

 Navigation

 	
 index

 	
 next |

 	Graphs.jl 0.3 documentation

Welcome to Graphs.jl’s documentation!

Graphs.jl is a Julia package that provides graph types and algorithms. The design of this package is inspired by the Boost Graph Library [http://www.boost.org/doc/libs/1_53_0/libs/graph/doc/index.html] (e.g. using standardized generic interfaces), while taking advantage of Julia’s language features (e.g. multiple dispatch).

Contents

	Main Features

	Generic Interfaces
	Basic interface

	Vertex List interface

	Edge List interface

	Vertex Map interface

	Edge Map interface

	Adjacency List interface

	Incidence List interface

	Bidirectional Incidence List interface

	Interface declaration and verification

	Vertices and Edges
	Vertex Types

	Edge Types

	Edge Properties

	Graph Types
	Edge List

	Adjacency List

	Incidence List

	Graph

	Graph Algorithms
	Graph Traversal

	Cycle detection

	Connected components

	Cliques

	Topological Sorting

	Shortest Paths

	Minimum Spanning Trees

	Flow

	Random Graphs

	Matrix Representation
	Adjacency Matrix

	Weight Matrix

	Distance Matrix

	Laplacian Matrix

	Graph Generators

	Examples

Indices and tables

	Index

	Search Page

 Copyright 2013, Dahua Lin and contributors to the package..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Graphs.jl 0.3 documentation

Main Features

An important aspect of Graphs.jl is the generic abstraction of graph concepts expressed via standardized interfaces, which allows access to a graph’s structure while hiding the implementation details. This encourages reuse of data structures and algorithms. In particular, one can write generic graph algorithms that can be applied to different graph types as long as they implement the required interface.

In addition to the generic abstraction, there are other important features:

	
	A variety of graph types tailored to different purposes

	
	generic adjacency list

	generic incidence list

	a simple graph type with compact and efficient representation

	an extended graph type that supports labels and attributes

	
	A collection of graph algorithms:

	
	graph traversal with visitor support: BFS, DFS

	cycle detection

	connected components

	topological sorting

	shortest paths: Dijkstra, Floyd-Warshall

	minimum spanning trees: Prim, Kruskal

	more algorithms are being implemented

	Matrix-based characterization: adjacency matrix, weight matrix, Laplacian matrix

	All data structures and algorithms are implemented in pure Julia, and thus they are portable.

	We paid special attention to the runtime performance. Many of the algorithms are very efficient. For example, a benchmark shows that it takes about 15 milliseconds to run the Dijkstra’s algorithm over a graph with 10 thousand vertices and 1 million edges on a macbook pro.

 Copyright 2013, Dahua Lin and contributors to the package..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Graphs.jl 0.3 documentation

Generic Interfaces

In Graphs.jl, the graph concepts are abstracted into a set of generic interfaces. Below is a detailed specification. We strongly recommend reading through this specification before you write a graph type to ensure that your graph type conforms to the interface system.

Basic interface

All graph types should be declared as a sub-type of AbstractGraph{V,E}, where V is the vertex type, and E is the edge type.

The following two functions are provided for graphs of all types.

	
vertex_type(g)

	returns the vertex type of a graph, i.e., V.

	
edge_type(g)

	returns the edge type of a graph, i.e., E.

Note: The two basic functions above have been implemented over AbstractGraph and one need not implement them for specific graph types.

In addition, the following method needs to be implemented for each graph type:

	
is_directed(g)

	returns whether g is a directed graph.

Vertex List interface

	
num_vertices(g)

	returns the number of vertices contained in g.

	
vertices(g)

	returns an iterable view/container of all vertices.

Edge List interface

	
num_edges(g)

	returns the number of edges contained in g.

	
edges(g)

	returns an iterable view/container of all edges.

	
source(e, g)

	returns the source vertex of an edge e in graph g.

	
target(e, g)

	returns the target vertex of an edge e in graph g.

Vertex Map interface

	
vertex_index(v, g)

	returns the index of a vertex v in graph g. Each vertex
must have a unique index between 1 and num_vertices.

Edge Map interface

	
edge_index(e, g)

	returns the index of an edge e in graph g. Each edge
must have a unique index between 1 and num_edges.

Adjacency List interface

	
out_degree(v, g)

	returns the number of outgoing neighbors from vertex v in graph g.

	
out_neighbors(v, g)

	returns an iterable view/container of all outgoing neighbors of vertex v in graph g.

The following example prints all vertices of a graph as well as its neighbors

for u in vertices(g)
 print("$u: ")
 for v in out_neighbors(u, g)
 println("$v ")
 end
 println()
end

Incidence List interface

	
out_degree(v, g)

	returns the number of outgoing edges from vertex v in graph g.

	
out_edges(v, g)

	returns an iterable view/container of outgoing edges from vertex v in graph g.

	
source(e, g)

	returns the source vertex of an edge e in graph g.

	
target(e, g)

	returns the target vertex of an edge e in graph g.

The following example prints all vertices of a graph as well as its incidence edges

for u in vertices(g)
 print("$u: ")
 for e in out_edges(u, g)
 v = target(e, g)
 println("($u -- $v) ")
 end
 println()
end

Bidirectional Incidence List interface

This interface refines the Incidence List and requires the implementation of two additional methods:

	
in_degree(v, g)

	returns the number of incoming edges to vertex v in graph g.

	
in_edges(v, g)

	returns an iterable view/container of the incoming edges to vertex v in graph g.

Interface declaration and verification

It is important to note that a specific graph type can implement multiple interfaces. If a method is required to be implemented for two interfaces (e.g., out_degree in both adjacency list an incidence list), this method need only be implemented once.

