
GRCRiddles Documentation
Release 1a

Marko Manninen

Jul 30, 2019

Contents

1 Processing Greek corpora for the riddle solver 3
1.1 Focus of the study . 3

1.1.1 Natural language processing . 5
1.1.2 Statistics . 8

1.2 Table data . 10
1.3 Bar chart . 11
1.4 Optional live chart . 11

1.4.1 Unique words database . 11
1.5 Longest words . 15
1.6 Highest isopsephy . 17

2 Isopsephical riddles in Greek Pseudo Sibylline hexameter poetry 21
2.1 Introduction . 21

2.1.1 Riddle 1 . 23
2.1.2 Riddle 2 . 23
2.1.3 Riddle 3 . 24

3 Study of the results of the riddle solver 33

4 Appendix 1 - Store database 35

5 Appendix 2 - Solve riddles 37

i

ii

GRCRiddles Documentation, Release 1a

In the following chapters, I’m guiding through the process of solving some enigmatic alphanumeric riddles in the
Greek Pseudo Sibylline oracles.

In the first chapter, I will download and preprocess freely available open source Greek corpora. In the second chapter,
I will use the processed unique word database to solve some specific riddles in the Sibylline oracles. The third chapter
is reserved more for the speculative analysis of the results.

The reader may download all material and code for the interactive exploration from the GitHub project: https://github.
com/markomanninen/grcriddles

Contents:

Contents 1

https://en.wikipedia.org/wiki/Sibylline_Oracles
https://github.com/markomanninen/grcriddles
https://github.com/markomanninen/grcriddles

GRCRiddles Documentation, Release 1a

2 Contents

CHAPTER 1

Processing Greek corpora for the riddle solver

Pseudo-Sibylline1 oracles contain hexametric poems written in Ancient Greek. These oracula were mainly composed
in 150BC - 700AD to twelve distinct extant books. They were circulating and quite famous among the Judaeo-
Christian community at that time.

They shouldn’t, however, be too much confused with the earlier Sibylline books2. Sibylline books contained religious
ceremonial advice that were consulted by the selected priests and curators in the Roman state when it was in deep
political trouble. The collection of the original Sibylline books were destroyed by different accidental events and
deliberate actions in history.

Pseudo-Sibylline oracles, on the other hand, contain Jewish narrative of the human history contrasted with the Greek
mythology and to the chronology of the other great ancient empires. Another intention of the oracles was to support
evolving Christian doctrine and interpretation of the prophecies. Prophecies were mostly grounded in Jewish tradition,
but surprisingly some pagan world events also came to be interpreted as signs of the coming Messiah. Sibyl, the
acclaimed author of the prophecies as a woman prophetess, the daughter of Noah in the Pseudo-Sibylline lore, has a
unique character crossing over the common borders in several ancient religions and mythology.

Good introductions to the Pseudo-Sibylline oracles can be found from these two books:

• Sibylline Oracles in ‘The Old Testament Pseudepigrapha, Volume I

<https://books.google.fi/books?id=TNdeolWctsQC>‘__3 by J. J. Collins

• Part 1 in ‘The Book Three of the Sibylline Oracles and Its Social Setting

<https://books.google.fi/books?id=Zqh8ZQZqnWYC>‘__4 by Rieuwerd Buitenwerf

1.1 Focus of the study

Some material in the Pseudo-Sibylline oracles contains cryptic puzzles, referring to persons, cities, countries, and
epithets of God for example. These secretive references are often very general in nature, pointing only to the first letter

1 https://en.wikipedia.org/wiki/Sibylline_Oracles
2 https://en.wikipedia.org/wiki/Sibylline_Books
3 https://books.google.fi/books?id=TNdeolWctsQC
4 https://books.google.fi/books?id=Zqh8ZQZqnWYC

3

https://en.wikipedia.org/wiki/Sibylline_Oracles
https://en.wikipedia.org/wiki/Sibylline_Books
https://books.google.fi/books?id=TNdeolWctsQC
https://books.google.fi/books?id=Zqh8ZQZqnWYC
https://en.wikipedia.org/wiki/Sibylline_Oracles
https://en.wikipedia.org/wiki/Sibylline_Books
https://books.google.fi/books?id=TNdeolWctsQC
https://books.google.fi/books?id=Zqh8ZQZqnWYC

GRCRiddles Documentation, Release 1a

Fig. 1: Michelangelo’s Delphic Sibyl, Sistine Chapel

4 Chapter 1. Processing Greek corpora for the riddle solver

GRCRiddles Documentation, Release 1a

of the subject and its numerical value. Solving them requires, not so much of mathematical or cryptographical skills
in a modern sense, but a proper knowledge of the context, both the inner textual and the historical context.

Most of the alphanumeric riddles in the oracles can already be taken as solved by various researchers. See footnotes
in [The Sibylline Oracles](http://www.sacred-texts.com/cla/sib/sib.pdf) by Milton S. Terry for example. But, some of
the riddles are still problematic and open for better proposals. Better yet, few of these open riddles are more complex
and specific enough so that one may try to solve them by modern programmable tools.

As an independent researcher not affiliated with any organization, the sole motivation and purpose of mine in this
book is to provide a reusable and a testable method for processing and analyzing ancient corpora, especially detecting
alphanumeric patterns in a digitalized text. Although the target language in this study is Ancient Greek, the method
should be applicable to any language using alphabetic numerals.

1.1.1 Natural language processing

Programmatical approach to solve the riddles requires a huge Greek text corpora. Bigger it is, the better. I will
download and preprocess available open source Greek corpora, which is a quite daunting task for many reasons.
Programming language of my choice is Python5 for it has plenty of good and stable open source libraries required for
my work. Python is widely recognized in academic and scientific field and well oriented to the research projects.

I have left the most of the overly technical details of these chapters for the enthusiasts to read straight from the
commented code in functions.py6 script. By collecting the large part of the used procedures to the separate script
maintains this document more concise too.

In the end of the task of the first chapter, I’ll have a word database containing hundreds of thousands of unique Greek
words extracted from the naturally written language corpora. Then words can be further used in the riddle solver in
the second chapter.

Note: Note that rather than just reading, this, and the following chapters can also be run interactively in your local
Jupyter notebook7 installation if you prefer. That means that you may test and verify the procedure or alter parameters
and try solving the riddles with your own parameters.

Your can download independent Jupyter notebooks for processing corpora8, solving riddles9, and analysing results10.

You may also run code directly from Python shell environment, no problem.

Required components

The first sub task is to get a big raw ancient Greek text to operate with. I have implemented an importer interface with
tqdm library to the Perseus11 and the First1KGreek12 open source data sources in this chapter.

I’m using my own Abnum13 library to remove accents from the Greek words, remove non-alphabetical characters from
the corpora, as well as calculating the isopsephical value of the Greek words. Greek accentuation14 library is used to
split words into syllables. This is required because the riddles of my closest interest contain specific information about

5 http://python.org
6 https://github.com/markomanninen/grcriddles/blob/master/functions.py
7 https://jupyter.org
8 https://github.com/markomanninen/grcriddles/blob/master/Processing%20Greek%20corpora%20for%20the%20isopsehical%20riddle%

20solver.ipynb
9 https://github.com/markomanninen/grcriddles/blob/master/Isopsephical%20riddles%20in%20the%20Greek%20Pseudo%20Sibylline%

20hexameter%20poetry.ipynb
10 https://github.com/markomanninen/grcriddles/blob/master/
11 https://www.python.org/shell/
12 https://github.com/tqdm/tqdm
13 http://www.perseus.tufts.edu/hopper/opensource/download
14 http://opengreekandlatin.github.io/First1KGreek/

1.1. Focus of the study 5

http://www.sacred-texts.com/cla/sib/sib.pdf
http://python.org
https://git.io/vAS2Z
https://jupyter.org/
https://git.io/vASwM
https://git.io/vASrY
https://
https://www.python.org/shell/
https://github.com/tqdm/tqdm
http://www.perseus.tufts.edu/hopper/opensource/download
http://opengreekandlatin.github.io/First1KGreek/
https://github.com/markomanninen/abnum3
https://github.com/jtauber/greek-accentuation
http://python.org
https://github.com/markomanninen/grcriddles/blob/master/functions.py
https://jupyter.org
https://github.com/markomanninen/grcriddles/blob/master/Processing%20Greek%20corpora%20for%20the%20isopsehical%20riddle%20solver.ipynb
https://github.com/markomanninen/grcriddles/blob/master/Processing%20Greek%20corpora%20for%20the%20isopsehical%20riddle%20solver.ipynb
https://github.com/markomanninen/grcriddles/blob/master/Isopsephical%20riddles%20in%20the%20Greek%20Pseudo%20Sibylline%20hexameter%20poetry.ipynb
https://github.com/markomanninen/grcriddles/blob/master/Isopsephical%20riddles%20in%20the%20Greek%20Pseudo%20Sibylline%20hexameter%20poetry.ipynb
https://github.com/markomanninen/grcriddles/blob/master/
https://www.python.org/shell/
https://github.com/tqdm/tqdm
http://www.perseus.tufts.edu/hopper/opensource/download
http://opengreekandlatin.github.io/First1KGreek/

GRCRiddles Documentation, Release 1a

the syllables of the words. Pandas15 library is used as an API (application programming interface) to the collected
database. Plotly16 library and online infographic service are used for the visual presentation of the statistics.

You can install these libraries by uncommenting and running the next install lines in the Jupyter notebook:

import sys

#!{sys.executable} -m pip install tqdm abnum requests
#!{sys.executable} -m pip install pandas plotly pathlib
#!{sys.executable} -m pip install greek_accentuation

For your convenience, my environment is the following:

print("Python %s" % sys.version)

Output:

Python 3.6.1 | Anaconda 4.4.0 (64-bit) | (default, May 11 2017, 13:25:24)
[MSC v.1900 64 bit (AMD64)]

Note that Python 3.4+ is required for all examples to work properly. To find out other ways of installing PyPI main-
tained libraries, please consult: https://packaging.python.org/tutorials/installing-packages/

Downloading corpora

I’m going to use Perseus and OpenGreekAndLatin corpora for the study by combining them into a single raw text file
and unique words database.

The next code snippets will download hundreds of megabytes of Greek text to a local computer for quicker access.
tqdm downloader requires a stable internet connection to work properly.

One could also download source zip files via browser and place them to the same directory with the Jupyter notebook
or where Python is optionally run in shell mode. Zip files must then be renamed as perseus.zip and first1k.zip.

1. Download packed zip files from their GitHub repositories:

from functions import download_with_indicator, perseus_zip_file, first1k_zip_file
download from perseus file source
fs = "https://github.com/PerseusDL/canonical-greekLit/archive/master.zip"
download_with_indicator(fs, perseus_zip_file)
download from first1k file source
fs = "https://github.com/OpenGreekAndLatin/First1KGreek/archive/master.zip"
download_with_indicator(fs, first1k_zip_file)

Output:

Downloading: https://github.com/PerseusDL/canonical-greekLit/archive/master.zip
71.00MB [04:15, 211.08KB/s]
Downloading: https://github.com/OpenGreekAndLatin/First1KGreek/archive/master.zip
195.00MB [09:15, 201.54KB/s]

2. Unzip files to the corresponding directories:

15 https://github.com/markomanninen/abnum3
16 https://github.com/jtauber/greek-accentuation

6 Chapter 1. Processing Greek corpora for the riddle solver

http://pandas.pydata.org/
https://plot.ly/
https://packaging.python.org/tutorials/installing-packages/
https://github.com/markomanninen/abnum3
https://github.com/jtauber/greek-accentuation

GRCRiddles Documentation, Release 1a

from functions import perseus_zip_dir, first1k_zip_dir, unzip
first argument is the zip source, second is the destination directory
unzip(perseus_zip_file, perseus_zip_dir)
unzip(first1k_zip_file, first1k_zip_dir)

3. Copy only suitable Greek text xml files from perseus_zip_dir and first1k_zip_dir to the temporary work directories.
Original repositories contain a lot of unnecessary files for the riddle solver which are skipped in this process.

from functions import copy_corpora, joinpaths, perseus_tmp_dir, first1k_tmp_dir
important Greek text files resides in the data directory of the repositories
for item in [[joinpaths(perseus_zip_dir,

["canonical-greekLit-master", "data"]), perseus_tmp_dir],
[joinpaths(first1k_zip_dir,
["First1KGreek-master", "data"]), first1k_tmp_dir]]:

copy_corpora(*item)

Output:

greek_text_perseus_tmp already exists. Either remove it and run again, or
just use the old one.

Copying greek_text_first1k_tmp -> greek_text_first1k

Depending on if the files have been downloaded already, the output may differ.

Collecting files

When the files has been downloaded and copied, it is time to read them to the RAM (Random-Access Memory). At
this point file paths are collected to the greek_corpora_x variable that is used on later iterators.

from functions import init_corpora, perseus_dir, first1k_dir
collect files and initialize data dictionary
greek_corpora_x = init_corpora([[perseus_tmp_dir, perseus_dir], [first1k_tmp_dir,
→˓first1k_dir]])
print(len(greek_corpora_x), "files found")

Output:

1708 files found

Actual files found may differ by increasing over time, because Greek corpora repositories are constantly maintained
and new texts are added by voluteer contributors.

Processing files

Next step is to extract Greek content from the downloaded and selected XML source files. Usually this task might
take a lot of effort in NLP (natural language processing). Python NLTK17 and CLTK18 libraries would be useful at
this point, but in my case I’m only interested of Greek words, that is, text content encoded by a certain Greek Unicode
letter19 block. Thus, I’m able to simplify this part by removing all other characters from source files except Greek
characters. Again, details can be found from the functions.py script.

17 http://pandas.pydata.org
18 https://plot.ly
19 https://www.nltk.org/

1.1. Focus of the study 7

https://www.nltk.org/
https://github.com/cltk/cltk
https://en.wikipedia.org/wiki/Greek_alphabet#Greek_in_Unicode
https://en.wikipedia.org/wiki/Greek_alphabet#Greek_in_Unicode
https://git.io/vAS2Z
http://pandas.pydata.org
https://plot.ly
https://www.nltk.org/

GRCRiddles Documentation, Release 1a

Extracted content is saved to the corpora/author/work based directories. Simplified uncial conversion is also made at
the same time so that the final data contain only plain uppercase words separated by spaces. Pretty much in a format
written by the ancient Greeks, except they didn’t even use spaces to denote individual words and phrases.

Fig. 2: Papyrus 47, Uncial Greek text without spaces. Rev 13:17-

Next code execution will take several minutes depending on if you have already run it once and have the previous
temporary directories available. Old processed corpora files are removed first, then they are recreated by calling
process_greek_corpora function.

from functions import remove, all_greek_text_file, perseus_greek_text_file,\
first1k_greek_text_file, process_greek_corpora

remove old processed temporary files
try:

remove(all_greek_text_file)
remove(perseus_greek_text_file)
remove(first1k_greek_text_file)

except OSError:
pass

process and get greek corpora data to the RAM memory
greek_corpora = process_greek_corpora(greek_corpora_x)

1.1.2 Statistics

After the files have been downloaded and preprocessed, I’m going to output the size of them:

from functions import get_file_size

(continues on next page)

8 Chapter 1. Processing Greek corpora for the riddle solver

GRCRiddles Documentation, Release 1a

(continued from previous page)

print("Size of the all raw text: %s MB" % get_file_size(all_greek_text_file))
print("Size of the perseus raw text: %s MB" % get_file_size(perseus_greek_text_file))
print("Size of the first1k raw text: %s MB" % get_file_size(first1k_greek_text_file))

Output:

Size of the all raw text: 347.76 MB
Size of the perseus raw text: 107.41 MB
Size of the first1k raw text: 240.35 MB

Then, I will calculate other statistics of the saved text files to compare their content:

from functions import get_stats

ccontent1, chars1, lwords1 = get_stats(perseus_greek_text_file)
ccontent2, chars2, lwords2 = get_stats(first1k_greek_text_file)
ccontent3, chars3, lwords3 = get_stats(all_greek_text_file)

Output:

Corpora: perseus_greek_text_files.txt
Letters: 51411752
Words in total: 9900720
Unique words: 423428

Corpora: first1k_greek_text_files.txt
Letters: 113763150
Words in total: 23084445
Unique words: 667503

Corpora: all_greek_text_files.txt
Letters: 165174902
Words in total: 32985165
Unique words: 831308

Letter statistics

I’m using DataFrame class from Pandas library to handle tabular data and show basic letter statistics for each corpora
and combination of them. Native Counter class in Python is used to count unique elements in the given sequence.
Sequence in this case is the raw Greek text stripped from all special characters and spaces, and elements are the letters
of the Greek alphabet.

