

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 Predrag Gruevski (github: obi1kenobi)
Amartya Shankha Biswas (github: amartyashankha)
Jeremy Meulemans (github: jmeulemans)

Changelog

Current development version

v1.10.0

	BREAKING: Rename the __count meta field to _x_count, to avoid GraphQL schema parsing issues with other GraphQL libraries. #176 [https://github.com/kensho-technologies/graphql-compiler/pull/176]

v1.9.0

	Add a __count meta field that supports outputting and filtering on the size of a @fold scope. #158 [https://github.com/kensho-technologies/graphql-compiler/pull/158]

	Add scaffolding for development and testing of SQL compiler backend, and a variety of development quality-of-life improvements.

Thanks to jmeulemans for his contributions.

v1.8.3

	Explicit support for Python 3.7. Earlier compiler versions also worked on 3.7, but now we also run tests in 3.7 to confirm. #148 [https://github.com/kensho-technologies/graphql-compiler/pull/148]

	Bug fix for compilation error when using has_edge_degree and between filtering in the same scope. #146 [https://github.com/kensho-technologies/graphql-compiler/pull/146]

	Exposed additional query metadata that describes @recurse and @filter directives encountered in the query. #141 [https://github.com/kensho-technologies/graphql-compiler/pull/141/files]

Thanks to gurer-kensho for the contribution.

v1.8.2

	Fix overly strict type check on @recurse directives involving a union type. #131 [https://github.com/kensho-technologies/graphql-compiler/pull/131]

Thanks to cw6515 for the fix!

v1.8.1

	Fix a bug that arose when using certain type coercions that the compiler optimizes away to a no-op. #127 [https://github.com/kensho-technologies/graphql-compiler/pull/127]

Thanks to bojanserafimov for the fix!

v1.8.0

	Allow @optional vertex fields nested inside other @optional vertex fields. #120 [https://github.com/kensho-technologies/graphql-compiler/pull/120]

	Fix a bug that accidentally disallowed having two @recurse directives within the same vertex field. #115 [https://github.com/kensho-technologies/graphql-compiler/pull/115]

	Enforce that all required directives are present in the schema. #114 [https://github.com/kensho-technologies/graphql-compiler/pull/114]

	Under the hood, made fairly major changes to how query metadata is tracked and processed.

Thanks to amartyashankha, cw6515, and yangsong97 for their contributions!

v1.7.2

	Fix possible incorrect query execution due to dropped type coercions. #110 [https://github.com/kensho-technologies/graphql-compiler/pull/110] #113 [https://github.com/kensho-technologies/graphql-compiler/pull/113]

v1.7.0

	Add a new @filter operator: intersects. #100 [https://github.com/kensho-technologies/graphql-compiler/pull/100]

	Add an optimization that helps OrientDB choose a good starting point for query evaluation. #102 [https://github.com/kensho-technologies/graphql-compiler/pull/102]

The new optimization pass manages what type information is visible at different points in
the generated query. By exposing additional type information, or hiding existing type information,
the compiler maximizes the likelihood that OrientDB will start evaluating the query at the
location of lowest cardinality. This produces a massive performance benefit – up to 1000x
on some queries!

Thanks to yangsong97 for making his first contribution with the intersects operator!

v1.6.2

	Fix incorrect filtering in @optional locations. #95 [https://github.com/kensho-technologies/graphql-compiler/pull/95]

Thanks to amartyashankha for the fix!

v1.6.1

	Fix a bad compilation bug on @fold and @optional in the same scope. #86 [https://github.com/kensho-technologies/graphql-compiler/pull/86]

Thanks to amartyashankha for the fix!

v1.6.0

	Add full support for Decimal data, including both filtering and output. #91 [https://github.com/kensho-technologies/graphql-compiler/pull/91]

v1.5.0

	Allow expanding vertex fields within @optional scopes. #83 [https://github.com/kensho-technologies/graphql-compiler/pull/83]

This is a massive feature, totaling over 4000 lines of changes and hundreds of hours of
many engineers’ time. Special thanks to amartyashankha for taking point on the implementation!

