

Gretel

An algorithm for recovering haplotypes from metagenomes. Sister to Hansel [http://hansel.readthedocs.io/en/latest/].

	Protocol
	Read Alignment

	Variant Calling

	Invocation of Gretel

	Gretel Outputs

	History
	0.0.94

	0.0.93

	0.0.92

	0.0.90

	0.0.81

	0.0.8

	0.0.7

	0.0.6b

	0.0.6

	0.0.5

	0.0.4

	0.0.3

	0.0.2

	0.0.1

Indices and tables

	Index

	Module Index

	Search Page

Protocol

Gretel provides a command line tool for the recovery of haplotypes.
We recommend the following protocol.

Read Alignment

Gretel requires your reads to be aligned to a common reference. This is to
ensure that reads share a co-ordinate system, on which we can call for variants
and recover haplotypes. The reference itself is of little consequence, though
dropped reads will lead to evidence to be unavailable to Gretel.

Construction of a de novo consensus assembly for a metagenome is left as an exercise
for the reader. Align the reads to your assembly (bowtie2, minimap2 etc.).
Sort and index the alignment BAM.

Variant Calling

Gretel is robust to sequencing error and misalignment noise, thus the
calling of variants need not be carefully conducted. Typically we have used samtools,
but for our own Gretel pipeline, we have aggressively called all heterogenous sites
in an alignment as a SNP using the snpper tool in our gretel-test repository [https://github.com/SamStudio8/gretel-test].

For somewhat questionable reasoning, we currently require a compressed and indexed VCF:

bgzip <my.vcf>
tabix <my.vcf.gz>

Invocation of Gretel

As described in the README, Gretel is invoked as follows:

gretel <my.sort.bam> <my.vcf.gz> <contig> [-s 1startpos] [-e 1endpos] [--master master.fa] [-o output_dir]

You must provide your sorted BAM, compressed VCF, and the name of the contig on which
to recover haplotypes. Use -s and -e to specify the positions on the aligned reads between which
to recover haplotypes from your metagenome.

By default, Gretel will output a FASTA containing the recovered SNPs, in order, for each haplotype.
Providing an optional “master” FASTA sequence will permit Gretel to “fill in” the non-SNP positions
(i.e. the positions between -s and -e that do not appear in the VCF) with the nucleotide from
the pseudo-reference.

Gretel Outputs

out.fasta

A FASTA containing each of the recovered sequences, in the order they were found.
Each sequence is named <iteration>__-<log10 likelihood>. Sequences are not wrapped.

gretel.crumbs

Additionally, Gretel outputs a whimsically named crumbs file, containing some potentially
interesting metadata, as well as a record of each recovered haplotype.
The first row is a comment containing the following (in order):

	The number of SNPs across the region of interest

	The number of ‘crumbs’: paired observations added to the Hansel matrix

	The number of ‘slices’: reads with at least one observation added to the Hansel matrix

	The chosen value of L for the L’th order Markov chain

The rest of the file contains tab-delimited metadata for each recovered haplotype:

	The iteration number, starting from 0

	The number of times this haplotype was returned

	The weighted likelihood of the haplotype, given the Hansel matrix at the time the haplotype was recovered (comma-sep for each time the haplotype was returned)

	The unweighted likelihood of the haplotype, given the Hansel matrix at the time the reads were parsed (comma-sep for each time the haplotype was returned)

	The haplotype magnitude: total number of observations removed from the Hansel matrix by the reweighting mechanism

In practice, we rank with the weighted likelihoods to discern the haplotypes most likely to exist in the metagenome.
One may attempt to use the unweighted likelihoods as a means to compare the abundance, or read support, between the returned haplotypes (i.e. not necessarily the metagenome as a whole).

History

0.0.94

	Added –pepper option to for permissive pileups by overriding the pysam pileup stepper to all instead of samtools.

0.0.93

	Move process_vcf to util module. I may drop use of pyvcf in future as I don’t like the API.

	Dropped pointless append_path stub.

	Fixed an edge case where reads beginning with a SNP that aligned to the start of a parallel parsing window are counted twice.

	Added a small test package to help detect future regressions.

	Added –version argument to print program version number.

	Removed –lorder argument as users should not need to select the chain order.

0.0.92

	Adds –dumpmatrix and –dumpsnps debugging options.

	Clean up Hansel matrix initialisation.

	Add gretel-snpper command for generating naive VCF.

	Fix a regression where the L parameter of the matrix is incorrectly left unset.

0.0.90

	Resolves a bug whereby SNPs are incorrectly parsed from the BAM if either:

	
	its quality score is below 13

	the read is overlapped by its primary mate

Well covered data sets need not be overly affected by the additional noise that
may have been introduced, but the problem is more noticeable with low coverage
and you may wish to reapply Gretel to affected data. Sorry.

0.0.81

	Add warning and advice when an entry in Hansel is missing evidence.

	Make the ‘Unable to select’ warning sound much less bad because it is normal.

0.0.8

	Docs

	Deprecate gretel-crumbs command

0.0.7

	Further improvements to parallel read processing

	Add - symbol to enable support for deletions

0.0.6b

	Fix setting of L parameter

0.0.6

	MULTIPROCESSING

	Re-write read handling, again

0.0.5

	-s and -e introduced to allow specification of positions between which
to recover haplotypes

	Attempt some basic indel handling

	Fix a bug where the master sequence was altered by the output of each
reported haplotype

0.0.4

	Add experimental –sentinels option

	Improve docs

0.0.3

	Hansel is now seperate from Gretel

	[Hansel] get_marginal_at is now get_counts_at

	[Hansel] selext_next_edge_at deprecated

	Gene recovery and likelihood plots are now on seperate panels

	Re-write methods to add observations to matrix to be less awful to read

	Drop –hit and –gene options to verification

	Replace verification script to gretel-crumbs command

0.0.2

	Improve documentation.

	Provide util subpackage for filling Hansel structure with BAM observations.

	Explicitly provide possible symbols to Hansel.

	Improve plotting

	Remove process_hits and process_refs as these are no longer needed.

	Rename establish_path to generate_path

	Rename add_ignore_support3 to reweight_hansel_from_graph so we have some sort of indication of what it does.

	Altered Sphinx configuation.