This will take some time to process too:

from functions import Counter, DataFrame
perseus dataframe
df = DataFrame([[k, v] for k, v in Counter(ccontent1).items()])
df[2] = df[1].apply(lambda x: round(x*100/chars1, 2))
a = df.sort_values(1, ascending=False)
first1k dataframe
df = DataFrame([[k, v] for k, v in Counter(ccontent2).items()])
df[2] = df[1].apply(lambda x: round(x*100/chars2, 2))
b = df.sort_values(1, ascending=False)
perseus + first1k dataframe
df = DataFrame([[k, v] for k, v in Counter(ccontent3).items()])

(continues on next page)

1.1. Focus of the study 9

GRCRiddles Documentation, Release 1a

(continued from previous page)

df[2] = df[1].apply(lambda x: round(x*100/chars3, 2))
c = df.sort_values(1, ascending=False)

The first column is the letter, the second column is the count of the letter, and the third column is the percentage of the
letter contra all letters.

from functions import display_side_by_side
show tables side by side to save some vertical space
display_side_by_side(Perseus=a, First1K=b, Perseus_First1K=c)

1.2 Table data

Perseus FirstK1 Both
Letter Count Percent Letter Count Percent Letter Count Percent
A 4182002 10.96 A 26817705 10.76 A 30999707 10.79
E 3678672 9.64 O 23687669 9.50 O 27351703 9.52
O 3664034 9.61 I 22665483 9.09 I 26279145 9.14
I 3613662 9.47 E 22498413 9.03 E 25909263 9.01
N 3410850 8.94 N 22121458 8.88 N 25800130 8.98
T 2903418 7.61 T 21698265 8.71 T 24601683 8.56
Σ 2830967 7.42 Σ 18738234 7.52 Σ 21569201 7.50
Υ 1776871 4.66 Υ 11384921 4.57 Υ 13161792 4.58
P 1440852 3.78 H 9776411 3.92 H 11217263 3.90
H 1392909 3.65 P 9268111 3.72 P 10661020 3.71
Π 1326596 3.48 K 8982955 3.60 K 10244628 3.56
K 1261673 3.31 Π 8290364 3.33 Π 9616960 3.35
Ω 1179566 3.09 Ω 7874161 3.16 Ω 9053727 3.15
M 1147548 3.01 M 7498489 3.01 M 1147548 3.01
Λ 1139510 2.99 Λ 6929170 2.78 Λ 8076718 2.81
∆ 932823 2.45 ∆ 5757782 2.31 ∆ 6690605 2.33
Γ 584668 1.53 Γ 4197053 1.68 Γ 4781721 1.66
Θ 501512 1.31 Θ 3440599 1.38 Θ 3942111 1.37
X 352579 0.92 X 2294905 0.92 X 2647484 0.92
Φ 325210 0.85 Φ 2115768 0.85 Φ 2440978 0.85
B 220267 0.58 B 1322737 0.53 B 1543004 0.54
Ξ 152971 0.40 Ξ 951076 0.38 Ξ 1104047 0.38
Z 75946 0.20 Z 559728 0.22 Z 635674 0.22
Ψ 51405 0.13 Ψ 375266 0.15 Ψ 426671 0.15
Ϝ 349 0.00 Ϛ 5162 0.00 Ϛ 5171 0.00
Ϛ 9 0.00 Ϡ 259 0.00 Ϝ 505 0.00
Ϡ 4 0.00 Ϝ 156 0.00 Ϡ 263 0.00

3 0 0.00 0.00 Ϙ 111 13 0.00 0.00 Ϙ 114 13 0.00 0.00

Greek corpora contains mathematical texts in Greek, which explains why the rarely used digamma (Ϝ/Ϛ = 6), qoppa
(/Ϙ = 90), and sampi (Ϡ = 900) letters are included on the table. You can find other interesting differences between
Perseus and First1k corpora, like the occurrence of P/H, K/Π, and O/I/E which are probably explained by the difference
of the included text genres in corpora.

10 Chapter 1. Processing Greek corpora for the riddle solver

GRCRiddles Documentation, Release 1a

1.3 Bar chart

The next chart will show visually which are the most used letters and the least used letters in the available Ancient
Greek corpora.

Vowels with N, S, and T consonants pops up as the most used letters. The least used letters are Z, Ξ, and Ψ, if the
exclusive numerals Ϛ, , and Ϡ are not counted.

1.4 Optional live chart

Uncomment the next part to output a new fresh graph from Plotly:

#import plotly
#plotly.offline.init_notebook_mode(connected=False)

for the fist time set plotly service credentials, then you can comment
next line
#plotly.tools.set_credentials_file(username='MarkoManninen', api_key='xyz')

embed plotly graphs
#plotly.tools.embed("https://plot.ly/~MarkoManninen/8/")

1.4.1 Unique words database

Now it is time to collect unique Greek words to the database and show certain specialties of the word statistics. I’m
reusing data from the greek_corpora variable that is in the memory already. Running the next code will take a minute
or two depending on the processor speed of your computer:

from functions import syllabify, Abnum, greek, vowels
greek abnum object for calculating isopsephical value of the words
g = Abnum(greek)

(continues on next page)

1.3. Bar chart 11

GRCRiddles Documentation, Release 1a

(continued from previous page)

count unique words statistic from the parsed greek corpora
rather than the plain text file. it would be pretty hefty work to find
out occurence of the all over 800000 unique words from the text file that
is over 300 MB big!
unique_word_stats = {}
for item in greek_corpora:

for word, cnt in item['uwords'].items():
if word not in unique_word_stats:

unique_word_stats[word] = 0
unique_word_stats[word] += cnt

init dataframe
df = DataFrame([[k, v] for k, v in unique_word_stats.items()])
add column for the occurrence percentage of the word
lwords3 variable is the length of the all words list
df[2] = df[1].apply(lambda x: round(x*100/lwords3, 2))
add column for the length of the individual word
df[3] = df[0].apply(lambda x: len(x))
add isopsephical value column
df[4] = df[0].apply(lambda x: g.value(x))
add syllabified word column
df[5] = df[0].apply(lambda x: syllabify(x))
add length of the syllables in word column
df[6] = df[5].apply(lambda x: len(x))
count vowels in the word as a column
df[7] = df[0].apply(lambda x: sum(list(x.count(c) for c in vowels)))
count consonants in the word as a column
df[8] = df[0].apply(lambda x: len(x)-sum(list(x.count(c) for c in vowels)))

Store database

This is the single most important part of the chapter. I’m saving all simplified unique words as a CSV file that can be
used as a database for the riddle solver. After this you may proceed to the riddle solver Jupyter notebook document in
interactive mode, if you prefer.

from functions import csv_file_name
save dataframe to CSV file
df.to_csv(csv_file_name, header=False, index=False, encoding='utf-8')

Noteworth is that stored words are not stems or any base forms of the words but contain words in all possible inflected
forms. Due to nature of machine processed texts, one should also be warned about corrupted words and other noise
to occur in results. Programming tools are good for extracting interesting content and filtering data that would be
impossible for a human to do because of its enormous size. But results still need verification and interpretation. Also,
procedures can be fine tuned and developed in many ways.

Most repeated words

For a confirmation of the succesful task, I will show the total number of the unique words, and five of the most repeated
words in the database:

import display html helper function
from functions import display_html
sort and limit words, select columns by index 1, 2, and 3
words = df.sort_values(1, ascending=False).head(n=5).iloc[:,0:3]

(continues on next page)

12 Chapter 1. Processing Greek corpora for the riddle solver

https://git.io/vASrY

GRCRiddles Documentation, Release 1a

(continued from previous page)

label columns
words.columns = ['Word', 'Count', 'Percent']
output total number of the words from df object
print("Total records: %s" % len(df))
index=False to hide index column and output table by using to_html method
display_html(words.to_html(index=False), raw=True)

Total records: 833817

Word Count Percent
KAI 1781528 5.38
∆E 778589 2.35
TO 670952 2.03
TΩN 487015 1.47
H 483372 1.46

KAI, the word denoting and-conjuction20, is well known as the most repeated word in the Ancient Greek. Above
statistics says that KAI word takes almost 5.4% of the all words.

This can be explained easily because KAI serves for many fundamental functions in text, such as an indicator of a new
chapter or a paragraph, list copulative of two or more items, etc., basicly in a place, where we would use punctuation
nowadays. From the other words, H stands for a paraphrase and ∆E for a disconjunction. All these three words
characterises Ancient Greek as fundamentally based on logical constructors, one could argue. Maybe even early type
of list processing structures have been developed in a form of natural language. It would be an interesting excurse to
compare the propositional logic and the list processing features of the Ancient Greek rhetorics to the modern LISP
language or similar programming paradigm, but that is definitely beyond the scope of the investigation of this study.

Naturally, articles and particles (TO, TΩN) belong to the most repeated words as well. One could use the knowledge
of the certain word rate as one of the indicators of the text genre, or even quess the author of the text.

Longest words

For a curiosity, let’s also see the longest words in the database:

from functions import HTML
load result to the temporary variable for later usage
sort by length, limit to 20 items
l = df.sort_values(3, ascending=False).head(n=20)
take column index 0, 1, and 3. this is the second way of selecting
certain columns. see iloc method in the previous example
l = l[[0, 1, 3]]
label columns
l.columns = ['Word', 'Count', 'Length']
output table without the index column
HTML(l.to_html(index=False))

A bit later I’m searching exact place of these words from the corpora, but lets first find out, what words have the
biggest isopsephical value.

20 https://github.com/cltk/cltk

1.4. Optional live chart 13

http://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.04.0057:entry=kai/1
https://github.com/cltk/cltk

GRCRiddles Documentation, Release 1a

Biggest isopsephical value

So, which words have the biggest isopsephical value in the database? We can find it out by sorting words database by
the fourth column, that is the isopsephical value of the word.

sort by the isopsephy column and get the first 20 items
m = df.sort_values(4, ascending=False).head(n=20)
select columns by indices
m = m[[0, 1, 4]]
relabel selected columns
m.columns = ['Word', 'Count', 'Isopsephy']
remove the index column and output table
HTML(m.to_html(index=False))

These are very rare words, as was the case with the longest words too, but as it can be seen, the longest and the biggest
isopsephical words are just partly overlapping. Isopsephical value of the word is not depending of the length of the
word, but it is depending on the fact, how many times the latter part of the letters in the alphabet occus in the word.
In ΛEONTATΥΦΛΩΣΩNΣKΩΛΩΨ∆ETOΥ letters T, Φ, Ω, and Σ are repeated several times so that the sum of the
alphabetic numerals in the word, i.e. the isopsephical value, is 6865. The value gap between the first and the second
word is rather big. Results like these are interesting because they may tell deliberate construction of the words, which
I want to detect from the vast sample of coincidental hits.

Before going to the last useful procedure of spotting the location of the words, lets see a special statictic about the
frequency of the words.

Word frequency

So, I already know that there are certain words repeating very often, for different reasons. But then there are words
repeating once or few times only. Thus, it is relevant to ask, how many percent of the whole word base, the least
repeated words actually take? For the task I’m using groupby and count methods of the Dataframe object in Pandas.

length of the words database. taken to a variable to prevent unnecessary
repeatition in the next for loop
le = len(df)
group words by occurrence and count grouped items, list the first 10 items
for x, y in df.groupby([1, 2]).count()[:10].T.items():

print("words repeating %s time(s): " % x[0], round(100*y[0]/le, 2), "%")

Output:

words repeating 1 time(s): 44.95 %
words repeating 2 time(s): 15.86 %
words repeating 3 time(s): 7.48 %
words repeating 4 time(s): 4.84 %
words repeating 5 time(s): 3.32 %
words repeating 6 time(s): 2.5 %
words repeating 7 time(s): 1.92 %
words repeating 8 time(s): 1.59 %
words repeating 9 time(s): 1.28 %
words repeating 10 time(s): 1.11 %

Almost 45% of the wodrds in database occurs only once in a corpora. That looks pretty high number which reason I
have yet to resolved. Words that repeat 1-4 times fills roughly 70% of the whole corpora.

14 Chapter 1. Processing Greek corpora for the riddle solver

GRCRiddles Documentation, Release 1a

Detect source texts

Stats are nice, but it wouldn’t be so useful, if there was no routine to find out words from corpora, where they actually
occur.

The last part of the chapter one is to specify the procedure to find out the exact places of the given words in the corpora.
This is going to be useful on the next chapters too. I have provided a search_words_from_corpora function to simplify
this task. You may find the code from functions.py and alter it for your use.

1.5 Longest words

from functions import search_words_from_corpora
I'm collecting the plain text words from the already instantiated l variable
words = list(y[0] for x, y in l.T.items())
search_words_from_corpora(words, [perseus_dir, first1k_dir])

Output:

+ Aristophanes, Lysistrata (tlg0019.tlg007.perseus-grc2.xml) =>

----- ΣΠEPMAΓOPAIOΛEKIΘOΛAXANOΠΩΛIΔEΣ (1) -----
ὦ 𝜉ύ𝜇𝜇𝛼𝜒o𝜄 𝛾𝜐𝜈𝛼ῖ𝜅𝜖ς ἐ𝜅𝜃𝜖ῖ𝜏 ἔ𝜈𝛿o𝜃𝜖𝜈 ὦ 𝜎𝜋𝜖𝜌𝜇𝛼𝛾o𝜌𝛼𝜄o𝜆𝜖𝜅𝜄𝜃o𝜆𝛼𝜒𝛼𝜈o𝜋ώ𝜆𝜄𝛿𝜖ς ὦ
→˓𝜎𝜅o𝜌o𝛿o𝜋𝛼𝜈𝛿o𝜅𝜖𝜐𝜏𝜌𝜄𝛼𝜌𝜏o𝜋ώ𝜆𝜄𝛿𝜖ς

+ Aristophanes, Wasps (tlg0019.tlg004.perseus-grc1.xml) =>

----- OPΘPOΦOITOΣϒKOΦANTOΔIKOTAΛAIΠΩPΩN (1) -----
ς ἀ𝜅oύ𝜖𝜄𝜈 ἡ𝛿ἔ 𝜖ἰ 𝜅𝛼ὶ 𝜈ῦ𝜈 ἐ𝛾ὼ 𝜏ὸ𝜈 𝜋𝛼𝜏έ𝜌 ὅ𝜏𝜄 𝛽oύ𝜆o𝜇𝛼𝜄 𝜏oύ𝜏𝜔𝜈 ἀ𝜋𝛼𝜆𝜆𝛼𝜒𝜃έ𝜈𝜏𝛼 𝜏ῶ𝜈
→˓ὀ𝜌𝜃𝜌o𝜑o𝜄𝜏o𝜎𝜐𝜅o𝜑𝛼𝜈𝜏o𝛿𝜄𝜅o𝜏𝛼𝜆𝛼𝜄𝜋ώ𝜌𝜔𝜈 𝜏𝜌ό𝜋𝜔𝜈 𝜁ῆ𝜈 𝛽ίo𝜈 𝛾𝜖𝜈𝜈𝛼ῖo𝜈 ὥ𝜎𝜋𝜖𝜌 Mό𝜌𝜐𝜒oς 𝛼ἰ𝜏 ί𝛼𝜈 ἔ𝜒𝜔 𝜏𝛼ῦ𝜏𝛼
→˓𝛿𝜌ᾶ𝜈 𝜉𝜐𝜈𝜔𝜇ό𝜏𝜂ς ὢ𝜈 𝜅𝛼ὶ 𝜑𝜌o𝜈ῶ𝜈

+ Athenaeus, Deipnosophistae (tlg0008.tlg001.perseus-grc3.xml) =>

----- ΠϒPBPOMOΛEϒKEPEBINΘOAKANΘOϒMIKTPITϒAΔϒ (1) -----
𝜏𝜄ς ἃ Z𝛼𝜈ὸς 𝜅𝛼𝜆έo𝜈𝜏𝜄 𝜏𝜌ώ𝛾𝜇𝛼𝜏 ἔ𝜋𝜖𝜄𝜏 ἐ𝜋έ𝜈𝜖𝜄𝜇𝜖𝜈 ἐ𝜈𝜅𝛼𝜏𝛼𝜅𝜈𝛼𝜅o𝜇𝜄𝛾ὲς 𝜋𝜖𝜑𝜌𝜐𝛾𝜇έ𝜈o𝜈
→˓𝜋𝜐𝜌𝛽𝜌o𝜇o𝜆𝜖𝜐𝜅𝜖𝜌𝜖𝛽𝜄𝜈𝜃o𝛼𝜅𝛼𝜈𝜃o𝜐𝜇𝜄𝜅𝜏𝜌𝜄𝜏𝜐𝛼𝛿𝜐 𝛽𝜌ῶ𝜇𝛼 𝜏o𝜋𝛼𝜈𝜏𝛼𝜈𝛼𝜇𝜄𝜅𝜏o𝜈 ἀ𝜇𝜋𝜐𝜅𝜄𝜅𝜂𝜌o𝜄𝛿𝜂𝜎𝜏 ί𝜒𝛼ς
→˓𝜋𝛼𝜌𝜖𝛾ί𝜈𝜖𝜏o 𝜏oύ𝜏o𝜄ς

+ Athenaeus, TheDeipnosophists (tlg0008.tlg001.perseus-grc4.xml) =>

----- ΠϒPOBPOMOΛEϒKEPEBINΘOAKANΘIΔOMIKPITPIAΔϒ (1) -----
ἐ𝜋𝜖ί 𝛾 ἐ𝜋έ𝜈𝜖𝜄𝜇𝜖𝜈 ἐ𝛾𝜅𝛼𝜏𝛼𝜅𝜈𝛼𝜅o𝜇𝜄𝛾ὲς 𝜋𝜖𝜑𝜌𝜐𝛾𝜇έ𝜈o𝜈 𝜋𝜐𝜌o𝛽𝜌o𝜇o𝜆𝜖𝜐𝜅𝜖𝜌𝜖𝛽𝜄𝜈𝜃o𝛼𝜅𝛼𝜈𝜃𝜄𝛿o𝜇𝜄𝜅𝜌𝜄𝜏𝜌𝜄𝛼𝛿𝜐
→˓𝛽𝜌𝜔𝜇𝛼𝜏o𝜋𝛼𝜈𝜏𝛼𝜈ά𝜇𝜄𝜅𝜏o𝜈 ἄ𝜇𝜋𝜐𝜅𝜄 𝜅𝛼𝜌𝜄𝛿ίᾳ 𝜎𝜏𝜄𝜒ὰς 𝜋𝛼𝜌𝜖𝛾ί𝜈𝜖𝜏o 𝜏oύ𝜏o𝜄ς 𝜎𝜏𝛼𝜄𝜏𝜄𝜈o𝜅o𝛾𝜒o𝜇𝛼𝛾ὴς