This feature implements a workaround for a limitation of OrientDB, where MATCH treats
optional vertices as terminal and does not allow subsequent traversals from them.
To work around this issue, the compiler rewrites the query into several disjoint queries
whose union produces the exact same results as a single query that allows optional traversals.
See the documentation in the README [https://github.com/kensho-technologies/graphql-compiler/blob/3c79cd97744b7f3f842c2d32ddc2a072c7fa7898/README.md#expanding-optional-vertex-fields]
for more details.

v1.4.1

	Make MATCH use the BETWEEN operator when possible, to avoid an OrientDB performance issue [https://github.com/orientechnologies/orientdb/issues/8230] #70 [https://github.com/kensho-technologies/graphql-compiler/pull/70]

Thanks to amartyashankha for this contribution!

v1.4.0

	Enable expanding vertex fields inside @fold #64 [https://github.com/kensho-technologies/graphql-compiler/pull/64]

Thanks to amartyashankha for this contribution!

v1.3.1

	Add a workaround for a bug in OrientDB related to @recurse with type coercions #55 [https://github.com/kensho-technologies/graphql-compiler/pull/55]

	Exposed the package name and version in the root __init__.py file #57 [https://github.com/kensho-technologies/graphql-compiler/pull/57]

v1.3.0

	Add a new @filter operator: has_edge_degree. #52 [https://github.com/kensho-technologies/graphql-compiler/pull/52]

	Lots of under-the-hood cleanup and improvements.

v1.2.1

	Add workaround for OrientDB type inconsistency when filtering lists [https://github.com/orientechnologies/orientdb/issues/7811] #42 [https://github.com/kensho-technologies/graphql-compiler/pull/42]

v1.2.0

	BREAKING: Requires OrientDB 2.2.28+, since it depends on two OrientDB bugs being fixed: bug 1 [https://github.com/orientechnologies/orientdb/issues/7225] bug 2 [https://github.com/orientechnologies/orientdb/issues/7754]

	Allow type coercions and filtering within @fold scopes.

	Fix bug where @filter directives could end up ignored if more than two were in the same scope

	Optimize type coercions in @optional and @recurse scopes.

	Optimize multiple outputs from the same @fold scope.

	Allow having multiple @filter directives on the same field #33 [https://github.com/kensho-technologies/graphql-compiler/pull/33]

	Allow using the name_or_alias filtering operation on interface types #37 [https://github.com/kensho-technologies/graphql-compiler/pull/37]

v1.1.0

	Add support for Python 3 #31 [https://github.com/kensho-technologies/graphql-compiler/pull/31]

	Make it possible to use @fold together with union-typed vertex fields #32 [https://github.com/kensho-technologies/graphql-compiler/pull/32]

Thanks to ColCarroll for making the compiler support Python 3!

v1.0.3

	Fix a minor bug in the GraphQL pretty-printer #30 [https://github.com/kensho-technologies/graphql-compiler/pull/30]

v1.0.2

	Make the graphql_to_ir() easier to use by making it automatically add a
new line to the end of the GraphQL query string. Works around an issue in
the graphql-coredependency library: https://github.com/graphql-python/graphql-core/issues/98

	Robustness improvements for the pretty-printer #27 [https://github.com/kensho-technologies/graphql-compiler/pull/27]

Thanks to benlongo for their contributions.

v1.0.1

	Add GraphQL pretty printer: python -m graphql_compiler.tool #23 [https://github.com/kensho-technologies/graphql-compiler/pull/23]

	Raise errors if there are no @output directives within a @fold scope #18 [https://github.com/kensho-technologies/graphql-compiler/pull/18]

Thanks to benlongo, ColCarroll, and cw6515 for their contributions.

v1.0.0

Initial release.

Thanks to MichaelaShtilmanMinkin for the help in putting the documentation together.

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, gender identity and expression, level of experience,
nationality, personal appearance, race, religion, or sexual identity and
orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at
graphql-compiler-maintainer@kensho.com. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [http://contributor-covenant.org], version 1.4,
available at http://contributor-covenant.org/version/1/4 [http://contributor-covenant.org/version/1/4/]

Contributing

Thank you for taking the time to contribute to this project!