0.0.1

	Import repository from claw.

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 gretel	

 	
 	
 gretel.cmd	

 	
 	
 gretel.gretel	

 	
 	
 gretel.util	

Index

 G
 | L
 | M
 | P
 | R

G

 	
 	generate_path() (in module gretel.gretel), [1]

 	get_ref_len_from_bam() (in module gretel.util), [1]

 	gretel (module), [1]

 	
 	gretel.cmd (module), [1]

 	gretel.gretel (module), [1]

 	gretel.util (module), [1]

L

 	
 	load_fasta() (in module gretel.util), [1]

 	
 	load_from_bam() (in module gretel.util), [1]

M

 	
 	main() (in module gretel.cmd), [1]

P

 	
 	process_vcf() (in module gretel.util), [1]

R

 	
 	reweight_hansel_from_path() (in module gretel.gretel), [1]

gretel package

Submodules

gretel.cmd module

	
gretel.cmd.main()[source]

	Gretel: A metagenomic haplotyper.

gretel.gretel module

	
gretel.gretel.generate_path(n_snps, hansel, original_hansel, debug_hpos=None)[source]

	Explore and generate the most likely path (haplotype) through the observed Hansel structure.

	Parameters

	
	n_snps (int) – The number of variants.

	hansel (hansel.hansel.Hansel [https://hansel.readthedocs.io/en/latest/source/hansel.html#hansel.hansel.Hansel]) – The Hansel structure currently being explored by Gretel.

	original_hansel (hansel.hansel.Hansel [https://hansel.readthedocs.io/en/latest/source/hansel.html#hansel.hansel.Hansel]) – A copy of the Hansel structure created by Gretel, before any reweighting.

	Returns

	
	Path (list{str} or None) – The sequence of variants that represent the completed path (or haplotype), or None
if one could not be successfully constructed.

	Path Probabilities (dict{str, float}) – The hp_original (orignal Hansel) and hp_current (current Hansel) joint
probabilities of the variants in the returned path occurring together
in the given order.

	Minimum Marginal (float) – The smallest marginal distribution observed across selected variants.

	
gretel.gretel.reweight_hansel_from_path(hansel, path, ratio)[source]

	Given a completed path, reweight the applicable pairwise observations in the Hansel structure.

	Parameters

	
	hansel (hansel.hansel.Hansel [https://hansel.readthedocs.io/en/latest/source/hansel.html#hansel.hansel.Hansel]) – The Hansel structure currently being explored by Gretel.

	path (list{str}) – The ordered sequence of selected variants.

	ratio (float) – The proportion of evidence to remove from each paired observation that
was considered to recover the provided path.

It is recommended this be the smallest marginal distribution observed across selected variants.

i.e. For each selected variant in the path, note the value of the
marginal distribution for the probability of observing that particular
variant at that genomic position. Parameterise the minimum value of
those marginals.

	Returns

	Spent Observations – The sum of removed observations from the Hansel structure.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

gretel.util module

	
gretel.util.get_ref_len_from_bam(bam_path, target_contig)[source]

	Fetch the length of a given reference sequence from a pysam.AlignmentFile [https://pysam.readthedocs.io/en/latest/api.html#pysam.AlignmentFile].

	Parameters

	
	bam_path (str) – Path to the BAM alignment

	target_contig (str) – The name of the contig for which to recover haplotypes.

	Returns

	end_pos – The 1-indexed genomic position at which to stop considering variants.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
gretel.util.load_fasta(fa_path)[source]

	A convenient wrapper function for constructing a pysam.FastaFile [https://pysam.readthedocs.io/en/latest/api.html#pysam.FastaFile]

	Parameters

	fa_path (str) – Path to FASTA

	Returns

	FASTA File Interface

	Return type

	pysam.FastaFile [https://pysam.readthedocs.io/en/latest/api.html#pysam.FastaFile]

	
gretel.util.load_from_bam(bam_path, target_contig, start_pos, end_pos, vcf_handler, use_end_sentinels=False, n_threads=1, debug_reads=False, debug_pos=False, stepper='samtools')[source]

	Load variants observed in a pysam.AlignmentFile [https://pysam.readthedocs.io/en/latest/api.html#pysam.AlignmentFile] to
an instance of hansel.hansel.Hansel [https://hansel.readthedocs.io/en/latest/source/hansel.html#hansel.hansel.Hansel].

	Parameters

	
	bam_path (str) – Path to the BAM alignment

	target_contig (str) – The name of the contig for which to recover haplotypes.

	start_pos (int) – The 1-indexed genomic position from which to begin considering variants.

	end_pos (int) – The 1-indexed genomic position at which to stop considering variants.

	vcf_handler (dict{str, any}) – Variant metadata, as provided by gretel.gretel.process_vcf().

	use_end_sentinels (boolean, optional(default=False)) – Whether or not to append an additional pairwise observation between
the final variant on a read towards a sentinel.

Note

Experimental
This feature is for testing purposes, currently it is recommended
that the flag be left at the default of False. However, some
data sets report minor performance improvements for some haplotypes
when set to True.
This flag may be removed at any time without warning.

	n_threads (int, optional(default=1)) – Number of threads to spawn for reading the BAM

	debug_reads (list{str}, optional) – A list of read names for which to print out debugging information

	debug_pos (list{int}, optional) – A list of positions for which to print out debugging information

	stepper (str, optional(default=samtools)) – The pysam pileup stepper to use

	Returns

	Hansel

	Return type

	hansel.hansel.Hansel [https://hansel.readthedocs.io/en/latest/source/hansel.html#hansel.hansel.Hansel]

	
gretel.util.process_vcf(vcf_path, contig_name, start_pos, end_pos)[source]

	Parse a VCF to extract the genomic positions of called variants.

	Parameters

	
	vcf_path (str) – Path to the VCF file.

	contig_name (str) – Name of the target contig on which variants were called.

	start_pos (int) – The 1-indexed genomic position from which to begin considering variants.

	end_pos (int) – The 1-indexed genomic position at which to stop considering variants.