+ Plato, Laws (tlg0059.tlg034.perseus-grc2.xml) =>

----- TETTAPAKONTAKAIΠENTAKIΣXIΛIOΣTON (1) -----
𝜋𝜖𝜑𝜖𝜐𝛾ό𝜏oς ἀ𝜇𝜑o𝜏έ𝜌𝜔𝜃𝜖𝜈 𝜋𝜌ός 𝜏𝜖 ἀ𝜈𝛿𝜌ῶ𝜈 𝜅𝛼ὶ 𝜋𝜌ὸς 𝛾𝜐𝜈𝛼𝜄𝜅ῶ𝜈 𝜅𝜆𝜂𝜌o𝜈ό𝜇o𝜈 𝜖ἰς 𝜏ὸ𝜈 oἶ𝜅o𝜈 𝜏oῦ𝜏o𝜈 𝜏ῇ
→˓𝜋ό𝜆𝜖𝜄 𝜏𝜖𝜏𝜏𝛼𝜌𝛼𝜅o𝜈𝜏𝛼𝜅𝛼𝜄𝜋𝜖𝜈𝜏𝛼𝜅𝜄𝜎𝜒𝜄𝜆𝜄o𝜎𝜏ὸ𝜈 𝜅𝛼𝜏𝛼𝜎𝜏ῆ𝜎𝛼𝜄 𝛽o𝜐𝜆𝜖𝜐o𝜇έ𝜈o𝜐ς 𝜇𝜖𝜏ὰ 𝜈o𝜇o𝜑𝜐𝜆ά𝜅𝜔𝜈 𝜅𝛼ὶ
→˓ἱ𝜖𝜌έ𝜔𝜈 𝛿𝜄𝛼𝜈o𝜂𝜃έ𝜈𝜏𝛼ς 𝜏𝜌ό𝜋ῳ 𝜅𝛼ὶ 𝜆ό𝛾ῳ 𝜏o𝜄ῷ𝛿𝜖 ὡς oὐ𝛿𝜖ὶς

+ Plato, Republic (tlg0059.tlg030.perseus-grc2.xml) =>

----- ENNEAKAIEIKOΣIKAIEΠTAKOΣIOΠΛAΣIAKIΣ (1) -----
𝜏oῦ 𝜏𝜐𝜌ά𝜈𝜈o𝜐 ἀ𝜑𝜖𝜎𝜏𝜂𝜅ό𝜏𝛼 𝜆έ𝛾ῃ ὅ𝜎o𝜈 ἀ𝜑έ𝜎𝜏𝜂𝜅𝜖𝜈 ἐ𝜈𝜈𝜖𝛼𝜅𝛼𝜄𝜖𝜄𝜅o𝜎𝜄𝜅𝛼𝜄𝜖𝜋𝜏𝛼𝜅o𝜎𝜄o𝜋𝜆𝛼𝜎𝜄ά𝜅𝜄ς ἥ𝛿𝜄o𝜈 𝛼ὐ𝜏ὸ𝜈
→˓𝜁ῶ𝜈𝜏𝛼 𝜖ὑ𝜌ή𝜎𝜖𝜄 𝜏𝜖𝜆𝜖𝜄𝜔𝜃𝜖ί𝜎ῃ 𝜏ῇ 𝜋o𝜆𝜆𝛼𝜋𝜆𝛼𝜎𝜄ώ𝜎𝜖𝜄 𝜏ὸ𝜈 𝛿ὲ 𝜏ύ𝜌𝛼𝜈𝜈o𝜈 ἀ𝜈𝜄𝛼𝜌ό𝜏𝜖𝜌o𝜈 𝜏ῇ 𝛼ὐ𝜏ῇ 𝜏𝛼ύ𝜏ῃ

(continues on next page)

1.5. Longest words 15

GRCRiddles Documentation, Release 1a

(continued from previous page)

+ AlexanderOfAphrodisias, InAristotelisMetaphysicaCommentaria (tlg0732.tlg004.opp-
→˓grc1.xml) =>

----- OϒNIKANΩΣΠEPIAϒTΩNHMINENTOIΣΠEPI (1) -----
o𝜄𝜂𝜎ά 𝛼𝜖𝜈o 𝜏 𝜄𝜎𝜏𝜖ύ𝜎o𝜇𝜖𝜈 𝜌 Φ 𝜏𝜖𝜃𝜖ώ𝜌𝜂𝜏𝛼𝜄 𝜇ὲ𝜈 oὐ𝜈ὶ𝜅𝛼𝜈ῶς𝜋𝜖𝜌ὶ𝛼ὐ𝜏ῶ𝜈ἡ𝜇ῖ𝜈ἐ𝜈𝜏oῖς𝜋𝜖𝜌ὶ 𝜑ύ𝜎𝜖𝜔ς ἰ𝜅𝛼ὶἱ𝜅𝛼𝜈ῶς
→˓𝜑𝜂𝜎ί 𝜋𝜖𝜌ὶ𝜏ῶ 𝜈 ἀ𝜌𝜒ῶ𝜈 𝜏ῶ𝜈 𝜑𝜐𝜎𝜄𝜅ῶ𝜈 ἐ𝜈 𝜏oῖς 𝜋𝜖𝜌ὶ 𝜑ύ𝜎𝜖𝜔ς

+ AlexanderOfAphrodisias, InAristotelisTopicorumLibrosOctoCommentaria (tlg0732.tlg006.
→˓opp-grc1.xml) =>

----- OTITOϒMHΔIAΠPOTEPΩNOPIZEΣΘAITPEIΣ (1) -----
Toῦ 𝛿ὲ 𝜇ὴ ἐ𝜅𝜋𝜌o𝜏έ𝜌𝜔𝜈 𝜏𝜌𝜖ῖς 𝜖ἰ𝜎𝜄 𝜏𝜌ό𝜋o𝜄 ῞Ο𝜏𝜄𝜏oῦ𝜇ὴ𝛿𝜄ὰ𝜋𝜌o𝜏έ𝜌𝜔𝜈ὁ𝜌ί𝜁𝜖𝜎𝜃𝛼𝜄𝜏𝜌𝜖ῖς 𝜖ἰ𝜎𝜄 𝜏𝜌ό𝜋o𝜄 𝜋𝜌ῶ𝜏oς𝜇ὲ𝜈 𝜖ἰ
→˓𝛿𝜄ὰ 𝜏oῦ ἀ𝜈𝜏𝜄𝜅𝜖𝜄𝜇έ𝜈o𝜐 𝜏ὸ ἀ𝜈𝜏𝜄𝜅𝜖ί𝜇𝜖𝜈o𝜈 ὥ𝜌𝜄𝜎𝜏𝛼𝜄 ἅ𝜇 𝛾ὰ𝜌 𝜏ῇ 𝜑ύ𝜎𝜖𝜄 𝜏ὰ ἀ𝜈𝜏𝜄𝜅𝜖ί𝜇

+ ApolloniusDyscolus, DeAdverbiis (tlg0082.tlg002.1st1K-grc1.xml) =>

----- ΠAPEΓENOMENOMENOΣHNKAIETIEKTHΣΛEΣBOϒOϒΦAMEN (1) -----
𝜏ῆ Λέ𝛽o𝜐 𝜏𝜂 𝜖𝜅 𝜖𝜅 Λ𝜖𝛽o 𝜋𝛼𝜌𝜖𝛾𝜖𝜈ό𝜇𝜂𝜈 𝜅𝛼ὶ ἔ𝜏𝜄 oῦ 𝜑𝛼𝜇𝜖𝜈 𝜋𝛼𝜌𝜖𝛾𝜖𝜈o𝜇𝜖𝜈o𝜇𝜖𝜈o𝜂𝜈𝜅𝛼𝜄𝜖𝜏𝜄𝜖𝜅𝜏𝜂𝜆𝜖𝛽o𝜐o𝜐𝜑𝛼𝜇𝜖𝜈
→˓A 𝜖𝜅 𝜏𝜂 Λ𝜖𝛽o𝜐 ἔ𝜏𝜄 oὐ

+ ApolloniusDyscolus, DeConstructione (tlg0082.tlg004.1st1K-grc1.xml) =>

----- KAITONAPIΣTAPXONAΣMENΩΣTHNΓPAΦHNTOϒ (1) -----
ἠ𝜆o𝛾ῆ𝜃𝛼𝜄 𝜑𝛼 𝛿ὲ 𝜅𝛼ί𝜏ὸ𝜈 Ἀ𝜌ί𝜏𝛼𝜌𝜒o𝜈ἀ𝜇έ𝜈𝜔𝜏ὴ𝜈𝛾𝜌𝛼𝜑ὴ𝜈𝜏oῦ Δ𝜄𝜅𝛼𝜄ά𝜌𝜒o𝜐𝜋𝛼𝜌𝛼𝛿έ𝜉𝛼𝜃𝛼𝜄 ἐ𝜈𝛾ὰ𝜌ἁ𝜋ά𝛼𝜄 𝜈 𝜏ὸ 𝜖ὲῇ ἐ𝜈
→˓𝜋𝛼𝜏𝜌ί𝛿𝜄 𝛾𝛼ί ὑ𝜋o𝜆𝛼𝛽ό𝜈𝜏𝛼 𝜏ὸ ἑ𝛼𝜐𝜏ῆ 𝜈o𝜖ὶ𝜃𝛼𝜄 ἐ𝜅 𝜏o

----- APΣENIKΩNONOMATΩNΣTOIXEIAEΣTIΠENTE (1) -----
𝜏 𝜏ὸ ᾶ 𝜏𝜖𝜆𝜄𝜅ό𝜈 ἐ𝜏𝜄𝜈 𝜅𝜏𝜆 T𝜖𝜆𝜄𝜅ὰ ἀ𝜌𝜖𝜈𝜄𝜅ῶ𝜈ὸ𝜈o𝜇ά𝜏𝜔𝜈𝜏o𝜄𝜒𝜖ῖάἐ𝜏𝜄𝜋έ𝜈𝜏𝜖 𝜃𝜂𝜆𝜐𝜅ῶ𝜈𝛿ὲ ὸ𝜅𝜏ώ ᾶ𝜂 𝜔𝜈𝜉B 𝜓 oὐ𝛿𝜖𝜏έ
→˓𝜌𝜔𝜈 𝛿ὲ ἐ ῦ 𝜖𝜌𝛼ί𝛼𝜈

----- APIΣTAPXOΣKAIOIAΠOTHΣΣXOΛHΣΦAΣIN (1) -----
𝛼ὐ𝜏ῇ 𝜃𝜏ή 𝜖𝜄 B 𝜅𝛼𝜃ό𝜏 𝜅𝛼𝜃 ὁ Ἀ𝜌ί𝜏𝛼𝜌𝜒o𝜅𝛼ὶoίἀ𝜋ὸ𝜏ῆ𝜒o𝜆ῆ𝜑𝛼𝜄𝜈 oὶ oὐ 𝜐𝛾𝜅𝛼𝜏𝛼𝜃𝜖𝜏έo𝜈 𝜖 𝜑𝛼ί𝜈 oὐ𝜅 ὀ𝜌𝜃ῶ

+ Artemidorus, Onirocriticon (tlg0553.tlg001.1st1K-grc1.xml) =>

----- AϒTOMATOIΔEOIΘEOIAΠAΛΛAΣΣOMENOI (1) -----
ς 𝜇𝜖𝛾ά𝜆𝛼ς 𝜎𝜂𝜇𝛼ί𝜈𝜖𝜄 oἱ 𝛾ὰ𝜌 ἐ𝜈 𝜇𝜖𝛾ά𝜆𝛼𝜄ς 𝜎𝜐𝜇𝜑o𝜌𝛼ῖς 𝛾𝜖𝜈ό𝜇𝜖𝜈o𝜄 𝜅𝛼ὶ 𝜏ῆς 𝜋𝜌ὸς 𝜃𝜖oύς 𝜖ὐ𝜎𝜖𝛽𝜖ί𝛼ς
→˓ἀ𝜑ί𝜎𝜏𝛼𝜈𝜏𝛼𝜄 𝛼ὐ𝜏ό𝜇𝛼𝜏o𝜄𝛿έoἱ𝜃𝜖oὶἀ𝜋𝛼𝜆𝜆𝛼𝜎𝜎ό𝜇𝜖𝜈o𝜄 𝜅𝛼ὶ 𝜏ὰ ἀ𝛾ά𝜆𝜇𝜄𝛼𝜏𝛼 𝛼ὐ𝜏ῶ𝜈 𝜎𝜐𝜇𝜋ί𝜋𝜏o𝜈𝜏𝛼 𝜃ά𝜈𝛼𝜏o𝜈 𝜏ῷ
→˓ἰ𝛿ό𝜈𝜏𝜄 ἤ 𝜏𝜄𝜈𝜄 𝜏ῶ𝜈 𝛼ὐ𝜏oῦ 𝜋𝜌o𝛼𝛾o𝜌𝜖ύ𝜖𝜄 𝜃𝜖o

+ JoannesPhiloponus, InAristotetelisMeteorologicorumLibrumPrimumCommentarium (tlg4015.
→˓tlg005.opp-grc1.xml) =>

----- ΛΛHΣTHΣANΩΘENΘEPMOTHTOΣATMIΔOϒMENONΦEPETAI (1) -----
𝜈ῦ𝜈 𝜇𝜖𝜈oύ𝜎𝜂ς ἀ𝜇𝜖𝜏𝛼𝛽𝜆ή𝜏o𝜐 𝜏ὸ oὖ𝜈 𝜋𝜖𝜌ὶ 𝜏ὴ𝜈 𝛾ῆ𝜈 ὑ𝛾𝜌ό𝜈 𝜑𝜂𝜎ί𝜈 ὑ𝜋ὸ 𝜏ῶ𝜈 ἀ𝜅𝜏 ί𝜈𝜔𝜈 𝜅𝛼ὶ ὑ𝜋ὸ 𝜏ῆς ὰ
→˓𝜆𝜆𝜂ς𝜏ῆςἄ𝜈𝜔𝜃𝜖𝜈𝜃𝜖𝜌𝜇ό𝜏𝜂𝜏oςἀ𝜏𝜇𝜄𝛿oύ𝜇𝜖𝜈o𝜈𝜑έ𝜌𝜖𝜏𝛼𝜄 ἄ𝜈𝜔 𝜋ῶς 𝜇ὲ𝜈 ἡ ἐ𝜅 𝜏ῶ𝜈 ἀ𝜅𝜏 ί𝜈𝜔𝜈 𝛾ί𝜈𝜖𝜏𝛼𝜄 𝜃𝜖𝜌𝜇ό𝜏𝜂ς
→˓ἐ𝛿ί𝛿𝛼𝜉𝜖𝜈 ὅ𝜏𝜄 ὁ 𝜖 𝜈𝛼𝜋o 𝜆𝛼𝜇𝛽𝛼𝜈

----- ΔϒNATONΔETOAITIAIHΣΓENEΣEΩΣKAITHΣΦΘOPAΣ (1) -----
𝜆ὴ ἀ𝜈ά𝜆o𝛾ό𝜈 ἐ𝜎𝜏𝜄 𝛾𝜖𝜈έ𝜎𝜖𝜄 ἡ 𝛿ὲ 𝜏oὔ𝜇𝜋𝛼𝜆𝜄𝜈 𝜏ῶ𝜈 𝜅o𝜐𝜑o𝜏έ𝜌𝜔𝜈 𝜖ἰς 𝜏ὰ 𝛽𝛼𝜌ό𝜏𝜖𝜌𝛼𝜑𝜃o𝜌ᾷ
→˓𝛿𝜐𝜈𝛼𝜏ὸ𝜈𝛿ὲ𝜏ὸ𝛼ἰ𝜏 ί𝛼𝜄ῆς𝛾𝜖𝜈έ𝜎𝜖𝜔ς𝜅𝛼ὶ𝜏ῆς𝜑𝜃o𝜌ᾶς 𝛿𝜄ὰ 𝜏ὸ ἄ𝜌𝜃𝜌o𝜈 𝜇ὴ 𝜅𝛼𝜃o𝜆𝜄𝜅ῶς ἀ𝜅oύ𝜖𝜄𝜈 𝜋ά𝜎𝜂ς 𝛾𝜖𝜈έ𝜎𝜖𝜔ς 𝜅𝛼ὶ
→˓𝜑𝜃o𝜌ᾶς ἀ𝜆𝜆ὰ ὑ𝜖𝜏oῦ 𝜒𝜄ό𝜈

+ Libanius, Epistulae1-839 (tlg2200.tlg001.opp-grc1.xml) =>

----- EMOϒOIAΠEΦEϒΓAXEIPAΣΛϒΠHΣAΣMENOϒΔENAOϒΔEN (1) -----
(continues on next page)

16 Chapter 1. Processing Greek corpora for the riddle solver

GRCRiddles Documentation, Release 1a

(continued from previous page)

