	r – an RDF resource, will have a CIM mrID, should be PerLengthPhaseImpedance

	ptCount – an RDF property for the PerLengthPhaseImpedance.conductorCount

	bWantSec – flags the inclusion of triplex, true except for debugging

	Returns

	the GridLAB-D formatted impedance matrix for a line configuration. We have to write 3 of these in the case of 1-phase or 2-phase matrices. If (by name) it appears to be triplex and bWantSec is false, nothing will be returned.

GetLineSpacing

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetLineSpacing(Model mdl, Resource rLine)

	needs to return the line_spacing and wire/cncable/tscable assignments for this rLine in GridLAB-D format

TODO - this is not implemented, the emitted syntax is actually for OpenDSS

	

	Parameters

	
	mdl – an RDF model (set of statements) read from the CIM imput file

	rLine – an RDF resource corresponding to a CIM ACLineSegment that should have an associated AssetInfo

	Returns

	unusable OpenDSS input

GetMatIdx

	
static int GetMatIdx(int n, int row, int col)

	converts the [row,col] of nxn matrix into the sequence number for CIM PerLengthPhaseImpedanceData (only valid for the lower triangle) *

	Parameters

	
	n – 2x2 matrix order

	row – first index of the element

	col – second index

	Returns

	sequence number

GetPowerTransformerData

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetPowerTransformerData(Model mdl, Resource rXf)

	
	Parameters

	
	mdl – an RDF model (set of statements) read from the CIM imput file

	rXf – an RDF resource corresponding to CIM PowerTransformer; it should have mesh impedance data

	Returns

	transformer and transformer_configuration objects in GridLAB-D format

GetPowerTransformerTanks

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetPowerTransformerTanks(Model mdl, Resource rXf, ResIterator itTank, boolean bWantSec)

	writes a PowerTransformer in GridLAB-D format, in the case where individual tranformer tanks that are connected together in a bank. GridLAB-D supports only 2-winding banks with same phasing on both sides, or single-phase, center-tapped secondary transformers.

	Parameters

	
	mdl – an RDF model (set of statements) read from the CIM imput file

	rXf – an RDF resource corresponding to a CIM PowerTransformer that uses tank modeling

	itTank – a Jena iterator on the tanks associated with rXf, known to be non-empty before this function is called

	bWantSec – usually true, in order to include single-phase, center-tapped secondary transformers, which would come to this function

	Returns

	transformer object in GridLAB-D format; the transformer_configuration comes from calling GetXfmrCode

GetPropValue

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetPropValue(Model mdl, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] uri, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] prop)

	unprotected lookup of uri.prop value, to be deprecated in favor of SafeProperty

	Parameters

	
	mdl – an RDF model (set of statements) read from the CIM imput file

	uri – an RDF resource, currently only an EquipmentContainer is used, and it should always exist

	prop – currently only IdentifiedObject.name is used, and it should always exist

	Returns

	the name of the CIM object

GetRegulatorData

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetRegulatorData(Model mdl, Resource rXf, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] name, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] xfGroup, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] bus1, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] bus2, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] phs)

	Connects a regulator in GridLAB-D format between bus1 and bus2; should be called from GetPowerTransformerTanks. In CIM, a regulator consists of a transformer plus the ratio tap changer, so if such is found, should call GetRegulatorData instead of just writing the transformer data in GetPowerTransformerTanks. Any impedance in the regulating transformer will be lost in the GridLAB-D model. Should be called from PowerTransformers that have RatioTapChangers attached, so we know that lookup will succeed

TODO: implement regulators for tank transformers

	Parameters

	
	mdl – an RDF model (set of statements) read from the CIM imput file

	rXf – an RDF resource corresponding to a CIM PowerTransformer that has a RatioTapChanger associated

	name – the name of the PowerTransformer (already looked up before calling this function)

	xfGroup – the PowerTransformer’s IEC vector group (already looked up before calling this function)

	bus1 – first bus (ConnectivityNode) on the regulator (already looked up before calling this function)

	bus2 – second bus (ConnectivityNode) on the regulator (already looked up before calling this function)

	phs – phases that contain A, B and/or C (already looked up before calling this function)

	Returns

	regulator and regulator_configuration objects in GridLAB-D format

GetSequenceLineConfigurations

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetSequenceLineConfigurations(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] name, double sqR1, double sqX1, double sqC1, double sqR0, double sqX0, double sqC0)

	For balanced sequence impedance, return a symmetric phase impedance matrix for GridLAB-D. We have to write 7 variations to support all combinations of 3, 2 or 1 phases used.

	Parameters

	
	name – is the root name for these 7 variations

	sqR1 – positive sequence resistance in ohms/mile

	sqX1 – positive sequence reactance in ohms/mile

	sqC1 – positive sequence capacitance in nF/mile

	sqR0 – zero sequence resistance in ohms/mile

	sqX0 – zero sequence reactance in ohms/mile

	sqC0 – zero sequence capacitance in nF/mile

	Returns

	text for 7 line_configuration objects

GetWdgConnection

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetWdgConnection(Resource r, Property p, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] def)

	parse the CIM WindingConnection enumeration

	Parameters

	
	r – an RDF resource, will have a CIM mrID, should be a transformerEnd

	p – an RDF property, will be a CIM attribute, should be connectionKind

	def – default value if property is not found, such as Y

	Returns

	D, Y, Z, Yn, Zn, A or I

GetWireData

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetWireData(Model mdl, Resource res)

	needs to return overhead_line_conductor data in GridLAB-D format; res is the CIM OverheadWireInfo instance

TODO - this is not implemented; the emitted syntax is actually for OpenDSS

	

	Parameters

	
	mdl – an RDF model (set of statements) read from the CIM imput file

	res – an RDF resource corresponding to CIM OverheadWireInfo

	Returns

	unusable OpenDSS input

GetXfmrCode

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetXfmrCode(Model mdl, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] id, double smult, double vmult, boolean bWantSec)

	Translates a single TransformerTankInfo into GridLAB-D format. These transformers are described with short-circuit and open-circuit tests, which sometimes use non-SI units like percent and kW, as they appear on transformer test reports.

TODO: smult and vmult may be removed, as they should always be 1 for valid CIM XML

	Parameters

	
	mdl – an RDF model (set of statements) read from the CIM imput file

	id – CIM mRID corresponding to a CIM TransformerTankInfo

	smult – scaling factor for converting winding ratings to volt-amperes (should be 1)

	vmult – scaling factor for converting winding ratings to volts (should be 1)

	bWantSec – usually true to include single-phase, center-tapped secondary tranformers, which come to this function

	Returns

	transformer_configuration object in GridLAB-D format

GldPrefixedNodeName

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GldPrefixedNodeName(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] arg)

	prefix all bus names with nd_ for GridLAB-D, so they “should” be unique

	Parameters

	
	arg – the root bus name, aka CIM name

	Returns

	nd_arg

MergePhases

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] MergePhases(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] phs1, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] phs2)

	accumulate phases without duplication

Phase_Kind_String

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] Phase_Kind_String(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] arg)

	parses a single phase from CIM SinglePhaseKind

	Parameters

	
	arg – CIM SinglePhaseKind enum

	Returns

	A, B, C, N, s1 or s2

Phase_String

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] Phase_String(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] arg)

	parses the phase string from CIM phaseCode

	Parameters

	
	arg – CIM PhaseCode enum

	Returns

	some combination of A, B, C, N, s1, s2, s12

SafeBoolean

	
static boolean SafeBoolean(Resource r, Property p, boolean def)

	look up Jena boolean value

	Parameters

	
	r – an RDF resource, will have a CIM mrID

	p – an RDF property, will be a CIM attribute

	def – default value if property is not found

	Returns

	boolean value, or default if not found

SafeDouble

	
static double SafeDouble(Resource r, Property p, double def)

	look up Jena double value

	Parameters

	
	r – an RDF resource, will have a CIM mrID

	p – an RDF property, will be a CIM attribute

	def – default value if property is not found

	Returns

	double value, or default if not found

SafeInt

	
static int SafeInt(Resource r, Property p, int def)

	look up Jena integer value

	Parameters

	
	r – an RDF resource, will have a CIM mrID

	p – an RDF property, will be a CIM attribute

	def – default value if property is not found

	Returns

	integer value, or default if not found

SafePhasesX

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] SafePhasesX(Resource r, Property p)

	look up Jena phase property

	Parameters

	
	r – an RDF resource, will have a CIM mrID

	p – an RDF property, will be a CIM attribute

	Returns

	phases in string format, or ABCN if not found

SafeProperty

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] SafeProperty(Resource r, Property p, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] def)

	look up Jena string property

	Parameters

	
	r – an RDF resource, will have a CIM mrID

	p – an RDF property, will be a CIM attribute

	def – default value if property is not found

	Returns

	the property (or default value) as a string

SafeRegulatingMode

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] SafeRegulatingMode(Resource r, Property p, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] def)

	parse the CIM regulating control mode enum

	Parameters

	
	r – an RDF resource, will have a CIM mrID

	p – an RDF property, will be a CIM attribute

	def – default value if property is not found

	Returns

	voltage, timeScheduled, reactivePower, temperature, powerFactor, currentFlow, userDefined

SafeResName

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] SafeResName(Resource r, Property p)

	for components (not buses) returns the CIM name from r.p attribute if it exists, or the r.mrID if not, in GridLAB-D format

	Parameters

	
	r – an RDF resource, will have a CIM mrID

	p – an RDF property, will be a CIM attribute

	Returns

	a name compatible with GridLAB-D

SafeResourceLookup

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] SafeResourceLookup(Model mdl, Property ptName, Resource r, Property p, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] def)

	
	Parameters

	
	mdl – an RDF model (set of statements) read from the CIM imput file

	ptName – should be the IdentifiedObject.Name property of the resource we are looking for

	r – an RDF resource, will have a CIM mrID

	p – an RDF property, will be a CIM attribute

	def – default value if property is not found

	Returns

	the GridLAB-D formatted name of a resource referenced by r.p

Shunt_Delta

	
static boolean Shunt_Delta(Resource r, Property p)

	for loads and capacitors, returns true only if CIM PhaseShuntConnectionKind indicates delta

	Parameters

	
	r – an RDF resource, will have a CIM mrID, should be LinearShuntCompensator or EnergyConsumer

	p – an RDF property, will be a CIM attribute for phaseConnection

	Returns

	true if delta connection

WirePhases

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] WirePhases(Model mdl, Resource r, Property p1, Property p2)

	Returns GridLAB-D formatted phase string by accumulating CIM single phases, if such are found, or assuming ABC if not found. Note that in CIM, secondaries have their own phases s1 and s2. *

	Parameters

	
	mdl – an RDF model (set of statements) read from the CIM imput file

	r – an RDF resource, will have a CIM mrID, should be something that can have single phases attached

	p1 – an RDF property, will be a CIM attribute, should associate from a single phase back to r

	p2 – an RDF property, will be a CIM attribute, should be the single phase instance’s phase attribute

	Returns

	concatenation of A, B, C, s1 and/or s2 based on the found individual phases

main

	
public static void main(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html][] args)

	Reads command-line input for the converter

	Parameters

	
	args – will be CDPSM_to_GLM [options] input.xml output_root

	Throws

	
	java.io.FileNotFoundException [http://docs.oracle.com/javase/8/docs/api/java/io/FileNotFoundException.html] – if the CIM RDF input file is not found

Options:

-l={0..1} load scaling factor, defaults to 1

-t={y|n} triplex; y/n to include or ignore secondaries. Defaults to yes. Use no for debugging only, as all secondary load will be ignored.

-e={u|i} encoding; UTF-8 or ISO-8859-1. No default, so this should be specified. Choose ‘u’ if the CIM file came frome OpenDSS.

-f={50|60} system frequency; defaults to 60

-v={1|0.001} multiplier that converts CIM voltage to V for GridLAB-D; defaults to 1

-s={1000|1|0.001} multiplier that converts CIM p,q,s to VA for GridLAB-D; defaults to 1

-q={y|n} are unique names used? If yes, they are used as unique GridLAB-D names. If no, the CIM mrID is de-mangled to create a unique GridLAB-D name, but this option is only implemented for ACLineSegments as written to some earlier GIS profiles.

-n={schedule_name} root filename for scheduled ZIPloads (defaults to none)

-z={0..1} constant Z portion (defaults to 0 for CIM-defined LoadResponseCharacteristic)

-i={0..1} constant I portion (defaults to 0 for CIM-defined LoadResponseCharacteristic)

-p={0..1} constant P portion (defaults to 0 for CIM-defined LoadResponseCharacteristic)

Example: java CDPSM_to_GLM -l=1 -e=u -i=1 ieee8500.xml ieee8500

Assuming Jena and Commons-Math are in Java’s classpath, this will produce two output files:

	ieee8500_base.glm with GridLAB-D components for a constant-current model at peak load. This file includes an adjustable source voltage and manual capacitor/tap changer states. It should be invoked from a separate GridLAB-D file that sets up the clock, solver, recorders, etc. For example, these two GridLAB-D input lines set up 1.05 per-unit source voltage on a 115-kV system:

	#define VSOURCE=69715.065 // 66395.3 * 1.05

	#include “ieee8500_base.glm”

If there were capacitor/tap changer controls in the CIM input file, that data was written to ieee8500_base.glm as comments, which can be recovered through manual edits.

	ieee8500_busxy.glm with bus geographic coordinates, used in GridAPPS-D but not GridLAB-D

Cautions: this converter does not yet implement all variations in the CIM for unbalanced power flow.