Julia does not provide a builtin mechanism for interface declaration. To declare that a specific graph type implements certain interfaces, one can use the macro @graph_implements. For example, to declare that a graph type G implements vertex list and adjacency list, one can write:

@graph_implements G vertex_list adjacency_list

This statement instantiates the following methods:

implements_vertex_list(::G) = true
implements_adjacency_list(::G) = true

The following is a list of supported interface names

	vertex_list

	edge_list

	vertex_map

	edge_map

	adjacency_list

	incidence_list

	bidirectional_adjacency_list

	bidirectional_incidence_list

In a function that implements a generic graph algorithm, one can use the macro @graph_requires to verify whether the input graph implements the required interfaces. A typical graph algorithm function may look like follows

function myfunc(g::AbstractGraph, params)
 @graph_requires g vertex_list adjacency_list
 ...
end

Here, the @graph_requires statement checks whether the graph g implements the interfaces for vertex_list and adjacency_list, and throws exceptions if g does not satisfy the requirements.

 Copyright 2013, Dahua Lin and contributors to the package..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Graphs.jl 0.3 documentation

Vertices and Edges

Vertex Types

A vertex can be of any Julia type. For example, it can be an integer, a character, or a string.

This package provides two specific vertex types: KeyVertex and ExVertex. The definition of KeyVertex is:

immutable KeyVertex{K}
 index::Int
 key::K
end

Here, each vertex has a unique index and a key value of a user-chosen type (e.g. a string).

The definition of ExVertex is:

type ExVertex
 index::Int
 label::UTF8String
 attributes::Dict{UTF8String,Any}
end

The ExVertex type allows one to attach a label as well as other attributes to a vertex. The constructor of this type takes an index and a label string as arguments. The following code shows how one can create an instance of ExVertex and attach a price to it.

v = ExVertex(1, "vertex-a")
v.attributes["price"] = 100.0

The ExVertex type implements a vertex_index function, as

	
vertex_index(v)

	returns the index of the vertex v.

SimpleGraph is a special case where the vertices are of type Int and store both their index and identity. In all other graphs, Int vertices are unordered indices.

Edge Types

This package provides two edge types: Edge and ExEdge. The former is a basic edge type that simply encapsulates the source and target vertices of an edge, while the latter allows one to specify attributes.

The definition of Edge is given by

immutable Edge{V}
 index::Int
 source::V
 target::V
end

typealias IEdge Edge{Int}

The definition of ExEdge is given by

type ExEdge{V}
 index::Int
 source::V
 target::V
 attributes::Dict{UTF8String,Any}
end

ExEdge has two constructors, one takes index, source, and target as arguments, while the other use all four fields.

One can either construct an edge directly using the constructors, or use the add_edge methods for graphs, which can automatically assign an index to a new edge.

Both edge types implement the following methods:

	
edge_index(e)

	returns the index of the edge e.

	
source(e)

	returns the source vertex of the edge e.

	
target(e)

	returns the target vertex of the edge e.

A custom edge type E{V} which is constructible by E(index::Int, s::V, t::V) and implements the above methods is usable in the VectorIncidenceList parametric type. Construct such a list with inclist(V,E{V}), where E and V are your vertex and edge types. See test/inclist.jl for an example.

Edge Properties

Many algorithms use a property of an edge such as length, weight,
flow, etc. as input. As the algorithms do not mandate any structure
for the edge types, these edge properties can be passed through to the
algorithm by an EdgePropertyInspector. An
EdgePropertyInspector when passed to the edge_property method
along with an edge and a graph, will return that property of an edge.

All edge property inspectors should be declared as a subtype of
AbstractEdgePropertyInspector{T} where T is the type of the
edge property. The edge propery inspector should respond to the
following methods.

Three edge property inspectors are provided
ConstantEdgePropertyInspector, VectorEdgePropertyInspector and
AttributeEdgePropertyInspector.

ConstantEdgePropertyInspector(c) constructs an edge property
inspector that returns the constant c for each edge.

VectorEdgePropertyInspector(v) constructs an edge property
inspector that returns v[edge_index(e, g)]. It requires that
g implement the edge_map interface.

AttributeEdgePropertyInspector(name) constructs an edge property
inspector that returns the named attribute from an ExEdge.
AttributeEdgePropertyInspector requires that the graph implements
the edge_map interface.

 Copyright 2013, Dahua Lin and contributors to the package..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Graphs.jl 0.3 documentation

Graph Types

This package provides several graph types that implement different subsets of interfaces.
In particular, it has four graph types:

	GenericEdgeList

	GenericAdjacencyList

	GenericIncidenceList

	GenericGraph

All of these types are parametric. One can easily derive customized graph types using different type parameters.

Edge List

GenericEdgeList implements the edge list representation of a graph, where a list of all edges is maintained by each graph.

Here is the definition of GenericEdgeList:

type EdgeList{V,E,VList,EList} <: AbstractGraph{V, E}

It has four type parameters:

	V: the vertex type

	E: the edge type

	VList: the type of the vertex list

	EList: the type of the edge list

The package defines the following aliases for convenience:

typealias SimpleEdgeList{E} GenericEdgeList{Int,E,UnitRange{Int},Vector{E}}
typealias EdgeList{V,E} GenericEdgeList{V,E,Vector{V},Vector{E}}

GenericEdgeList implements the following interfaces

	vertex_list

	vertex_map

	edge_list

	edge_map

Specifically, it implements the following methods:

	
is_directed(g)

	returns whether g is a directed graph.

	
num_vertices(g)

	returns the number of vertices contained in g.

	
vertices(g)

	returns an iterable view/container of all vertices.

	
num_edges(g)

	returns the number of edges contained in g.

	
vertex_index(v, g)

	returns the index of a vertex v in graph g

	
edges(g)

	returns the list of all edges

	
edge_index(e, g)

	returns the index of e in graph g.