𝛿o𝜈 𝜅𝛼𝜏𝜂𝜑ῆ 𝜅𝛼ὶ 𝜎𝜐𝜈𝜖o𝜏𝛼𝜆𝜇ἐ𝜈o𝜈 𝜅𝛼ὶ 𝛿ά𝜅𝜌𝜐𝛼 𝜋𝜌ὸ 𝜏ῶ𝜈 𝜆ό𝛾𝜔𝜈ἀ𝜑𝜖ὶς ἐ𝛾ὼ 𝜇ό𝜆𝜄ς 𝜏ὰς 𝜏ῶ𝜈 𝜋𝛼𝜃ό𝜈𝜏𝜔𝜈
→˓ἐ𝜇oῦό𝜄𝛼𝜋έ𝜑𝜖𝜐𝛾𝛼𝜒𝜖ῖ𝜌𝛼ς𝜆𝜐𝜋ή𝜎𝛼ς𝜇ὲ𝜈oὐ𝛿έ𝜈𝛼oὐ𝛿έ𝜈 ἡ𝜈ί𝜅𝛼 ἐ𝜉ῆ𝜈 𝜇𝜄𝜅𝜌o 𝛿ὲ 𝛿𝜄𝛼𝜎𝜋𝛼𝜎𝜃𝜖ίς 𝜅𝛼ὶ 𝜋𝜌o𝜎𝜖𝜏 ί𝜃𝜖𝜄 𝜑𝜐𝛾ὴ𝜈
→˓ἀ𝛿𝜖𝜆𝜑oῦ 𝜅𝛼ὶ 𝛾έ𝜈o𝜐ς ὅ𝜆o𝜐 𝜋𝜆ά𝜈𝜂𝜈 𝜅𝛼ὶ 𝛾ῆ𝜈 ἄ𝜎𝜋

----- KAIIKEΛHXPϒΣHAΦPOΔITHKAIOIΣEKOΣMHΣE (1) -----
𝜖 𝛾o𝜈𝜖ῦ𝜎𝜄𝜈 𝛼ὐ𝜏ῆς 𝜅𝛼ὶ 𝜎oὶ 𝜎𝜐𝜈𝜂 𝜎𝜃𝜂𝜈 𝜏oῖς 𝜇έ𝜈 oἕ𝛼𝜈 ἔ𝜑𝜐𝜎𝛼𝜈 𝜎oὶ 𝛿έ oἴ𝛼𝜈 ἔ𝜒𝜖𝜄ς Δή𝜆ῳ 𝛿ή 𝜋o𝜏𝜖 𝜏oῖo𝜈
→˓𝜅𝛼ὶἰ𝜅έ𝜆𝜂𝜒𝜌𝜐𝜎ῇἈ𝜑𝜌o𝛿ί𝜏ῃ𝜅𝛼ὶoἷςἐ𝜅ό𝜎𝜇𝜂𝜎𝜖 𝛾𝜐𝜈𝛼ῖ𝜅𝛼ς ῞Ο𝜇𝜂𝜌oς 𝜋ά𝜈𝜏𝛼 ἂ𝜈 𝛿έ𝜉𝛼𝜄𝜏o ἀ𝜈𝛼𝜇𝜄𝜇𝜈

----- KANTΩNEΠITAIΣΔϒNAMEΣIΠAPABAINH (1) -----
ὅ𝜏𝜄 ὦ 𝛽𝛼𝜎𝜄𝜆𝜖ῦ 𝜏ῶ𝜈 ἀ𝛿𝜄𝜅oύ𝜈𝜏𝜔𝜈 oὐ𝛿έ𝜈𝛼 oὺόὲ𝜈 ἀ𝜉ί𝜔𝜇𝛼 ῥύ𝜎𝜖𝜏𝛼𝜄 ἀ𝜆𝜆ὰ 𝜅ἂ𝜈 𝜏ῶ𝜈 𝛿𝜄𝜅𝛼𝜁ό𝜈𝜏𝜔𝜈 𝜏𝜄ς
→˓𝜅ἂ𝜈𝜏ῶ𝜈ἐ𝜋ὶ𝜏𝛼ἱς𝛿𝜐𝜈ά𝜇𝜖𝜎𝜄𝜋𝛼𝜌𝛼𝛽𝛼ί𝜈𝜂 𝜏o𝜐 ς𝜈o 𝜇o𝜐ς oὐ𝜅ἀ𝜈έ𝜁o𝜇𝛼𝜄ἀ𝜇𝜖𝜆𝜖ῖ𝜎𝜃𝛼𝜄 𝜏𝛼

+ Libanius, OratioI (tlg2200.tlg00401.opp-grc1.xml) =>

----- HΔIKHMENONΔEAΠEPPIMMENONΠEPIOPAΣ (1) -----
𝜏έ 𝜏ῶ𝜈 𝜇ὲ𝜈 ἐ𝜉έ𝛽𝛼𝜆𝜖ς 𝜏ὰ 𝛿ὲoὐI𝛿ί𝛿𝜔ς ἀ𝜆𝜆 ὁ 𝜇ὲ𝜈 ἠ𝜋𝛼𝜏𝜂𝜅ὼς 𝜏𝜌𝜐𝜑ᾷ 𝜏ὸ𝜈
→˓ἠ𝛿𝜄𝜅𝜂𝜇έ𝜈o𝜈𝛿ὲἀ𝜋𝜖𝜌𝜌𝜄𝜇𝜇έ𝜈o𝜈𝜋𝜖𝜌𝜄o𝜌ᾷς 𝜏o𝜄 𝛼𝜐 𝜏𝛼 𝜇𝜖 𝜈 𝜋𝜌o ς 𝜏o 𝜖 𝛿oς 𝜋o 𝜌

+ Suda, SuidaeLexicon (tlg9010.tlg001.1st1K-grc1.xml) =>

----- OPΘOΦOITOΣϒKOΦANTOΔIKOTAΛAIΠΩPΩN (2) -----
᾿Ο𝜌𝜃o𝜑o𝜄𝜏o𝜐𝜅o𝜑𝛼𝜈𝜏o𝛿𝜄𝜅o𝜏𝛼𝜆𝛼𝜄𝜋ώ𝜌𝜔𝜈 Ἀ𝜌𝜄𝜏o𝜑ά𝜈𝜂 ὁ𝜏𝜄ὴ 𝛽oύ𝜆o𝜇𝛼𝜄 𝜏oύ𝜏𝜔𝜈 ἀ𝜋𝛼𝜆𝜆𝛼𝜒𝜃έ𝜈𝜏𝛼 𝜏ῶ𝜈
→˓ὀ𝜌𝜃o𝜑o𝜄𝜏o𝜐𝜅o𝜑𝛼
o𝛿𝜄𝜅o𝜏𝛼𝜆𝛼𝜄𝜋ώ𝜌𝜔𝜈 Ἀ𝜌𝜄𝜏o𝜑ά𝜈𝜂 ὁ𝜏𝜄ὴ 𝛽oύ𝜆o𝜇𝛼𝜄 𝜏oύ𝜏𝜔𝜈 ἀ𝜋𝛼𝜆𝜆𝛼𝜒𝜃έ𝜈𝜏𝛼 𝜏ῶ𝜈
→˓ὀ𝜌𝜃o𝜑o𝜄𝜏o𝜐𝜅o𝜑𝛼𝜈𝜏o𝛿𝜄𝜅o𝜏𝛼𝜆𝛼𝜄𝜋ώ𝜌𝜔𝜈 𝜏𝜌ό𝜋𝜔𝜈 𝜁ῆ𝜈 𝛽ίo𝜈 𝛾𝜖𝜈𝜈𝛼ῖo𝜈 ὥ𝜋𝜖𝜌 Mό𝜌𝜐𝜒o 𝛼ἰ𝜏 ί𝛼𝜈 ἔ𝜒𝜔𝜈 𝜏𝛼ῦ𝜏𝛼
→˓𝛿𝜌ᾶ𝜈

----- ΣΠEPMAΓOPAIOΛEKIΘOΛAXANOΠΩΛIΔEΣ (1) -----
῏Ω 𝜋𝜖𝜌𝜇𝛼𝛾o𝜌𝛼𝜄o𝜆𝜖𝜅𝜄𝜃o𝜆𝛼𝜒𝛼𝜈o𝜋ώ𝜆𝜄𝛿𝜖 ὦ 𝜅o𝜌o𝛿o𝜋𝛼𝜈𝛿o𝜅𝜖𝜐𝜏𝜌𝜄𝛼𝜌𝜏o𝜋ώ𝜆𝜄𝛿𝜖 oὐ𝜅 ἐ𝜉έ𝜆𝜅𝜖𝜏 oὐ 𝜋𝛼𝜄ή𝜖𝜏 oὐ𝜅

For a small explanation: Aristophanes was a Greek comic playwright and a word expert of a kind. Mathematical texts
are also filled with long compoud words for fractions for example.

1.6 Highest isopsephy

I'm collecting the plain text words from the already instantiated m variable
words = list(y[0] for x, y in m.T.items())
search_words_from_corpora(words, [perseus_dir, first1k_dir])

Output:

+ Appian, TheCivilWars (tlg0551.tlg017.perseus-grc2.xml) =>

----- ΣϒNϒΠOXΩPOϒNTΩN (1) -----
𝜅𝛼ὶ ἡ 𝜎ύ𝜈𝜏𝛼𝜉𝜄ς ἤ𝛿𝜂 𝜋𝛼𝜌𝜖𝜆έ𝜆𝜐𝜏o ὀ𝜉ύ𝜏𝜖𝜌o𝜈 ὑ𝜋𝜖𝜒ώ𝜌o𝜐𝜈 𝜅𝛼ί 𝜏ῶ𝜈 ἐ𝜋𝜄𝜏𝜖𝜏𝛼𝛾𝜇έ𝜈𝜔𝜈 𝜎𝜑ί𝜎𝜄
𝛿𝜖𝜐𝜏έ𝜌𝜔𝜈 𝜅𝛼ὶ 𝜏𝜌ί𝜏𝜔𝜈 𝜎𝜐𝜈𝜐𝜋o𝜒𝜔𝜌oύ𝜈𝜏𝜔𝜈 𝜇𝜄𝜎𝛾ό𝜇𝜖𝜈o𝜄 𝜋ά𝜈𝜏𝜖ς ἀ𝜆𝜆ή𝜆o𝜄ς ἀ𝜅ό𝜎𝜇𝜔ς
ἐ𝜃𝜆ί𝛽o𝜈𝜏o ὑ𝜋ὸ 𝜎𝜑ῶ𝜈 𝜅𝛼ὶ 𝜏ῶ𝜈 𝜋o𝜆𝜖𝜇ί𝜔𝜈 ἀ𝜋𝛼ύ𝜎𝜏𝜔ς 𝛼ὐ𝜏oῖς ἐ𝜋𝜄𝜅𝜖𝜄𝜇έ𝜈𝜔𝜈

+ Aristophanes, Wasps (tlg0019.tlg004.perseus-grc1.xml) =>

----- OPΘPOΦOITOΣϒKOΦANTOΔIKOTAΛAIΠΩPΩN (1) -----
ς ἀ𝜅oύ𝜖𝜄𝜈 ἡ𝛿ἔ 𝜖ἰ 𝜅𝛼ὶ 𝜈ῦ𝜈 ἐ𝛾ὼ 𝜏ὸ𝜈 𝜋𝛼𝜏έ𝜌 ὅ𝜏𝜄 𝛽oύ𝜆o𝜇𝛼𝜄 𝜏oύ𝜏𝜔𝜈 ἀ𝜋𝛼𝜆𝜆𝛼𝜒𝜃έ𝜈𝜏𝛼 𝜏ῶ𝜈
ὀ𝜌𝜃𝜌o𝜑o𝜄𝜏o𝜎𝜐𝜅o𝜑𝛼𝜈𝜏o𝛿𝜄𝜅o𝜏𝛼𝜆𝛼𝜄𝜋ώ𝜌𝜔𝜈 𝜏𝜌ό𝜋𝜔𝜈 𝜁ῆ𝜈 𝛽ίo𝜈 𝛾𝜖𝜈𝜈𝛼ῖo𝜈 ὥ𝜎𝜋𝜖𝜌 Mό𝜌𝜐𝜒oς
𝛼ἰ𝜏 ί𝛼𝜈 ἔ𝜒𝜔 𝜏𝛼ῦ𝜏𝛼 𝛿𝜌ᾶ𝜈 𝜉𝜐𝜈𝜔𝜇ό𝜏𝜂ς ὢ𝜈 𝜅𝛼ὶ 𝜑𝜌o𝜈ῶ𝜈

(continues on next page)

1.6. Highest isopsephy 17

https://en.wikipedia.org/wiki/Aristophanes

GRCRiddles Documentation, Release 1a

(continued from previous page)

+ Athenaeus, Deipnosophistae (tlg0008.tlg001.perseus-grc3.xml) =>

----- BPϒΣΩNOΘPAΣϒMAXEIOΛHΨIKEPMATΩN (1) -----
𝜏ῶ𝜈 ἐ𝜉 Ἀ𝜅𝛼𝛿𝜂𝜇ί𝛼ς 𝜏𝜄ς ὑ𝜋ὸ Π𝜆ά𝜏𝜔𝜈𝛼 𝜅𝛼ὶ B𝜌𝜐𝜎𝜔𝜈o𝜃𝜌𝛼𝜎𝜐𝜇𝛼𝜒𝜖𝜄o𝜆𝜂𝜓𝜄𝜅𝜖𝜌𝜇ά𝜏𝜔𝜈 𝜋𝜆𝜂𝛾𝜖ὶς
ἀ𝜈ά𝛾𝜅ῃ 𝜆𝜂𝜓o𝜆𝜄𝛾o𝜇ί𝜎𝜃ῳ 𝜏έ𝜒𝜈ῃ 𝜎

+ Athenaeus, TheDeipnosophists (tlg0008.tlg001.perseus-grc4.xml) =>

----- BPϒΣΩNOΘPAΣϒMAXEIOΛHΨIKEPMATΩN (1) -----
B𝜌𝜐𝜎𝜔𝜈o𝜃𝜌𝛼𝜎𝜐𝜇𝛼𝜒𝜖𝜄o𝜆𝜂𝜓𝜄𝜅𝜖𝜌𝜇ά𝜏𝜔𝜈 𝜋𝜆𝜂𝛾𝜖ὶς ἀ𝜈ά𝛾𝜅ῃ 𝜆𝜂𝜓𝜄𝜆o𝛾o𝜇ί𝜎𝜃ῳ 𝜏έ𝜒𝜈ῃ

+ AlexanderOfAphrodisias, InAristotelisMetaphysicaCommentaria (tlg0732.tlg004.opp-
→˓grc1.xml) =>

----- OϒNIKANΩΣΠEPIAϒTΩNHMINENTOIΣΠEPI (1) -----
o𝜄𝜂𝜎ά 𝛼𝜖𝜈o 𝜏 𝜄𝜎𝜏𝜖ύ𝜎o𝜇𝜖𝜈 𝜌 Φ 𝜏𝜖𝜃𝜖ώ𝜌𝜂𝜏𝛼𝜄 𝜇ὲ𝜈 oὐ𝜈ὶ𝜅𝛼𝜈ῶς𝜋𝜖𝜌ὶ𝛼ὐ𝜏ῶ𝜈ἡ𝜇ῖ𝜈ἐ𝜈𝜏oῖς𝜋𝜖𝜌ὶ
𝜑ύ𝜎𝜖𝜔ς ἰ𝜅𝛼ὶἱ𝜅𝛼𝜈ῶς 𝜑𝜂𝜎ί 𝜋𝜖𝜌ὶ𝜏ῶ 𝜈 ἀ𝜌𝜒ῶ𝜈 𝜏ῶ𝜈 𝜑𝜐𝜎𝜄𝜅ῶ𝜈 ἐ𝜈 𝜏oῖς 𝜋𝜖𝜌ὶ 𝜑ύ𝜎𝜖𝜔ς

+ ApolloniusDyscolus, DeConstructione (tlg0082.tlg004.1st1K-grc1.xml) =>

----- KAITONAPIΣTAPXONAΣMENΩΣTHNΓPAΦHNTOϒ (1) -----
ἠ𝜆o𝛾ῆ𝜃𝛼𝜄 𝜑𝛼 𝛿ὲ 𝜅𝛼ί𝜏ὸ𝜈 Ἀ𝜌ί𝜏𝛼𝜌𝜒o𝜈ἀ𝜇έ𝜈𝜔𝜏ὴ𝜈𝛾𝜌𝛼𝜑ὴ𝜈𝜏oῦ Δ𝜄𝜅𝛼𝜄ά𝜌𝜒o𝜐𝜋𝛼𝜌𝛼𝛿έ𝜉𝛼𝜃𝛼𝜄
ἐ𝜈𝛾ὰ𝜌ἁ𝜋ά𝛼𝜄 𝜈 𝜏ὸ 𝜖ὲῇ ἐ𝜈 𝜋𝛼𝜏𝜌ί𝛿𝜄 𝛾𝛼ί ὑ𝜋o𝜆𝛼𝛽ό𝜈𝜏𝛼 𝜏ὸ ἑ𝛼𝜐𝜏ῆ 𝜈o𝜖ὶ𝜃𝛼𝜄 ἐ𝜅 𝜏o

----- APΣENIKΩNONOMATΩNΣTOIXEIAEΣTIΠENTE (1) -----
𝜏 𝜏ὸ ᾶ 𝜏𝜖𝜆𝜄𝜅ό𝜈 ἐ𝜏𝜄𝜈 𝜅𝜏𝜆 T𝜖𝜆𝜄𝜅ὰ ἀ𝜌𝜖𝜈𝜄𝜅ῶ𝜈ὸ𝜈o𝜇ά𝜏𝜔𝜈𝜏o𝜄𝜒𝜖ῖάἐ𝜏𝜄𝜋έ𝜈𝜏𝜖
𝜃𝜂𝜆𝜐𝜅ῶ𝜈𝛿ὲ ὸ𝜅𝜏ώ ᾶ𝜂 𝜔𝜈𝜉B 𝜓 oὐ𝛿𝜖𝜏έ 𝜌𝜔𝜈 𝛿ὲ ἐ ῦ 𝜖𝜌𝛼ί𝛼𝜈