	AssetInfo links to WireSpacing, OverheadWireInfo, ConcentricNeutralCableInfo and TapeShieldCableInfo

	PerLengthSequenceImpedance has not been tested

	Capacitor power factor control mode - not in GridLAB-D

	Capacitor user-defined control mode - not in GridLAB-D

	Capacitor controlled by load (EnergyConsumer) - need to name loads

	Line ratings for PerLengthImpedance

	Dielectric constant (epsR) for cables - not in CIM

	Soil resistivity (rho) for line impedance - not in CIM

	Multi-winding transformers other than centertap secondary-not in GridLAB-D

	Unbalanced transformer banks - not in GridLAB-D

	Autotransformers have not been tested

	schedule_name implemented for secondary loads only, primary loads to be done

	Fuse not implemented

	Breaker not implemented

	Jumper not implemented

	Disconnector not implemented

	Throws

	
	java.io.UnsupportedEncodingException [http://docs.oracle.com/javase/8/docs/api/java/io/UnsupportedEncodingException.html] – if the UTF encoding flag is wrong

See also: CDPSM_to_GLM

CDPSM_to_GLM.GldNode

	
static class GldNode

	Helper class to accumulate nodes and loads.

All EnergyConsumer data will be attached to node objects, then written as load objects. This preserves the input ConnectivityNode names

TODO - another option is to leave all nodes un-loaded, and attach all loads to parent nodes, closer to what OpenDSS does

Fields

bDelta

	
public boolean bDelta

	will add N or D phasing, if not S

bSecondary

	
public boolean bSecondary

	if bSecondary true, the member variables for phase A and B loads actually correspond to secondary phases 1 and 2. For GridLAB-D, these are written to phase AS, BS or CS, depending on the primary phase, which we find from the service transformer or triplex.

bSwing

	
public boolean bSwing

	denotes the SWING bus, aka substation source bus

name

	
public final String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] name

	root name of the node (or load), will have nd_ prepended

nomvln

	
public double nomvln

	this nominal voltage is always line-to-neutral

pa_i

	
public double pa_i

	real power on phase A or s1, constant current portion

pa_p

	
public double pa_p

	real power on phase A or s1, constant power portion

pa_z

	
public double pa_z

	real power on phase A or s1, constant impedance portion

pb_i

	
public double pb_i

	real power on phase B or s2, constant current portion

pb_p

	
public double pb_p

	real power on phase B or s2, constant power portion

pb_z

	
public double pb_z

	real power on phase B or s2, constant impedance portion

pc_i

	
public double pc_i

	real power on phase C, constant current portion

pc_p

	
public double pc_p

	real power on phase C, constant power portion

pc_z

	
public double pc_z

	real power on phase C, constant impedance portion

phases

	
public String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] phases

	ABC allowed

qa_i

	
public double qa_i

	reactive power on phase A or s1, constant current portion

qa_p

	
public double qa_p

	reactive power on phase A or s1, constant power portion

qa_z

	
public double qa_z

	reactive power on phase A or s1, constant impedance portion

qb_i

	
public double qb_i

	reactive power on phase B or s2, constant current portion

qb_p

	
public double qb_p

	reactive power on phase B or s2, constant power portion

qb_z

	
public double qb_z

	reactive power on phase B or s2, constant impedance portion

qc_i

	
public double qc_i

	reactive power on phase C, constant current portion

qc_p

	
public double qc_p

	reactive power on phase C, constant power portion

qc_z

	
public double qc_z

	reactive power on phase C, constant impedance portion

Constructors

GldNode

	
public GldNode(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] name)

	constructor defaults to zero load and zero phases present

	Parameters

	
	name – CIM name of the bus

Methods

AddPhases

	
public boolean AddPhases(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] phs)

	accumulates phases present

	Parameters

	
	phs – phases to add, may contain ABCDSs

	Returns

	always true

ApplyZIP

	
public void ApplyZIP(double Z, double I, double P)

	reapportion loads according to constant power (Z/sum), constant current (I/sum) and constant power (P/sum)

	Parameters

	
	Z – portion of constant-impedance load

	I – portion of constant-current load

	P – portion of constant-power load

GetPhases

	
public String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetPhases()

	
	Returns

	phasing string for GridLAB-D with appropriate D, S or N suffix

HasLoad

	
public boolean HasLoad()

	
	Returns

	true if a non-zero real or reactive load on any phase

RescaleLoad

	
public void RescaleLoad(double scale)

	scales the load by a factor that probably came from the command line’s -l option

	Parameters

	
	scale – multiplying factor on all of the load components

CDPSM_to_GLM.SpacingCount

	
static class SpacingCount

	helper class to keep track of the conductor counts for WireSpacingInfo instances

Number of Conductors is the number of phases (1..3) plus neutrals (0..1)

Constructors

SpacingCount

	
public SpacingCount(int nconds, int nphases)

	construct with number of conductors and phases

	Parameters

	
	nconds – number of phases plus neutrals (1..4)

	nphases – number of phase conductors (1..3)

Methods

getNumConductors

	
public int getNumConductors()

	
	Returns

	accessor to number of conductors

getNumPhases

	
public int getNumPhases()

	
	Returns

	accessor to number of phases

SPARQLcimTest

	
public class SPARQLcimTest extends Object [http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html]

	This class runs an example SQARQL query against CIM XML

Future versions of GridAPPS-D will rely more heavily on SPARQL queries to do the selection and filtering, as the preferred pattern for developers working with CIM. This example uses several triples to execute a query on LinearShuntCompensators (aka capacitors).

Invoke as a console-mode program

	Author

	Tom McDermott

See also: SPARQLcimTest.main

Fields

baseURI

	
static final String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] baseURI

	identifies gridlabd

nsCIM

	
static final String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] nsCIM

	namespace for CIM; should match the CIM version used to generate the RDF

nsRDF

	
static final String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] nsRDF

	namespace for RDF

Methods

GLD_Name

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GLD_Name(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] arg, boolean bus)

	convert a CIM name to GridLAB-D name, replacing unallowed characters

main

	
public static void main(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html][] args)

	Reads command-line input for the converter

	Parameters

	
	args – will be SPARQLcimTest [options] input.xml

Options: -e={u|i} encoding; UTF-8 or ISO-8859-1; choose u if input.xml came from OpenDSS

License

Copyright

 Index

Index

 A
 | B
 | C
 | F
 | G
 | H
 | M
 | N
 | P
 | Q
 | R
 | S
 | W

A

 	
 	AccumulateLoads(GldNode, String, double, double, double, double, double, double, double, double, double, double) (Java method)

 	
 	AddPhases(String) (Java method)

 	ApplyZIP(double, double, double) (Java method)

B

 	
 	baseURI (Java field), [1]

 	bDelta (Java field)

 	
 	bSecondary (Java field)

 	bSwing (Java field)

 	Bus_ShuntPhases(String, String) (Java method)

C

 	
 	CDPSM_to_GLM (Java class)

 	
 	CFormat(Complex) (Java method)

 	Count_Phases(String) (Java method)

F

 	
 	FindBaseVoltage(Resource, Property, Property, Property, Property) (Java method)

 	
 	FindConductorAmps(Model, Resource, Property, Property) (Java method)

 	FirstPhase(String) (Java method)

G

 	
 	GetACLineParameters(Model, String, Resource, double, double, String, PrintWriter) (Java method)

 	GetBusName(Model, String, int) (Java method)

 	GetBusPositionString(Model, String) (Java method)

 	GetCableData(Model, Resource) (Java method)

 	GetCapControlData(Model, Resource, Resource) (Java method)

 	GetEquipmentType(Resource) (Java method)

 	GetGldTransformerConnection(String[], int) (Java method)

 	GetImpedanceMatrix(Model, String, Property, Resource, boolean) (Java method)

 	GetLineSpacing(Model, Resource) (Java method)

 	GetMatIdx(int, int, int) (Java method)

 	getNumConductors() (Java method)

 	getNumPhases() (Java method)

 	GetPhases() (Java method)

 	GetPowerTransformerData(Model, Resource) (Java method)

 	
 	GetPowerTransformerTanks(Model, Resource, ResIterator, boolean) (Java method)

 	GetPropValue(Model, String, String) (Java method)

 	GetRegulatorData(Model, Resource, String, String, String, String, String) (Java method)

 	GetSequenceLineConfigurations(String, double, double, double, double, double, double) (Java method)

 	GetWdgConnection(Resource, Property, String) (Java method)

 	GetWireData(Model, Resource) (Java method)

 	GetXfmrCode(Model, String, double, double, boolean) (Java method)

 	GLD_ID(String) (Java method)

 	GLD_Name(String, boolean) (Java method), [1]

 	GLDCapMode(String) (Java method)

 	GldNode (Java class)

 	GldNode(String) (Java constructor)

 	GldPrefixedNodeName(String) (Java method)

 	gov.pnnl.gridlabd.cim (package)

H

 	
 	HasLoad() (Java method)

M

 	
 	main(String[]) (Java method), [1]

 	mapNodes (Java field)

 	
 	mapSpacings (Java field)

 	MergePhases(String, String) (Java method)

N

 	
 	name (Java field)

 	neg120 (Java field)

 	
 	nomvln (Java field)

 	nsCIM (Java field), [1]

 	nsRDF (Java field), [1]

P

 	
 	pa_i (Java field)

 	pa_p (Java field)

 	pa_z (Java field)

 	pb_i (Java field)

 	pb_p (Java field)

 	pb_z (Java field)

 	pc_i (Java field)

 	pc_p (Java field)

 	
 	pc_z (Java field)

 	Phase_Kind_String(String) (Java method)

 	Phase_String(String) (Java method)

 	phases (Java field)

 	pos120 (Java field)

 	ptBaseNomV (Java field)

 	ptEqBaseV (Java field)

 	ptEquip (Java field)

 	ptLevBaseV (Java field)

Q

 	
 	qa_i (Java field)

 	qa_p (Java field)

 	qa_z (Java field)

 	qb_i (Java field)

 	
 	qb_p (Java field)

 	qb_z (Java field)

 	qc_i (Java field)

 	qc_p (Java field)

 	qc_z (Java field)

R

 	
 	RescaleLoad(double) (Java method)

S

 	
 	SafeBoolean(Resource, Property, boolean) (Java method)

 	SafeDouble(Resource, Property, double) (Java method)

 	SafeInt(Resource, Property, int) (Java method)

 	SafePhasesX(Resource, Property) (Java method)

 	SafeProperty(Resource, Property, String) (Java method)

 	SafeRegulatingMode(Resource, Property, String) (Java method)

 	
 	SafeResName(Resource, Property) (Java method)

 	SafeResourceLookup(Model, Property, Resource, Property, String) (Java method)

 	Shunt_Delta(Resource, Property) (Java method)

 	SpacingCount (Java class)

 	SpacingCount(int, int) (Java constructor)

 	SPARQLcimTest (Java class)

W

 	
 	WirePhases(Model, Resource, Property, Property) (Java method)

 gridappsd package

gridappsd package

Submodules

gridappsd.app_registration module

gridappsd.difference_builder module

gridappsd.docker_handler module

gridappsd.goss module

gridappsd.gridappsd module

gridappsd.houses module

gridappsd.loghandler module

gridappsd.simulation module

gridappsd.topics module

gridappsd.utils module

 listen_all_topics module

listen_all_topics module

 griappsd-python

griappsd-python

	gridappsd package
	Submodules

	gridappsd.app_registration module

	gridappsd.difference_builder module

	gridappsd.docker_handler module

	gridappsd.goss module

	gridappsd.gridappsd module

	gridappsd.houses module

	gridappsd.loghandler module

	gridappsd.simulation module

	gridappsd.topics module

	gridappsd.utils module

	listen_all_topics module

	register_app module

	run_simulation module

	setup module

 register_app module

register_app module

 run_simulation module

run_simulation module

 setup module

setup module

 Introduction

 This section presents an overview of CIM Validation techniques that
will be expanded upon in the future. The purpose of CIM validation
is to assess the level of compliance GRIDAPPS-D is using in its
use of CIM version 100.

Introduction

In electrical power distribution and transmission the Common
Information Model (CIM) is a technology agnostic standard developed by
the International Electrotechnical Commission (IEC). CIM provides
the blueprints for application software like GridAPPS-D to represent
data structures, message payloads, and information exchanges between
applications.