In addition, it implements following methods for construction:

	
simple_edgelist(nv, edges[, is_directed=true])

	constructs a simple edge list with nv vertices and the given list of edges.

	
edgelist(vs, edges[, is_directed=true])

	constructs an edge list given lists of vertices and edges.

Adjacency List

GenericAdjacencyList implements the adjacency list representation of a graph, where each vertex maintains a list of neighbors (i.e. adjacent vertices).

Here is the definition of GenericAdjacencyList:

type GenericAdjacencyList{V, VList, AdjList} <: AbstractGraph{V, Edge{V}}

It has three type parameters:

	V: the vertex type

	VList: the type of vertex list

	AdjList: the type of the adjacency list. Let a be an instance of AdjList, and i be the index of a vertex, then a[i] must be an iterable container of the neighbors.

The package defines following aliases for convenience:

typealias SimpleAdjacencyList GenericAdjacencyList{Int, UnitRange{Int}, Vector{Vector{Int}}}
typealias AdjacencyList{V} GenericAdjacencyList{V, Vector{V}, Vector{Vector{V}}}

GenericAdjacencyList implements the following interfaces

	vertex_list

	vertex_map

	adjacency_list

Specifically, it implements the following methods:

	
is_directed(g)

	returns whether g is a directed graph.

	
num_vertices(g)

	returns the number of vertices contained in g.

	
vertices(g)

	returns an iterable view/container of all vertices.

	
num_edges(g)

	returns the number of edges contained in g.

	
vertex_index(v, g)

	returns the index of a vertex v in graph g

	
out_degree(v, g)

	returns the number of outgoing neighbors from vertex v in graph g.

	
out_neighbors(v, g)

	returns an iterable view/container of all outgoing neighbors of vertex v in graph g.

In addition, it implements following methods for construction:

	
simple_adjlist(nv[, is_directed=true])

	constructs a simple adjacency list with nv vertices and no edges (initially).

	
adjlist(V[, is_directed=true])

	constructs an empty adjacency list of vertex type V.

	
adjlist(vs[, is_directed=true])

	constructs an adjacency list with a vector of vertices given by vs.

	
add_vertex!(g, v)

	adds a vertex v. This function applies only to graph of type AdjacencyList.
It returns the added vertex.

If the vertex type is KeyVertex{K}, then the second argument here can be the key value, and the function will constructs a vertex and assigns an index.

	
add_edge!(g, u, v)

	adds an edge between u and v, such that v becomes an outgoing neighbor of u. If g is undirected, then u is also added to the neighbor list of v.

Incidence List

GenericIncidenceList implements the incidence list representation of a graph, where each vertex maintains a list of outgoing edges.

Here is the definition of GenericIncidenceList:

type GenericIncidenceList{V, E, VList, IncList} <: AbstractGraph{V, E}

It has four type parameters:

	V: the vertex type

	E: the edge type

	VList: the type of vertex list

	IncList: the type of incidence list. Let a be such a list, then a[i] should be an iterable container of edges.

The package defines following aliases for convenience:

typealias SimpleIncidenceList GenericIncidenceList{Int, IEdge, UnitRange{Int}, Vector{Vector{IEdge}}}
typealias IncidenceList{V,E} GenericIncidenceList{V, E, Vector{V}, Vector{Vector{E}}}

GenericIncidenceList implements the following interfaces:

	vertex_list

	vertex_map

	edge_map

	adjacency_list

	incidence_list

Specially, it implements the following methods:

	
is_directed(g)

	returns whether g is a directed graph.

	
num_vertices(g)

	returns the number of vertices contained in g.

	
vertices(g)

	returns an iterable view/container of all vertices.

	
num_edges(g)

	returns the number of edges contained in g.

	
vertex_index(v, g)

	returns the index of a vertex v in graph g

	
edge_index(e, g)

	returns the index of an edge e in graph g.

	
source(e, g)

	returns the source vertex of an edge e in graph g.

	
target(e, g)

	returns the target vertex of an edge e in graph g.

	
out_degree(v, g)

	returns the number of outgoing neighbors from vertex v in graph g.

	
out_edges(v, g)

	returns the number of outgoing edges from vertex v in graph g.

	
out_neighbors(v, g)

	returns an iterable view/container of all outgoing neighbors of vertex v in graph g.

Note: out_neighbors here is implemented based on out_edges via a proxy type. Therefore, it may be less efficient than the counterpart for GenericAdjacencyList.

In addition, it implements following methods for construction:

	
simple_inclist(nv[, is_directed=true])

	constructs a simple incidence list with nv vertices and no edges (initially).

	
inclist(V[, is_directed=true])

	constructs an empty incidence list of vertex type V. The edge type is Edge{V}.

	
inclist(vs[, is_directed=true])

	constructs an incidence list with a list of vertices vs. The edge type is Edge{V}.

	
inclist(V, E[, is_directed=true])

	constructs an empty incidence list of vertex type V. The edge type is E.

	
inclist(vs, E[, is_directed=true])

	constructs an incidence list with a list of vertices vs. The edge type is E.

	
add_vertex!(g, x)

	adds a vertex. Here, x can be of a vertex type, or can be made into a vertex using make_vertex(g, x).

	
add_edge!(g, e)

	adds an edge e to the graph.

	
add_edge!(g, u, v)

	adds an edge between u and v. This applies when make_edge(g, u, v) is defined for the input types.