----- APIΣTAPXOΣKAIOIAΠOTHΣΣXOΛHΣΦAΣIN (1) -----
𝛼ὐ𝜏ῇ 𝜃𝜏ή 𝜖𝜄 B 𝜅𝛼𝜃ό𝜏 𝜅𝛼𝜃 ὁ Ἀ𝜌ί𝜏𝛼𝜌𝜒o𝜅𝛼ὶoίἀ𝜋ὸ𝜏ῆ𝜒o𝜆ῆ𝜑𝛼𝜄𝜈 oὶ oὐ
𝜐𝛾𝜅𝛼𝜏𝛼𝜃𝜖𝜏έo𝜈 𝜖 𝜑𝛼ί𝜈 oὐ𝜅 ὀ𝜌𝜃ῶ

+ ApolloniusDyscolus, DePronominibus (tlg0082.tlg001.1st1K-grc1.xml) =>

----- ΩPIΣMENΩNΠPOΣΩΠΩN (1) -----
𝜄 𝜅𝛼ὶ 𝜏ὰ ἀ𝜈𝛼𝜑𝜖𝜌ύ𝜇𝜖𝜈𝛼 𝛾𝜈ῶ𝜄𝜈 ἐ𝜋𝛼𝛾𝛾έ𝜆𝜆𝜖𝜏𝛼𝜄 𝜋𝜌oῦ𝜑𝜖𝜏ῶ𝛼𝜈 ὅ ἐ𝜏𝜄 𝜋ά𝜆𝜄𝜈 𝜋𝜌ό𝜔𝜋o𝜈
ὡ𝜌𝜄𝜇έ𝜈o𝜈 ὀ𝜌𝜃ῶ ἄ𝜌𝛼 ὡ𝜌𝜄𝜇έ𝜈𝜔𝜈𝜋𝜌oώ𝜋𝜔𝜈 𝜋𝛼𝜌𝛼𝜏𝛼𝜏𝜄𝜅ὴ ἡ ἀ𝜈𝜏𝜔𝜈𝜐𝜇ί𝛼

+ Aristotle, MagnaMoralia (tlg0086.tlg022.1st1K-grc1.xml) =>

----- TΩOPΘΩEKAΣTAΘEΩPΩN (1) -----
𝜅𝛼ὶ 𝜇ὴ 𝛿𝜄𝜖𝜓𝜖ῦ𝜎𝜃𝛼𝜄 𝜏ῷ 𝜆ό𝛾ῳ ἔ𝜎𝜏𝜄𝜈 𝛿ὲ 𝜅𝛼ὶ ὁ 𝜑𝜌ό𝜈𝜄𝜇ός 𝜏o𝜄oῦ𝜏oς ὁ𝜏ῷ 𝜆ό𝛾ῳ
𝜏ῷὀ𝜌𝜃ῷἕ𝜅𝛼𝜎𝜏𝛼𝜃𝜖𝜔𝜌ῶ𝜈 𝜋ό𝜏𝜖𝜌o𝜈 𝛿 ἐ𝜈𝛿έ𝜒𝜖𝜏𝛼𝜄𝜏ὸ𝜈 𝜑𝜌ό𝜈𝜄𝜇o𝜈 ἀ𝜅𝜌𝛼𝜏ῆ 𝜖ἶ𝜈𝛼𝜄 ἢ oὔ
ἀ𝜋o𝜌ή𝜎𝜖𝜄𝜖 𝛾ὰ𝜌 ἄ𝜈 𝜏𝜄ς 𝜏ὰ 𝜖ἰ𝜌𝜂𝜇έ𝜈𝛼 ἐὰ𝜈 𝛿ὲ 𝜋𝛼 𝜌

+ ChroniconPaschale, ChroniconPaschale (tlg2371.tlg001.opp-grc1.xml) =>

----- OΠPΩTOΣANΘPΩΠΩNϒΠOΔEIΞAΣ (1) -----
𝛿𝜖ί𝜉𝛼ς oὐ𝜌𝛼𝜈o𝛿𝜌o𝜇𝜖ῖ𝜈 ό𝜋𝜌ῶ𝜏oςἀ𝜈𝜃𝜌ώ𝜋𝜔𝜈ὑ𝜋o𝛿𝜖ί𝜉𝛼ς ἀ𝛾𝛾έ𝜆𝜔𝜈 𝜅𝛼ὶ ἀ𝜈𝜃𝜌ώ𝜋𝜔𝜈 𝜇ί𝛼𝜈
ὁ𝛿ό𝜈 ὁ 𝜏ὴ𝜈 𝛾ῆ𝜈 𝜆𝛼𝜒ὼ𝜈 oἰ𝜅𝜂𝜏𝜂𝜄𝜌𝜄o𝜈 𝜅𝛼ὶ 𝜏ὸ𝜈 oὐ𝜌𝛼𝜈ὸ𝜈

+ EvagriusScholasticus, HistoriaEcclesiastica (tlg2733.tlg001.1st1K-grc1.xml) =>

----- ΓΛΩΣΣOTOMHΘENTΩNXPIΣTIANΩN (1) -----
𝜄𝛿 Π𝜖𝜌ὶ ᾿Ο𝜈𝜔𝜌ί𝜒o𝜐 𝜏oῦ B𝛼𝜈𝛿ί𝜆𝜔𝜈 ἄ𝜌𝜒o𝜈𝜏oς 𝜅𝛼ὶ 𝜏ῶ𝜈 𝛾𝜆𝜔𝜎𝜎o𝜏o𝜇𝜂𝜃έ𝜈𝜏𝜔𝜈X𝜌𝜄𝜎𝜏𝜄𝛼𝜈ῶ𝜈
𝜋𝛼ῤ 𝛼ὐ𝜏oῦ 𝜄𝜖 Π𝜖𝜌ὶ K𝛼𝛽𝛼ώ𝜈o𝜐

(continues on next page)

18 Chapter 1. Processing Greek corpora for the riddle solver

GRCRiddles Documentation, Release 1a

(continued from previous page)

----- EΠIΣKOΠΩKΩNΣTANTINOϒΠOΛEΩΣ (1) -----
ἐ𝜎𝜏𝜄𝜈 ἐ𝜈 𝜏oύ𝜏o𝜄ς ᾿Ε𝜋𝜄𝜎𝜏o𝜆ὴ ἤ𝜏o𝜄 𝛿έ𝜂𝜎𝜄ς ἀ𝜋o𝜎𝜏𝛼𝜆𝜖ῖ𝜎𝛼 Ἀ𝜅𝛼𝜅ίῳ
ἐ𝜋𝜄𝜎𝜅ό𝜋ῳK𝜔𝜈𝜎𝜏𝛼𝜈𝜏𝜄𝜈o𝜐𝜋ό𝜆𝜖𝜔ς 𝜋𝛼𝜌ὰ 𝜏ῶ𝜈 𝜏ῆς Ἀ𝜎ί𝛼ς ἐ𝜋𝜄𝜎𝜅ό𝜋𝜔𝜈 Ἀ𝜅𝛼𝜅ίῳ 𝜏ῷ ἁ𝛾𝜄𝜔𝜏ά𝜏ῳ
𝜅𝛼ὶ ὁ𝜎𝜄𝜔𝜏ά𝜏ῳ 𝜋𝛼𝜏𝜌𝜄ά𝜌𝜒ῃ

+ JoannesPhiloponus, InAristotetelisMeteorologicorumLibrumPrimumCommentarium (tlg4015.
→˓tlg005.opp-grc1.xml) =>

----- ΛΛHΣTHΣANΩΘENΘEPMOTHTOΣATMIΔOϒMENONΦEPETAI (1) -----
𝜈ῦ𝜈 𝜇𝜖𝜈oύ𝜎𝜂ς ἀ𝜇𝜖𝜏𝛼𝛽𝜆ή𝜏o𝜐 𝜏ὸ oὖ𝜈 𝜋𝜖𝜌ὶ 𝜏ὴ𝜈 𝛾ῆ𝜈 ὑ𝛾𝜌ό𝜈 𝜑𝜂𝜎ί𝜈 ὑ𝜋ὸ 𝜏ῶ𝜈 ἀ𝜅𝜏 ί𝜈𝜔𝜈 𝜅𝛼ὶ
ὑ𝜋ὸ 𝜏ῆς ὰ 𝜆𝜆𝜂ς𝜏ῆςἄ𝜈𝜔𝜃𝜖𝜈𝜃𝜖𝜌𝜇ό𝜏𝜂𝜏oςἀ𝜏𝜇𝜄𝛿oύ𝜇𝜖𝜈o𝜈𝜑έ𝜌𝜖𝜏𝛼𝜄 ἄ𝜈𝜔 𝜋ῶς 𝜇ὲ𝜈 ἡ ἐ𝜅 𝜏ῶ𝜈
ἀ𝜅𝜏 ί𝜈𝜔𝜈 𝛾ί𝜈𝜖𝜏𝛼𝜄 𝜃𝜖𝜌𝜇ό𝜏𝜂ς ἐ𝛿ί𝛿𝛼𝜉𝜖𝜈 ὅ𝜏𝜄 ὁ 𝜖 𝜈𝛼𝜋o 𝜆𝛼𝜇𝛽𝛼𝜈

----- ΔϒNATONΔETOAITIAIHΣΓENEΣEΩΣKAITHΣΦΘOPAΣ (1) -----
𝜆ὴ ἀ𝜈ά𝜆o𝛾ό𝜈 ἐ𝜎𝜏𝜄 𝛾𝜖𝜈έ𝜎𝜖𝜄 ἡ 𝛿ὲ 𝜏oὔ𝜇𝜋𝛼𝜆𝜄𝜈 𝜏ῶ𝜈 𝜅o𝜐𝜑o𝜏έ𝜌𝜔𝜈 𝜖ἰς 𝜏ὰ 𝛽𝛼𝜌ό𝜏𝜖𝜌𝛼𝜑𝜃o𝜌ᾷ
𝛿𝜐𝜈𝛼𝜏ὸ𝜈𝛿ὲ𝜏ὸ𝛼ἰ𝜏 ί𝛼𝜄ῆς𝛾𝜖𝜈έ𝜎𝜖𝜔ς𝜅𝛼ὶ𝜏ῆς𝜑𝜃o𝜌ᾶς 𝛿𝜄ὰ 𝜏ὸ ἄ𝜌𝜃𝜌o𝜈 𝜇ὴ 𝜅𝛼𝜃o𝜆𝜄𝜅ῶς ἀ𝜅oύ𝜖𝜄𝜈
𝜋ά𝜎𝜂ς 𝛾𝜖𝜈έ𝜎𝜖𝜔ς 𝜅𝛼ὶ 𝜑𝜃o𝜌ᾶς ἀ𝜆𝜆ὰ ὑ𝜖𝜏oῦ 𝜒𝜄ό𝜈

+ Libanius, Epistulae1-839 (tlg2200.tlg001.opp-grc1.xml) =>

----- EMOϒOIAΠEΦEϒΓAXEIPAΣΛϒΠHΣAΣMENOϒΔENAOϒΔEN (1) -----
𝛿o𝜈 𝜅𝛼𝜏𝜂𝜑ῆ 𝜅𝛼ὶ 𝜎𝜐𝜈𝜖o𝜏𝛼𝜆𝜇ἐ𝜈o𝜈 𝜅𝛼ὶ 𝛿ά𝜅𝜌𝜐𝛼 𝜋𝜌ὸ 𝜏ῶ𝜈 𝜆ό𝛾𝜔𝜈ἀ𝜑𝜖ὶς ἐ𝛾ὼ 𝜇ό𝜆𝜄ς 𝜏ὰς
𝜏ῶ𝜈 𝜋𝛼𝜃ό𝜈𝜏𝜔𝜈 ἐ𝜇oῦό𝜄𝛼𝜋έ𝜑𝜖𝜐𝛾𝛼𝜒𝜖ῖ𝜌𝛼ς𝜆𝜐𝜋ή𝜎𝛼ς𝜇ὲ𝜈oὐ𝛿έ𝜈𝛼oὐ𝛿έ𝜈 ἡ𝜈ί𝜅𝛼 ἐ𝜉ῆ𝜈 𝜇𝜄𝜅𝜌o 𝛿ὲ
𝛿𝜄𝛼𝜎𝜋𝛼𝜎𝜃𝜖ίς 𝜅𝛼ὶ 𝜋𝜌o𝜎𝜖𝜏 ί𝜃𝜖𝜄 𝜑𝜐𝛾ὴ𝜈 ἀ𝛿𝜖𝜆𝜑oῦ 𝜅𝛼ὶ 𝛾έ𝜈o𝜐ς ὅ𝜆o𝜐 𝜋𝜆ά𝜈𝜂𝜈 𝜅𝛼ὶ 𝛾ῆ𝜈 ἄ𝜎𝜋

+ PhiloJudaeus, DeVitaMosisLibI-Ii (tlg0018.tlg022.opp-grc1.xml) =>

----- ΨϒXOΓONIMΩTATΩN (1) -----
𝜈 ἀ𝜋𝜖𝜏𝜖𝜆έ𝜎𝜃𝜂𝜎𝛼𝜈 𝛼ἱ 𝜎𝜔𝜇𝛼𝜏𝜄𝜅𝛼ὶ 𝜋o𝜄ό𝜏𝜂𝜏𝜖ς ἐ𝜑𝜖ὶς 𝜏ῷ M𝜔𝜐𝜎έ𝜔ς ἀ𝛿𝜖𝜆𝜑ῷ 𝜏ὰς 𝛿 ἴ𝜎𝛼ς
ἐ𝜉 ἀέ𝜌oς 𝜅𝛼ὶ 𝜋𝜐𝜌ὸς 𝜏ῶ𝜈 𝜓𝜐𝜒o𝛾o𝜈𝜄𝜇𝜔𝜏ά𝜏𝜔𝜈 𝜇ό𝜈ῳ M𝜔𝜐𝜎𝜖ῖ 𝜇ί𝛼𝜈 𝛿ὲ 𝜅o𝜄𝜈ὴ𝜈 ἀ𝜇𝜑o𝜏έ𝜌o𝜄ς
ἑ𝛽𝛿ό𝜇𝜂𝜈 ἐ𝜋𝜄𝜏𝜌έ𝜋𝜖𝜄 𝜏𝜌𝜖ῖς 𝛿ὲ 𝜏ὰς ἄ𝜆𝜆𝛼ς 𝜖ἰς 𝜎𝜐𝜇𝜋

+ Porphyrius, VitaPythagorae (tlg2034.tlg002.1st1K-grc1.xml) =>

----- TOϒTOϒΣΛEΓONTEΣΩΣΠPOΣTHN (1) -----
o𝜄 𝜏ὰς 𝛿𝜐𝜈ά𝜇𝜖𝜄ς 𝜏ῶ𝜈 𝜎𝜏o𝜄𝜒𝜖ί𝜔𝜈 𝜅𝛼ὶ 𝛼ὐ𝜏ὰ 𝜏𝛼ῦ𝜏𝛼 𝛽o𝜐𝜆ό𝜇𝜖𝜈o𝜄 𝜋𝛼𝜌𝛼𝛿oῦ𝜈𝛼𝜄
𝜋𝛼𝜌𝜖𝛾έ𝜈o𝜈𝜏o ἐ𝜋ὶ 𝜏oὺς𝜒𝛼𝜌𝛼𝜅𝜏ῆ𝜌𝛼ς 𝜏oύ𝜏o𝜐ς𝜆έ𝛾o𝜈𝜏𝜖ςὡς𝜋𝜌ὸς𝜏ὴ𝜈 𝜋𝜌ώ𝜏𝜂𝜈 𝛿𝜄𝛿𝛼𝜎𝜅𝛼𝜆ί𝛼𝜈
𝜎𝜏o𝜄𝜒𝜖ῖ𝛼 𝜖ἶ𝜈𝛼𝜄 ὕ𝜎𝜏𝜖𝜌o𝜈 𝜇έ𝜈𝜏o𝜄 𝛿𝜄𝛿ά𝜎𝜅o𝜐 𝜎𝜄𝜈 ὅ𝜏𝜄 oὐ𝜒 oὗ𝜏o𝜄 𝜎𝜏o𝜄𝜒𝜖ῖά 𝜖ἰ𝜎𝜄𝜈 oἱ
𝜒𝛼𝜌