	Returns

	Gretel Metastructure – A collection of structures used for the execution of Gretel.
The currently used keys are:

	Nint

	The number of observed SNPs

	snp_fwddict{int, int}

	A reverse lookup from the n’th variant, to its genomic position on the contig

	snp_revdict{int, int}

	A forward lookup to translate the n’th genomic position to its i’th SNP rank

	regionlist{int}

	A masked representation of the target contig, positive values are variant positions

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Module contents

gretel

	gretel package
	Submodules

	gretel.cmd module

	gretel.gretel module

	gretel.util module

	Module contents

 All modules for which code is available

	gretel.cmd

	gretel.gretel

	gretel.util

 Source code for gretel.cmd

import argparse
import numpy as np
import sys
import os

from . import gretel
from . import util

__version__ = "0.0.94"

[docs]def main():
 """Gretel: A metagenomic haplotyper."""
 parser = argparse.ArgumentParser(description="Gretel: A metagenomic haplotyper.")
 parser.add_argument("bam")
 parser.add_argument("vcf")
 parser.add_argument("contig")
 parser.add_argument("-s", "--start", type=int, default=1, help="1-indexed included start base position [default: 1]")
 parser.add_argument("-e", "--end", type=int, default=-1, help="1-indexed inlcuded end base position [default: reference length]")

 #parser.add_argument("-l", "--lorder", type=int, default=0, help="Order of markov chain to predict next nucleotide [default calculated from read data]")
 parser.add_argument("-p", "--paths", type=int, default=100, help="Maximum number of paths to generate [default:100]")

 parser.add_argument("--master", default=None, help="Master sequence (will be used to fill in homogeneous gaps in haplotypes, otherwise --gapchar)") #TODO Use something other than N? Should probably be a valid IUPAC
 parser.add_argument("--gapchar", default="N", help="Character to fill homogeneous gaps in haplotypes if no --master [default N]")
 parser.add_argument("--delchar", default="", help="Character to output in haplotype for deletion (eg. -) [default is blank]")

 parser.add_argument("--quiet", default=False, action='store_true', help="Don't output anything other than a single summary line.")
 #parser.add_argument("--sentinels", default=False, action='store_true', help="Add additional sentinels for read ends [default:False][EXPERIMENTAL]")
 parser.add_argument("-o", "--out", default=".", help="Output directory [default .]")
 parser.add_argument("-@", "--threads", type=int, default=1, help="Number of BAM iterators [default 1]")

 parser.add_argument("--debugreads", type=str, default="", help="A newline delimited list of read names to output debug data when parsing the BAM")
 parser.add_argument("--debugpos", type=str, default="", help="A newline delimited list of 1-indexed genomic positions to output debug data when parsing the BAM")
 parser.add_argument("--debughpos", type=str, default=",", help="A comma delimited list of 1-indexed SNP positions to output debug data when predicting haplotypes")

 parser.add_argument("--dumpmatrix", type=str, default=None, help="Location to dump the Hansel matrix to disk")
 parser.add_argument("--dumpsnps", type=str, default=None, help="Location to dump the SNP positions to disk")

 parser.add_argument("--pepper", action="store_true", help="enable a more permissive pileup by setting the pysam pileup stepper to 'all', instead of 'samtools'.\nNote that this will allow improper pairs.")

 parser.add_argument("--version", action="version", version="%(prog)s " + __version__)

 ARGS = parser.parse_args()

 debug_hpos = []
 if ARGS.debughpos:
 for x in ARGS.debughpos.split(","):
 try:
 debug_hpos.append(int(x))
 except:
 pass

 if ARGS.end == -1:
 ARGS.end = util.get_ref_len_from_bam(ARGS.bam, ARGS.contig)
 sys.stderr.write("[NOTE] Setting end_pos to %d" % ARGS.end)

 debug_reads = set([])
 if ARGS.debugreads:
 debug_fofn = open(ARGS.debugreads)
 for line in debug_fofn:
 debug_reads.add(line.strip())

 debug_pos = set([])
 if ARGS.debugpos:
 debug_fofn = open(ARGS.debugpos)
 for line in debug_fofn:
 debug_pos.add(int(line.strip()))

 VCF_h = util.process_vcf(ARGS.vcf, ARGS.contig, ARGS.start, ARGS.end)
 if ARGS.dumpsnps:
 snp_fh = open(ARGS.dumpsnps, 'w')
 for k in sorted(VCF_h["snp_fwd"].keys()):
 snp_fh.write("%d\t%d\t%d\n" % (VCF_h["snp_fwd"][k]+1, k, k-ARGS.start+1))
 snp_fh.close()

 # Could we optimise for lower triangle by collapsing one of the dimensions
 # such that Z[m][n][i][j] == Z[m][n][i + ((j-1)*(j))/2]
 hansel = util.load_from_bam(ARGS.bam, ARGS.contig, ARGS.start, ARGS.end, VCF_h, n_threads=ARGS.threads, debug_reads=debug_reads, debug_pos=debug_pos, stepper="all" if ARGS.pepper else "samtools")
 original_hansel = hansel.copy()

 if ARGS.dumpmatrix:
 hansel.save_hansel_dump(ARGS.dumpmatrix)

 # Check if there is a gap in the matrix
 for i in range(0, VCF_h["N"]+1):
 marginal = hansel.get_counts_at(i)

 if i > 0:
 snp_rev = VCF_h["snp_rev"][i-1]
 else:
 snp_rev = 0
 if marginal.get("total", 0) == 0:
 sys.stderr.write('''[FAIL] Unable to recover pairwise evidence concerning SNP #%d at position %d
 Gretel needs every SNP to appear on a read with at least one other SNP, at least once.
 There is no read in your data set that bridges SNP #%d with any of its neighbours.

 * If you are trying to run Gretel along an entire contig or genome, please note that
 this is not the recommended usage for Gretel, as it was intended to uncover the
 variation in a metahaplome: the set of haplotypes for a specific gene.
 See our pre-print https://doi.org/10.1101/223404 for more information

 Consider running a prediction tool such as `prokka` on your assembly or reference
 and using the CDS regions in the GFF for corresponding genes of interest to
 uncover haplotypes with Gretel instead.

 * If you are already doing this, consider calling for SNPs more aggressively.
 We use `snpper` (https://github.com/SamStudio8/gretel-test/blob/master/snpper.py)
 to determine any site in a BAM that has at least one read in disagreement with
 the reference as a SNP. Although this introduces noise from alignment and sequence
 error, Gretel is fairly robust. Importantly, this naive calling method will
 likely close gaps between SNPs and permit recovery.