Graph

GenericGraph provides a complete interface by integrating edge list, bidirectional adjacency list, and bidirectional incidence list into one type. The definition is given by

type GenericGraph{V,E,VList,EList,IncList} <: AbstractGraph{V,E}

It has six type parameters:

	V: the vertex type

	E: the edge type

	VList: the type of vertex list

	EList: the type of edge list

	IncList: the type of incidence list

It also defines SimpleGraph as follows

typealias SimpleGraph GenericGraph{Int,IEdge,UnitRange{Int},Vector{IEdge},Vector{Vector{IEdge}}}

and a more full-fledged type Graph as follows

typealias Graph{V,E} GenericGraph{V,E,Vector{V},Vector{E},Vector{Vector{E}}}

GenericGraph implements the following interfaces:

	vertex_list

	edge_list

	vertex_map

	edge_map

	adjacency_list

	incidence_list

	bidirectional_adjacency_list

	bidirectional_incidence_list

Specifically, it implements the following methods:

	
is_directed(g)

	returns whether g is a directed graph.

	
num_vertices(g)

	returns the number of vertices contained in g.

	
vertices(g)

	returns an iterable view/container of all vertices.

	
num_edges(g)

	returns the number of edges contained in g.

	
edges(g)

	returns an iterable view/container of all edges.

	
vertex_index(v, g)

	returns the index of a vertex v in graph g

	
edge_index(e, g)

	returns the index of a vertex e in graph g.

	
source(e, g)

	returns the source vertex of an edge e in graph g.

	
target(e, g)

	returns the target vertex of an edge e in graph g.

	
out_degree(v, g)

	returns the number of outgoing neighbors from vertex v in graph g.

	
out_edges(v, g)

	returns the number of outgoing edges from vertex v in graph g.

	
out_neighbors(v, g)

	returns an iterable view/container of all outgoing neighbors of vertex v in graph g.

	
in_degree(v, g)

	returns the number of incoming neighbors to vertex v in graph g.

	
in_edges(v, g)

	returns the number of incoming edges to vertex v in graph g.

	
in_neighbors(v, g)

	returns an iterable view/container of all incoming neighbors to vertex v in graph g.

In addition, it also implements the following methods for construction:

	
simple_graph(nv[, is_directed=true])

	constructs an instance of SimpleGraph with nv vertices and no edges (initially).

	
graph(vertices, edges[, is_directed=true])

	constructs an instance of Graph with given vertices and edges.

	
add_vertex!(g, x)

	adds a vertex. Here, x can be of a vertex type, or can be made into a vertex using make_vertex(g, x).

	
add_edge!(g, e)

	adds an edge e to the graph.

	
add_edge!(g, u, v)

	adds an edge between u and v. This applies when make_edge(g, u, v) is defined for the input types.

 Copyright 2013, Dahua Lin and contributors to the package..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Graphs.jl 0.3 documentation

Graph Algorithms

Graphs.jl implements a collection of classic graph algorithms:

	graph traversal with visitor support: BFS, DFS, MAS

	cycle detection

	connected components

	topological sorting

	shortest paths: Dijkstra, Floyd-Warshall, A*

	minimum spanning trees: Prim, Kruskal

	flow: Minimum Cut

	random graph generation

	more algorithms are being implemented

Graph Traversal

Graph traversal refers to a process that traverses vertices of a graph following certain order (starting from user-input sources). This package implements three traversal schemes: breadth-first, depth-first, and Maximum-Adjacency.

During traveral, each vertex maintains a status (also called color), which is an integer value defined as below:

	color = 0: the vertex has not been encountered (i.e. discovered)

	color = 1: the vertex has been discovered and remains open

	color = 2: the vertex has been closed (i.e. all its neighbors have been examined)

	
traverse_graph(graph, alg, source, visitor[, colormap])

	

	Parameters:	
	graph – The input graph, which must implement vertex_map and adjacency_list.

	alg – The algorithm of traveral, which can be either BreadthFirst() or DepthFirst().

	source – The source vertex (or vertices). The traversal starts from here.

	visitor – The visitor which performs certain operations along the traversal.

	colormap – An integer vector that indicates the status of each vertex. If this is input by the user, the status will be written to the input vector, otherwise an internal color vector will be created.

Here, visitor must be an instance of a sub-type of AbstractGraphVisitor. A specific graph visitor type can choose to implement some or all of the following methods.

	
discover_vertex!(visitor, v)

	invoked when a vertex v is encountered for the first time. This function should return whether to continue traversal.

	
open_vertex!(visitor, v)

	invoked when a vertex v is about to examine v‘s neighbors.

	
examine_neighbor!(visitor, u, v, color, ecolor)

	invoked when a neighbor/out-going edge is examined. Here color is the status of v, and ecolor is the status of the outgoing edge. Edge statuses are currently only considered by depth-first search.

	
close_vertex!(visitor, v)

	invoked when all neighbors of v has been examined.

If a method of these is not implemented, it will automatically fallback to no-op. The package provides some pre-defined visitor types:

	TrivialGraphVisitor: all methods are no-op.

	VertexListVisitor: it has a field vertices, which is a vector comprised of vertices in the order of being discovered.

	LogGraphVisitor: it prints message to show the progress of the traversal.

Many graph algorithms can be implemented based on graph traversal through certain visitors or by using the colormap in certain ways. For example, in this package, topological sorting, connected components, and cycle detection are all implemented using traverse_graph with specifically designed visitors.

Cycle detection

In graph theory, a cycle is defined to be a path that starts from some vertex v and ends up at v.

	
test_cyclic_by_dfs(g)

	Tests whether a graph contains a cycle through depth-first search. It returns true when it finds a cycle, otherwise false. Here, g must implement vertex_list, vertex_map, and adjacency_list.