To represent the model, CIM is written using the Unified Modeling
Language (UML) using Sparx Enterprise Architect. The model is stored
in a project file (*.eap extension file). GridAPPS-D extends the CIM
to meet its application specific needs. UML (Object Management Group
UML 2.5 Specification) profiles are secondary models, derived from
the primary information model. Profiles represent a portion of the
model to support GridAPPS-D application-specific structures and
exchanges. A profile operates within the scope of the information
model and is formed by extracting selected elements of the information
model. These extracted elements are filtered or constrained by
providing value ranges, reducing cardinality, and filtering structures.

UML profiles use stereotype notation <<>> to annotate information model
elements such as classes, associations, and attributes in a target domain
or technology. Stereotypes are either used to impose domain-specific
criteria (for example, <<CIM:Datatype>>) or technical criteria (for example,
<<table>>, <<primarykey>>) on UML elements. UML profiles are generated in a
variety of ways including use of tools such as Enterprise Architect (EA)
Schema Composer, CIMContextor, or CIMTool to define structural requirements.
The W3C Shape Constraint Language (SHACL) will be used as extensions to
further specify value constraints.

Currently GridAPPS-D is using UML diagrams as a human-readable intuitive profile
description of application-specific uses of the extended CIM. Future profiles
will be produced by CIMTool and SHACL to provide a more comprehensive blueprint
for application development that is machine readable to compliment the diagrams.

Extending CIM

CIM is built on universally understood power grid concepts which
means that the UML should be generally applicable, When the needs
go beyond the general purpose solution it is possible to extend CIM
for application specific purposes. When extending CIM to be compliant,
the extentions comply with the rules and organization of the existing
model. Otherwise an uncompliant application risks losing the advantage
of using the standard, particularly for information exchanges.

Techniques for extending the CIM will not be discussed here, however the
IEC TC 57 61970 part 301 document and the CIM Model Manager Guide (being
released Spring 2020 by the TC57 CIM Model Managers) provides excellent
guidance on best practices when extending the CIM.

Validation Techniques

Well-Formed UML Compliance

In the IEC TC 57 13, 14, and 16 Working Groups the CIM Model Managers are
relied upon for any updates to the UML. Before a release occurs the
JCleanCim tool (http://tanjakostic.org/jcleancim/index.html) is used
to validate UML package, class, and associations against agreed upon
rules for well-formed UML. The JCleanCim tool generates a log report
citing any non-compliance items along with other products. It is
basically like a software debug tool for CIM UML. For extensions the
JCimClean tool can be used to review GridAPPS-D extensions and flag
any problematic areas. In addition the JCimClean tool original log
report for CIM100 can be compared against the GridAPPS-D CIMv100.

Well-Formed and Valid Profile

CIMTool can not only create Resource Description Framework Schema (RDFS)
profiles from the CIM100 UML, it can also validate the generated profiles
or created RDF datasets against CIM100 schema. GridAPPS-D has plans to
extend the CIMTool Validation using SHACL to specify and constrain
value ranges or check regular expression patterns

Final Thoughts

This section is expected to evolve in 2020 with the
advancement of CIM Model Manager tools that were previously only accessible
to the model managers or based on advancements of validation techniques
in the profile development communities.

 gridappsd-python

 [image: ../_images/badge.svg]Build status

gridappsd-python

Python library for developing applications and services against the gridappsd api

Installation

The gridappsd-python library requires python 3.6+ in order to work.

	Clone repository

	Install into your python environment pip install .

Creating a connection to GridAPPS-D

from gridappsd import GridAPPSD

def on_message_callback(header, message):
 print(f"header: {header} message: {message}")

Note: there are other parameters for connecting to
systems other than localhost
gapps = GridAPPSD(username="user", password="pass")

assert gapps.connected

gapps.send('send.topic', {"foo": "bar"})

Note we are sending the function not executing the function in the second parameter
gapps.subscribe('subscribe.topic', on_message_callback)

gapps.send('subcribe.topic', 'A message about subscription')

time.sleep(5)

gapps.close()

Testing

Before running the tests for gridappsd-python one should install the test requirements.

Install gridappsd requirements
pip install -r requirements.txt

Install gridappsd
pip install .

Install testing requirements
pip install -r test_requirements.txt

During the testing phase the docker containers required for the tests are downloaded from
dockerhub and started. By default the develop tag is used to test the library using pytest.One can customize the docker image tag by setting the environmental
variable GRIDAPPSD_TAG_ENV either by export GRIDAPPSD_TAG_ENV=other_tag or by executing
pytest with the following:

All tests run will use the same tag (other_tag) to pull from docker hub.
GRIDAPPSD_TAG_ENV=other_tag pytest

Tests also require the username and password to be avaialable as environmental variables
in order for them to properly run these tests
GRIDAPPSD_USER=user
GRIDAPPSD_PASSWORD=pass

pytest

NOTE: the first running the tests will download all of the docker images associated with the GOSS-GridAPPS-D [http://github.com/GRIDAPPSD/GOSS-GridAPPS-D] repository.may take a while.

Running tests created in a new project

The gridappsd-python library exposes a testing environment through the gridappsd.docker_handler module. Including the following
conftest.py in the root of your base test directory allows tests to reference these. Using these fixtures will start all of the
base containers required for gridappsd to run.

conftest.py
Create a conftest.py file in the root of the tests directory to enable usage throughout the tests directory and below.

Tested project structure an layout
#
project-folder\
mainmodule\
__init__.py
myapplication.py
tests\
conftest.py
test_myapplication.py
README.md

import os

import pytest

from gridappsd import GridAPPSD
from gridappsd.docker_handler import run_dependency_containers, run_gridappsd_container, Containers

If set to False then None of the containers will clean up after themselves.
If more than one test is ran then this will cause an error because the gridappsd
container will not be cleansed.
STOP_CONTAINER_AFTER_TEST = os.environ.get("GRIDAPPSD_STOP_CONTAINERS_AFTER_TESTS", True)

if isinstance(STOP_CONTAINER_AFTER_TEST, str):
 if STOP_CONTAINER_AFTER_TEST.lower() == 'false' or STOP_CONTAINER_AFTER_TEST.lower() != '0':
 STOP_CONTAINER_AFTER_TEST = False
 else:
 STOP_CONTAINER_AFTER_TEST = True

@pytest.fixture(scope="module")
def docker_dependencies():
 print("Docker dependencies")
 Containers.reset_all_containers()

 with run_dependency_containers(stop_after=STOP_CONTAINER_AFTER_TEST) as dep:
 yield dep
 print("Cleanup docker dependencies")

@pytest.fixture
def gridappsd_client(docker_dependencies):
 with run_gridappsd_container(stop_after=STOP_CONTAINER_AFTER_TEST):
 gappsd = GridAPPSD()
 gappsd.connect()
 assert gappsd.connected

 yield gappsd

 gappsd.disconnect()

Using the above fixtures from inside a test module and test function looks like the following:

Example test function using the gridappsd_client fixture

@mock.patch.dict(os.environ, {"GRIDAPPSD_APPLICATION_ID": "helics_goss_bridge.py"})
def test_gridappsd_status(gridappsd_client):
 gappsd = gridappsd_client
 assert "helics_goss_bridge.py" == gappsd.get_application_id()
 assert gappsd.get_application_status() == ProcessStatusEnum.STARTING.value
 assert gappsd.get_service_status() == ProcessStatusEnum.STARTING.value
 gappsd.set_application_status("RUNNING")

 assert gappsd.get_service_status() == ProcessStatusEnum.RUNNING.value
 assert gappsd.get_application_status() == ProcessStatusEnum.RUNNING.value

 gappsd.set_service_status("COMPLETE")
 assert gappsd.get_service_status() == ProcessStatusEnum.COMPLETE.value
 assert gappsd.get_application_status() == ProcessStatusEnum.COMPLETE.value

 # Invalid
 gappsd.set_service_status("Foo")
 assert gappsd.get_service_status() == ProcessStatusEnum.COMPLETE.value
 assert gappsd.get_application_status() == ProcessStatusEnum.COMPLETE.value

 GridAPSP Python API

GridAPSP Python API

 gridappsd package

gridappsd package

Submodules

gridappsd.difference_builder module

gridappsd.goss module

gridappsd.gridappsd module

gridappsd.topics module

 Welcome to GridAPPS-D Python’s documentation!

Welcome to GridAPPS-D Python’s documentation!

Contents:

	GridAPSP Python API

Indices and tables

	Index

	Module Index

	Search Page

 gridappsd

gridappsd

	gridappsd package
	Submodules

	gridappsd.difference_builder module

	gridappsd.goss module

	gridappsd.gridappsd module

	gridappsd.topics module

 Query Time-series database

Query Time-series database

Connect to the running GridAPPS-D container

user@foo>docker exec -it gridappsddocker_gridappsd_1 bash

Now we are inside the executing container. Start the platform.

root@737c30c82df7:/gridappsd# ./run-docker.sh

Open your browser to http://localhost:8080/ and click the menu button.

[image: home-image]

Select Browse Database from the menu.

[image: viz-menu]

Select the time-series option.

[image: database-browser]

Enter the time-series query in the textarea and the results will be displayed in the space below the textarea.

Stop GridAPPS-D platform

For an orderly shutdown of the platform:

Use Ctrl+C to stop gridappsd from running

_images/cim_AssetInfoOverview.png
class AssetinfoOverview /

TapChangerinfo

+ ctRating: CurrentFlow [0..1]
+ ctRatio: Float [0..1]
+ ptRatio: Float [0..1]

ShuntCompensatorinfo

IdentifiedObject

+AssetDatasheet

Assets::Assetinfo ||

Wires::TapChanger

R i i

controlEnabled: Boolean [0..1]
highStep: Integer [0..1]
initialDelay: Seconds [0..1]
lowStep: Integer [0..1]

ItcFlag: Boolean [0..1]
neutralStep: Integer [0..1]
neutralU: Voltage [0..1]
normalStep: Integer [0..1]

step: Float [0..1]
subsequentDelay: Seconds [0..1]

Switchinfo

+PowerSystemResources

IdentifiedObject|

Core::
> PowerSystemResource

_images/cim_Autotransformer.png
Autotransformer
—> (Yan)

with Delta Tertiary
(Yand1)
oT

n3

_images/TransactiveSystemAppStructure.png
Pbso

Agent A executes balanced ACOPF with
supply/demand curves.

The quantity of the generation and load demand from
each aggregator will be determined, to achieve
maximum social welfare.

The determined quantity for each aggregator will be
sent back to Agent B.

Agent B gathers the bidding price and quantity from
Agent Cs, and formulate the supply/demand curve.
Agent B sends the curve to Agent A, as well as the
uncontrollable load quantity, or uncontrollable PV
generation.

Agent A returns the cleared quantity to each Agent B,
as well as the cleared price determined from each

supply/demand curve.
Agent Agent Agent Agent Agent Agent Agent
c [4 c [[4 c c \
N[N ((Controllable house appliances send to Agent C:
Appliances Appliances Appliances Appliances Appliances Appliances Appliances « Bid price
J /- - J . Bid quantity

Controllable DGs send to Agent C:

. Generation price

. Maximum generation capability

At every scheduling period, Agent C returns the
setpoints for house appliances, and generation for DGs

_images/cim_CapacitorClass.png
class Capacitors /

EnergyConnection
RegulatingCondEq

+ controlEnabled: Boolean [0..1] }\Jr

RegulatingCondEq
0.

ShuntCompensator ‘

R

aVRDelay: Seconds [0..1]

grounded: Boolean [0..1]

maximumsSections: Integer [0..1]

nomu: Voltage [0..1]

normalSections: Integer [0..1]

phaseConnection: PhaseShuntConnectionKind [0..1]
sections: Float [0..1]

+ShuntCompensator | 1

+ShuntCompensatorPhase

0.%

+RegulatingControl

0..