To get started, make sure that you have pipenv, docker and docker-compose installed
on your computer.

Integration tests are run against multiple SQL databases, some of which require dialect specific
installations to be available in the development environment.
Currently this affects MySQL. A compatible driver can be installed on OSX with:

brew install mysql

or on Ubuntu with:

apt-get install python-mysqldb

For more details on other systems please refer to
MySQL dialect information [https://docs.sqlalchemy.org/en/latest/dialects/mysql.html].

Once the dev environment is prepared, from the root of the repository, run:

docker-compose up -d
pipenv sync --dev
pipenv shell

py.test graphql_compiler/tests

Some snapshot and integration tests take longer to setup, run, and teardown. These can be optionally
skipped during development by running the tests with the --skip-slow flag:

py.test graphql_compiler/tests --skip-slow

A test method or class can be marked as slow to be skipped in this fashion by decorating with the
@pytest.mark.slow flag.

Code of Conduct

This project adheres to the Contributor Covenant code of conduct.
By participating, you are expected to uphold this code.
Please report unacceptable behavior at
graphql-compiler-maintainer@kensho.com.

Contributor License Agreement

Each contributor is required to agree to our
Contributor License Agreement [https://www.clahub.com/agreements/kensho-technologies/graphql-compiler],
to ensure that their contribution may be safely merged into the project codebase and
released under the existing code license. This agreement does not change contributors’
rights to use the contributions for any other purpose – it is simply used for the protection
of both the contributors and the project.

Style Guide

This project follows the
Google Python style guide [https://google.github.io/styleguide/pyguide.html].

Additionally, any contributions must pass the following set of lint and style checks with no issues
when executed from a pipenv shell (i.e. after running pipenv shell):

isort --check-only --verbose --recursive graphql_compiler/

flake8 graphql_compiler/

pydocstyle graphql_compiler/

pylint graphql_compiler/

bandit -r graphql_compiler/

Finally, all python files in the repository must display the copyright of the project,
to protect the terms of the license. Please make sure that your files start with a line like:

Copyright 20xx-present Kensho Technologies, LLC.

graphql-compiler

[image: _images/graphql-compiler.svg]Build Status [https://travis-ci.org/kensho-technologies/graphql-compiler]
[image: _images/badge.svg]Coverage Status [https://coveralls.io/github/kensho-technologies/graphql-compiler?branch=master]
[image: _images/License-Apache%202.0-blue.svg]License [https://opensource.org/licenses/Apache-2.0]
[image: _images/graphql-compiler1.svg]PyPI Python [https://pypi.python.org/pypi/graphql-compiler]
[image: _images/graphql-compiler2.svg]PyPI Version [https://pypi.python.org/pypi/graphql-compiler]
[image: _images/graphql-compiler3.svg]PyPI Status [https://pypi.python.org/pypi/graphql-compiler]
[image: _images/graphql-compiler4.svg]PyPI Wheel [https://pypi.python.org/pypi/graphql-compiler]

Turn complex GraphQL queries into optimized database queries.

pip install graphql-compiler

For a more detailed overview and getting started guide, please see
our blog post [https://blog.kensho.com/compiled-graphql-as-a-database-query-language-72e106844282].

To pretty-print GraphQL queries, use the included pretty-printer:

python -m graphql_compiler.tool <input_file.graphql >output_file.graphql

It’s modeled after Python’s json.tool, reading from stdin and writing to stdout.

Table of contents

	FAQ

	Definitions

	Directives

	@optional

	@output

	@fold

	@tag

	@filter

	@recurse

	@output_source

	Supported filtering operations

	Comparison operators

	name_or_alias

	between

	in_collection

	has_substring

	contains

	intersects

	has_edge_degree

	Type coercions

	Meta fields

	__typename

	_x_count

	The GraphQL schema

	Execution model

	Miscellaneous

	Expanding @optional vertex fields

	Optional type_equivalence_hints compilation parameter

	License

FAQ

Q: Does the compiler support all GraphQL language features?

A: No. We prioritized and implemented a subset of all functionality supported by the
GraphQL language. We hope to add more functionality over time.