Connected components

In graph theory, a connected component (in an undirected graph) refers to a subset of vertices such that there exists a path between any pair of them.

	
connected_components(g)

	Returns a vector of components, where each component is represented by a vector of vertices. Here, g must be an undirected graph, and implement vertex_list, vertex_map, and adjacency_list.

Cliques

In graph theory, a clique in an undirected graph is a subset of its vertices
such that every two vertices in the subset are connected by an edge. A maximal
clique is the largest clique containing a given node.

	
maximal_cliques(g)

	Returns a vector of maximal cliques, where each maximal clique is represented by a vector of vertices. Here, g must be an undirected graph, and implement vertex_list and adjacency_list.

Topological Sorting

Topological sorting of an acyclic directed graph is a linear ordering of vertices, such that for each directed edge (u, v), u always comes before v in the ordering.

	
topological_sort_by_dfs(g)

	Returns a topological sorting of the vertices in g in the form of a vector of vertices. Here, g may be directed or undirected, and implement vertex_list, vertex_map, and adjacency_list.

Shortest Paths

This package implements three classic algorithms for finding shortest paths:
Dijkstra’s algorithm, the Floyd-Warshall algorithm, and the A*
algorithm. We plan to implement the Bellman-Ford algorithm and Johnson’s
algorithm in the near future.

Dijkstra’s Algorithm

	
dijkstra_shortest_paths(graph, edge_dists, source[, visitor])

	Performs Dijkstra’s algorithm to find shortest paths to all vertices from input sources.

	Parameters:	
	graph – The input graph

	edge_dists – The vector of edge distances or an edge
property inspector.

	source – The source vertex (or vertices)

	visitor – An visitor instance

	Returns:	An instance of DijkstraStates that encapsulates the results.

Here, graph can be directed or undirected. It must implement
vertex_map, edge_map and incidence_list. edge_dists is optional; if not specified,
default distances of 1 are used for each edge.

The following is an example that shows how to use this function:

construct a graph and the edge distance vector

g = simple_inclist(5)

inputs = [# each element is (u, v, dist)
 (1, 2, 10.),
 (1, 3, 5.),
 (2, 3, 2.),
 (3, 2, 3.),
 (2, 4, 1.),
 (3, 5, 2.),
 (4, 5, 4.),
 (5, 4, 6.),
 (5, 1, 7.),
 (3, 4, 9.)]

ne = length(inputs)
dists = zeros(ne)

for i = 1 : ne
 a = inputs[i]
 add_edge!(g, a[1], a[2]) # add edge
 dists[i] = a[3] # set distance
end

r = dijkstra_shortest_paths(g, dists, 1)

@assert r.parents == [1, 3, 1, 2, 3]
@assert r.dists == [0., 8., 5., 9., 7.]

The result has several fields, among which the following are most useful:

	parents[i]: the parent vertex of the i-th vertex. The parent of each source vertex is itself.

	hasparent[i]: true if the i-th vertex has a parent, and false otherwise. When hasparent[i] == false, it means that the vertex at index i isn’t reachable from any source. Note that hasparent[i] == true for all source vertices.

	dists[i]: the minimum distance from the i-th vertex to source.

The user can (optionally) provide a visitor that perform operations along with the algorithm. The visitor must be an instance of a sub type of AbstractDijkstraVisitor, which may implement part of all of the following methods.

	
discover_vertex!(visitor, u, v, d)

	Invoked when a new vertex v is first discovered (from the parent u). d is the initial distance from v to source.

	
include_vertex!(visitor, u, v, d)

	Invoked when the distance of a vertex is determined (at the point v is popped from the heap). This function should return whether to continue the procedure. One can use a visitor to terminate the algorithm earlier by letting this function return false under certain conditions.

	
update_vertex!(visitor, u, v, d)

	Invoked when the distance to a vertex is updated (relaxed).

	
close_vertex!(visitor, u, v, d)

	Invoked when a vertex is closed (all its neighbors have been examined).

	
enumerate_paths(vertices, parent_indices[, dest])

	Returns an array of vectors (containing vertices), whose i-th element corresponds to the path from a source to vertex dest[i]. Empty vectors indicate vertices that are unreachable from the source. dest can be a subset of indices, or left unspecified (in which case, all the indices will be considered). If dest is a single index, then the result is just an array of vertices, corresponding to the path from a source to dest.

	
enumerate_indices(parent_indices[, dest])

	Returns an array of indices corresponding to the vertices returned by enumerate_paths(vertices, parent_indices[, dest])

The following is an example that shows how to use this function:

julia> g4 = Graphs.inclist([4,5,6,7],is_directed=true)
julia> add_edge!(g4,4,5); add_edge!(g4,4,6); add_edge!(g4,5,6); add_edge!(g4,6,7)
julia> s4 = dijkstra_shortest_paths(g4,5)
julia> sps = enumerate_indices(s4.parent_indices) # dest: all indices
4-element Array{Array{Int64,1},1}:
 []
 [2]
 [2,3]
 [2,3,4]

julia> enumerate_indices(s4.parent_indices, [2,4]) # dest: subset of indices
2-element Array{Array{Int64,1},1}:
 [2]
 [2,3,4]

julia> enumerate_indices(s4.parent_indices, 4) # dest: single index
3-element Array{Int64,1}:
 2
 3
 4

julia> enumerate_paths(vertices(g4), s4.parent_indices) # dest: all vertices
4-element Array{Array{Int64,1},1}:
 []
 [5]
 [5,6]
 [5,6,7]

julia> enumerate_paths(vertices(g4), s4.parent_indices, [2,4]) # dest: subset of vertices
2-element Array{Array{Int64,1},1}:
 [5]
 [5,6,7]

julia> enumerate_paths(vertices(g4), s4.parent_indices, 4) # dest: single vertex
3-element Array{Int64,1}:
 5
 6
 7

Remark: enumerate_paths and enumerate_indices are applicable to the results from both dijkstra_shortest_paths and bellman_ford_shortest_paths.