 * Finally, consider that the gaps are indicative that your reads do not support
 one or more parts of your assembly or reference. You could try and find or construct
 a more suitable reference, or reduce the size of the recovery window.

 Sorry :(\n''' % (i, snp_rev, i))
 sys.exit(1)

 PATHS = {}

 # Spew out exciting information about the SNPs
 if not ARGS.quiet:
 print ("i\tpos\tgap\tA\tC\tG\tT\tN\t-\t_\ttot")
 last_rev = 0
 for i in range(0, VCF_h["N"]+1):
 marginal = hansel.get_counts_at(i)
 marginal = {str(x): marginal[x] for x in marginal}
 snp_rev = 0
 if i > 0:
 snp_rev = VCF_h["snp_rev"][i-1]
 print ("%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d" % (
 i,
 snp_rev,
 snp_rev - last_rev,
 marginal.get("A", 0),
 marginal.get("C", 0),
 marginal.get("G", 0),
 marginal.get("T", 0),
 marginal.get("N", 0),
 marginal.get("-", 0),
 marginal.get("_", 0),
 marginal.get("total", 0),
))
 last_rev = snp_rev

 # Make some genes
 SPINS = ARGS.paths
 ongoing_mag = 0
 for i in range(0, SPINS):
 init_path, init_prob, init_min = gretel.generate_path(VCF_h["N"], hansel, original_hansel, debug_hpos=debug_hpos)
 if init_path == None:
 break
 current_path = init_path

 MIN_REMOVE = 0.01 # 1%
 if init_min < MIN_REMOVE:
 sys.stderr.write("[RWGT] Ratio %.10f too small, adjusting to %.3f\n" % (init_min, MIN_REMOVE))
 init_min = MIN_REMOVE
 rw_magnitude = gretel.reweight_hansel_from_path(hansel, init_path, init_min)

 #TODO Horribly inefficient.
 current_path_str = "".join([str(x) for x in current_path])
 if current_path_str not in PATHS:
 PATHS[current_path_str] = {
 "hp_current": [],
 "hp_original": [],
 "i": [],
 "i_0": i,
 "n": 0,
 "magnitude": 0,
 "hansel_path": current_path,
 }
 PATHS[current_path_str]["n"] += 1
 PATHS[current_path_str]["i"].append(i)
 PATHS[current_path_str]["magnitude"] += rw_magnitude
 PATHS[current_path_str]["hp_current"].append(init_prob["hp_current"])
 PATHS[current_path_str]["hp_original"].append(init_prob["hp_original"])

 # Output FASTA
 dirn = ARGS.out + "/"
 fasta_out_fh = open(dirn+"out.fasta", "w")
 hfasta_out_fh = open(dirn+"snp.fasta", "w")

 if ARGS.master:
 master_fa = util.load_fasta(ARGS.master)
 master_seq = master_fa.fetch(master_fa.references[0])
 else:
 master_seq = [' '] * ARGS.end

 for p in sorted(PATHS, key=lambda x: PATHS[x]["i_0"]):
 p = PATHS[p]
 path = p["hansel_path"]
 i = p["i_0"]

 seq = list(master_seq[:])
 for j, mallele in enumerate(path[1:]):
 snp_pos_on_master = VCF_h["snp_rev"][j]
 try:
 if mallele == hansel.symbols_d["-"]:
 # It's a deletion, don't print a SNP
 seq[snp_pos_on_master-1] = ARGS.delchar
 else:
 seq[snp_pos_on_master-1] = mallele
 except IndexError:
 print (path, len(seq), snp_pos_on_master-1)
 sys.exit(1)

 # Coerce HanselSymbols to str
 to_write = "".join(str(x) for x in seq[ARGS.start-1 : ARGS.end])
 if not ARGS.master:
 to_write = to_write.replace(' ', ARGS.gapchar)

 fasta_out_fh.write(">%d__%.2f\n" % (i, p["hp_current"][0])) #TODO hp_current or hp_original?
 fasta_out_fh.write("%s\n" % to_write)

 hfasta_out_fh.write(">%d__%.2f\n" % (i, p["hp_current"][0])) #TODO hp_current or hp_original?
 hfasta_out_fh.write("%s\n" % "".join([str(x) for x in path[1:]]))
 fasta_out_fh.close()
 hfasta_out_fh.close()

 #TODO datetime, n_obs, n_slices, avg_obs_len, L, n_paths, n_avg_loglik
 crumb_file = open(dirn+"gretel.crumbs", "w")
 crumb_file.write("# %d\t%d\t%d\t%.2f\n" % (
 VCF_h["N"],
 hansel.n_crumbs,
 hansel.n_slices,
 hansel.L,
))

 for p in sorted(PATHS, key=lambda x: PATHS[x]["hp_current"][0], reverse=True):
 p = PATHS[p]
 crumb_file.write("%d\t%d\t%s\t%s\t%.2f\n" % (
 p["i_0"],
 p["n"],
 ",".join(["%.2f" % x for x in p["hp_current"]]),
 ",".join(["%.2f" % x for x in p["hp_original"]]),
 p["magnitude"],
))

 Source code for gretel.gretel

import sys
from math import log,log10,exp
import random

import numpy as np

from hansel import Hansel
from . import util

#TODO Should the denom of the conditional use the unique variants at i-l or i?
#TODO Util to parse known input and return SNP seq

[docs]def reweight_hansel_from_path(hansel, path, ratio):
 """
 Given a completed path, reweight the applicable pairwise observations in the Hansel structure.

 Parameters

 hansel : :py:class:`hansel.hansel.Hansel`
 The Hansel structure currently being explored by Gretel.

 path : list{str}
 The ordered sequence of selected variants.

 ratio : float
 The proportion of evidence to remove from each paired observation that
 was considered to recover the provided path.

 It is recommended this be the smallest marginal distribution observed across selected variants.

 i.e. For each selected variant in the path, note the value of the
 marginal distribution for the probability of observing that particular
 variant at that genomic position. Parameterise the minimum value of
 those marginals.