PowerSystemResource
ShuntCompensatorPhase

+ o+ o+ o+

maximumSections: Integer [0..1]
phase: SinglePhaseKind [0..1]
normalSections: Integer [0..1]
sections: Float [0..1]

T

LinearShuntCompensatorPhase

LinearShuntCompensator

+ o+ o+ o+

bOPerSection: Susceptance [0..1]
bPerSection: Susceptance [0..1]

gOPerSection: Conductance [0..1]]
gPerSection: Conductance [0..1]

1

ACDCTeminal|

Core::Terminal

+Terminal
+RegulatingControl

e 9o

S

PowerSystemResource

RegulatingControl

discrete: Boolean [0..1]
enabled: Boolean [0..1]

targetDeadband: Float [0..1]
targetVvalue: Float [0..1]

+ o+ o+

mode: RegulatingControlModeKind [0..1]
monitoredPhase: PhaseCode [0..1]

«enumeration»
RegulatingControlModeKind

voltage
activePower
reactivePower
currentFlow
admittance
timeScheduled
temperature
powerFactor

«enumerati...
Core::
PhaseCode

«enumeration»
PhaseShuntConnectionKind

+ bPerSection: Susceptance [0..1] D=1

+ gPerSection: Conductance [0..1 Y=2
Yn=3
=4
G=5

ABCN = 225
ABC = 224
ABN =193
ACN =41
BCN =97
AB =132
AC =96

BC = 66
AN =129
BN = 65
CN =33
A=128

B =64
C=32
N=16
SIN =528
$2N =272
S12N =784
s1 =512
s2 =256
s12 =768
none =0
X=1024
XY = 3072
XN = 1040
XYN = 3088

_images/cim_CapacitorValues.png
object CapacitorMeasurement

Bus675: Cap675: LinearShuntCompensator
controlEnabled = true
phaseConnection = Y Cap675sections:
1 normalSections = 1 +ShuntCompensator SvShuntCompensatorSe
+ConnectivityNode maximumSections = 1 —
+ConductingEquipment aVRDelay = 30 1 sections = sectionsOn
grounded = true
11 nomu -4160
:Terminal

bPerSection = 0.0347

_images/cim_BusNavigation.png
object BusNavigation

+ConnectivityNode

+ConnectivityNode

+ConnectivityNode

+ConnectivityNode 1

+ConductingEquipmelt +ConductingEquipment

_images/cim_CIMTool.png
® © @ | CiMTool - OSPRREYS/Profiles/RC1.owl - CIMTool - /Applications/CIMTool/CIMTool.app/Contents/MacO...

Irse BB & Q& 515t G 5 [¥ cimtool
PR =0 2 RCT.sal | B IEEE13Nodeck! COPSM_Combined.di =Ojox._=0
P <
B % || © TapChangerControl B
¥ OSPRREYS > pesitont
@ incremer|| Select members of this ciass. € Show superciass members [Show subclass members > [PowerTrs
¥ & Instance| v i PowerTra
- mRD 1.1 < TapChanger = mRiD
" eer discrete 1.1 ¥ -1 SuperClass: ReguiatingControl » Flcomne|
@il enabled 1.1 = targetvalueUnitultlier: UnitMults = endN
@i imitvoltage 1..1 < protectiveActionRegulation -
et tineDropCompensation 1..1 -
ineDropR 1.1 <~ ReguiationSchedule -
PR _— 0O lineDropX 1..1 » i SuperClass: PowerSystemResource -
S| Tmeaera -
I monitoredPhase 1.1 -
Lo e e S -
|[pocumentation 53 properties |
> E
>
re

_images/cim_Capacitors.png
object Capacitors

Bus611: Bus675:

+ConnectivityNode | 1 +ConnectivityNode | 1

:Terminal :Terminal

—

+ConductingEquipment 1

+Terminal

0.1

Cap6il: +ConductingEquipment

LinearShuntCompensator

Cap675:
LinearShuntCompensator

normalSections = 1

phaseConnection = Y
bPerSection = 0.0174
nomU = 2400

targetDeadband = 240

controlEnabled = true

phaseConnection = Y +RegulatingCondEq targetValue = 2400
| +RegulatingCon

normalSections = 1 mode = voltage

maximumSections = 1 j ! 1
maximumSections = 1
grounded = true
aVRDelay = 30
+ShuntCompensator | 1 grounded = true
nomU = 4160

bPerSection = 0.0347

LinearShuntCompensatorPhase

normalSections = 1
maximumSections = 1
bPerSection = 0.0174
phase = C

_images/cim_ConductingEquipmentContexts.png
cbjec(Ccnducl'\ngEqu'\pmechmex(s/

‘ :BaseVoltage ‘

+BaseVoltage

‘ nominalVoltage = 12470.0

SubstationTransformerSecondary:
PowerTransformerEnd

+BaseVoltage 1

‘ ratedU = 12500.0

anyButTransformer:

+EquipmentContainer

ieeel3: Feeder

Condu

gEquipment +EquipmentContainer

+PowerTransformer

SubstationTransformer:
PowerTransformer

+Location

:Location

_images/cim_DCIMTransformerInfo.png
class DCIMTransformerinfo /

Assetinfo
PowerTransformerinfo

+PowerTransformerinfo 1

+TransformerTankinfos [1..*

Assetinfo

TransformerTankinfo

+TransformerTankinfo | 1

+TransformerEndinfos

Equipment
Wires::TransformerTank

Assetinfo

TransformerEndinfo

R T S e

connectionKind: WindingConnection [0..1]
emergencyS: ApparentPower [0..1]
endNumber: Integer [0..1]

insulationU: Voltage [0..1]
phaseAngleClock: Integer [0..1]

r: Resistance [0..1]

ratedS: ApparentPower [0..1]

ratedU: Voltage [0..1]

shortTermS: ApparentPower [0..1]

+EnergisedEnd

0..1
o

1
+EnergisedEndNoLoadTests

«enumeration»
Wires::
WindingConnection

D
Y
z
Yn
Zn

IdentifiedObject|
TransformerTest

+ basePower: ApparentPower [0..1
+ temperature: Temperature [0..1]

NoLoadTest

1

+EnergisedEnd +GroundedEnds

+EnergisedEndShortCircuitTests
0.%

+GroundedEndShortCircuitTests

1.%

+ o+ o+ o+

energisedEndVoltage: Voltage [0..1]
excitingCurrent: PerCent [0..1]
excitingCurrentZero: PerCent [0..1]
loss: KiloActivePower [0..1]
lossZero: KiloActivePower [0..1]

0.%

ShortCircuitTest

lossZero

energisedEndStep: Integer [0..1]
groundedEndStep: Integer [0..1]
leakagelmpedance: Impedance [0..1]
leakagelmpedanceZero: Impedance [0..1]
loss: KiloActivePower [0..1]

KiloActivePower [0..1]

nav.xhtml

 Table of Contents

 		
 GridAPPS-D’s Documentation

 		
 Overview

 		
 Conceptual Design Summary

 		
 Architecture

 		
 Definition of Terms

 		
 References

 		
 Release History

 		
 Version: Release Cycle 1 (RC1)

 		
 Version: 2019.01.0

 		
 Version: 2019.02.0

 		
 Version 2019.03.0

 		
 Version 2019.06.0

 		
 Version 2019.07.0

 		
 Version 2019.08.0

 		
 Version 2019.08.1

 		
 Version 2019.09.0

 		
 Version 2019.09.1

 		
 Version 2019.10.0

 		
 Version 2019.12.0

 		
 Version 2020.01.0

 		
 Version 2020.02.0

 		
 Version 2020.03.0

 		
 Version 2020.04.0

 		
 Version 2020.05.0

 		
 Version 2020.07.0

 		
 Version 2020.08.0

 		
 Version 2020.09.0

 		
 Version 2020.11.0

 		
 Version 2020.12.0

 		
 Version 2021.02.0

 		
 Version 2021.03.0

 		
 Version 2021.04.0

 		
 Contact Us

 		
 Installing GridAPPS-D

 		
 Requirements

 		
 Docker and prerequisite install on OS X

 		
 Clone or download the repository

 		
 Install Docker on Ubuntu

 		
 Start the docker container services

 		
 Start gridappsd

 		
 Exiting the container and stopping the containers

 		
 Restarting the containers

 		
 Using GridAPPS-D

 		
 Start GridAPPS-D platform

 		
 Start a Simulation

 		
 Stop GridAPPS-D platform

 		
 Adding Events

 		
 Uploading Model into Blazegraph

 		
 Inserting Measurements into Blazegraph

 		
 Using Platform API

 		
 Powergrid Model API

 		
 Query Request Queue

 		
 Query Model Info

 		
 Query Model Names

 		
 Query

 		
 Query Object

 		
 Query Object Types

 		
 Query Model

 		
 Query Object Ids

 		
 Query Object Dictionary

 		
 Query Object Measurements

 		
 Put Model

 		
 Configuration File API

 		
 Request all GridLAB-D configuration files

 		
 Request GridLAB-D Base File

 		
 Request GridLAB-D Symbols File

 		
 Request CIM Dictionary file

 		
 Request CIM Feeder Index file

 		
 Request Simulation Output Configuration file

 		
 Request all OpenDSS configuration files

 		
 Request OpenDSS Base File

 		
 Request OpenDSS Coordinates File

 		
 Request YBus Export Configuration file

 		
 Logging API

 		
 Publishing Logs:

 		
 Subscribing to Logs:

 		
 Querying Logs:

 		
 Simulation API

 		
 Start a Simulation

 		
 Subscribe to Simulation Output

 		
 Subscribe to Simulation Logs

 		
 Send Input to Simulation

 		
 Pause Simulation

 		
 Resume Simulation

 		
 Resume and Pause the Simulation after a Specified Number of Seconds

 		
 Timeseries API

 		
 Query Request Queue

 		
 Query Weather data

 		
 Query Simulation Data

 		
 Query Sensor Service Data

 		
 Query Historical Sensor Service Data

 		
 Services

 		
 Hosting Application

 		
 Supported Application or Service Types

 		
 Hosting Application

 		
 Hosting Service

 		
 How to start a service

 		
 System Configurations

 		
 GridAPPS-D Development Resources

 		
 Design

 		
 Process Manager

 		
 Log Manager

 		
 Simulation Manager

 		
 Configuration Manager

 		
 Eclipse IDE Setup

 		
 Execution Workflow

 		
 CIM Documentation

 		
 Class Diagrams for the Profile

 		
 Typical Queries

 		
 Object Diagrams for Queries

 		
 Metering Relationship to Loads in the CIM

 		
 CIM Enhancements for RC4

 		
 CIM Profile in CIMTool

 		
 Legacy Data Definition Language (DDL) for MySQL

 		
 Platform UML Diagrams

 		
 UML from the Functional Specification

 		
 UML for Release Cycle 4

 		
 Initial Work Breakdown for Release Cycle 1

 		
 CIM Validation

 		
 Introduction

 		
 Extending CIM

 		
 Validation Techniques

 		
 Well-Formed UML Compliance

 		
 Well-Formed and Valid Profile

 		
 Final Thoughts

 		
 Data Model

 		
 IEEE 8500-Node Test Feeder

 		
 Integrated Applications

 		
 Volt-var Optimization (VVO)

 		
 Visualization

 		
 State Estimator Service

 		
 Design Objectives

 		
 Use Cases

 		
 Algorithms

 		
 TRL

 		
 Architecture

 		
 Inputs

 		
 Outputs

 		
 Testing and Validation

 		
 Operating/Running

 		
 References

 		
 Model Validation Application

 		
 Design Objectives

 		
 Use Cases

 		
 Inputs

 		
 Outputs

 		
 Testing and Validation

 		
 Operating/Running

 		
 References

 		
 Transactive Systems Application

 		
 References

 		
 Distribution Optimal Power Flow for Real-Time Setpoint Dispatch

 		
 Objectives

 		
 Design

 		
 Data requirements

 		
 Testing and Validation

 		
 Operating/Running

 		
 References

 		
 Short-Term Grid Forecasting

 		
 Objectives

 		
 Design

 		
 Operating/Running

 		
 References

 		
 Solar Forecasting Application

 		
 Objectives

 		
 Design

 		
 Testing and Validation

 		
 Operating/Running

 		
 References

 		
 API Documentation

 		
 GridAPPS-D

 		
 GOSS

 		
 FNCS

 		
 VVO

 		
 GridLAB-D

 		
 gov.pnnl.gridlabd.cim

 		
 CDPSM_to_GLM

 		
 CDPSM_to_GLM.GldNode

 		
 CDPSM_to_GLM.SpacingCount

 		
 SPARQLcimTest

 		
 License

_images/cim_Faults.png
class Faults /

«enumerati...