+ Suda, SuidaeLexicon (tlg9010.tlg001.1st1K-grc1.xml) =>

----- OPΘOΦOITOΣϒKOΦANTOΔIKOTAΛAIΠΩPΩN (2) -----
᾿Ο𝜌𝜃o𝜑o𝜄𝜏o𝜐𝜅o𝜑𝛼𝜈𝜏o𝛿𝜄𝜅o𝜏𝛼𝜆𝛼𝜄𝜋ώ𝜌𝜔𝜈 Ἀ𝜌𝜄𝜏o𝜑ά𝜈𝜂 ὁ𝜏𝜄ὴ 𝛽oύ𝜆o𝜇𝛼𝜄 𝜏oύ𝜏𝜔𝜈
ἀ𝜋𝛼𝜆𝜆𝛼𝜒𝜃έ𝜈𝜏𝛼 𝜏ῶ𝜈 ὀ𝜌𝜃o𝜑o𝜄𝜏o𝜐𝜅o𝜑𝛼

o𝛿𝜄𝜅o𝜏𝛼𝜆𝛼𝜄𝜋ώ𝜌𝜔𝜈 Ἀ𝜌𝜄𝜏o𝜑ά𝜈𝜂 ὁ𝜏𝜄ὴ 𝛽oύ𝜆o𝜇𝛼𝜄 𝜏oύ𝜏𝜔𝜈 ἀ𝜋𝛼𝜆𝜆𝛼𝜒𝜃έ𝜈𝜏𝛼 𝜏ῶ𝜈
ὀ𝜌𝜃o𝜑o𝜄𝜏o𝜐𝜅o𝜑𝛼𝜈𝜏o𝛿𝜄𝜅o𝜏𝛼𝜆𝛼𝜄𝜋ώ𝜌𝜔𝜈 𝜏𝜌ό𝜋𝜔𝜈 𝜁ῆ𝜈 𝛽ίo𝜈 𝛾𝜖𝜈𝜈𝛼ῖo𝜈 ὥ𝜋𝜖𝜌 Mό𝜌𝜐𝜒o
𝛼ἰ𝜏 ί𝛼𝜈 ἔ𝜒𝜔𝜈 𝜏𝛼ῦ𝜏𝛼 𝛿𝜌ᾶ𝜈

----- KΩΔΩNOΦAΛAPAXPΩMENOϒΣ (1) -----
𝜇𝜖𝜏ή𝜈𝜖𝜅𝜏𝛼𝜄 oὕ𝜏𝜔 𝜓o𝜑oῦ𝜈𝜏𝛼 𝜓o𝜑oῦ𝜈𝜏𝜖 K𝜔𝛿𝜔𝜈o𝜑𝛼𝜆𝛼𝜌𝛼𝜒𝜌𝜔𝜇έ𝜈o𝜐 𝛼ὐ𝜏ὰ Kώ𝛿𝜔𝜈
Σo𝜑o𝜅𝜆ῆ T𝜐𝜌𝜌𝜂𝜈𝜄𝜅ῆ

+ ValeriusBabrius, FabulaeAesopeae (tlg0614.tlg001.1st1K-grc2.xml) =>

(continues on next page)

1.6. Highest isopsephy 19

GRCRiddles Documentation, Release 1a

(continued from previous page)

----- ΛEONTATϒΦΛΩΣΩNΣKΩΛΩΨΔETOϒ (1) -----
𝜏𝜄 𝜋o𝜄ή𝜎𝜔 𝜅𝛼ὶ 𝜖ἰ𝜋ὼ𝜈 ἐ𝜋έ𝛽𝛼𝜆𝜖 𝜏o𝜄𝜒o𝛿𝜖𝜒𝜖𝜄𝜌𝛼𝜎𝜖𝜋𝜖𝛽𝛼𝜆𝜖𝜏o𝜈 𝜆𝜖o𝜈𝜏𝛼𝜏𝜐𝜑𝜆𝜔𝜎𝜔𝜈𝜎𝜅𝜔𝜆𝜔𝜓𝛿𝜖𝜏o𝜐
𝜏𝜔𝜐𝜋o𝜈𝜐𝜒𝛼 𝜐𝜋o𝛿𝜐𝜈𝛼 𝜅𝜖𝜅𝛼𝛿𝛼𝜄𝜇𝜔𝜎𝛿o𝜐𝜎𝜏𝜂 𝜎𝛼𝜌𝜅o𝜎𝜖𝜄𝜎𝛿𝜐𝜎𝜂𝜎𝜂𝜈𝜐𝜎𝜖 𝜃 𝜋o𝜄𝜔𝜈

So, that’s all for the Greek corpora processing and basic statistics. One could further investigate, categorize, and
compare individual texts, but for me it is time to jump to the second big task, that is defining procedures for the riddle
solver.

20 Chapter 1. Processing Greek corpora for the riddle solver

CHAPTER 2

Isopsephical riddles in Greek Pseudo Sibylline hexameter poetry

2.1 Introduction

There are dozens of alphanumeric riddles in the Pseudo Sibylline books. Major part of them are simple, only referring
to the first letter of the person, and the number of that letter. In Greek alphabet, letters happens to have a numerical
value also. I’m calling this letter value substitution system with a name isopsephy simply because it was a name known
for the Ancient Greeks. Nowadays, this literary device is maybe a bit too much mystified and known mostly by its
Hebrew counterpart _gematria_. Although isopsephy was used for divination also, one should also consider it as a
device used by poets and experts in different literary genres. Those people wanted to excel in the art they practiced.
Isopsephy, along with the dactylic hexameter, affected to the external structure of the text. Both were concrete devices
in the toolbox of the masters of the written text and rhetorics.

The most of the riddles in Sibylline Oracles are actually too simple to be solved by computer algorithms only. There
are not enough parameters for processing, thus all the words meeting simple criteria are far too many for any sensical
analysis. Take for example Sibyl Book I, verses 51-60:

Then a great destroyer of pious men shall come, whom seven times ten shall point out clearly. But from
him a son, whom the first letter of three hundred proves, shall take the power. And after him shall be a
ruler, of the initial sign of four, a life-destroyer. Then a reverend man of the number fifty. Next, succeeding
him Who has the first mark of the initial sign three hundred, shall a Celtic mountaineer.

In the footnotes of “The Sibylline Oracles” by Milton S. Terry, page 41 we find that seven times ten refers to the letter
O (omicron), which numerical value is 70. Ouespasianos is the person refered here, because just before the verse 51
oracle talks about the three kings Galba, Otho, and Vitelius who shortly reigned in the Roman Empire in 69AD. The
next emperor in Rome was the son of the former, namely Titus, which first letter T is equal to 300 in Greek numerals.
Continuation of the puzzle is made clear with the next three emperors: Domitian (_initial sign of four_ meaning
simply D = 4), Nerva (_reverend man of the number fifty_, N = 50), and lastly Trajan (_initial sign three hundred_, T
= 300).

Similar puzzles can be found from:

• I : 30, 388

• III : 28

• V : 18, 118, 149, 253, 274, 321, 338, 351

21

https://en.wikipedia.org/wiki/Greek_numerals
https://en.wikipedia.org/wiki/Greek_numerals
https://en.wikipedia.org/wiki/Vespasian

GRCRiddles Documentation, Release 1a

Fig. 1: Domenichino’s Cumaean Sibyl, Musei Capitolini

22 Chapter 2. Isopsephical riddles in Greek Pseudo Sibylline hexameter poetry

GRCRiddles Documentation, Release 1a

• VIII : 48, 88, 127, 233, 306, 321

• XII : 21, 38, 73, 122, 313

It is interesting that we can find a solution for the ealier kingdoms and emperors in the riddles, but we have somewhat
lost the context on the younger riddles from 200AD to 600AD.

From the more than 800 000 words, the words starting with any of the 24 Greek letters would yield tens of thousands
of hits. I don’t have a categorization / morphology system for the words so that I could filter proper nouns. If there
was a way to find out names from the words database, then task might be reasonable.

On the other hand, as we can see, most of these riddles conserning persons, cities, and Gods names can be taken as
solved already. Context of the riddle is revealing a name behind the puzzle. It helps that the plot of each book is more
or less chronologially structured. Sometimes names are already mentioned near by the riddle, like Rome in the [Riddle
3](#Riddle-3). In these samples it is obscure, why riddles were used in first hand. It is possible that texts were edited
later to add more information, fulfil predictions, correct and manipulate the original ones to prove divine inspiration.

But then there are couple of other riddles very special in nature. They contain more information about letters, syllables,
vowels, consonants, and the total value of the name or the title. One of them, the Riddle 1, is regarded as unsolved yet
so far. [Riddle 2](#Riddle-2) is solved, but works as a good reference and check point for the first one. Riddle 3 is
here for an example as a more difficult puzzle to solve programmically, nevertheless solved by contextual analysis.

I’ll take these three riddles under the closer investigation in this study:

2.1.1 Riddle 1

Sibyl Book 1 lines 137 - 146:

137 𝜖ἰ𝜇ὶ 𝛿᾿ ἔ𝛾𝜔𝛾𝜖 ὁ ὤ𝜈, 𝜎ὺ 𝛿᾿ ἐ𝜈ί 𝜑𝜌𝜖𝜎ὶ 𝜎ῇ𝜎𝜄 𝜈ό𝜂𝜎o𝜈· 138 oὐ𝜌𝛼𝜈ὸ𝜈 ἐ𝜈𝛿έ𝛿𝜐𝜇𝛼𝜄, 𝜋𝜖𝜌𝜄𝛽έ𝛽𝜆𝜂𝜇𝛼𝜄 𝛿ὲ
𝜃ά𝜆𝛼𝜎𝜎𝛼𝜈, 139 𝛾𝛼ῖ𝛼 𝛿έ 𝜇o𝜄 𝜎𝜏ή𝜌𝜄𝛾𝜇𝛼 𝜋o𝛿ῶ𝜈, 𝜋𝜖𝜌ὶ 𝜎ῶ𝜇𝛼 𝜅έ𝜒𝜐𝜏𝛼𝜄 140 ἀὴ𝜌 ἠ𝛿᾿ ἄ𝜎𝜏𝜌𝜔𝜈 𝜇𝜖 𝜒o𝜌ὸς
𝜋𝜖𝜌𝜄𝛿έ𝛿𝜌o𝜇𝜖 𝜋ά𝜈𝜏𝜂. 141 ἐ𝜈𝜈έ𝛼 𝛾𝜌ά𝜇𝜇𝛼𝜏 ᾿ ἔ𝜒𝜔· 𝜏𝜖𝜏𝜌𝛼𝜎ύ𝜆𝜆𝛼𝛽ός 𝜖ἰ𝜇𝜄· 𝜈ό𝜖𝜄 𝜇𝜖· 142 𝛼ἱ 𝜏𝜌𝜖ῖς 𝛼ἱ
𝜋𝜌ῶ𝜏𝛼𝜄 𝛿ύo 𝛾𝜌ά𝜇𝜇𝛼𝜏 ᾿ ἔ𝜒o𝜐𝜎𝜄𝜈 ἑ𝜅ά𝜎𝜏𝜂, 143 ἡ 𝜆o𝜄𝜋ὴ 𝛿ὲ 𝜏ὰ 𝜆o𝜄𝜋ὰ 𝜅𝛼ί 𝜖ἰ𝜎𝜄𝜈 ἄ𝜑𝜔𝜈𝛼 𝜏ὰ 𝜋έ𝜈𝜏𝜖· 144
𝜏oῦ 𝜋𝛼𝜈𝜏ὸς 𝛿᾿ ἀ𝜌𝜄𝜃𝜇oῦ ἑ𝜅𝛼𝜏o𝜈𝜏ά𝛿𝜖ς 𝜖ἰ𝜎ὶ 𝛿ὶς ὀ𝜅𝜏ώ 145 𝜅𝛼ὶ 𝜏𝜌𝜖ῖς, 𝜏𝜌ὶς 𝛿𝜖𝜅ά𝛿𝜖ς 𝜎ύ𝜈 𝛾᾿ ἑ𝜋𝜏ά. 𝛾𝜈oὺς
𝛿ὲ 𝜏 ίς 𝜖ἰ𝜇𝜄 146 oὐ𝜅 ἀ𝜇ύ𝜂𝜏oς ἔ𝜎ῃ 𝜏ῆς 𝜋𝛼𝜌᾿ ἐ𝜇oὶ 𝜎o𝜑ί𝜂ς.

Translation:

And I am He who is, and in thy heart Do thou discern. I clothe me with the heaven, And cast the sea
around me, and for me Earth is a footstool, and the air is poured Around my body; and on every side
Around me runs the chorus of the stars. Nine letters have I; of four syllables I am; discern me. The first
three have each Two letters, the remaining one the rest, And five are mates; and of the entire sum The
hundreds are twice eight and thrice three tens Along with seven. Now, knowing who I am, Be thou not
uninitiate in my lore.

2.1.2 Riddle 2

Sibyl Book 1 lines 324-402:

324 𝛿ὴ 𝜏ό𝜏𝜖 𝜅𝛼ὶ 𝜇𝜖𝛾ά𝜆o𝜄o 𝜃𝜖oῦ 𝜋𝛼ῖς ἀ𝜈𝜃𝜌ώ𝜋o𝜄𝜎𝜄𝜈 325 ἥ𝜉𝜖𝜄 𝜎𝛼𝜌𝜅o𝜑ό𝜌oς 𝜃𝜈𝜂𝜏oῖς ὁ𝜇o𝜄oύ𝜇𝜖𝜈oς ἐ𝜈
𝛾ῇ, 326 𝜏έ𝜎𝜎𝛼𝜌𝛼 𝜑𝜔𝜈ή𝜖𝜈𝜏𝛼 𝜑έ𝜌𝜔𝜈, 𝜏ὸ 𝛿᾿ ἄ𝜑𝜔𝜈o𝜈 ἐ𝜈 𝛼ὐ𝜏ῷ 327 𝛿𝜄𝜎𝜎ό𝜈· ἐ𝛾ὼ 𝛿έ 𝜅έ 𝜏o𝜄 ἀ𝜌𝜄𝜃𝜇ό𝜈 𝛾᾿
ὅ𝜆o𝜈 ἐ𝜉o𝜈o𝜇ή𝜈𝜔· 328 ὀ𝜅𝜏ὼ 𝛾ὰ𝜌 𝜇o𝜈ά𝛿𝛼ς, 𝜏ό𝜎𝜎𝛼ς 𝛿𝜖𝜅ά𝛿𝛼ς 𝛿᾿ ἐ𝜋ὶ 𝜏𝛼ύ𝜏𝛼𝜄ς 329 ἠ𝛿᾿ ἑ𝜅𝛼𝜏o𝜈𝜏ά𝛿𝛼ς
ὀ𝜅𝜏ὼ ἀ𝜋𝜄𝜎𝜏o𝜅ό𝜌o𝜄ς ἀ𝜈𝜃𝜌ώ𝜋o𝜄ς 330 oὔ𝜈o𝜇𝛼 𝛿𝜂𝜆ώ𝜎𝜖𝜄· 𝜎ὺ 𝛿᾿ ἐ𝜈ὶ 𝜑𝜌𝜖𝜎ὶ 𝜎ῇ𝜎𝜄 𝜈ό𝜂𝜎o𝜈 331 ἀ𝜃𝛼𝜈ά𝜏o𝜄o
𝜃𝜖oῦ X𝜌𝜄𝜎𝜏ὸ𝜈 𝜋𝛼ῖ𝛿᾿ ὑ𝜓ί𝜎𝜏o𝜄o.

Translation:

Then also shall a child of the great God Come, clothed in flesh, to men, and fashioned like To mortals
in the earth; and he doth hear Four vowels, and two consonants in him Are twice announced; the whole

2.1. Introduction 23

GRCRiddles Documentation, Release 1a

sum I will name: For eight ones, and as many tens on these, And yet eight hundred will reveal the name
To men insatiate; and do thou discern In thine own understanding that the Christ Is child of the immortal
God most high.

2.1.3 Riddle 3

Sibyl Book 8 lines 143-150:

143 ὤ𝜆𝜖𝜏o 𝛾ὰ𝜌 ῾Ρώ𝜇𝜂ς ἀ𝜌𝜒ὴ 𝜏ό𝜏𝜖 𝜏𝜂𝜆𝜖𝜃ό𝜔𝜎𝛼, 144 ἀ𝜌𝜒𝛼ί𝜂 𝜋o𝜆έ𝜖𝜎𝜎𝜄 𝜋𝜖𝜌𝜄𝜅𝜏𝜄ό𝜈𝜖𝜎𝜎𝜄𝜈 ἄ𝜈𝛼𝜎𝜎𝛼. 145
oὐ𝜅έ𝜏𝜄 𝜈𝜄𝜅ή𝜎𝜖𝜄𝜖 𝜋έ𝛿o𝜈 ῾Ρώ𝜇𝜂ς ἐ𝜌𝜄𝜃ή𝜆o𝜐, 146 ὁ𝜋𝜋ό𝜏𝛼𝜈 ἐ𝜉 Ἀ𝜎ί𝜂ς 𝜅𝜌𝛼𝜏έ𝜔𝜈 ἔ𝜆𝜃ῃ 𝜎ὺ𝜈 ῎Α𝜌𝜂𝜄. 147
𝜏𝛼ῦ𝜏𝛼 𝛿ὲ 𝜋ά𝜈𝜏 ᾿ ἔ𝜌𝜉𝛼ς ἥ𝜉𝜖𝜄 𝜅𝜌𝜂𝜋𝜄𝜎𝜃ὲ𝜈 ἐς ἄ𝜎𝜏𝜐. 148 𝜏𝜌ὶς 𝛿ὲ 𝜏𝜌𝜄𝜂𝜅o𝜎ίo𝜐ς 𝜅𝛼ὶ 𝜏𝜖𝜎𝜎𝛼𝜌ά𝜅o𝜈𝜏𝛼 𝜅𝛼ὶ
ὀ𝜅𝜏ώ 149 𝜋𝜆𝜂𝜌ώ𝜎𝜖𝜄ς 𝜆𝜐𝜅ά𝛽𝛼𝜈𝜏𝛼ς, ὅ𝜏𝛼𝜈 𝜎o𝜄 𝛿ύ𝜎𝜇o𝜌oς ἥ𝜉ῃ 150 𝜇oῖ𝜌𝛼 𝛽𝜄𝛼𝜁o𝜇έ𝜈𝜂 𝜏𝜖ὸ𝜈 oὔ𝜈o𝜇𝛼
𝜋𝜆𝜂𝜌ώ𝜎𝛼𝜎𝛼.