 Returns

 Spent Observations : float
 The sum of removed observations from the Hansel structure.
 """

 size = 0

 """
 # Old re-implementation sans flip
 for i in range(0, len(path)-1):
 for j in range(0, i+1+1):
 # Reduce read supports
 if i == j:
 continue
 size += hansel.reweight_observation(path[i], path[j], i, j, ratio)
 return size

 # Reduce adjacent evidence pairs
 for i in range(len(path)-1):
 size += hansel.reweight_observation(path[i], path[i+1], i, i+1, ratio)

 # Reduce other evidence pairs
 for j in range(1, len(path)):
 for i in range(0, j-1):
 size += hansel.reweight_observation(path[i], path[j], i, j, ratio)

 # Reduce other non-evidence pairs
 # I have no idea why this works so well, so we'll need to have a think about it
 # before we put it in Gretel proper...
 #for j in range(1, len(path)):
 # for i in range(0, j-1):
 # size += hansel.reweight_observation(path[j], path[i], j, i, ratio)
 # pass

 # Reweight the rest of the matrix because we can at least explain that
 hansel.reweight_matrix(ratio / (hansel.L/10))

 sys.stderr.write("[RWGT] Ratio %.3f, Removed %.1f\n" % (ratio, size))
 return size
 """

 # Let's keep the RW system as-is for now...
 size = 0
 for i in range(0, len(path)):
 for j in range(0, i+1+1):
 # Reduce read supports
 if i >= len(path)-1:
 size += hansel.reweight_observation(path[i], path[j], i, i+1, ratio)
 break #???
 else:
 if j < i:
 # This isn't just a case of j < i, but means that we are looking
 # at the two SNPs the wrong way around, we must switch them before
 # handing them over to reweight_observation
 t_i = j
 t_j = i
 else:
 t_i = i
 t_j = j
 size += hansel.reweight_observation(path[t_i], path[t_j], t_i, t_j, ratio)
 sys.stderr.write("[RWGT] Ratio %.3f, Removed %.1f\n" % (ratio, size))
 return size

PATH GENERATION

[docs]def generate_path(n_snps, hansel, original_hansel, debug_hpos=None):
 """
 Explore and generate the most likely path (haplotype) through the observed Hansel structure.

 Parameters

 n_snps : int
 The number of variants.

 hansel : :py:class:`hansel.hansel.Hansel`
 The Hansel structure currently being explored by Gretel.

 original_hansel : :py:class:`hansel.hansel.Hansel`
 A copy of the Hansel structure created by Gretel, before any reweighting.

 Returns

 Path : list{str} or None
 The sequence of variants that represent the completed path (or haplotype), or None
 if one could not be successfully constructed.

 Path Probabilities : dict{str, float}
 The `hp_original` (orignal Hansel) and `hp_current` (current Hansel) joint
 probabilities of the variants in the returned path occurring together
 in the given order.

 Minimum Marginal : float
 The smallest marginal distribution observed across selected variants.
 """

 # Cross the metahaplome in a greedily, naive fashion to establish a base path
 # This seeds the rest of the path generation (we might want to just select
 # a random path here in future)

 running_prob = 0.0
 running_prob_uw = 0.0
 current_path = [hansel.symbols_d['_']] # start with the dummy
 marginals = []

 # Find path
 sys.stderr.write("[NOTE] *Establishing next path\n")
 for snp in range(1, n_snps+1):
 #sys.stderr.write("\t*** ***\n")
 #sys.stderr.write("\t[SNP_] SNP %d\n" % snp)

 dh_flag = False
 if debug_hpos:
 if snp in debug_hpos:
 dh_flag = True

 # Get marginal and calculate branch probabilities for each available
 # mallele, given the current path seen so far
 # Select the next branch and append it to the path
 curr_branches = hansel.get_edge_weights_at(snp, current_path, debug=dh_flag)
 #sys.stderr.write("\t[TREE] %s\n" % curr_branches)
 # Return the symbol and probability of the next base to add to the
 # current path based on the best marginal
 next_v = 0.0
 next_m = None

 if debug_hpos:
 if snp in debug_hpos:
 print(curr_branches)

 for symbol in curr_branches:
 if str(symbol) == "total":
 continue
 if next_m is None:
 next_v = curr_branches[symbol]
 next_m = symbol
 elif curr_branches[symbol] > next_v:
 next_v = curr_branches[symbol]
 next_m = symbol

 if next_m == None:
 sys.stderr.write('''[NOTE] Unable to select next branch from SNP %d to %d
 By design, Gretel will attempt to recover haplotypes until a hole in the graph has been found.
 Recovery will intentionally terminate now.\n''' % (snp-1, snp))
 return None, None, None

 selected_edge_weight = hansel.get_marginal_of_at(next_m, snp)
 marginals.append(selected_edge_weight) #NOTE This isn't a log, as it is used as a ratio later

 running_prob += log10(selected_edge_weight)
 running_prob_uw += log10(original_hansel.get_marginal_of_at(next_m, snp))
 current_path.append(next_m)

 return current_path, {"hp_original": running_prob_uw, "hp_current": running_prob}, min(marginals)

 Source code for gretel.util

import pysam
import numpy as np
from math import ceil
from hansel import Hansel
import vcf

from multiprocessing import Process, Queue, Value
import sys

[docs]def get_ref_len_from_bam(bam_path, target_contig):
 """
 Fetch the length of a given reference sequence from a :py:class:`pysam.AlignmentFile`.

 Parameters

 bam_path : str
 Path to the BAM alignment

 target_contig : str
 The name of the contig for which to recover haplotypes.

 Returns

 end_pos : int
 The 1-indexed genomic position at which to stop considering variants.
 """
 bam = pysam.AlignmentFile(bam_path)
 end = bam.lengths[bam.get_tid(target_contig)]
 bam.close()

 return end

[docs]def load_from_bam(bam_path, target_contig, start_pos, end_pos, vcf_handler, use_end_sentinels=False, n_threads=1, debug_reads=False, debug_pos=False, stepper="samtools"):
 """
 Load variants observed in a :py:class:`pysam.AlignmentFile` to
 an instance of :py:class:`hansel.hansel.Hansel`.