IdentifiedObject Core::

«enumeration»
PhaseConnectedFaultKind Fault PhaseCode

impedance: Faultimpedance [0..1] ABCN = 225
kind: PhaseConnectedFaultKind [0..1] ABC = 224
occurredDateTime: DateTime ABN =193
phases: PhaseCode [0..1] ACN = 41

stopDateTime: DateTime [0..1] iCBN § ;327

AC =96
BC = 66
AN =129
EquipmentFault BN = 65
CN =33
A=128
B =64
C=32

lineToGround
lineToLine
lineToLineToGround
lineOpen

+ o+ o+ +

+EquipmentFaults | 0..*

«Compound» +Terminal | 0..1 N=16

Faultimpedance 5 SIN =528
ACDCTerminal| $2N = 272

rGround: Resistance [0..1] Core::Terminal S12N =784
rLineToLine: Resistance [0..1] s1 =512
xGround: Reactance [0..1] $2 =256
XLineToLine: Reactance [0..1] s12 =768
none = 0
X=1024
XY = 3072
XN = 1040
XYN = 3088

+ o+ o+ o+

_images/cim_FeederContext.png
class FeecderContext /

IdentifiedObject| . powerSystemResources

IdentifiedObject|
Common::CoordinateSystem

+ crsurn: String [0..1]

+CoordinateSystem 0..1

+Locations 0..*

+Location IdentifiedObject]

Core::
PowerSystemResource

Core::
ConnectivityNodeContainer

1

+ConnectivityNodeContainer

+ConnectivityNodes

IdentifiedObject|

Core::

+EquipmentContainer

EquipmentContainer

Common::Location

0..1

‘ Core::Equipment

aggregate: Boolean [0..1]

inService: Boolean [0..1]
networkAnalysisEnabled: Boolean [0..1]
normallylnService: Boolean [0..1]

+ o+ o+ +

+Equipments

IdentifiedObject|
Core:ACDCTerminal

+ connected: Boolean [0..1]
+ sequenceNumber: Integer [0..1]

+PositionPoints

Common::PositionPoint

groupNumber: Integer [0..1]
sequenceNumber: Integer [0..1]
XxPosition: String [0..1]
yPosition: String [0..1]
zPosition: String [0..1]

+ o+ o+ o+

IdentifiedObject|
Core::BaseVoltage

+ nominalVoltage: Voltage [0..1]

ConductingEquipment

+ConductingEquipment

+BaseVoltage / 0..1

0..* +ConductingEquipment

Core::

+ length: Length [0..1]

ACLineSegment

Core::Feeder
_ 0.1

+NormalHeadFeeder

+NormalEnergizedFeeder

+Terminals

+NormalHeadTerminal

ConnectivityNode |

+ConnectivityNode

B A A

+Terminals

bOch: Susceptance [0..1]

bch: Susceptance [0..1]

g0ch: Conductance [0..1]

gch: Conductance [0..1]

r: Resistance [0..1]

r0: Resistance [0..1]
shortCircuitEndTemperature: Temperature [0..1]
x: Reactance [0..1]

x0: Reactance [0..1]

+NormalEnergizingSubstation

0..1

+Substationsjion

Core::
SubGeographicalRegion

Core::Substation

IdentifiedObject|

Core::
GeographicalRegion

_images/cim_DCIMWireInfo.png
class DCIMWirelnfo /

Assetinfo
Wirelnfo
+ coreRadius: Length [0..1]
+ coreStrandCount: Integer [0..1]
+ gmr: Length [0..1]
+ insulated: Boolean [0..1]
+ insulationMaterial: WirelnsulationKind [0..1]
+ insulationThickness: Length [0..1]
+ material: WireMaterialKind [0..1]
+ TrAC25: ResistancePerlLength [0..1]
+ TrAC50: ResistancePerlLength [0..1]
+ TrAC75: ResistancePerLength [0..1]
+ radius: Length [0..1]
+ ratedCurrent: CurrentFlow [0..1]
+ rDC20: ResistancePerLength [0..1]
+ sizeDescription: String [0..1]
+ strandCount: Integer [0..1
Cablelnfo OverheadWirelnfo
+ constructionKind: CableConstructionKind [0..1]
+ diameterOverCore: Length [0..1]
+ diameterOverlnsulation: Length [0..1]
+ diameterOverJacket: Length [0..1]
+ diameterOverScreen: Length [0..1]
+ isStrandFill: Boolean [0..1]
+ nominalTemperature: Temperature [0..1]
+ outerJacketKind: CableOuterJacketKind [0..1]
+ sheathAsNeutral: Boolean [0..1]
+ shieldMaterial: CableShieldMaterialKind [0..1]
‘ TapeShieldCableinfo ConcentricNeutralCablelnfo

+ tapelap: PerCent [0..1]
+ tapeThickness: Length [0..1]

«enumeration»
CableShieldMaterialKind

+ b+ o+

diameterOverNeutral: Length [0..1]
neutralStrandCount: Integer [0..1]
neutralStrandGmr: Length [0..1]
neutralStrandRadius: Length [0..1]
neutralStrandRDC20: ResistancePerLength [0..1]

lead

copper
steel
aluminum
other

«enumeration»
CableOuterJacketKind

none
linearLowDensityPolyethylene
pve

polyethylene

insulating

semiconducting

other

«enumeration» «enumeration»
CableConstructionKind WireMaterialKind
compacted copper
compressed steel
sector aluminum
segmental aluminumSteel
solid acsr
stranded aluminumAlloy
other aluminumAlloySteel
aaac
other

Assetinfo
WireSpacinginfo

isCable: Boolean [0..1]
phaseWireCount: Integer [0..1]
phaseWireSpacing: Length [0..1]
usage: WireUsageKind [0..1]

+ o+ o+ o+

+WireSpacinginfo | 0..1

+WirePositions

IdentifiedObject
WirePosition

+ sequenceNumber: Integer [0..1]
+ xCoord: Displacement [0..1]
+ yCoord: Displacement [0..1]

«enumeration»
Wires::

«enumerati SinglePhaseKind
WireUsageKind

A
transmission B
distribution ©
secondary N
other

s1

s2

«enumeration»

WirelnsulationKind

asbestosAndVarnishedCambric

butyl

ethylenePropyleneRubber
highMolecularWeightPolyethylene
treeResistantHighMolecularWeightPolyethylene
lowCapacitanceRubber

oilPaper

ozoneResistantRubber

beltedPilc

unbeltedPilc

rubber

siliconRubber

varnishedCambricCloth
varnishedDacronGlass
crosslinkedPolyethylene
treeRetardantCrosslinkedPolyethylene
highPressureFluidFilled

other

_images/cim_DERMachines.png
class DERMachines /

Equipment
Production::GeneratingUnit

+ minOperatingP: ActivePower [0..1]

+ maxOperatingP: ActivePower [0..1] ‘

+GeneratingUnit \0..1

+RotatingMachine \ 0..*

RotatingMachine

p: ActivePower [0..1]
q: ReactivePower [0..1]

+RegulatingControl
0.%

PowerSystemResource
RegulatingControl

discrete: Boolean [0..1]

enabled: Boolean [0..1]

mode: RegulatingControlModeKind [0..1]
monitoredPhase: PhaseCode [0..1]
targetDeadband: Float [0..1]
targetVvalue: Float [0..1]

+Terminal
0..1

ACDCTeminal|

+ o+ o+

Core::Terminal

+RegulatingControl 0..1

+RegulatingCondEq\ 0--*

L ConduaingEquipment
RegulatingCondEq Energyci li‘e': e

ratedPowerFactor: Float [0..1]
ratedS: ApparentPower [0..1]
ratedU: Voltage [0..1]

+ o+ o+ o+

AsynchronousMachine

+ controlEnabled: Boolean [0..1]

SynchronousMachine

ikk: CurrentFlow [0..1]

+ asynchronousMachineType: AsynchronousMachineKind [0..1] : maxQ: ReactivePower [0..1]
+ converterFedDrive: Boolean [0..1] 4+ minQ: ReactivePower [0..1]
== GBI (R (0.1 + operatingMode: SynchronousMachineOperatingMode [0..1]
+ lalrRatio: Float [0..1] + type: SynchronousMachineKind [0..1]
+ nominalFrequency: Frequency [0..1]
+ nominalSpeed: RotationSpeed [0..1]
+ polePairNumber: Integer [0..1]
+ ratedMechanicalPower: ActivePower [0..1] «enumeration»
+ reversible: Boolean [0..1] SynchronousMachineKind
+ rxLockedRotorRatio: Float [0..1] e
condenser
N «enumeration» generatorOrCondenser
AsynchtznnuoTEE::::neKind Synchronouskaciines mote
SynchronousMachineOperatingMode generatorOrMotor
generator motorOrCondenser
motor generator generatorOrCondenserOrMotor
condenser

motor

_images/cim_LineCatalog.png
object LineCatalog
1/0_ACSR: OverheadWirelnfo spc505acn Spacinglnfo

rDC20 = 0.5222e-3 usage = distribution
sizeDescription = Raven phaseWireSpacing = 0
strandCount = 6 phaseWireCount = 0
rAC75 = 0.7083e-3 isCable = false

rAC25 = 0.5334e-3

coreStrandCount = 1 +WireSpacinginfo

i y +WireSpacinglnfo
rACS50 = 0.6959-3 +WireSpacinginfo

radius = 5.0546e-3
ratedCurrent = 230.0

insulated = false
gmr = 1.9436e-3

coreRadius = 1.6853e-3

sequenceNumber = 1 sequenceNumber =2 sequenceNumber = 3
yCoord = 8.5345 yCoord = 8.5345 yCoord = 7.3153
xCoord = -1.0668 xCoord = 1.0668 xCoord = 0.1524

250_AA_CN: ConcentricNeutralCablelnfo
1/0_Cu_Ts: TapeShieldCablelnfo
insulationThickness = 5.588e-3
ratedCurrent = 255.0 insulationThickness = 5.588e-3

ratedCurrent = 165.0

_images/cim_LineInstance.png
+ConductingEquipment +ConductingEquipment

+ConnectivityNode
1

_images/cim_IEEE1547Info.png
class IEEE1547Info /

IdentifiedObject

Assets::Assetinfo | TAssetDatasheet +PowerSystemResources

IdentifiedObject|
Core::

0..1

0.% PowerSystemResource

RegulatingCondEq
Wires::RotatingMachine

ratedPowerFactor: Float [0..1]
p: ActivePower [0..1]

ratedS: ApparentPower [0..1]
q: ReactivePower [0..1]

+RotatingMachines

IEEE1547Info

+ o+ o+ o+

ratedU: Voltage [0..1]

P i Tk TR Tk T T i o S e S S

ratedPatUnityPF: ActivePower [0..1]
ratedPoverExcited: ActivePower [0..1]
overkxcitedPF: Float [0..1]
ratedPunderkxcited: ActivePower [0..1]
underkxcitedPF: Float [0..1]

ratedS: ApparentPower [0..1]

normalPerformanceCategory: IEEE1547NormalPerformanceCategory [0..1]
abnormalPerformanceCategory: IEEE1547AbnormalPerfomanceCategory [0..1] | +|EEE1547Info
[—

ratedQinjected: ReactivePower [0..1]
ratedQabsorbed: ReactivePower [0..1]
ratedPcharge: ActivePower [0..1]
ratedScharge: ApparentPower [0..1]
ratedU: Voltage [0..1]

maximumu: Voltage [0..1]
minimumu: Voltage [0..1]
supportsConstantPF: Boolean [0..1]
supportsVoltvar: Boolean [0..1]
supportswattvar: Boolean [0..1]
supportsConstantQ: Boolean [0..1]
susceptanceCeaseToEnergize: Susceptance [0..1]
manufacturer: String [0..1]

model: String [0..1]

serialNumber: String [0..1]

version: String [0..1]

RegulatingCondEq
Wires::PowerElectronicsConnection

+IEEE1547Info

maxQ: ReactivePower [0..1]

minQ: ReactivePower [0..1]

ratedS: ApparentPower [0..1]

ratedU: Voltage [0..1]

p: ActivePower [0..1]

q: ReactivePower [0..1]

maxlFault: PU [0..1]

inverterMode: SmartinverterMode [0..1]

+ b F o+ o+t

0..1

«enumeration»
IEEE1 547 NormalPerformanceCategory

CategoryA
CategoryB

«enumeration»
IEEE1 547 AbnormalPerfomanceCategory

Categoryl
Categoryll
Categorylll

_images/cim_LineAssetInfo.png
+PSR.AssetD:

+ConnectivityNode

ataSheet
0.1

+PSR.AssetDataSheet

0.17

+ConductingEquipment 1

+ACLineSegment
+ACLineSegment

+PSR.AssetDataSheet

1
+ConnectivityNode

+ConductingEquipment

+PSR.AssetDataSheet 0.1

_images/cim_LineMatrix.png
:ACLineSegmentPhase

sequenceNumber = 1

phase - A

1 +ConnectivityNode

Terminal
sequenceNumber = 2

Z11: PhaselmpedanceData

column =1

+ConductingEquipmen

row=1
x=0.8431e-3
r=0.8225e-3

+Phaselmpedance
Z12: PhaselmpedanceData

+ACLineSegment

1

1 1

matrix671_684:

:ACLineSegmentPhase

sequenceNumber = 2

phase = C

+ACLineSegment
7

+ConductingEquipment

bus671:

+ConnectivityNode

:Terminal

ACLineSegment

it
1
length = 91.4

+PerLengthimpedance
0.1

mtx604:
PerlengthPhaselmpedance

+Phaselmpedance

sequenceNumber = 1

222: PhaselmpedanceData

column =2

1
column =2
row=1
x=0.2853e-3 1
.1284e-3 +Phaselmpedance

2

conductorCoun

1

row =2
x =0.8370e-3
r =0.8260e-3

_images/cim_LineModel.png
class LineModel /

ConductingEquipment
Conductor

+ length: Length [0..1]

+ACLineSegment:
| HAcines

ACLineSegment
+ bOch: Susceptance [0..1]
+ bch: Susceptance [0..1]
+ gOch: Conductance [0..1
+ gch: Conductance [0..1]
+ r: Resistance [0..1]
+ r0: Resistance [0..1]
+ shortCircuitEndTemperature: Temperature [0..1]
+ x: Reactance [0..1]
+ x0: Reactance [0..1]
+ACLineSegments 0..% +ACLineSegments 0..%