Translation:

For Rome’s power perished then while in its bloom an ancient queen with cities dwelling round. No
longer shall the land of fertile Rome prevail, when out of Asia one shall come to rule with Ares. And
when he has wrought all these things, to the city afterwards shall he come. And three times three hundred
and eight and forty shalt thou make complete, when, taking thee by force, an ill-starred fate shall come
upon thee and complete thy name.

Using Greek Text Corpora

I have used the next notebook to prepare the Greek text corpora and unique words database for the solver: [Pro-
cessing Greek corpora for the isopsehical riddle solver.ipynb](Processing Greek corpora for the isopsehical riddle
solver.ipynb). You need to run it once or have unique words csv file in the same directory than this notebook if you
wish to run cells interactively.

Setup of the system I’m using is:

`python import sys sys.version `

‘3.5.4 | Continuum Analytics, Inc.| (default, Aug 14 2017, 13:41:13) [MSC v.1900 64 bit (AMD64)]’

Confirm unique words database is available and get the size of it:

‘‘‘python from functions import get_file_size, csv_file_name

print(“Size of the unique words database: %s MB” % get_file_size(csv_file_name)) ‘‘‘

Size of the unique words database: 57.14 MB

Import database

Using Pandas library I will read and import csv file that contains all preprocessed unique greek words collected earlier.
Constructed Pandas DataFrame is a nice data container to handle tabular data.

‘‘‘python # read unique words stats if available try:

from pandas import read_csv df = read_csv(csv_file_name, header = None) # convert data types for
columns. 0 = word # 1: how many times word occurs in texts df[1] = df[1].apply(lambda x: int(x)) # 2:
percentage of all words df[2] = df[2].apply(lambda x: float(x)) # 3: how many characters in the word df[3]
= df[3].apply(lambda x: int(x)) # 4: isopsephical value of the word df[4] = df[4].apply(lambda x: int(x)) #
5: word split to syllables df[5] = df[5].apply(lambda x: str(x).replace(“’”, “”).replace(“[“, “”).replace(“]”,
“”).split(“, “)) # 6: how many syllables df[6] = df[6].apply(lambda x: int(x))

except Exception as e: print(e) print(“Could not find unique words database. Please follow the procedure explained
in: Processing Greek corpora for the isopsehical riddle solver.ipynb”)

‘‘‘

To confirm succesful import I will show the first 20 most common words:

24 Chapter 2. Isopsephical riddles in Greek Pseudo Sibylline hexameter poetry

GRCRiddles Documentation, Release 1a

`python print("Total records: %s" % len(df)) # get the most repeated words by
sort asc, head 20 df.sort_values(1, ascending=False).head(n=20) `

Total records: 826516

| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
— | — | — | — | — | — | — | — |
38 | KAI | 3332509 | 45.51 | 3 | 31 | [KAI] | 1 |
25 | ∆E | 1355091 | 18.51 | 2 | 9 | [∆E] | 1 |
309 | TO | 1297764 | 17.72 | 2 | 370 | [TO] | 1 |
46 | TOΥ | 933432 | 12.75 | 3 | 770 | [TOΥ] | 1 |
2 | TΩN | 918946 | 12.55 | 3 | 1150 | [TΩN] | 1 |

Solve the riddles

Riddle 1

Nine letters have I; of four syllables I am; discern me. The first three have each two letters, the remaining
one the rest, and five are mates; and of the entire sum the hundreds are twice eight and thrice three tens
along with seven.

Using the next parameters from the riddle, lets try to solve it by the brute computational force:

• knowing the length of the word: 9

• knowing other details of the syllables of the word

• knowing the count of the consonants of the word: 5

• knowing the isopsephical value: 1697

• comparing the context of the result

Isopsephy and letter count filter

I will apply filters to the words database step by step narrowing the result.

So lets see first, how many words there are with the isopsephical value 1697 and letters counting nine?

‘‘‘python from functions import HTML

make a copy of the database to keep original safe a = df.copy() # filter by isopsephical value a = a[a[4] == 1697]
filter by word length a = a[a[3] == 9]

print(“Total records: %s” % len(a)) HTML(a.to_html(index=False)) ‘‘‘

Total records: 15

0 | 1 | 2 | 3 | 4 | 5 | 6 |
— | — | — | — | — | — | — |
AMΦEKAΛΥΨ | 1 | 0.0 | 9 | 1697 | [AM, ΦE, KA, ΛΥΨ] | 4 |
AΛEIΦATΩN | 2 | 0.0 | 9 | 1697 | [A, ΛEI, ΦA, TΩN] | 4 |
BEΛTIΣTΩN | 66 | 0.0 | 9 | 1697 | [BEΛ, TI, ΣTΩN] | 3 |
AΦEΛΩNTAI | 20 | 0.0 | 9 | 1697 | [A, ΦE, ΛΩN, TAI] | 4 |
ΠAPAXΩPEI | 130 | 0.0 | 9 | 1697 | [ΠA, PA, XΩ, PEI] | 4 |
KΥBEΥΣOΥΣ | 1 | 0.0 | 9 | 1697 | [KΥ, BEΥ, ΣOΥΣ] | 3 |
ΛIBΥΣΣEΩN | 2 | 0.0 | 9 | 1697 | [ΛI, BΥΣ, ΣE, ΩN] | 4 |

2.1. Introduction 25

GRCRiddles Documentation, Release 1a

IΣTOPHΣΘΩ | 9 | 0.0 | 9 | 1697 | [I, ΣTO, PH, ΣΘΩ] | 4 |
ΣΥNΩKIΣΘH | 19 | 0.0 | 9 | 1697 | [ΣΥ, NΩ, KI, ΣΘH] | 4 |
ΠΛHPOΥΣΘΩ | 7 | 0.0 | 9 | 1697 | [ΠΛH, POΥ, ΣΘΩ] | 3 |
EKAATOΣTΩ | 3 | 0.0 | 9 | 1697 | [E, KA, A, TO, ΣTΩ] | 5 |
ΛHΛΥΘOTΩN | 3 | 0.0 | 9 | 1697 | [ΛH, ΛΥ, ΘO, TΩN] | 4 |
ANANΨΩMEN | 4 | 0.0 | 9 | 1697 | [A, NAN, ΨΩ, MEN] | 4 |
AΛEΦΩNTAI | 2 | 0.0 | 9 | 1697 | [A, ΛE, ΦΩN, TAI] | 4 |
ΣTENΩMATA | 8 | 0.0 | 9 | 1697 | [ΣTE, NΩ, MA, TA] | 4 |

It turns out that there are just very few words meeting the criteria of the riddle. I could already make the analysis of
the words manually. But to make everything reusable for later usage, I will set up filter procedure for other criteria
too.

Before that, I will however add one extension to the original search and allow the count of the letters to be between 8
and 10. That is due to double consonant and long / short vowelspecialty of the Greek language. Let’s see the result of
this filter variation:

‘‘‘python b = df.copy() b = b[b[4] == 1697] b = b[b[6] == 4] b = b[b[3] > 7] b = b[b[3] < 11]

print(“Total records: %s” % len(b)) HTML(b.sort_values(3, ascending=False).to_html(index=False)) ‘‘‘

Total records: 31

0 | 1 | 2 | 3 | 4 | 5 | 6 |
— | — | — | — | — | — | — |
KATAΣXETOΣ | 17 | 0.0 | 10 | 1697 | [KA, TA, ΣXE, TOΣ] | 4 |
NEBPOΦONΩN | 1 | 0.0 | 10 | 1697 | [NE, BPO, ΦO, NΩN] | 4 |
ANEΣTΛΩTAI | 3 | 0.0 | 10 | 1697 | [A, NEΣT, ΛΩ, TAI] | 4 |
EMΦΥΣΣANTA | 9 | 0.0 | 10 | 1697 | [EM, ΦΥΣ, ΣAN, TA] | 4 |
AKATΣXETOΣ | 27 | 0.0 | 10 | 1697 | [A, KAT, ΣXE, TOΣ] | 4 |
EΠTAΠΛAΣΩΣ | 18 | 0.0 | 10 | 1697 | [E, ΠTA, ΠΛA, ΣΩΣ] | 4 |
ΠAPAITΣEΩΣ | 25 | 0.0 | 10 | 1697 | [ΠA, PAIT, ΣE, ΩΣ] | 4 |
EΥHΘEΣTTOΥ | 4 | 0.0 | 10 | 1697 | [EΥ, H, ΘEΣT, TOΥ] | 4 |
ΥΦIZNOΥΣIN | 3 | 0.0 | 10 | 1697 | [Υ, ΦIZ, NOΥ, ΣIN] | 4 |
KATAΨΥΞEIΣ | 9 | 0.0 | 10 | 1697 | [KA, TA, ΨΥ, ΞEIΣ] | 4 |
ΠAPEΣTΩΣAI | 2 | 0.0 | 10 | 1697 | [ΠA, PE, ΣTΩ, ΣAI] | 4 |
∆IEΣTHKTΩN | 92 | 0.0 | 10 | 1697 | [∆I, E, ΣTH, KTΩN] | 4 |
ΠAXΥTEPAIΣ | 8 | 0.0 | 10 | 1697 | [ΠA, XΥ, TE, PAIΣ] | 4 |
PAB∆OΦOPΩN | 3 | 0.0 | 10 | 1697 | [PA, B∆O, ΦO, PΩN] | 4 |
ΛIBΥΣΣEΩN | 2 | 0.0 | 9 | 1697 | [ΛI, BΥΣ, ΣE, ΩN] | 4 |
ΣTENΩMATA | 8 | 0.0 | 9 | 1697 | [ΣTE, NΩ, MA, TA] | 4 |
AΛEΦΩNTAI | 2 | 0.0 | 9 | 1697 | [A, ΛE, ΦΩN, TAI] | 4 |
ANANΨΩMEN | 4 | 0.0 | 9 | 1697 | [A, NAN, ΨΩ, MEN] | 4 |
ΛHΛΥΘOTΩN | 3 | 0.0 | 9 | 1697 | [ΛH, ΛΥ, ΘO, TΩN] | 4 |
AΛEIΦATΩN | 2 | 0.0 | 9 | 1697 | [A, ΛEI, ΦA, TΩN] | 4 |
AΦEΛΩNTAI | 20 | 0.0 | 9 | 1697 | [A, ΦE, ΛΩN, TAI] | 4 |
IΣTOPHΣΘΩ | 9 | 0.0 | 9 | 1697 | [I, ΣTO, PH, ΣΘΩ] | 4 |
AMΦEKAΛΥΨ | 1 | 0.0 | 9 | 1697 | [AM, ΦE, KA, ΛΥΨ] | 4 |
ΣΥNΩKIΣΘH | 19 | 0.0 | 9 | 1697 | [ΣΥ, NΩ, KI, ΣΘH] | 4 |

26 Chapter 2. Isopsephical riddles in Greek Pseudo Sibylline hexameter poetry

GRCRiddles Documentation, Release 1a

ΠAPAXΩPEI | 130 | 0.0 | 9 | 1697 | [ΠA, PA, XΩ, PEI] | 4 |
XΩΣAMENA | 1 | 0.0 | 8 | 1697 | [XΩ, ΣA, ME, NA] | 4 |
ANEMΦATΩ | 1 | 0.0 | 8 | 1697 | [A, NEM, ΦA, TΩ] | 4 |
ΦOBHΘHTΩ | 5 | 0.0 | 8 | 1697 | [ΦO, BH, ΘH, TΩ] | 4 |
HNΩXΛHΣA | 1 | 0.0 | 8 | 1697 | [H, NΩ, XΛH, ΣA] | 4 |
ΠΥPETΩ∆H | 6 | 0.0 | 8 | 1697 | [ΠΥ, PE, TΩ, ∆H] | 4 |
ΦΩTOEI∆H | 28 | 0.0 | 8 | 1697 | [ΦΩ, TO, EI, ∆H] | 4 |

But this was just for the experiment. I will stick on the more strict parameters in the following riddle solver.

Custom syllable filter

There is still two other criterias for the word filter. One of them is a bit more complicated. Poem says that there are
two letters in the first three syllables. And the rest of the letters, that is three, are in the last syllable. I don’t need to
specify the last syllable letter count because I already limit total letter count to nine. If the first three syllables contain
two letters, that is six in total, then the last must have the rest of the three letters.

The fifth column has appropriate syllable information that I can use for this kind of filter. Let’s see the result with this
and all the previous filters:

‘‘‘python c = df.copy() c = c[c[4] == 1697] c = c[c[6] == 4] c = c[c[3] == 9] # the first three of the syllable contain two
letters, the last one the rest i.e. three. c = c[c.apply(lambda x: len(x[5][0]) == 2 and len(x[5][1]) == 2 and len(x[5][2])
== 2, axis=1)]

print(“Total records: %s” % len(c)) HTML(c.sort_values(0).to_html(index=False)) ‘‘‘

Total records: 4

0 | 1 | 2 | 3 | 4 | 5 | 6 |
— | — | — | — | — | — | — |
AMΦEKAΛΥΨ | 1 | 0.0 | 9 | 1697 | [AM, ΦE, KA, ΛΥΨ] | 4 |
ΛHΛΥΘOTΩN | 3 | 0.0 | 9 | 1697 | [ΛH, ΛΥ, ΘO, TΩN] | 4 |
ΠAPAXΩPEI | 130 | 0.0 | 9 | 1697 | [ΠA, PA, XΩ, PEI] | 4 |
ΣΥNΩKIΣΘH | 19 | 0.0 | 9 | 1697 | [ΣΥ, NΩ, KI, ΣΘH] | 4 |

That is a pretty narrow result already, just handful items to analyse.

Consonant filter

Finally there is the rule of five consonants (mutes/males) in the word in the original riddle. That requires defining
the consonants list and checking that the total count of the consonants is exactly five, no more, no less. I will do an
exercise to filter all words having 4 syllables and 5 consonants.

‘‘‘python d = df.copy() d = d[d[4] == 1697] d = d[d[6] == 4] d = d[d[3] == 9] d = d[d.apply(lambda x:
sum(list(x[0].count(c) for c in “ΨZΞBΦXΘΓ∆MΛKΠPΣT”)) == 5, axis=1)]

print(“Total records: %s” % len(d)) HTML(d.sort_values(0).to_html(index=False)) ‘‘‘

Total records: 2

0 | 1 | 2 | 3 | 4 | 5 | 6 |
— | — | — | — | — | — | — |
AMΦEKAΛΥΨ | 1 | 0.0 | 9 | 1697 | [AM, ΦE, KA, ΛΥΨ] | 4 |

2.1. Introduction 27

GRCRiddles Documentation, Release 1a

IΣTOPHΣΘΩ | 9 | 0.0 | 9 | 1697 | [I, ΣTO, PH, ΣΘΩ] | 4 |

Let’s refactor all of this and the previous ones to the single callable function with reusable sub functions and apply it
to dataframe

‘‘‘python # the word should have n mutes ie consonants consonants = “ΨZΞBΦXΘΓ∆MΛKΠPΣTNϚϠ” def
nmutes(x, n):

word, tot = x[0], 0 for c in consonants:

tot += word.count(c) if tot > n:

return False

return tot == n

the word should have n vowels vowels = “ΩHΥEIOA” def nvowels(x, n):

word, tot = x[0], 0 for c in vowels:

tot += word.count(c) if tot > n:

return False

return tot == n

the word should have n syllables def nsyllables(x, n):

return x[6] == n

the word should have two letters in the first three syllables, and the rest (3) letters in the last def
has_two_letters_in_first_three_syllables(x):

return len(x[5][0]) == 2 and len(x[5][1]) == 2 and len(x[5][2]) == 2

this makes n letters in total def nletters(x, n):

return x[3] == n

isopsephical value def nisopsephy(x, n):

return x[4] > n[0] and x[4] < n[1] if type(n) is list else x[4] == n

riddle 1 wrapper function def riddle1(x, isopsephy, letters = 9, mutes = 5, syllables = 4):

return nisopsephy(x, isopsephy) and nsyllables(x, syllables) and nletters(x, letters) and nmutes(x,
mutes) and has_two_letters_in_first_three_syllables(x)

‘‘‘

`python # solve the riddle 1a e = df.copy() e = e[e.apply(lambda x:
riddle1(x, 1697), axis=1)] HTML(e.to_html(index=False)) `

0 | 1 | 2 | 3 | 4 | 5 | 6 |
— | — | — | — | — | — | — |
AMΦEKAΛΥΨ | 1 | 0.0 | 9 | 1697 | [AM, ΦE, KA, ΛΥΨ] | 4 |
ΣΥNΩKIΣΘH | 19 | 0.0 | 9 | 1697 | [ΣΥ, NΩ, KI, ΣΘH] | 4 |
ΛHΛΥΘOTΩN | 3 | 0.0 | 9 | 1697 | [ΛH, ΛΥ, ΘO, TΩN] | 4 |

Thus we have found three good matches for the riddle: AMΦEKAΛΥΨ, ΣΥNΩKIΣΘH, and ΛHΛΥΘOTΩN. From
these, the word especially interesting is:

28 Chapter 2. Isopsephical riddles in Greek Pseudo Sibylline hexameter poetry

GRCRiddles Documentation, Release 1a

AMΦEKAΛΥΨ

(amphekalyps / amfecalyps) meaning “covering from both sides” or “all around covering”.

Next we should make some text and linquistic examination, how well these proposed words fits to the immediate
context of the sibylline verses. Where are the exact occurrences of the word in the Greek corpora, in which context?
Is it a word suitable for an epithet, does it have any religious spiritual significance, and so forth. These questions I will
leave for the [further study](Study of the results of the isopsephical riddle solver.ipynb) of the words.