 Parameters

 bam_path : str
 Path to the BAM alignment

 target_contig : str
 The name of the contig for which to recover haplotypes.

 start_pos : int
 The 1-indexed genomic position from which to begin considering variants.

 end_pos : int
 The 1-indexed genomic position at which to stop considering variants.

 vcf_handler : dict{str, any}
 Variant metadata, as provided by :py:func:`gretel.gretel.process_vcf`.

 use_end_sentinels : boolean, optional(default=False)
 Whether or not to append an additional pairwise observation between
 the final variant on a read towards a sentinel.

 .. note:: Experimental
 This feature is for testing purposes, currently it is recommended
 that the flag be left at the default of `False`. However, some
 data sets report minor performance improvements for some haplotypes
 when set to `True`.
 This flag may be removed at any time without warning.

 n_threads : int, optional(default=1)
 Number of threads to spawn for reading the BAM

 debug_reads : list{str}, optional
 A list of read names for which to print out debugging information

 debug_pos : list{int}, optional
 A list of positions for which to print out debugging information

 stepper : str, optional(default=samtools)
 The pysam pileup stepper to use

 Returns

 Hansel : :py:class:`hansel.hansel.Hansel`
 """

 hansel = Hansel.init_matrix(['A', 'C', 'G', 'T', 'N', "-", "_"], ['N', "_"], vcf_handler["N"])

 if not debug_reads:
 debug_reads = set([])
 if not debug_pos:
 debug_pos = set([])

 import random
 def progress_worker(progress_q, n_workers, slices, total_snps, crumbs):
 worker_pos = []
 worker_done = []
 for _ in range(0, n_workers):
 worker_pos.append(0)
 worker_done.append(0)

 while sum(worker_done) < n_workers:
 work_block = progress_q.get()
 worker_pos[work_block["worker_i"]] = work_block["pos"]
 if work_block["pos"] is None:
 worker_done[work_block["worker_i"]] = 1

 crumbs.value += work_block["crumbs"]
 slices.value += work_block["slices"]
 total_snps.value += work_block["covered_snps"]
 sys.stderr.write("%s\n" % ([worker_pos[i] if status != 1 else None for (i, status) in enumerate(worker_done)]))
 if random.random() < 0.1:
 sys.stderr.write("%s\n" % ([worker_pos[i] if status != 1 else None for (i, status) in enumerate(worker_done)]))
 return (slices, total_snps, crumbs)

 def bam_worker(bam_q, progress_q, worker_i):

 worker = worker_i

 slices = 0
 crumbs = 0
 covered_snps = 0

 bam = pysam.AlignmentFile(bam_path)

 while True:
 work_block = bam_q.get()
 if work_block is None:
 progress_q.put({
 "pos": None,
 "worker_i": worker_i,
 "slices": slices,
 "crumbs": crumbs,
 "covered_snps": covered_snps,
 })
 break

 reads = {}
 dreads = set([])

 for p_col in bam.pileup(reference=target_contig, start=work_block["start"]-1, stop=work_block["end"], ignore_overlaps=False, min_base_quality=0, stepper=stepper):

 if p_col.reference_pos + 1 > end_pos:
 # Ignore positions beyond the end_pos
 break

 if vcf_handler["region"][p_col.reference_pos+1] != 1:
 # Ignore non-SNPs
 continue

 for p_read in p_col.pileups:

 curr_read_1or2 = 0
 if p_read.alignment.is_paired:
 if p_read.alignment.is_read1:
 curr_read_1or2 = 1
 elif p_read.alignment.is_read2:
 curr_read_1or2 = 2
 else:
 #TODO Probably indicative of bad data
 pass

 curr_read_name = "%s_%s_%d" % (p_read.alignment.query_name, str(p_read.alignment.flag), curr_read_1or2)

 LEFTMOST_1pos = p_read.alignment.reference_start + 1 # Convert 0-based reference_start to 1-based position (to match region array and 1-based VCF)

 # Special case: Consider reads that begin before the start_pos, but overlap the 0th block
 if work_block["i"] == 0:
 if LEFTMOST_1pos < start_pos:
 # Read starts before the start_pos
 if p_read.alignment.reference_start + 1 + p_read.alignment.query_alignment_length < start_pos:
 # Read ends before the start_pos
 continue
 LEFTMOST_1pos = start_pos
 else:
 # This read begins before the start of the current (non-0) block
 # and will have already been covered by the block that preceded it
 if LEFTMOST_1pos < work_block["start"]:
 continue

 sequence = None
 qual = None
 if p_read.is_del:
 # TODO Not sure about how to estimate quality of deletion?
 sequence = "-" * (abs(p_read.indel) + 1)
 qual = p_read.alignment.query_qualities[p_read.query_position_or_next] * (abs(p_read.indel) + 1)
 elif p_read.indel > 0:
 # p_read.indel peeks to next CIGAR and determines whether the base FOLLOWING this one is an insertion or not
 sequence = p_read.alignment.query_sequence[p_read.query_position : p_read.query_position + p_read.indel + 1]
 qual = p_read.alignment.query_qualities[p_read.query_position : p_read.query_position + p_read.indel + 1]
 else:
 sequence = p_read.alignment.query_sequence[p_read.query_position]
 qual = p_read.alignment.query_qualities[p_read.query_position]

 if not sequence:
 print("[WARN] Sequence data seems to not be correctly salvaged from read %s" % p_read.alignment.query_name)
 continue

 if curr_read_name not in reads:
 reads[curr_read_name] = {
 "rank": np.sum(vcf_handler["region"][1 : LEFTMOST_1pos]), # non-inclusive 1pos end
 "seq": [],
 "quals": [],
 "refs_1pos": [],
 "read_variants_0pos": [],
 }
 if p_read.alignment.query_name in debug_reads:
 dreads.add(curr_read_name)
 reads[curr_read_name]["seq"].append(sequence)
 reads[curr_read_name]["quals"].append(qual)
 reads[curr_read_name]["refs_1pos"].append(p_col.reference_pos+1)
 reads[curr_read_name]["read_variants_0pos"].append(p_read.query_position)

 for dread in sorted(dreads):
 r = reads[dread]
 if r:
 for snp_i, ref_pos in enumerate(r["refs_1pos"]):
 print (dread, ref_pos, r["seq"][snp_i])
 print ("RANK", dread, r["rank"])

 if debug_pos:
 for read in reads:
 for d_pos in set(reads[read]["refs_1pos"]) & debug_pos:
 i = reads[read]["refs_1pos"].index(d_pos)
 print (read, d_pos, reads[read]["seq"][i])

 num_reads = len(reads)
 for qi, qname in enumerate(reads):
 progress_q.put({"pos": num_reads-(qi+1), "worker_i": worker_i})

 if not len(reads[qname]["seq"]) > 1:
 # Ignore reads without evidence
 continue
 slices += 1

 rank = reads[qname]["rank"]
 support_len = len(reads[qname]["seq"])

 support_seq = "".join([b[0] for b in reads[qname]["seq"]]) # b[0] has the affect of capturing the base before any insertion
 covered_snps += len(support_seq.replace("N", "").replace("_", ""))