Q: Do you really use GraphQL, or do you just use GraphQL-like syntax?

A: We really use GraphQL. Any query that the compiler will accept is entirely valid GraphQL,
and we actually use the Python port of the GraphQL core library for parsing and type checking.
However, since the database queries produced by compiling GraphQL are subject to the limitations
of the database system they run on, our execution model is somewhat different compared to
the one described in the standard GraphQL specification. See the
Execution model section for more details.

Q: Does this project come with a GraphQL server implementation?

A: No – there are many existing frameworks for running a web server. We simply built a tool
that takes GraphQL query strings (and their parameters) and returns a query string you can
use with your database. The compiler does not execute the query string against the database,
nor does it deserialize the results. Therefore, it is agnostic to the choice of
server framework and database client library used.

Q: What databases and query languages does the compiler support?

A: We currently support a single database, OrientDB version 2.2.28+, and two query languages
that OrientDB supports: the OrientDB dialect of gremlin, and OrientDB’s own custom SQL-like
query language that we refer to as MATCH, after the name of its graph traversal operator.
With OrientDB, MATCH should be the preferred choice for most users, since it tends to run
faster than gremlin, and has other desirable properties. See the
Execution model section for more details.

Q: Do you plan to support other databases / more GraphQL features in the future?

A: We’d love to, and we could really use your help! Please consider contributing to this project
by opening issues, opening pull requests, or participating in discussions.

Q: I think I found a bug, what do I do?

A: Please check if an issue has already been created for the bug, and open a new one if not.
Make sure to describe the bug in as much detail as possible, including any stack traces or
error messages you may have seen, which database you’re using, and what query you compiled.

Q: I think I found a security vulnerability, what do I do?

A: Please reach out to us at
graphql-compiler-maintainer@kensho.com
so we can triage the issue and take appropriate action.

Definitions

	Vertex field: A field corresponding to a vertex in the graph. In the below example, Animal
and out_Entity_Related are vertex fields. The Animal field is the field at which querying
starts, and is therefore the root vertex field. In any scope, fields with the prefix out_
denote vertex fields connected by an outbound edge, whereas ones with the prefix in_ denote
vertex fields connected by an inbound edge.

{
 Animal {
 name @output(out_name: "name")
 out_Entity_Related {
 ... on Species {
 description @output(out_name: "description")
 }
 }
 }
}

	Property field: A field corresponding to a property of a vertex in the graph. In the
above example, the name and description fields are property fields. In any given scope,
property fields must appear before vertex fields.

	Result set: An assignment of vertices in the graph to scopes (locations) in the query.
As the database processes the query, new result sets may be created (e.g. when traversing edges),
and result sets may be discarded when they do not satisfy filters or type coercions. After all
parts of the query are processed by the database, all remaining result sets are used to form the
query result, by taking their values at all properties marked for output.

	Scope: The part of a query between any pair of curly braces. The compiler infers the type
of each scope. For example, in the above query, the scope beginning with Animal { is of
type Animal, the one beginning with out_Entity_Related { is of type Entity, and the one
beginning with ... on Species { is of type Species.

	Type coercion: An operation that produces a new scope of narrower type than the
scope in which it exists. Any result sets that cannot satisfy the narrower type are filtered out
and not returned. In the above query, ... on Species is a type coercion which takes
its enclosing scope of type Entity, and coerces it into a narrower scope of
type Species. This is possible since Entity is an interface, and Species is a type
that implements the Entity interface.

Directives

@optional

Without this directive, when a query includes a vertex field, any results matching that query
must be able to produce a value for that vertex field. Applied to a vertex field,
this directive prevents result sets that are unable to produce a value for that field from
being discarded, and allowed to continue processing the remainder of the query.

Example Use

{
 Animal {
 name @output(out_name: "name")
 out_Animal_ParentOf @optional {
 name @output(out_name: "child_name")
 }
 }
}

For each Animal:

	if it is a parent of another animal, at least one row containing the
parent and child animal’s names, in the name and child_name columns respectively;

	if it is not a parent of another animal, a row with its name in the name column,
and a null value in the child_name column.