Bellman Ford Algorithm

	
bellman_ford_shortest_paths(graph, edge_dists, source)

	Performs Bellman Ford algorithm to find shortest paths to all vertices from input sources.

	Parameters:	
	graph – The input graph

	edge_dists – The vector of edge distances or an edge
property inspector.

	source – The source vertex (or vertices)

	Returns:	An instance of BellmanFordStates that encapsulates the results.

Here, graph can be directed or undirected. Weights can be negative
for a directed graph. It must implement
vertex_map, edge_map and incidence_list. If there is a
negative weight cycle an exception of NegativeCycleError is thrown.

The result has several fields, among which the following are most useful:

	parents[i]: the parent vertex of the i-th vertex. The parent of each source vertex is itself.

	dists[i]: the minimum distance from the i-th vertex to source.

	
has_negative_edge_cycle(graph, edge_dists)

	
Tests if the graph has a negative weight cycle.

	Parameters:	
	graph – The input graph

	edge_dists – The vector of edge distances or an edge
property inspector.

	Returns:	true if there is a negative weight cycle, false otherwise.e

Floyd-Warshall’s algorithm

	
floyd_warshall(dists)

	Performs Floyd-Warshall algorithm to compute shortest path lengths between each pair of vertices.

	Parameters:	dists – The edge distance matrix.

	Returns:	The matrix of shortest path lengths.

	
floyd_warshall!(dists)

	Performs Floyd-Warshall algorithm inplace, updating an edge distance matrix into a matrix of shortest path lengths.

	
floyd_warshall!(dists, nexts)

	Performs Floyd-Warshall algorithm inplace, and writes the next-hop matrix. When this function finishes, nexts[i,j] is the next hop of i along the shortest path from i to j. One can reconstruct the shortest path based on this matrix.

A*

	
shortest_path(graph, dists, s, t[, heuristic])

	Find the shortest path between vertices s and t of graph using Hart, Nilsson and Raphael’s A* algorithm [http://en.wikipedia.org/wiki/A*_search_algorithm].

	Parameters:	
	graph – the input graph

	dists – the edge distance matrix or an edge property inspector

	s – the start vertex

	t – the end vertex

	heuristic – a function underestimating the distance from its input node to t.

	Returns:	an array of edges representing the shortest path.

Minimum Spanning Trees

This package implements two algorithm to find a minimum spanning tree of a graph: Prim’s algorithm and Kruskal’s algorithm.

Prim’s algorithm

Prim’s algorithm finds a minimum spanning tree by growing from a root vertex, adding one edge at each iteration.

	
prim_minimum_spantree(graph, eweights, root)

	Perform Prim’s algorithm to find a minimum spanning tree.

	Parameters:	
	graph – the input graph

	eweights – the edge weights (a vector or an edge property inspector)

	root – the root vertex

	Returns:	(re, rw), where re is a vector of edges that constitute the resultant tree, and rw is the vector of corresponding edge weights.

Kruskal’s algorithm

Kruskal’s algorithm finds a minimum spanning tree (or forest) by gradually uniting disjoint trees.

	
kruskal_minimum_spantree(graph, eweights[, K=1])

	

	Parameters:	
	graph – the input graph

	eweights – the edge weights (a vector or an edge property inspector)

	K – the number of trees in the resultant forest. If K = 1, it ends up with a tree. This argument is optional. By default, it is set to 1.

	Returns:	(re, rw), where re is a vector of edges that constitute the resultant tree, and rw is the vector of corresponding edge weights.

Flow

This package implements Simple Minimum Cut

Simple Minimum Cut

Stoer’s simple minimum cut gets the minimum cut of an undirected graph.

	
min_cut(graph[, eweights])

	

	Parameters:	
	graph – the input graph

	eweights – the edge weights (a vector or an edge property inspector). This argument is optional. If not given edges are weight “1”

	Returns:	(parity, bestcut), where parity is a vector of boolean values that determines the partition and bestcut is the weight of the cut that makes this partition.

Random Graphs

Erdős–Rényi graphs

The Erdős–Rényi model [https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model] sets an edge between each pair of vertices with equal
probability, independently of the other edges.

	
erdos_renyi_graph(g, n, p[; has_self_loops=false])

	Add edges between vertices 1:n of graph g randomly, adding each possible edge with probability p independently of all others.

	Parameters:	
	g – the input graph

	n – the number of vertices between which to add edges

	p – the probability with which to add each edge

	has_self_loops – whether to consider edges v -> v.

	Returns:	the graph g.

	
erdos_renyi_graph(n, p[, has_self_loops=false])

	Convenience function to construct an n-vertex Erdős–Rényi graph as an incidence list.

Watts-Strogatz graphs

The Watts–Strogatz
model [https://en.wikipedia.org/wiki/Watts_and_Strogatz_model] is a random
graph generation model that produces graphs with small-world properties,
including short average path lengths and high clustering.

	
watts_strogatz_graph(g, n, k, beta)

	Adjust the edges between vertices 1:n of the graph g in accordance with the Watts-Strogatz model.

	Parameters:	
	g – the input graph

	n – the number of vertices between which to adjust edges

	k – the base degree of each vertex (n > k, k >= 2, k must be even.)

	beta – the probability of each edge being “rewired”.

	Returns:	the graph g.

	
watts_strogatz_graph(n, k, beta)

	Convenience function to construct an n-vertex Watts-Strogatz graph as an incidence list.