 # For each position in the supporting sequence (that is, each covered SNP)
 for i in range(0, support_len):
 snp_a = support_seq[i]

 #if support_len == 1:
 # if rank == 0:
 # hansel.add_observation('_', snp_a, 0, 1)
 # hansel.add_observation(snp_a, '_', 1, 2)
 # else:
 # hansel.add_observation(snp_a, '_', rank+1, rank+2)

 # For each position in the supporting sequence following i
 for j in range(i+1, support_len):
 snp_b = support_seq[j]

 # Ignore observations who are from an invalid transition
 if snp_a in ['_', 'N']:
 continue

 # Sentinel->A
 if i==0 and j==1 and rank==0:
 # If this is the first position in the support (support_pos == 0)
 # and rank > 0 (that is, this is not the first SNP)
 # and SNPs a, b are adjacent
 hansel.add_observation('_', snp_a, 0, 1)
 hansel.add_observation(snp_a, snp_b, 1, 2)
 crumbs += 1

 # B->Sentinel
 elif (j+rank+1) == vcf_handler["N"] and abs(i-j)==1:
 # Last observation (abs(i-j)==1),
 # that ends on the final SNP (j+rank+1 == N)
 hansel.add_observation(snp_a, snp_b, vcf_handler["N"]-1, vcf_handler["N"])
 hansel.add_observation(snp_b, '_', vcf_handler["N"], vcf_handler["N"]+1)
 crumbs += 1

 # A regular observation (A->B)
 else:
 hansel.add_observation(snp_a, snp_b, i+rank+1, j+rank+1)
 crumbs += 1

 if use_end_sentinels:
 if j==(support_len-1) and abs(i-j)==1:
 # The last SNP on a read, needs a sentinel afterward
 hansel.add_observation(snp_b, '_', j+rank+1, j+rank+2)

 bam_queue = Queue()
 progress_queue = Queue()

 # Queue the wokers
 # TODO Evenly divide, but in future, consider the distn
 # TODO Also consider in general block0 has more work to do
 window_l = round((end_pos - start_pos) / float(n_threads))
 for window_i, window_pos in enumerate(range(start_pos, end_pos+1, window_l)):
 bam_queue.put({
 "start": window_pos,
 "end": window_pos + window_l - 1, # add -1 to stop end of window colliding with next window
 "i": window_i,
 "region_end": end_pos,
 })

 processes = []
 for _ in range(n_threads):
 p = Process(target=bam_worker,
 args=(bam_queue, progress_queue, _))
 processes.append(p)

 # ...and a progress process
 n_reads = Value('i', 0)
 n_observations = Value('i', 0)
 total_covered_snps = Value('i', 0)
 p = Process(target=progress_worker,
 args=(progress_queue, n_threads, n_reads, total_covered_snps, n_observations))
 processes.append(p)

 for p in processes:
 p.start()

 # Add sentinels
 for _ in range(n_threads):
 bam_queue.put(None)

 # Wait for processes to complete work
 for p in processes:
 p.join()

 hansel.n_slices = n_reads.value
 hansel.n_crumbs = n_observations.value
 sys.stderr.write("[NOTE] Loaded %d breadcrumbs from %d bread slices.\n" % (hansel.n_crumbs, hansel.n_slices))

 hansel.L = int(ceil(float(total_covered_snps.value)/n_reads.value))
 sys.stderr.write("[NOTE] Setting Gretel.L to %d\n" % hansel.L)
 return hansel

[docs]def load_fasta(fa_path):
 """
 A convenient wrapper function for constructing a :py:class:`pysam.FastaFile`

 Parameters

 fa_path : str
 Path to FASTA

 Returns

 FASTA File Interface : :py:class:`pysam.FastaFile`
 """
 return pysam.FastaFile(fa_path)

[docs]def process_vcf(vcf_path, contig_name, start_pos, end_pos):
 """
 Parse a VCF to extract the genomic positions of called variants.

 Parameters

 vcf_path : str
 Path to the VCF file.

 contig_name : str
 Name of the target contig on which variants were called.

 start_pos : int
 The 1-indexed genomic position from which to begin considering variants.

 end_pos : int
 The 1-indexed genomic position at which to stop considering variants.

 Returns

 Gretel Metastructure : dict
 A collection of structures used for the execution of Gretel.
 The currently used keys are:
 N : int
 The number of observed SNPs
 snp_fwd : dict{int, int}
 A reverse lookup from the n'th variant, to its genomic position on the contig
 snp_rev : dict{int, int}
 A forward lookup to translate the n'th genomic position to its i'th SNP rank
 region : list{int}
 A masked representation of the target contig, positive values are variant positions
 """

 # Open the VCF
 fp = open(vcf_path, 'rb') # assumes bgzip and tabix
 vcf_records = vcf.Reader(fp)
 n_snps = 0
 snp_reverse = {}
 snp_forward = {}
 region = np.zeros(end_pos + 1, dtype=int)
 i = 0
 for record in vcf_records.fetch(contig_name, 0, end_pos): # [0, 1end)
 # record.POS is 1-indexed
 if record.POS < start_pos:
 continue
 if record.POS > end_pos:
 continue

 n_snps += 1
 region[record.POS] = 1
 snp_reverse[i] = record.POS
 snp_forward[record.POS] = i
 i += 1
 fp.close()

 return {
 "N": n_snps,
 "snp_fwd": snp_forward,
 "snp_rev": snp_reverse,
 "region": region,
 }

gretel package

Submodules

gretel.cmd module

	
gretel.cmd.main()[source]

	Gretel: A metagenomic haplotyper.

gretel.gretel module

	
gretel.gretel.generate_path(n_snps, hansel, original_hansel, debug_hpos=None)[source]

	Explore and generate the most likely path (haplotype) through the observed Hansel structure.