Constraints and Rules

	@optional can only be applied to vertex fields, except the root vertex field.

	It is allowed to expand vertex fields within an @optional scope.
However, doing so is currently associated with a performance penalty in MATCH.
For more detail, see: Expanding @optional vertex fields.

	@recurse, @fold, or @output_source may not be used at the same vertex field as @optional.

	@output_source and @fold may not be used anywhere within a scope
marked @optional.

If a given result set is unable to produce a value for a vertex field marked @optional,
any fields marked @output within that vertex field return the null value.

When filtering (via @filter) or type coercion (via e.g. ... on Animal) are applied
at or within a vertex field marked @optional, the @optional is given precedence:

	If a given result set cannot produce a value for the optional vertex field, it is preserved:
the @optional directive is applied first, and no filtering or type coercion can happen.

	If a given result set is able to produce a value for the optional vertex field,
the @optional does not apply, and that value is then checked against the filtering or type
coercion. These subsequent operations may then cause the result set to be discarded if it does
not match.

@output

Denotes that the value of a property field should be included in the output.
Its out_name argument specifies the name of the column in which the
output value should be returned.

Example Use

{
 Animal {
 name @output(out_name: "animal_name")
 }
}

This query returns the name of each Animal in the graph, in a column named animal_name.

Constraints and Rules

	@output can only be applied to property fields.

	The value provided for out_name may only consist of upper or lower case letters
(A-Z, a-z), or underscores (_).

	The value provided for out_name cannot be prefixed with ___ (three underscores). This
namespace is reserved for compiler internal use.

	For any given query, all out_name values must be unique. In other words, output columns must
have unique names.

If the property field marked @output exists within a scope marked @optional, result sets that
are unable to assign a value to the optional scope return the value null as the output
of that property field.

@fold

Applying @fold on a scope “folds” all outputs from within that scope: rather than appearing
on separate rows in the query result, the folded outputs are coalesced into lists starting
at the scope marked @fold.

Example Use

{
 Animal {
 name @output(out_name: "animal_name")
 out_Animal_ParentOf @fold {
 name @output(out_name: "child_names")
 }
 }
}

Each returned row has two columns: animal_name with the name of each Animal in the graph,
and child_names with a list of the names of all children of the Animal named animal_name.
If a given Animal has no children, its child_names list is empty.

Constraints and Rules

	@fold can only be applied to vertex fields, except the root vertex field.

	May not exist at the same vertex field as @recurse, @optional, or @output_source.

	Any scope that is either marked with @fold or is nested within a @fold marked scope,
may expand at most one vertex field.

	There must be at least one @output field within a @fold scope.

	All @output fields within a @fold traversal must be present at the innermost scope.
It is invalid to expand vertex fields within a @fold after encountering an @output directive.

	@tag, @recurse, @optional, @output_source and @fold may not be used anywhere
within a scope marked @fold.

	Use of type coercions or @filter at or within the vertex field marked @fold is allowed.
Only data that satisfies the given type coercions and filters is returned by the @fold.

	If the compiler is able to prove that the type coercion in the @fold scope is actually a no-op,
it may optimize it away. See the
Optional type_equivalence_hints compilation parameter
section for more details.

Example

The following GraphQL is not allowed and will produce a GraphQLCompilationError.
This query is invalid for two separate reasons:

	It expands vertex fields after an @output directive (outputting animal_name)

	The in_Animal_ParentOf scope, which is within a scope marked @fold,
expands two vertex fields instead of at most one.

{
 Animal {
 out_Animal_ParentOf @fold {
 name @output(out_name: "animal_name")
 in_Animal_ParentOf {
 out_Animal_OfSpecies {
 uuid @output(out_name: "species_id")
 }
 out_Animal_RelatedTo {
 name @output(out_name: "relative_name")
 }
 }
 }
 }
}

The following is a valid use of @fold:

{
 Animal {
 out_Animal_ParentOf @fold {
 in_Animal_ParentOf {
 in_Animal_ParentOf {
 out_Animal_RelatedTo {
 name @output(out_name: "final_name")
 }
 }
 }
 }
 }
}

@tag

The @tag directive enables filtering based on values encountered elsewhere in the same query.
Applied on a property field, it assigns a name to the value of that property field, allowing that
value to then be used as part of a @filter directive.