+WireSpacinginfo 0..1

+PerLengthimpedance 0..1

PerLengthLineParameter
PerLengthimpedance

+ACLineSegmentPhases

1 +ACLineSegmentPhases

PowerSystemResource
ACLineSegmentPhase

+ phase: SinglePhaseKind [0..1]
+ sequenceNumber: Integer [0..1]

+Wirelnfo |0..1

Assetinfo
Assetinfo::Wirelnfo

Assetinfo
Assetinfo::WireSpacinginfo

isCable: Boolean [0..1]
phaseWireCount: Integer [0..1]
phaseWireSpacing: Length [0..1]
usage: WireUsageKind [0..1]

+ o+ o+ o+

PerLengthPhaselmpedance ‘

+ conductorCount: Integer [0..1]

PerLengthSequencelmpedance ‘

bOch: SusceptancePerlLength [0..1]

+Phaselmpedance
1

+PhaselmpedanceData
1%

bch: SusceptancePerlLength [0..1 ‘
g0ch: ConductancePerLength [0..1]

PhaselmpedanceData

gch: ConductancePerLength [0..1
r: ResistancePerLength [0..1]

r0: ResistancePerLength [0..1]
x: ReactancePerlLength [0..1]
x0: ReactancePerlLength [0..1]

+ b F o+ o+t

b: SusceptancePerlLength [0..1]
column: Integer [0..1]

g: ConductancePerLength [0..1]
r: ResistancePerLength [0..1]
row: Integer [0..1]

x: ReactancePerlLength [0..1]

EE T A T A S Y

coreRadius: Length [0..1]
coreStrandCount: Integer [0..1]
gmr: Length [0..1]

insulated: Boolean [0..1]
insulationMaterial: WirelnsulationKind [0..1]
insulationThickness: Length [0..1]
material: WireMaterialKind [0..1]
rAC25: ResistancePerLength [0..1]
rAC50: ResistancePerLength [0..1]
rAC75: ResistancePerLength [0..1]
radius: Length [0..1]

ratedCurrent: CurrentFlow [0..1]
rDC20: ResistancePerlLength [0..1]
sizeDescription: String [0..1]
strandCount: Integer [0..1]

_images/cim_LinePhaseNavigation.png
object LinePhaseNavigation

:Terminal

+ConductingEquipment Line671_684:

ACLineSegment

+ConductingEquipment

sequenceNumber = 1 1 sequenceNumber = 2
+ACLineSegment +AClineSegment
+ConnectivityNode +ConnectivityNode
J ! \ 1
bus671: :ACLineSegmentPhase :ACLineSegmentPhase bus684:

_images/cim_LoadsAndSources.png
class LoadsAndsources /

IdentifiedObject|
LoadModel::
LoadResponseCharacteristic

exponentModel: Boolean [0..1]
pConstantCurrent: Float [0..1]
pConstantimpedance: Float [0..1]
pConstantPower: Float [0..1]
pVoltageExponent: Float [0..1]
qConstantCurrent: Float [0..1]
qConstantimpedance: Float [0..1]
qConstantPower: Float [0..1]
qVoltageExponent: Float [0..1]

R T

+LoadResponse | 0..1

+EnergyConsumer|0..*

EnergyConsumer

+ customerCount: Integer [0..1]
+ grounded: Boolean [0..1]

+ p:ActivePower [0..1]

+ phaseConnection: PhaseShuntConnectionKind [0..1]
+ q: ReactivePower [0..1]

+EnergyConsumer | 1

+EnergyConsumerPhase | 0..*

PowerSystemResource
EnergyConsumerPhase

+ p:ActivePower [0..1]
+ phase:SinglePhaseKind [0..1]
+ q: ReactivePower [0..1]

Equipment

Core::
ConductingEquipment

EnergyConnection

EnergySource

nominalVoltage: Voltage [0..1]

r: Resistance [0..1]

r0: Resistance [0..1]
voltageAngle: AngleRadians [0..1]
voltageMagnitude: Voltage [0..1]
X: Reactance [0..1]

X0: Reactance [0..1]

R

«enumeration»
PhaseShuntConnectionKind

+EnergySource 1

+EnergySourcePhase |0..*

PowerSystemResource
EnergySourcePhase

+ phase:SinglePhaseKind [0..1]

D=1
Y=2
Yn=3
=4
G=5

_images/cim_MeasurementGridAPPSD.png
class MeasurementGridAPPSD /

measurementType is an IEC logical node, one of:
. PNV for phase-neutral voltage
. VA for complex power +PowerSystemResource
. A for current
. Pos for a tap or switch position
0..1

IdentifiedObject|
Core::

PowerSystemResource

IdentifiedObject| *Measurements
Measurement 0.%

IdentifiedObject|
Core:ACDCTerminal

+ measurementType: String [0..1]
+ phases: PhaseCode [0..1]

+Termin/al‘
0..1

+ connected: Boolean [0..1]
+ sequenceNumber: Integer [0..1]

+Measurements

Analog

maxValue: Float [0..1] +Analog +Analogvalues

1OPoint
MeasurementValue

+ sensorAccuracy: PerCent [0..1]
+ timeStamp: DateTime [0..1]

AnalogVvalue

minValue: Float [0..1]
normalValue: Float [0..1]
positiveFlowIn: Boolean [0..1]

+ o+ o+ o+

Discrete ~
+Discrete +DiscreteValues

+ maxValue: Integer [0..1]
+ minValue: Integer [0..1]
+ normalValue: Integer [0..1]

0.%

*| + value: Integer [0..1]

+ value: Float [0..1]

DiscreteValue

Core::

Terminal

«enumerati...
Core::
PhaseCode
ABCN = 225
ABC = 224
ABN =193
ACN =41
BCN =97
AB =132
AC =96
BC = 66
AN =129
BN = 65
CN =33
A=128
B =64
C=32
N=16
SIN =528
$2N =272
S12N =784
s1 =512
s2 =256
s12 =768
none = 0
X=1024
XY = 3072
XN = 1040

XYN = 3088

_images/cim_LineSequence.png
object LineSequence
Terminal

+ConductingEquipment 5eq632_671:

sequenceNumber = 1

+ConnectivityNode

bus632:

:ACLineSegment

+ConductingEquipment

:Terminal

ACLineSegment

0.*

1

length = 609.6

+PerLengthimpedance

0.1

seqCatl:

PerlengthSequencelmpedance

x0 =01.2427e-3
x=0.4971e-3
r0 = 0.3107e-3
r=0.0621e-3

sequenceNumber =2

+ConnectivityNode

bus671:

:ACLineSegment

length = 150.

_images/cim_Loads.png
object Loads

Bus675:

ConstantPower: +ConnectivityNode

+ConnectivityNode LoadResponseCharacte

qConstantPower = 100
qConstantimpedance = 0
qConstantCurrent = 0 :Terminal
pConstantPower = 100

:Terminal
o pConstantimpedance = 0
pConstantCurrent = 0
1 1
+LoadResponse
+LoadResponse P +ConductingEquipment

+ConductingEquipment

1 UnbalancedLoad:

EnergyConsumer

+EnergyConsumer
:EnergyConsumerPhase p| i
——— p = 843e3

customerCount = 1
+EnergyConsumer phaseConnection = Y
1 grounded = true

BalancedLoad:
EnergyConsumer

q = 660e3

p = 11553
customerCount = 1
grounded = false 1

phaseConnection = D +EnergyConsumer

:EnergyConsumerPhase

:EnergyConsumerPhase

_images/cim_PowerTransformerImpedance.png
object PowerTransformerimpedance /

ptEndL:

PowerTransformerEnd

ptEndH:
PowerTransformerEnd

‘TransformerMeshimpedance
— +ToTransformerEnd

endNumber = 2
1| ratedu=345e3
rateds = 500e6

+FromTransformerEnd
phaseAngleClock = 0

connectionKind = A 1

ratedU = 500e3

phaseAngleClock = 0

connectionKind = Y
ratedS = 500e6

endNumber = 1

+PowerTransformer 1
“+PowerTransformer 17 +FromTransformerEnd

xfmrl: PowerTransformer
vectorGroup = Yyd1
1

+FromTransformerEnd

TransformerMeshimpedance

+PowerTransformer Y= 71415
r=0.7142
+ToTransformerEnd
+ToTransformerEnd PtEndT:
PowerTransformerEnd

1
+TransformerEnd

:TransformerCoreAdmittance

endNumber = 3
ratedU = 13800
ratedS = 50e6
phaseAngleClock = 1

§=65.625¢-6
b = 112.875e-6

connectionKind = D

_images/cim_PowerTransformerNavigation.png
object Powel‘TransformerNavigation/

+Terming

+PowerTransformer 4powerTransformer

+Terminal 1

+ConductingEquipment, N
gEquipment

1
+ConductingEquipment

+PowerTransformer
+ConnectivityNode

+Terminal

_images/cim_OpenWyeOpenDelta.png
Connectivity Node 1

Open Wye — Open Delta Bank

Z 8PON AJAROBULOD

_images/cim_PowerElectronics.png
class PowerElectronics /

PowelSysIemResaulce‘ +RegulatingControl +Terminal ACDCTerminal|
‘0 . 0.1 Core::Terminal

Wires::RegulatingControl
+RegulatingControl 0..1

+RegulatingCondEq /0..*

EnergyConnection

Wires::RegulatingCondEq ‘ Core::Equipment

PowerSystemResource

PowerElectronicsUnit ‘

+PowerElectronicsUnit
0.

Wires::PowerElectronicsConnection

inverterMode: SmartinverterMode [0..1]
maxl|Fault: PU [0..1]

maxQ: ReactivePower [0..1]

minQ: ReactivePower [0..1]

p: ActivePower [0..1]

q: ReactivePower [0..1]

ratedS: ApparentPower [0..1]

ratedU: Voltage [0..1]

+ maxP: ActivePower [0..1]
+ minP: ActivePower [0..1]

! DN

+PowerElectronicsConnection

owerElectronicsWindUnit

o+ F o+ o+

PhotoVoltaicUnit

T
+PowerElectronicsConnection 1

+PowerElectronicsConnectionPhases
0.%

PowerSystemResource
Wires::
PowerElectronicsConnectionPhase

+ p: ActivePower [0..1]
+ phase: SinglePhaseKind [0..1]
+ q: ReactivePower [0..1]

S

GeneratingUnit

BatteryUnit

+ batteryState: BatteryState [0..1]
+ ratedE: RealEnergy [0..1]
+ storedE: RealEnergy [0..1]

_images/cim_SwitchPhaseNavigation.png
object SwitchPhaseNavig:

:Terminal

dal: LoadBreakSwitch
+ConductingEquipment

sequenceNumber =1

+ConnectivityNode

buslLeft:

open = false

+ConductingEquipment

1 normalOpen = false |1
ratedCurrent = 50
1 1
+dwitch +Switch

normalOpen = false

closed = true
phaseSide2 = C
phaseSidel = A

closed = true
phaseSide2 = A
phaseSidel = C
normalOpen = false

sequenceNumber =2

+ConnectivityNode

_images/cim_SwitchingEquipment.png
class SwitchingEquipment /

ProtectedSwitch

‘ + breakingCapacity: CurrentFlow [0..1] ‘

ConduaingEquipment

Switch

normalOpen: Boolean [0..1]
open: Boolean [0..1]
ratedCurrent: CurrentFlow [0..1]
retained: Boolean [0..1]

+ o+ o+ o+

Sectionaliser

Jumper

Breaker

+

inTransitTime: Seconds [0..1]

LoadBreakSwitch

Recloser

Fuse

1. +Switch

+SwitchPhase

0.%

PowerSystemResource
SwitchPhase

+ o+ o+ o+

closed: Boolean [0..1]
normalOpen: Boolean [0..1]
phaseSidel: SinglePhaseKind [0..1]
phaseSide2: SinglePhaseKind [0..1]
ratedCurrent: CurrentFlow [0..1]

Disconnector

GroundDisconnector

_images/cim_StateVariables.png
class Statevariables /

StateVariable

SvShuntCompensatorSections ‘

+ phase: SinglePhaseKind [0..1]
+ sections: Float [0..1]

+SvShuntCompensatorSections | 0..1

SvTapStep

+ position: Float [0..1]

0.1 +ShuntCompensator
+SvTapStep 1
RegulatingCondEq
Wires::
+TapChanger | shuntCompensator
1

Svinjection ‘ ‘

+ phase: SinglePhaseKind [0..1]
+ plnjection: ActivePower [0..1]
+ qlnjection: ReactivePower [0..1]

SvSwitch

SvStatus

+ open: boolean [0..1
+ phase: SinglePhaseKi

ind [0..1]

T
+Svinjection
0.%

+ConnectivityNode

1

SvVoltage

+ angle: AngleDegrees [0..1]
+ phase: SinglePhaseKind [0..1]
+ Vv:Voltage [0..1]

+SvVoltage/ 0..1

+ConnectivityNode

IdentifiedObject|

Core:

ConnectivityNode

+ConnectivityNode

+SvSwitch

+Switch

0..