 Copyright 2013, Dahua Lin and contributors to the package..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Graphs.jl 0.3 documentation

Matrix Representation

Matrix representation of graphs are widely used in algebraic analysis of graphs. This package comprises functions that derive matrix representation of an input graph.

Adjacency Matrix

An adjacency matrix is defined as

[image: A(u, v) = \begin{cases} 1 & (u, v) \in E \\ 0 & \text{otherwise} \end{cases}]

	
adjacency_matrix(graph)

	Constructs an adjacency matrix for a graph.

Weight Matrix

A weight matrix is defined as

[image: W(u, v) = \begin{cases} w(e) & e = (u, v) \in E \\ 0 & \text{otherwise} \end{cases}]

	
weight_matrix(graph, eweights)

	Constructs a weight matrix from a graph and a vector of edge weights. Here, g must implement edge_map and (edge_list or incidence_list).

Distance Matrix

A distance matrix is defined as

[image: W(u, v) = \begin{cases} 0 & u = v \\ w(e) & u \ne v \text{ and } \{u, v\} \in E \\ Inf & \text{otherwise} \end{cases}]

	
distance_matrix(graph, eweights)

	Constructs a distance matrix from a graph and a vector of edge weights. Here, g must implement edge_map and (edge_list or incidence_list).

Laplacian Matrix

Laplacian matrix is significant in algebraic graph theory. The eigenvalues of a Laplacian matrix characterizes important properties of a graph. For an undirected graph, it is defined as:

[image: L(u, v) = \begin{cases} deg(u) & u = v \\ -1 & u \ne v \text{ and } \{u, v\} \in E \\ 0 & \text{otherwise} \end{cases}]

	
laplacian_matrix(graph)

	Constructs a Laplacian matrix over an undirected graph.

For graphs with weighted edges, we have

	
laplacian_matrix(graph, eweights)

	Constructs a weighted Laplacian matrix from an undirected graph with a vector of edge weights.

 Copyright 2013, Dahua Lin and contributors to the package..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Graphs.jl 0.3 documentation

Graph Generators

Graphs.jl implements a collection of classic graph generators, each of which returns a simple_graph:

	
static_complete_graph(n[, is_directed=true])

	Creates a (default directed) complete graph with n vertices. A complete graph has edges connecting each pair of vertices.

	
simple_star_graph(n[, is_directed=true])

	Creates a (default directed) star graph with n vertices. A star graph has a central vertex with edges to each other vertex.

	
simple_path_graph,(n[, is_directed=true])

	Creates a (default directed) path graph with n vertices. A path graph connects each successive vertex by a single edge.

	
simple_wheel_graph(n[, is_directed=true])

	Creates a (default directed) wheel graph with n vertices. A wheel graph is a star graph with the outer vertices connected via a closed path graph.

	
simple_diamond_graph()

	A diamond graph [http://en.wikipedia.org/wiki/Diamond_graph].

	
simple_bull_graph()

	A bull graph [https://en.wikipedia.org/wiki/Bull_graph].

	
simple_chvatal_graph()

	A Chvátal graph [https://en.wikipedia.org/wiki/Chvátal_graph].

	
simple_cubical_graph()

	A Platonic cubical graph [https://en.wikipedia.org/wiki/Platonic_graph].

	
simple_desargues_graph()

	A Desargues graph [https://en.wikipedia.org/wiki/Desargues_graph].

	
simple_dodecahedral_graph()

	A Platonic dodecahedral graph [https://en.wikipedia.org/wiki/Platonic_graph].

	
simple_frucht_graph()

	A Frucht graph [https://en.wikipedia.org/wiki/Frucht_graph].

	
simple_heawood_graph()

	A Heawood graph [https://en.wikipedia.org/wiki/Heawood_graph].

	
simple_house_graph()

	A graph mimicing the classic outline of a house.

	
simple_house_x_graph()

	A house graph, with two edges crossing the bottom square.

	
simple_icosahedral_graph()

	A Platonic icosahedral graph [https://en.wikipedia.org/wiki/Platonic_graph].

	
simple_krackhardt_kite_graph()

	A Krackhardt-Kite social network [http://mathworld.wolfram.com/KrackhardtKite.html].

	
moebius_kantor_graph()

	A Möbius-Kantor graph [http://en.wikipedia.org/wiki/Möbius–Kantor_graph].

	
simple_octahedral_graph()

	A Platonic octahedral graph [https://en.wikipedia.org/wiki/Platonic_graph].

	
simple_pappus_graph()

	A Pappus graph [http://en.wikipedia.org/wiki/Pappus_graph].

	
simple_petersen_graph()

	A Petersen graph [http://en.wikipedia.org/wiki/Petersen_graph].

	
simple_sedgewick_maze_graph()

	A simple maze graph used in Sedgewick’s Algorithms in C++: Graph Algorithms (3rd ed.)

	
simple_tetrahedral_graph()

	A Platonic tetrahedral graph [https://en.wikipedia.org/wiki/Platonic_graph].

	
simple_truncated_cube_graph()

	A skeleton of the truncated cube graph [https://en.wikipedia.org/wiki/Truncated_cube].

	
simple_truncated_tetrahedron_graph()

	A skeleton of the truncated tetrahedron graph [https://en.wikipedia.org/wiki/Truncated_tetrahedron].

	
simple_tutte_graph()

	A Tutte graph [https://en.wikipedia.org/wiki/Tutte_graph].