To supply a tagged value to a @filter directive, place the tag name (prefixed with a % symbol)
in the @filter’s value array. See Passing parameters
for more details.

Example Use

{
 Animal {
 name @tag(tag_name: "parent_name")
 out_Animal_ParentOf {
 name @filter(op_name: "<", value: ["%parent_name"])
 @output(out_name: "child_name")
 }
 }
}

Each row returned by this query contains, in the child_name column, the name of an Animal
that is the child of another Animal, and has a name that is lexicographically smaller than
the name of its parent.

Constraints and Rules

	@tag can only be applied to property fields.

	The value provided for tag_name may only consist of upper or lower case letters
(A-Z, a-z), or underscores (_).

	For any given query, all tag_name values must be unique.

	Cannot be applied to property fields within a scope marked @fold.

@filter

Allows filtering of the data to be returned, based on any of a set of filtering operations.
Conceptually, it is the GraphQL equivalent of the SQL WHERE keyword.

See Supported filtering operations
for details on the various types of filtering that the compiler currently supports.
These operations are currently hardcoded in the compiler; in the future,
we may enable the addition of custom filtering operations via compiler plugins.

Multiple @filter directives may be applied to the same field at once. Conceptually,
it is as if the different @filter directives were joined by SQL AND keywords.

Passing Parameters

The @filter directive accepts two types of parameters: runtime parameters and tagged parameters.

Runtime parameters are represented with a $ prefix (e.g. $foo), and denote parameters
whose values will be known at runtime. The compiler will compile the GraphQL query leaving a
spot for the value to fill at runtime. After compilation, the user will have to supply values for
all runtime parameters, and their values will be inserted into the final query before it can be
executed against the database.

Consider the following query:

{
 Animal {
 name @output(out_name: "animal_name")
 color @filter(op_name: "=", value: ["$animal_color"])
 }
}

It returns one row for every Animal that has a color equal to $animal_color,
containing the animal’s name in a column named animal_name. The parameter $animal_color is
a runtime parameter – the user must pass in a value (e.g. {"$animal_color": "blue"}) that
will be inserted into the query before querying the database.

Tagged parameters are represented with a % prefix (e.g. %foo) and denote parameters
whose values are derived from a property field encountered elsewhere in the query.
If the user marks a property field with a @tag directive and a suitable name,
that value becomes available to use as a tagged parameter in all subsequent @filter directives.

Consider the following query:

{
 Animal {
 name @tag(out_name: "parent_name")
 out_Animal_ParentOf {
 name @filter(op_name: "has_substring", value: ["%parent_name"])
 @output(out_name: "child_name")
 }
 }
}

It returns the names of animals that contain their parent’s name as a substring of their own.
The database captures the value of the parent animal’s name as the parent_name tag, and this
value is then used as the %parent_name tagged parameter in the child animal’s @filter.

We considered and rejected the idea of allowing literal values (e.g. 123)
as @filter parameters, for several reasons:

	The GraphQL type of the @filter directive’s value field cannot reasonably encompass
all the different types of arguments that people might supply. Even counting scalar types only,
there’s already ID, Int, Float, Boolean, String, Date, DateTime... – way too many to include.

	Literal values would be used when the parameter’s value is known to be fixed. We can just as
easily accomplish the same thing by using a runtime parameter with a fixed value. That approach
has the added benefit of potentially reducing the number of different queries that have to be
compiled: two queries with different literal values would have to be compiled twice, whereas
using two different sets of runtime arguments only requires the compilation of one query.

	We were concerned about the potential for accidental misuse of literal values. SQL systems have
supported stored procedures and parameterized queries for decades, and yet ad-hoc SQL query
construction via simple string interpolation is still a serious problem and is the source of
many SQL injection vulnerabilities. We felt that disallowing literal values in the query will
drastically reduce both the use and the risks of unsafe string interpolation,
at an acceptable cost.