From the references of the riddle in the ancient greek and latin texts, there are some other interpretations of the
isopsephic value given in the text. Instead of reading it 1697, it could be 1696, 1692, 1937, 1496, or even 506. Having
factored procedure in a function, that takes isopsephic value as a parameter, I can make searches altering the value and
see the results for comparison and inspection.

Variation 1696

‘‘‘python # solve the riddle 1b f = df.copy() f = f[f.apply(lambda x: riddle1(x, 1696), axis=1)]

print(“Total records: %s” % len(f)) HTML(f.sort_values(0).to_html(index=False)) ‘‘‘

Total records: 5

0 | 1 | 2 | 3 | 4 | 5 | 6 |
— | — | — | — | — | — | — |
AMΠEXONΩN | 3 | 0.0 | 9 | 1696 | [AM, ΠE, XO, NΩN] | 4 |
∆ΥNAMΩΣAΣ | 4 | 0.0 | 9 | 1696 | [∆Υ, NA, MΩ, ΣAΣ] | 4 |
KATEPΥKΩN | 1 | 0.0 | 9 | 1696 | [KA, TE, PΥ, KΩN] | 4 |
KENOΦΩNAΣ | 47 | 0.0 | 9 | 1696 | [KE, NO, ΦΩ, NAΣ] | 4 |
ΠEPIXANΩN | 7 | 0.0 | 9 | 1696 | [ΠE, PI, XA, NΩN] | 4 |

Variation 1692

‘‘‘python # solve the riddle 1b f = df.copy() f = f[f.apply(lambda x: riddle1(x, 1692), axis=1)]

print(“Total records: %s” % len(f)) HTML(f.sort_values(0).to_html(index=False)) ‘‘‘

Total records: 4

0 | 1 | 2 | 3 | 4 | 5 | 6 |
— | — | — | — | — | — | — |
ANTΩNΥMAN | 22 | 0.0 | 9 | 1692 | [AN, TΩ, NΥ, MAN] | 4 |
KATAΨΥΞIΣ | 22 | 0.0 | 9 | 1692 | [KA, TA, ΨΥ, ΞIΣ] | 4 |
ΠAPΩΞΥNAΣ | 9 | 0.0 | 9 | 1692 | [ΠA, PΩ, ΞΥ, NAΣ] | 4 |
ΠOΛΥ∆ΩPHΣ | 4 | 0.0 | 9 | 1692 | [ΠO, ΛΥ, ∆Ω, PHΣ] | 4 |

Variation 1937

‘‘‘python # solve the riddle 1b f = df.copy() f = f[f.apply(lambda x: riddle1(x, 1937), axis=1)]

print(“Total records: %s” % len(f)) HTML(f.sort_values(0).to_html(index=False)) ‘‘‘

Total records: 1

0 | 1 | 2 | 3 | 4 | 5 | 6 |

2.1. Introduction 29

GRCRiddles Documentation, Release 1a

— | — | — | — | — | — | — |
∆HΛΩΣΩMEN | 1 | 0.0 | 9 | 1937 | [∆H, ΛΩ, ΣΩ, MEN] | 4 |

Variation 1496

‘‘‘python # solve the riddle 1c f = df.copy() f = f[f.apply(lambda x: riddle1(x, 1496), axis=1)]

print(“Total records: %s” % len(f)) HTML(f.sort_values(0).to_html(index=False)) ‘‘‘

Total records: 10

0 | 1 | 2 | 3 | 4 | 5 | 6 |
— | — | — | — | — | — | — |
AMTEΛΩNOΣ | 4 | 0.0 | 9 | 1496 | [AM, TE, ΛΩ, NOΣ] | 4 |
KEKΩΛΥKAΣ | 9 | 0.0 | 9 | 1496 | [KE, KΩ, ΛΥ, KAΣ] | 4 |
ΠAPΩTI∆AΣ | 17 | 0.0 | 9 | 1496 | [ΠA, PΩ, TI, ∆AΣ] | 4 |
ΠENIΩNTAΣ | 3 | 0.0 | 9 | 1496 | [ΠE, NI, ΩN, TAΣ] | 4 |
ΠINETΩΣAN | 17 | 0.0 | 9 | 1496 | [ΠI, NE, TΩ, ΣAN] | 4 |
ΣΥNEKOΨAN | 4 | 0.0 | 9 | 1496 | [ΣΥ, NE, KO, ΨAN] | 4 |
ΣΩPHTIKHN | 2 | 0.0 | 9 | 1496 | [ΣΩ, PH, TI, KHN] | 4 |
TAΠENΩΣIN | 108 | 0.0 | 9 | 1496 | [TA, ΠE, NΩ, ΣIN] | 4 |
TEΛAMΩNOΣ | 175 | 0.0 | 9 | 1496 | [TE, ΛA, MΩ, NOΣ] | 4 |
ΦAΛAPI∆ΩN | 1 | 0.0 | 9 | 1496 | [ΦA, ΛA, PI, ∆ΩN] | 4 |

Variation 506

‘‘‘python # solve the riddle 1b f = df.copy() f = f[f.apply(lambda x: riddle1(x, 506), axis=1)]

print(“Total records: %s” % len(f)) HTML(f.sort_values(0).to_html(index=False)) ‘‘‘

Total records: 9

0 | 1 | 2 | 3 | 4 | 5 | 6 |
— | — | — | — | — | — | — |
ANTEΛEΞEN | 2 | 0.00 | 9 | 506 | [AN, TE, ΛE, ΞEN] | 4 |
APΣENIKON | 528 | 0.01 | 9 | 506 | [AP, ΣE, NI, KON] | 4 |
APTIΓAΛAΞ | 3 | 0.00 | 9 | 506 | [AP, TI, ΓA, ΛAΞ] | 4 |
EΓΓIZOΣHΣ | 9 | 0.00 | 9 | 506 | [EΓ, ΓI, ZO, ΣHΣ] | 4 |
EΓΓΥΘHKHN | 1 | 0.00 | 9 | 506 | [EΓ, ΓΥ, ΘH, KHN] | 4 |
ΘHPATIKHN | 2 | 0.00 | 9 | 506 | [ΘH, PA, TI, KHN] | 4 |
METABOΛHN | 2557 | 0.03 | 9 | 506 | [ME, TA, BO, ΛHN] | 4 |
ΠEΠHΓOΣIN | 1 | 0.00 | 9 | 506 | [ΠE, ΠH, ΓO, ΣIN] | 4 |
ΠINOMENAΣ | 4 | 0.00 | 9 | 506 | [ΠI, NO, ME, NAΣ] | 4 |

Riddle 2

And he doth hear four vowels, and two consonants in him are twice announced; the whole sum I will
name: for eight ones, and as many tens on these, and yet eight hundred will reveal the name to men
insatiate;

30 Chapter 2. Isopsephical riddles in Greek Pseudo Sibylline hexameter poetry

GRCRiddles Documentation, Release 1a

The solution of this riddle has been known for isopsephists from the early centuries of Christian fathers. Iraneus and
Hippothylus (see “The Greek Qabalah: Alphabetical Mysticism and Numerology in the Ancient World” by Kieren
Barry, page 138) commented about the Marcusian Ogdoad (888), former Father with a very colourful language in a
[heated word war](https://chs.harvard.edu/CHS/article/display/6308) between gnostic and orthodox theology. It was
known that the number 888 referred to IHΣOΥΣ (Jesus).

So what I’m doing here is to check how well does the programmical approach to solving this type of riddle really
work:

‘‘‘python # riddle 2 wrapper function def riddle2a(x, isopsephy, mutes = 2, vowels = 4):

return nisopsephy(x, isopsephy) and nletters(x, mutes+vowels) and nvowels(x, vowels) and nmutes(x,
mutes)

solve the riddle 2a h = df.copy() h = h[h.apply(lambda x: riddle2a(x, 888), axis=1)]

print(“Total records: %s” % len(h)) HTML(h.sort_values(0).to_html(index=False)) ‘‘‘

Total records: 6

0 | 1 | 2 | 3 | 4 | 5 | 6 |
— | — | — | — | — | — | — |
AΞIΩΘH | 18 | 0.00 | 6 | 888 | [A, ΞI, Ω, ΘH] | 4 |
IHΣOΥΣ | 6128 | 0.08 | 6 | 888 | [I, H, ΣOΥΣ] | 3 |
IHTPOΥ | 80 | 0.00 | 6 | 888 | [I, H, TPOΥ] | 3 |
IOΥΣHΣ | 57 | 0.00 | 6 | 888 | [I, OΥ, ΣHΣ] | 3 |
OΥΣIHΣ | 3 | 0.00 | 6 | 888 | [OΥ, ΣI, HΣ] | 3 |
THPIOΥ | 11 | 0.00 | 6 | 888 | [TH, PI, OΥ] | 3 |

__The Number of the Beast__

I can’t resist of using this solver for the most well known riddle, the infamous Number of the Beast, 666. It is just a
matter of a parameter that we can put on the riddle solver and see, how many Greek word candidates there are. Worth
of noting is, that in the original puzzle, where the wisdom and ability to calculate is asked, only the isopsephic value
is given and that it should be the name of a human (or man in general). Revelation 13:18 (Textus Receptus):

<blockquote> 𝜔𝛿𝜖 𝜂 𝜎o𝜑𝜄𝛼 𝜖𝜎𝜏𝜄𝜈 o 𝜖𝜒𝜔𝜈 𝜏o𝜈 𝜈o𝜐𝜈 𝜓𝜂𝜑𝜄𝜎𝛼𝜏𝜔 𝜏o𝜈 𝛼𝜌𝜄𝜃𝜇o𝜈 𝜏o𝜐 𝜃𝜂𝜌𝜄o𝜐 𝛼𝜌𝜄𝜃𝜇oς 𝛾𝛼𝜌 𝛼𝜈𝜃𝜌𝜔𝜋o𝜐
𝜖𝜎𝜏𝜄𝜈 𝜅𝛼𝜄 o 𝛼𝜌𝜄𝜃𝜇oς 𝛼𝜐𝜏o𝜐 𝜒𝜉ς </blockquote>

Translation (King James, 1611):

<blockquote> Here is wisdom. Let him that hath understanding count the number of the beast: for it is the number of
a man; and his number is Six hundred threescore and six. </blockquote>

‘‘‘python # riddle 2b wrapper function def riddle2b(x, isopsephy, letters = 0):

return nisopsephy(x, isopsephy) and (nletters(x, letters) if letters else True)

solve the riddle 2b i = df.copy() i = i[i.apply(lambda x: riddle2b(x, 666), axis=1)]

print(“Total records: %s” % len(i)) HTML(i.sort_values(0).to_html(index=False)) ‘‘‘

Total records: 592

0 | 1 | 2 | 3 | 4 | 5 | 6 |
— | — | — | — | — | — | — |
AB∆HPITIKAIΣ | 2 | 0.00 | 12 | 666 | [A, B∆H, PI, TI, KAIΣ] | 5 |

2.1. Introduction 31

https://chs.harvard.edu/CHS/article/display/6308

GRCRiddles Documentation, Release 1a

AΓNTATAI | 3 | 0.00 | 8 | 666 | [AΓN, TA, TAI] | 3 |
A∆MANTOΣ | 78 | 0.00 | 8 | 666 | [A∆, MAN, TOΣ] | 3 |

Apparent problem is there are too many results for easy examination. On the other hand, one can pick up interesting
words from the list nevertheless like: APΣENIKOIΣ, IAΠETOΣ, ΛATEINOΣ, and TEITAN of cource.

In some old papyrus and texts of early Christian fathers we find that 𝜒𝜉ς is written as 616 rather than 666. So we could
see, what are the words meeting this value:

‘‘‘python # solve the riddle 2c i = df.copy() i = i[i.apply(lambda x: riddle2b(x, 616), axis=1)]

print(“Total records: %s” % len(i)) ‘‘‘

Total records: 611

611 words to analyze!

Riddle 3

And three times three hundred and eight and forty shalt thou make complete.

This is also an example what happens if there are not enough parameters for the filter algorithm. In the original riddle
it is interesting that the name Rome is already mentioned before and after the isopsephical hint. This might be a useful
notice however, if the riddle maker didn’t want to make puzzle too hard to solve, but gave enough clues for the problem
in a very near by context.

‘‘‘python # riddle 3 wrapper function def riddle3(x, isopsephy):

return nisopsephy(x, isopsephy)

solve the riddle 3a j = df.copy() j = j[j.apply(lambda x: riddle3(x, 948), axis=1)]

print(“Total records: %s” % len(j)) ‘‘‘

Total records: 495

`python HTML(j.sort_values(3).head(6).to_html(index=False)) `

0 | 1 | 2 | 3 | 4 | 5 | 6 |
— | — | — | — | — | — | — |
PHMΩ | 2 | 0.00 | 4 | 948 | [PH, MΩ] | 2 |
MHPΩ | 296 | 0.00 | 4 | 948 | [MH, PΩ] | 2 |
ΩPMH | 13 | 0.00 | 4 | 948 | [ΩP, MH] | 2 |
HMPΩ | 31 | 0.00 | 4 | 948 | [HM, PΩ] | 2 |
PΩMH | 1891 | 0.03 | 4 | 948 | [PΩ, MH] | 2 |
MΩPH | 9 | 0.00 | 4 | 948 | [MΩ, PH] | 2 |

Thus, the word for Rome PΩMH meets the criteria of being having isopsephic value 948. It is repeated 1891 times in
the Greek corpora but would have been very difficult to spot from the 495 different words if we didn’t know what to
search for.

32 Chapter 2. Isopsephical riddles in Greek Pseudo Sibylline hexameter poetry

CHAPTER 3

Study of the results of the riddle solver

33

GRCRiddles Documentation, Release 1a

Fig. 1: Michelangelo’s Erithrean Sibyl, Sistine Chapel
34 Chapter 3. Study of the results of the riddle solver

CHAPTER 4

Appendix 1 - Store database

Minimum code to create a unique word database for the riddle solver. Download, preprocess, and store Greek corpora,
then save and retrieve word database as a DataFrame object.

pip install grcriddles

import download and preprocess function
from grcriddles import download_and_preprocess_corpora, save_database
call function to create Greek file directories and retrieve corpora data
greek_corpora = download_and_preprocess_corpora()
save and retrieve word database
df = save_database(greek_corpora)
how many records there are in the database?
print("Total records: %s" % len(df))

Output:

Total records: 1708

35

GRCRiddles Documentation, Release 1a

36 Chapter 4. Appendix 1 - Store database

CHAPTER 5

Appendix 2 - Solve riddles

Minimum code to solve isopsephical riddles in the Pseudo-Sibylline oracles. Get word database and filter by different
columns.

pip install grcriddles

from grcriddles import get_database
get words with length 9, isopsephy 1697, consonants 5,
and the first three syllables having 2 letters each
syllable count is going to be 4 with above parameters
words = get_database({0: 'Word', 1: 'Count', 3: 'Chars', 4: 'Isopsephy', 5: 'Syllables
→˓', 7: 'Vowels', 8: 'Mutes'})
a = words[words['Isopsephy'] == 1697]
a = a[a['Chars'] == 9]
a = a[a['Mutes'] == 5]
a[a.apply(lambda x: len(x['Syllables'][0]) == 2 and \

len(x['Syllables'][1]) == 2 and \
len(x['Syllables'][2]) == 2, axis=1)]

Output:

Count Chars Isopsephy Syllables Vowels Mutes
Word
AMΦEKAΛϒΨ 1 9 1697 [AM, ΦE, KA, ΛϒΨ] 4 5
ΛHΛϒΘOTΩN 1 9 1697 [ΛH, Λϒ, ΘO, TΩN] 4 5
METANAΣTΩ 1 9 1697 [ME, TA, NA, ΣTΩ] 4 5
ΣϒNΩKIΣΘH 13 9 1697 [Σϒ, NΩ, KI, ΣΘH] 4 5

get words containing AMΦEKAΛϒ stem word
words.filter(like="AMΦEKAΛϒ", axis=0)

Output:

37

GRCRiddles Documentation, Release 1a

Count Chars Isopsephy Syllables Vowels Mutes
Word
AMΦEKAΛϒΠTE 3 11 1382 [AM, ΦE, KA, Λϒ, ΠTE] 5 6
AMΦEKAΛϒΠTON 2 12 1497 [AM, ΦE, KA, Λϒ, ΠTON] 5 7
AMΦEKAΛϒΦΘH 2 11 1514 [AM, ΦE, KA, Λϒ, ΦΘH] 5 6
AMΦEKAΛϒΨ 1 9 1697 [AM, ΦE, KA, ΛϒΨ] 4 5
AMΦEKAΛϒΨAN 2 11 1748 [AM, ΦE, KA, Λϒ, ΨAN] 5 6
AMΦEKAΛϒΨE 18 10 1702 [AM, ΦE, KA, Λϒ, ΨE] 5 5
AMΦEKAΛϒΨEN 20 11 1752 [AM, ΦE, KA, Λϒ, ΨEN] 5 6

38 Chapter 5. Appendix 2 - Solve riddles

	Processing Greek corpora for the riddle solver
	Focus of the study
	Natural language processing
	Statistics

	Table data
	Bar chart
	Optional live chart
	Unique words database

	Longest words
	Highest isopsephy

	Isopsephical riddles in Greek Pseudo Sibylline hexameter poetry
	Introduction
	Riddle 1
	Riddle 2
	Riddle 3

	Study of the results of the riddle solver
	Appendix 1 - Store database
	Appendix 2 - Solve riddles