+ inService: Boolean [O..
+ phase: SinglePhaseKind [0..1]

1]

PowerSystemResource

Wires::

TapChanger

+SvStatus

SvPowerFlow ‘

+ p:ActivePower [0..1]
+ phase: SinglePhaseKind [0..1]

+ConductingEquipment

+ q: ReactivePower [0..1]

Equipment

Core::
ConductingEquipment

+ConductingEquipment

+Terminals

+Termi0--*;

0.%
\+SvPowerFIow

+Terminal
1

ACDCTeminal|
Core::Terminal

0..1

. phases: PhaseCode [

_images/cim_TapChanger.png
object TapChanger /

SinglePhaseRegulatorTankEnd:

TransformerTankEnd

+TransformerEnd

FeederRegulator:
RatioTapChanger

phases = AN

1

+Terminal 1

:Terminal

+ConnectivityNode
1

busRG60:

initialDelay = 15
subsequentDelay = 2
step = 1.0625

+TapChangerControl
J 1

:TapChangerControl

monitoredPhase = A
targetValue = 122
targetDeadband = 2

mode = voltage
reverselineDropX = 0
reverselineDropR = 0
lineDropX = 9

lineDropR = 3
lineDropCompensation = true
limitVoltage = 126

+PSR.AssetDataSheet 1

LDCRatios:
TapChangerinfo

ctRatio = 3500
ptRatio = 20
ctRating = 700

_images/cim_TapChangerClass.png
class TapChanger /

PowerTransformerend

TransformerTankEnd

+ phases: PhaseCode [0..1]

IdentifiedObject|
Transformerend

1 +TransformerEnd

+RatioTapChanger
0..1

«enumerati...

Core::
PhaseCode

RegulatingControlModeKind

«enumeration»

ABCN = 225
ABC = 224
ABN =193
ACN =41
BCN =97
AB =132
AC =96
BC = 66
AN =129
BN = 65
CN =33
A=128

B =64
C=32
N=16
SIN =528
$2N =272
S12N =784
s1 =512
s2 =256
s12 =768
none = 0
X=1024
XY = 3072
XN = 1040

XYN = 3088

RatioTapChanger

+ stepVoltagelncrement: PerCent [0..1]

«deprecated»

+ tculControlMode: TransformerControlMode [0..1]

voltage

PowerSystemResource
RegulatingControl

activePower

N + discrete: Boolean [0..1]
reactivePower
+ enabled: Boolean [0..1]
currentFlow
+ mode: RegulatingControlModeKind [0..1]
o dPhase: PhaseCode [0..1
timescheduled + monitore ase aseCode [0..1]
+ targetDeadband: Float [0..1]
temperature
+ targetValue: Float [0..1]
powerFactor
+ targetValueUnitMultiplier: UnitMultiplier [0..1]
PowerSystemResource
TapChanger

R i i

controlEnabled: Boolean [0..1]
highStep: Integer [0..1]
initialDelay: Seconds [0..1]
lowStep: Integer [0..1]

ItcFlag: Boolean [0..1]
neutralStep: Integer [0..1]
neutralU: Voltage [0..1]
normalStep: Integer [0..1]

step: Float [0..1]
subsequentDelay: Seconds [0..1]

+TapChanger
0.%

+TapChangerControl | 0..1

TapChangerControl

limitVoltage: Voltage [0..1]
lineDropCompensation: Boolean [0..1]
lineDropR: Resistance [0..1]
lineDropX: Reactance [0..1]
reverseLineDropR: Resistance [0..1]
reverseLineDropX: Reactance [0..1]

+ o+ o+

_images/cim_TankImpedance.png
object Tankimpedance

tankB:
TransformerTank

+TransformerTankinfo
+PSR.AssetDataSheet

:TransformerEndinfo

ratedU = 7200
ratedS = 50e3
connectionKind = |

phaseAngleClock = 0
endNumber = 1

+EnergisedEnd

50kVA240:
+PSR AssetDataSheet| ITransformerTankinfo

EN
+TransformerTankinfo

:TransformerTank

:NoloadTest +EnergisedEnd

loss = 0.4
excitingCurrent = 1.0

1

:TransformerEndinfo

:ShortCircuitTest

loss = 0.5
leakagelmpedance = 2.1

+GroundedEnds 1..*

ratedU = 240
ratedS = 50e3
phaseAngleClock = 0
endNumber = 2

connectionKind = |

_images/cim_TankNavigation.png
wdgA2:

TransformerTankEnd

wdgAL: +Terminal

TransformerTankEnd

:Terminal

:Terminal +Terminal

grounded = true
endNumber = 2
phases = AN

+TransformerTank +TransformerTank

grounded = true
endNumber = 1
phases = AN

tankA:
TransformerTank

+ConnectivityNode

+TransformerTank

+ConnectivityNode

wdgA3:
TransformerTankEnd

grounded = true
endNumber = 3
phases = BN

+ConnectivityNode
+PowerTransformer

+ConnectivityNode +ConductingEquipment +ConductingEquipment A
1

+Terminal

openWyeOpenDelta:
+ConductingEquipment PowerTransformer +ConductingEquipment

1
vectorGroup = Yd1

+ConductingEquipment

:Terminal

:Terminal

1
+Terminal

+PowerTransformer
—
+Terminal

wdgB2:

tarl TransformerTankEnd

TransformerTank

wdgB1:
TransformerTankEnd

grounded - false
endNumber = 2
phases = BC

grounded = true +TransformerTank

endNumber = 1
phases = BN

+TransformerTank

_images/cim_VoltageValues.png
object VoltageValues

bus684:

+ConnectivityNode

voltage684: SvVoltage

phase = A
v = sensorVolts
angle = sensorDegrees

_images/cim_TapValues.png
object TapValues

SinglePhaseRegulatorTankEnd:

TransformerTankEnd

+TransformerEnd

FeederRegulator:

RatioTapChanger

‘ phases = AN

initialDelay = 15
subsequentDelay = 2
step = 1.0625

+TapChanger

FeederTapStepA:
SvTapStep

1

position = puTap

_images/cim_Transformer.png
class Transformer /

ACDCTeminal|
Core::Terminal

+Terminals

Equipment
+ConductingEquipment Core::

« B ConductingEquipment

0.%
+ phases: PhaseCode [0..1] +ConductingEquipment
+Terminal | 0..1 0.
+BaseVoltage
/dentifiedObject| PowerTransformer
-- 0..1
GOl + vectorGroup: String [0..1]
BaseVoltage
0..1 0..1
+BaseVoltage 0.1 +PowerTransformer
+PowerTransformer
)
PowerTiransformerEnd +PowerTransformerend
0..* +TransformerTanks
+ connectionKind: WindingConnection [0..1] 0..% -
+TransformerEnd | +TransformerEnds + phaseAngleClock: Integer [0..1] Equipment|
0..% 0..% + r:Resistance [0..1] TransformerTank
-~ N + ratedS: ApparentPower [0..1]
IdentifiedObject
A Ject + ratedU: Voltage [0..1]
TransformerEnd X +TransformerTank | 0.1
+ endNumber: Integer [0..1]
+ grounded: Boolean [0..1]
+ rground: Resistance [0..1]
+ xground-ReactancellDl +TransformerTankEnds
0..% 1 1..% +ToTransformerEnd
TransformerTankEnd
+FromTransformerend
+Transformergnd + phases: PhaseCode [0..1]

IdentifiedObject|
TransformerMeshimpedance

+ToMeshimpedance ¢ =

«enumeration»
Core::PhaseCode

«enumeration»
WindingConnection

r: Resistance [0..1]

+FromMeshimpedance 0..*

+CoreAdmittance

r0: Resistance [0..1]
X: Reactance [0..1]
X0: Reactance [0..1]

+ o+ o+ o+

IdentifiedObject|

0..1| TransformerCoreAdmittance

b: Susceptance [0..1]
bO: Susceptance [0..1]
g: Conductance [0..1]
g0: Conductance [0..1]

+ o+ o+ o+

ABCN = 225
ABC = 224
ABN =193
ACN =41
BCN =97
AB =132
AC =96
BC = 66
AN =129
BN = 65
CN =33
A=128

B =64
C=32
N=16
SIN =528
$2N =272
S12N =784
s1 =512
s2 =256
s12 =768
none = 0
X=1024
XY = 3072
XN = 1040

XYN = 3088

D
Y
z
Yn
Zn

_images/config2.png
Start time
(YYYY-MM-DD HH:MM:SS)

Duration
(Seconds)

Simulator

Real time

Simulation name

Model creation configuration

2019-06-1115:11:34

120

GridLAB-D o z;wer flow solver method

N0

ieee8500

Simulation Configuration

"load_scaling_factor": "1",
"schedule_name": "ieeezipload",
"z_fraction™: "0",

"i_fraction": "1",

"p_fraction": "0",
"randomize_zipload_fractions": false,
"use_houses": false

Close

_images/config3.png
Power System Configuration

Simulation Configuration

Application name

Application configuration

Select one option

v

Application Configuration

Test Configuration

_images/conceptual_design.png
Distribution System Application

Dsitribution System Appiication

Distribution System Application under development

i i
. I

Tools: P
Powerflow, bata Emels Commercial
Tools:

Opnnéztancn. Data : EMS
. Interfaces configuration | DMS.

and H OMS.
management GIS.‘

Historian,

i Etc

Standards Based (CIM, etc.) Data Bus

!

Distribution Simulator
(Co-simulation with GridLAB-D, OpenDSS, NS-3, etc.)

Data Ingest

[eridAPPS-D - Distribution System Application Development Platiorm

<+—» Da

“Control” and configuration

_images/config1.png
Power System Configuration

Geographical region name PNNL o

Sub-geographical region name Medium o

Line name Select one option Vv

Close

_images/ext_Houses.png
class ext_Houses /

IdentifiedObject
House

coolingSetpoint: Temperature
coolingSystem: HouseCooling
floorArea: Area
heatingSetpoint: Temperature
heatingSystem: HouseHeating
hvacPowerFactor: float
numberOfStories: int

+
+
+
+
+
+
+
+House
0..1
+ServicePanel
1
EnergyConnection

Wires::EnergyConsumer

o+ o+ +

customerCount: Integer [0..1]
grounded: Boolean [0..1]
p: ActivePower [0..1]

phaseConnection: PhaseShuntConnectionKind [0..1]

q: ReactivePower [0..1]

+House
1

+ThermostatController
0..1

IdentifiedObject
ThermostatController

o FF o+t

aggregatorName: char

baseSetpoint: Temperature
controlMode: ThermostatControlMode
priceCap: Money

rampHigh: float

rampLow: float

rangeHigh: Temperature

rangeLow: Temperature

useOverride: boolean

usePredictive: boolean

_images/ext_TroubleCalls.png
class ext_TroubleCalls

Agreement
CustomerAgreement

+CustomerAgreement

+CustomerAgreements 0..%

+Customer| 1

OrganisationRole
Customer

«enumeration»
PNNLTroubleCallKind

+Customer 0..1

powerOut
poweron
lineDown

+TroubleTickets 0..*

|

Document|
TroubleTicket

comment: String

dateTimeOfReport: DateTime [0..1]
firstResponderStatus: String [0..1]
multiplePremises: Boolean

reportingKind: TroubleReportingKind [0..1]
resolvedDateTime: DateTime [0..1]
troubleCode: String [0..1]

troubleKind: PNNLTroubleCallKind [0..1]

ot o+ o+

IdentifiedObject|
Metering::UsagePoint

+UsagePoints
T

0.%

+UsagePoints | 0..%

+Equipments | 0..%

PowerSystemResource
Core::Equipment

aggregate: Boolean [0..1]
inService: Boolean [0..1]

networkAnalysisEnabled: Boolean [0..1]
normallylnService: Boolean [0..1]

+ o+ o+ +

«enumeration»
Core::
PhaseCode

ABCN = 225
ABC = 224
ABN =193
ACN =41
BCN =97
AB =132
AC =96
BC = 66
AN =129
BN = 65
CN =33
A=128

B =64
C=32
N=16
SIN =528
$2N =272
S12N =784
s1 =512
s2 =256
s12 =768
none = 0
X=1024
XY = 3072
XN = 1040
XYN = 3088

Core::
Wires:- ConductingEquipment
EnergyConnection

«enumeration»

Wires::EnergySource

TroubleReportingKind

R

nominalVoltage: Voltage [0..1]

I Resistance [0..1]

r0: Resistance [0..1]
voltageAngle: AngleRadians [0..1]
voltageMagnitude: Voltage [0..1]
X: Reactance [0..1]

X0: Reactance [0..1]

‘ Wires::EnergyConsumer

+ customerCount: Integer [0..1]
+ grounded: Boolean [0..1]

+ p:ActivePower [0..1]

+ phaseConnection: PhaseShuntConnectionKind [0..1]
+ q: ReactivePower [0..1]