Constraints and Rules

	The value provided for op_name may only consist of upper or lower case letters
(A-Z, a-z), or underscores (_).

	Values provided in the value list must start with either $
(denoting a runtime parameter) or % (denoting a tagged parameter),
followed by exclusively upper or lower case letters (A-Z, a-z) or underscores (_).

	The @tag directives corresponding to any tagged parameters in a given @filter query
must be applied to fields that appear strictly before the field with the @filter directive.

	“Can’t compare apples and oranges” – the GraphQL type of the parameters supplied to the @filter
must match the GraphQL types the compiler infers based on the field the @filter is applied to.

	If the @tag corresponding to a tagged parameter originates from within a vertex field
marked @optional, the emitted code for the @filter checks if the @optional field was
assigned a value. If no value was assigned to the @optional field, comparisons against the
tagged parameter from within that field return True.

	For example, assuming %from_optional originates from an @optional scope, when no value is
assigned to the @optional field:

	using @filter(op_name: "=", value: ["%from_optional"]) is equivalent to not
having the filter at all;

	using @filter(op_name: "between", value: ["$lower", "%from_optional"]) is equivalent to
@filter(op_name: ">=", value: ["$lower"]).

@recurse

Applied to a vertex field, specifies that the edge connecting that vertex field to the current
vertex should be visited repeatedly, up to depth times. The recursion always starts
at depth = 0, i.e. the current vertex – see the below sections for a more thorough explanation.

Example Use

Say the user wants to fetch the names of the children and grandchildren of each Animal.
That could be accomplished by running the following two queries and concatenating their results:

{
 Animal {
 name @output(out_name: "ancestor")
 out_Animal_ParentOf {
 name @output(out_name: "descendant")
 }
 }
}

{
 Animal {
 name @output(out_name: "ancestor")
 out_Animal_ParentOf {
 out_Animal_ParentOf {
 name @output(out_name: "descendant")
 }
 }
 }
}

If the user then wanted to also add great-grandchildren to the descendants output, that would
require yet another query, and so on. Instead of concatenating the results of multiple queries,
the user can simply use the @recurse directive. The following query returns the child and
grandchild descendants:

{
 Animal {
 name @output(out_name: "ancestor")
 out_Animal_ParentOf {
 out_Animal_ParentOf @recurse(depth: 1) {
 name @output(out_name: "descendant")
 }
 }
 }
}

Each row returned by this query contains the name of an Animal in the ancestor column
and the name of its child or grandchild in the descendant column.
The out_Animal_ParentOf vertex field marked @recurse is already enclosed within
another out_Animal_ParentOf vertex field, so the recursion starts at the
“child” level (the out_Animal_ParentOf not marked with @recurse).
Therefore, the descendant column contains the names of an ancestor’s
children (from depth = 0 of the recursion) and the names of its grandchildren (from depth = 1).

Recursion using this directive is possible since the types of the enclosing scope and the recursion
scope work out: the @recurse directive is applied to a vertex field of type Animal and
its vertex field is enclosed within a scope of type Animal.
Additional cases where recursion is allowed are described in detail below.

The descendant column cannot have the name of the ancestor animal since the @recurse
is already within one out_Animal_ParentOf and not at the root Animal vertex field.
Similarly, it cannot have descendants that are more than two steps removed
(e.g., great-grandchildren), since the depth parameter of @recurse is set to 1.

Now, let’s see what happens when we eliminate the outer out_Animal_ParentOf vertex field
and simply have the @recurse applied on the out_Animal_ParentOf in the root vertex field scope:

{
 Animal {
 name @output(out_name: "ancestor")
 out_Animal_ParentOf @recurse(depth: 1) {
 name @output(out_name: "self_or_descendant")
 }
 }
}

In this case, when the recursion starts at depth = 0, the Animal within the recursion scope
will be the same Animal at the root vertex field, and therefore, in the depth = 0 step of
the recursion, the value of the self_or_descendant field will be equal to the value of
the ancestor field.