	Parameters

	
	n_snps (int) – The number of variants.

	hansel (hansel.hansel.Hansel [https://hansel.readthedocs.io/en/latest/source/hansel.html#hansel.hansel.Hansel]) – The Hansel structure currently being explored by Gretel.

	original_hansel (hansel.hansel.Hansel [https://hansel.readthedocs.io/en/latest/source/hansel.html#hansel.hansel.Hansel]) – A copy of the Hansel structure created by Gretel, before any reweighting.

	Returns

	
	Path (list{str} or None) – The sequence of variants that represent the completed path (or haplotype), or None
if one could not be successfully constructed.

	Path Probabilities (dict{str, float}) – The hp_original (orignal Hansel) and hp_current (current Hansel) joint
probabilities of the variants in the returned path occurring together
in the given order.

	Minimum Marginal (float) – The smallest marginal distribution observed across selected variants.

	
gretel.gretel.reweight_hansel_from_path(hansel, path, ratio)[source]

	Given a completed path, reweight the applicable pairwise observations in the Hansel structure.

	Parameters

	
	hansel (hansel.hansel.Hansel [https://hansel.readthedocs.io/en/latest/source/hansel.html#hansel.hansel.Hansel]) – The Hansel structure currently being explored by Gretel.

	path (list{str}) – The ordered sequence of selected variants.

	ratio (float) – The proportion of evidence to remove from each paired observation that
was considered to recover the provided path.

It is recommended this be the smallest marginal distribution observed across selected variants.

i.e. For each selected variant in the path, note the value of the
marginal distribution for the probability of observing that particular
variant at that genomic position. Parameterise the minimum value of
those marginals.

	Returns

	Spent Observations – The sum of removed observations from the Hansel structure.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

gretel.util module

	
gretel.util.get_ref_len_from_bam(bam_path, target_contig)[source]

	Fetch the length of a given reference sequence from a pysam.AlignmentFile [https://pysam.readthedocs.io/en/latest/api.html#pysam.AlignmentFile].

	Parameters

	
	bam_path (str) – Path to the BAM alignment

	target_contig (str) – The name of the contig for which to recover haplotypes.

	Returns

	end_pos – The 1-indexed genomic position at which to stop considering variants.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
gretel.util.load_fasta(fa_path)[source]

	A convenient wrapper function for constructing a pysam.FastaFile [https://pysam.readthedocs.io/en/latest/api.html#pysam.FastaFile]

	Parameters

	fa_path (str) – Path to FASTA

	Returns

	FASTA File Interface

	Return type

	pysam.FastaFile [https://pysam.readthedocs.io/en/latest/api.html#pysam.FastaFile]

	
gretel.util.load_from_bam(bam_path, target_contig, start_pos, end_pos, vcf_handler, use_end_sentinels=False, n_threads=1, debug_reads=False, debug_pos=False, stepper='samtools')[source]

	Load variants observed in a pysam.AlignmentFile [https://pysam.readthedocs.io/en/latest/api.html#pysam.AlignmentFile] to
an instance of hansel.hansel.Hansel [https://hansel.readthedocs.io/en/latest/source/hansel.html#hansel.hansel.Hansel].

	Parameters

	
	bam_path (str) – Path to the BAM alignment

	target_contig (str) – The name of the contig for which to recover haplotypes.

	start_pos (int) – The 1-indexed genomic position from which to begin considering variants.

	end_pos (int) – The 1-indexed genomic position at which to stop considering variants.

	vcf_handler (dict{str, any}) – Variant metadata, as provided by gretel.gretel.process_vcf().

	use_end_sentinels (boolean, optional(default=False)) – Whether or not to append an additional pairwise observation between
the final variant on a read towards a sentinel.

Note

Experimental
This feature is for testing purposes, currently it is recommended
that the flag be left at the default of False. However, some
data sets report minor performance improvements for some haplotypes
when set to True.
This flag may be removed at any time without warning.

	n_threads (int, optional(default=1)) – Number of threads to spawn for reading the BAM

	debug_reads (list{str}, optional) – A list of read names for which to print out debugging information

	debug_pos (list{int}, optional) – A list of positions for which to print out debugging information

	stepper (str, optional(default=samtools)) – The pysam pileup stepper to use

	Returns

	Hansel

	Return type

	hansel.hansel.Hansel [https://hansel.readthedocs.io/en/latest/source/hansel.html#hansel.hansel.Hansel]

	
gretel.util.process_vcf(vcf_path, contig_name, start_pos, end_pos)[source]

	Parse a VCF to extract the genomic positions of called variants.

	Parameters

	
	vcf_path (str) – Path to the VCF file.

	contig_name (str) – Name of the target contig on which variants were called.

	start_pos (int) – The 1-indexed genomic position from which to begin considering variants.

	end_pos (int) – The 1-indexed genomic position at which to stop considering variants.

	Returns

	Gretel Metastructure – A collection of structures used for the execution of Gretel.
The currently used keys are:

	Nint

	The number of observed SNPs

	snp_fwddict{int, int}

	A reverse lookup from the n’th variant, to its genomic position on the contig

	snp_revdict{int, int}

	A forward lookup to translate the n’th genomic position to its i’th SNP rank

	regionlist{int}

	A masked representation of the target contig, positive values are variant positions

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Module contents

gretel

	gretel package
	Submodules

	gretel.cmd module

	gretel.gretel module

	gretel.util module

	Module contents

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Gretel

 		
 Protocol

 		
 Read Alignment

 		
 Variant Calling

 		
 Invocation of Gretel

 		
 Gretel Outputs

 		
 out.fasta

 		
 gretel.crumbs

 		
 History

 		
 0.0.94

 		
 0.0.93

 		
 0.0.92

 		
 0.0.90

 		
 0.0.81

 		
 0.0.8

 		
 0.0.7

 		
 0.0.6b

 		
 0.0.6

 		
 0.0.5

 		
 0.0.4

 		
 0.0.3

 		
 0.0.2

 		
 0.0.1

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