 Copyright 2013, Dahua Lin and contributors to the package..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Graphs.jl 0.3 documentation

Examples

To help you to get started with Graphs.jl, here is a simple example:

julia> using Graphs

julia> g = simple_graph(3)
Directed Graph (3 vertices, 0 edges)

julia> add_edge!(g, 1, 2)
edge [1]: 1 -- 2

julia> add_edge!(g, 3, 2)
edge [2]: 3 -- 2

julia> add_edge!(g, 3, 1)
edge [3]: 3 -- 1

julia> plot(g)

[image: _images/simple_graph.png]

We can also generate simple graphs with graph generators. For example:

julia> g2 = simple_cubical_graph()
Undirected Graph (8 vertices, 12 edges)

and check the number of vertices and edges with:

julia> num_vertices(g2)
8

julia> num_edges(g2)
12

We can use an adjacency matrix to represent g2:

julia> adjacency_matrix(g2)
8x8 Array{Bool,2}:
false true false true true false false false
true false true false false false false true
false true false true false false true false
true false true false false true false false
true false false false false true false true
false false false true true false true false
false false true false false true false true
false true false false true false true false

 Copyright 2013, Dahua Lin and contributors to the package..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Graphs.jl 0.3 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | S
 | T
 | V
 | W

A

 	

 	adjacency_matrix() (built-in function)

 	

 	adjlist() (built-in function), [1]

B

 	

 	bellman_ford_shortest_paths() (built-in function)

C

 	

 	connected_components() (built-in function)

D

 	

 	dijkstra_shortest_paths() (built-in function)

 	

 	distance_matrix() (built-in function)

E

 	

 	edge_index() (built-in function), [1], [2], [3], [4]

 	edge_type() (built-in function)

 	edgelist() (built-in function)

 	edges() (built-in function), [1], [2]

 	

 	enumerate_indices() (built-in function)

 	enumerate_paths() (built-in function)

 	erdos_renyi_graph() (built-in function), [1]

F

 	

 	floyd_warshall() (built-in function)

G

 	

 	graph() (built-in function)

H

 	

 	has_negative_edge_cycle() (built-in function)

I

 	

 	in_degree() (built-in function), [1]

 	in_edges() (built-in function), [1]

 	in_neighbors() (built-in function)

 	

 	inclist() (built-in function), [1], [2], [3]

 	is_directed() (built-in function), [1], [2], [3], [4]

K

 	

 	kruskal_minimum_spantree() (built-in function)

L

 	

 	laplacian_matrix() (built-in function), [1]

M

 	

 	maximal_cliques() (built-in function)

 	min_cut() (built-in function)

 	

 	moebius_kantor_graph() (built-in function)

N

 	

 	num_edges() (built-in function), [1], [2], [3], [4]

 	

 	num_vertices() (built-in function), [1], [2], [3], [4]

O

 	

 	out_degree() (built-in function), [1], [2], [3], [4]

 	out_edges() (built-in function), [1], [2]

 	

 	out_neighbors() (built-in function), [1], [2], [3]

P

 	

 	prim_minimum_spantree() (built-in function)

S

 	

 	shortest_path() (built-in function)

 	simple_adjlist() (built-in function)

 	simple_bull_graph() (built-in function)

 	simple_chvatal_graph() (built-in function)

 	simple_cubical_graph() (built-in function)

 	simple_desargues_graph() (built-in function)

 	simple_diamond_graph() (built-in function)

 	simple_dodecahedral_graph() (built-in function)

 	simple_edgelist() (built-in function)

 	simple_frucht_graph() (built-in function)

 	simple_graph() (built-in function)

 	simple_heawood_graph() (built-in function)

 	simple_house_graph() (built-in function)

 	simple_house_x_graph() (built-in function)

 	simple_icosahedral_graph() (built-in function)

 	

 	simple_inclist() (built-in function)

 	simple_krackhardt_kite_graph() (built-in function)

 	simple_octahedral_graph() (built-in function)

 	simple_pappus_graph() (built-in function)

 	simple_petersen_graph() (built-in function)

 	simple_sedgewick_maze_graph() (built-in function)

 	simple_star_graph() (built-in function)

 	simple_tetrahedral_graph() (built-in function)

 	simple_truncated_cube_graph() (built-in function)

 	simple_truncated_tetrahedron_graph() (built-in function)

 	simple_tutte_graph() (built-in function)

 	simple_wheel_graph() (built-in function)

 	source() (built-in function), [1], [2], [3], [4]

 	static_complete_graph() (built-in function)

T

 	

 	target() (built-in function), [1], [2], [3], [4]

 	test_cyclic_by_dfs() (built-in function)

 	

 	topological_sort_by_dfs() (built-in function)

 	traverse_graph() (built-in function)

V

 	

 	vertex_index() (built-in function), [1], [2], [3], [4], [5]

 	vertex_type() (built-in function)

 	

 	vertices() (built-in function), [1], [2], [3], [4]

W

 	

 	watts_strogatz_graph() (built-in function), [1]

 	

 	weight_matrix() (built-in function)

 Copyright 2013, Dahua Lin and contributors to the package..
 Created using Sphinx 1.3.1.

 _static/ajax-loader.gif

_images/math/4259d848d34b2f31e093151d6baba1836e2f37a7.png
deg(u) u=v
-1 u#vand {u,v} € E
0 otherwise

_images/math/d0c0df9edc675dfdd973e74e0852cb0668cf9a8b.png
R P

_images/simple_graph.png

_images/math/ff95d4b9f88c81aa54fcc3c9388a00c8388bee02.png
Al) {1 (u,v) € B

0 otherwise

_images/math/8406680382ceff0a30a09497805b67319f94bb25.png
0 u=v
W(u,v) = {w(e) u#vand {u,v} € E

Inf otherwise

_static/minus.png

search.html

 Navigation

 		
 index

 		Graphs.jl 0.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Dahua Lin and contributors to the package..
 Created using Sphinx 1.3.1.

_static/comment.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/down.png