_images/event_table.png
Power System Configuration

Simulation Configuration

Application Configuration

Test Configuration

Event Tag

Event Type

Equipment Type

Name

Phase

Attribute

Add output item

Output Outage

All Ouput Outage

mc44njez

(® CommOutage

Select an option

Select an option

Select one or more

Select an option

QO Fault

Action Event

Type

mc4xntq0

Tag Equipment

Input List

Equipment
Name

Phase

Capacitor c83 A

Event Summ:

age

Equipment

Attribute Type

ShuntCompensator.sections = EnergyConsumer

Name

s49c

Output List

Phases

Measurement
Type

PNV

_images/event_view.png
GridAPPS-D develop

SITETLRN 906869333

Events

CommOutage

Input List

Equipment
Type

Equipment
Name

Tag

_e45f5e32-429e-
4075-b993-
53f9cd20f630

Q0

Fault

mc4wmzil Regulator FEEDER_REG A

_67d90e73-81ac-4d99-a4b2-

85822b0df3db me4xmzk0

Capacitor

localhost:8080 |

TapChanger.lineDropX = ACLineSegment

capbank0Ob

00

Type

Equipment

1

Event Equipment Equipment e Start Date Stop Date
Type Name P Time Time

lineToGround

In6231993-

Output List

Start
Date
Time

Stop
Date
Time

Measurement
Type

2019-
06-12
09:24:23 09:26:23

2019-

Cc VA 06-12

rGround: 0.001 2019-06-12

09:24:23

2019-06-12

xGround: 0.002 09:26:23

_images/faults.png
Power System Configuration Simulation Configuration Application Configuration Test Configuration

Event Tag mcawmiil Event Summ,
CommOutage
Event Type O CommOutage @ Fault Action | EventTag | Equipment Type | EquipmentName | Phase | Fault Impedance | StartDate Time | Stop Date Time

o

Equipment Type Select one option Vv

Name Select one option Vv

Phase Select one or more Vv

Phase Connected Fault Kind lineToGround v |

Impedance

rGround

xGround

Start Date Time 2019-06-12 09:22:34 E

(YYYY-MM-DD HH:MM:SS)

_images/home.png
& > C ® localhost:8080 »* H O

GridAPPS-D develop

_images/SE_Service.png
Distribution
Simulator w/
Limited Sensors

Error-Free
Measurements
>

SCADA/
Channels

Noisy Measurements
with drop-outs
[N |

state
Estimator

Estimated VIFGS

GOSS /FNCS Bus

7N

Visualization

Applications|

_images/SE_image1.png
Y-bus h{x)
Topology T
CIM Labels Processor
H(x)
meas. data|
Meter
forecasts \?

Interface

BCSE
NVSE

WLSE
EKFE

Output

state

Interface|

_images/MV_App.png
Distribution
‘Simulator

GOSS /FNCS Bus

Model
Validator

Power Flow
Model

v

Offine Simulator|
(OpenDSS)

state
Estimator

Estimated VIPOS

_images/RC1_workflow.png
Hosted
Applications

_images/Solar_Forecasting_1.png
Solar Zenith Angle

Cloud Albedo

Cloud Fraction

Cloud Fraction Cloud Albedo

Solar Zenith Angle

_images/test_config.png
Event Tag

Event Type

o

Input Outage List

All Input Outage

Equipment Type
Name
Phase

Attribute

Output Outage List

All Ouput Outage

mc4xntq0

(® CommOutage

O

Select one option

Select one option

Select one or more

Select one option

v

v

v

v

QO Fault

Test Configuration

_images/uml_Debugging.png
class Debugging)

EF7 Execute

109/309 System
Application

Logs

102 Debug Output

+Reads +Reads

- 108 Intermediate Results
- 109 System Logs

+Writes

202 Debug Commands

- Debug Configuration

+Writes

409 Log Manager

+Reads

- Log Configuration

108/308 +Reads ——1

Intermediate
Results

+Reads

+Writes

101/ 301 Real Time Simulation Data

- AMI Outputs: double 408 Debug Manager
- Battery Outputs: double .
- Currents: double +Writes

411 Security and Access Control
311 Access Manager

+Collects - DebuggerConfiguration +Collects

Permission

- i N
- End-of-line Voltage: double IntermediateResults Verification - AccessControllist

- Inverter Outputs: double + RunDebugMode(): int
- Line Post Sensors (Cap Banks): double
- Reactive Powers: double

- Real Powers: double

- Substation SCADA: double

+ CheckDataAccess(): int
+ CheckFunctionAccess(): int

- Voltages: double +Collects 107/307 Services
B 406 Power System Model In Use
+Writes Manager
+Writes
- ModelRepository
- ModelSchema
401 Distribution Co- q
N + BulkExport(): int 407 Service Manager
Simulator . +Collects
. N N - Optimizers
- Buildi Ei il + ExtractSimModel(): int
urcings SRR e i EEE) 104/304 Available - Power-flow GridLAB-D
- Communications ns-3 + UpdateModel(): int Doy

- Real-time GridLAB-D

Metadata + RunService(): int

+Creates +Writes

+Reads 306 Power System

Config

- dynamics model
- __powerflow model

+Reads

+Reads 404 Data Manager

- Data Repository
- Data Schema

305 Simulation
Config

+Reads

+ IngestData(): int
+ RetrieveData(): int

solver choice
- speed
- time

+Writes 405 Simulation Control

Manager

- ConfigurationSetup

+ StartSimulation(): int
+ StopSimulation(): int

_images/simulation.png
a Simulations

= Applications & Services
L] Stomp Client

_images/start.png
Events

Simulation

a
o
[}
>
@
°
=
n
o
o
<
8
=
(O]

%}
3
2
@
pud
(%]
c
o
2
L
=]
E
w

_images/GridAPPS-D_Logo.png
GridAPPS-DH

_images/uml_Hosting.png
class Hosting)

+

102 Hosting Output

Current Version

+Writes

Reads

412 Version Manager

Version Number

+
+

CollectinternalVersions
WriteVersion(): int

(): int

+Reads

310 Hosted
Application

EF13 Manage
Application

Versions

+Writes

202 Hosting Commands

- 208 Application Data Schema
- 209 Access Control List

- 210 Application Metadata

- 211 Application

410 App Hosting Manage

+ InstallApp(
+ UninstallApp(): int

- Available Applications

r

311 Access

+Reads +Writes

+Check Credentials

411 Security and Access
Control Manager

Permission
Verification

AccessControlList

CheckDataAccess(): int
CheckFunctionAccess(): int

+Writes

110 Hosted
Application

404 Data Manager

Data Repository
Data Schema

+Creates
+Write App Schema
+Registers
407 Service Manager
- Optimizers -
- Power-flow GridLAB-D .
+ RunService(): int +

IngestData(): int
RetrieveData(): int

+Executes

EF8 Test
Application

_images/Grid_Forecasting.png
Load Forecasting

Distribution Transmission
| Future | Future
Load E : i ! _/;
Optimal 2
Power Flow

!

Price Signals

Future

oy

Future

|Zaa VoY

_images/uml_ModelManagement.png
class Model Management)

EF21 Manage
Models

+Writes

202 Model Commands

- 203 Model Configuration

+Reads

406 Power System Model
Manager

- ModelRepository
ModelSchema

BulkExport(): int
Bulkimport{

ExtractSimModel(): int
UpdateModel(): int

+ o+ o+ o+

+Creates +Reads

306 Power System
Config

+Reads

201 Distribution
System Model

Battery Inverters
Buildings
- Capacitors
- Customer Loads
- Lines
PV Inverters

- Regulators
- Substation

- Transformers

+Manages B

+Reads

‘ 106 Power System Configuration

‘ - Three-phase Powerflow Model

+Creates

404 Data Manager

- Data Repository
- Data Schema

+ IngestData(): int
+ RetrieveData(): i

401 Distribution Co-
Simulator

EF7 Execute
Application

+Reads +Reads

102 Model Output

- 104 Available Data and Metadata
- 106 Power System Configuration

+Reads

104/304 Available

Data and
+Writes

Metadata

- dynamics model
owerflow model

- Buildings EnergyPlus

- Real-time GridLAB-D

- Communications ns-3

+ RunContinuous(): int

_images/uml_DomainObjects.png
cmp Domain Objects)

Hosted VWO @
Application (310)

Configurations

Configuration @

Command @

Interface
(102/202)

Available data

Incremental configs Data Manager @

Manager
(405/406)

Initial Sim Config

Initial PS

am- [

Compliant PS Model @
Data Store Manager (406)
(only the

CDPSM

profiles)

Process Manager @
(402)

(a04)

Make Data Channels

Real-time data,
Events, Control
Actions,’
Incremental

Updates
Start/Stop

Message Bus

Distribution Co- @
Simulator (401)

GLD File

GridLAB-D

_images/Distribution_OPF2.png

_images/uml_External_Objects.png
object External Objects)

CIM-Compliant
Application

+ EPRITest Harness
+ eTerra
CIM XML

CIM XML-JSON

Adapter

Proposed CIM JSON

SPARQL

Triple Store

+ CIM17extended
+ localExtensions

GOSS Message Bus

Historian

arrays

+ timeSeriesData

CIM-Compliant XML File

+ CYMDIST Export
+ WindMil Export

CSV File

+ Load Profiles
+ Weather Data

_images/uml_Platform.png
class Platform J

411 Security and Access Control
Manager

412 Version Manager

- AccessControlList

- Version Number

401 Distribution Co-
Simulator

+ CheckDataAccess(): int -
+ CheckFunctionAccess(): int -

+ CollectinternalVersions(): int

+ WriteVersion(): int

Buildings EnergyPlus
Communications ns-3
Real-time GridLAB-D

410 App Hosting Manager

- Available Applications

+ InstallApp(): int
+ UninstallApp(): int

409 Log Manager

Log Configuration

408 Debug Manager

DebuggerConfiguration
IntermediateResults

+

RunDebugMode(): int

407 Service Manager

+

RunContinuous(): int

413 Platform Manager

AppMgr: 410 App Hosting Manager

DataMgr: 404 Data Manager

DebugMgr: 408 Debug Manager

LogMgr: 409 Log Manager

ModelMgr: 406 Power System Model Manager
ProcMgr: 402 Process Manager

SACMgr: 411 Security and Access Control Manager
ServiceMgr: 407 Service Manager

SimMgr: 405 Simulation Control Manager
Simulator: 401 Distribution Co-Simulator
TestMgr: 403 Test Manager

VersionMgr: 412 Version Manager

- Optimizers
- Power-flow GridLAB-D

+ RunService(): int

406 Power System Model
Manager

405 Simulation Control
Manager

402 Process Manager

Schedules
Workflow

- ModelRepository -
ModelSchema

ConfigurationSetup

+
BulkExport(): int +
Bulkimport(): int
ExtractSimModel(): int
UpdateModel(): int

+ o+ o+ o+

StartSimulation(): int

StopSimulation(): int

+

RunProcesses(): i

nt

403 Test Manager

Expected Results
Test Configuration
Test Results

Test Scripts

RunTests(): i

404 Data Manager

Data Repository
Data Schema

IngestData(): int

RetrieveData(): int

_images/rc3_demo.png
& C @® localhost:8080/topology * A QO :

GridAPPS-D develop

)) . . VOLTAGE A
TR 886298411 I I I
mdlation - Simulation 8,600

' 8,500
8,400 —
8,300 —
8,200 —
8,100
. 8,000 -
capbank3 R 7,900
switchA OPEN I . 7,800
SwitchB OPEN . 7700 -
A 7,600 i
Voltage Tap }
7950.3026316009355.-33.55605086743668 V. 12 J§ e 7,500
7967.103775402906..-153.34689815204297 V. 12] 7,400
7563.035254247806 .+87.1874130677879 V 5 S . T I I T |
. N)] Q
capbank1 - .‘LQ{L .Q,Q{L -’Ipfb -'Le Q«Q
SwitchA OPEN capbani2 R R [\l ® ®
FEEDER_REG
Voltage Tap Power in VOLTAGE B
7331.647290432317.-30.429408789074245 V2 1628840.7936476958.-30.429408789074245 VA 8.200
7331.271197536398.-150.41403010392276 V= 2 1559701.637297211.-150.41403010392276 VA ’ —l
7283.741912239453.+89.61476429652863 V. 1 1603869.035555997 .+89.61476429652863 VA 8.100
[Voltage Tap 8.000 |
Simulation Status FATAL | ERROR | A 8604.896852784808.] A 8120.606478489488.-33.590643012331384 V. 16 g
B 8202.855536227855. B 7902.329271352134.-153.46681163700757 V 10 2900
R . C 7535726068220270, C 7426.73032868759.+87.88617155100282 V 1 b
incrementing to 21 e e
7,800 —
2. e done with timestep 20 7,700
3. e time approved 21 7,600
7,500 —
4. e calling time_request 21
7,400 —
5. e Done with timestep 20 4) 4 : . !
i N o o® oF S
o oS 0 oS S
®° (Vi ®° R Vo
6. e fncs events []
VOLTAGE C

7. Q about to get fnc