Constraints and Rules

	“The types must work out” – when applied within a scope of type A,
to a vertex field of type B, at least one of the following must be true:

	A is a GraphQL union;

	B is a GraphQL interface, and A is a type that implements that interface;

	A and B are the same type.

	@recurse can only be applied to vertex fields other than the root vertex field of a query.

	Cannot be used within a scope marked @optional or @fold.

	The depth parameter of the recursion must always have a value greater than or equal to 1.
Using depth = 1 produces the current vertex and its neighboring vertices along the
specified edge.

	Type coercions and @filter directives within a scope marked @recurse do not limit the
recursion depth. Conceptually, recursion to the specified depth happens first,
and then type coercions and @filter directives eliminate some of the locations reached
by the recursion.

	As demonstrated by the examples above, the recursion always starts at depth 0,
so the recursion scope always includes the vertex at the scope that encloses
the vertex field marked @recurse.

@output_source

See the Completeness of returned results section
for a description of the directive and examples.

Constraints and Rules

	May exist at most once in any given GraphQL query.

	Can exist only on a vertex field, and only on the last vertex field used in the query.

	Cannot be used within a scope marked @optional or @fold.

Supported filtering operations

Comparison operators

Supported comparison operators:

	Equal to: =

	Not equal to: !=

	Greater than: >

	Less than: <

	Greater than or equal to: >=

	Less than or equal to: <=

Example Use

Equal to (=):

{
 Species {
 name @filter(op_name: "=", value: ["$species_name"])
 uuid @output(out_name: "species_uuid")
 }
}

This returns one row for every Species whose name is equal to the value of the $species_name
parameter, containing the uuid of the Species in a column named species_uuid.

Greater than or equal to (>=):

{
 Animal {
 name @output(out_name: "name")
 birthday @output(out_name: "birthday")
 @filter(op_name: ">=", value: ["$point_in_time"])
 }
}

This returns one row for every Animal that was born after or on a $point_in_time,
containing the animal’s name and birthday in columns named name and birthday, respectively.

Constraints and Rules

	All comparison operators must be on a property field.

name_or_alias

Allows you to filter on vertices which contain the exact string $wanted_name_or_alias in their
name or alias fields.

Example Use

{
 Animal @filter(op_name: "name_or_alias", value: ["$wanted_name_or_alias"]) {
 name @output(out_name: "name")
 }
}

This returns one row for every Animal whose name and/or alias is equal to $wanted_name_or_alias,
containing the animal’s name in a column named name.

The value provided for $wanted_name_or_alias must be the full name and/or alias of the Animal.
Substrings will not be matched.

Constraints and Rules

	Must be on a vertex field that has name and alias properties.

between

Example Use

{
 Animal {
 name @output(out_name: "name")
 birthday @filter(op_name: "between", value: ["$lower", "$upper"])
 @output(out_name: "birthday")
 }
}

This returns:

	One row for every Animal whose birthday is in between $lower and $upper dates (inclusive),
containing the animal’s name in a column named name.

Constraints and Rules

	Must be on a property field.

	The lower and upper bounds represent an inclusive interval, which means that the output may
contain values that match them exactly.

in_collection

Example Use

{
 Animal {
 name @output(out_name: "animal_name")
 color @output(out_name: "color")
 @filter(op_name: "in_collection", value: ["$colors"])
 }
}

This returns one row for every Animal which has a color contained in a list of colors,
containing the Animal’s name and color in columns named animal_name and color, respectively.

Constraints and Rules

	Must be on a property field that is not of list type.

has_substring

Example Use

{
 Animal {
 name @filter(op_name: "has_substring", value: ["$substring"])
 @output(out_name: "animal_name")
 }
}

This returns one row for every Animal whose name contains the value supplied
for the $substring parameter. Each row contains the matching Animal’s name
in a column named animal_name.

Constraints and Rules

	Must be on a property field of string type.

contains

Example Use

{
 Animal {
 alias @filter(op_name: "contains", value: ["$wanted"])
 name @output(out_name: "animal_name")
 }
}

This returns one row for every Animal whose list of aliases contains the value supplied
for the $wanted parameter. Each row contains the matching Animal’s name
in a column named animal_name.

Constraints and Rules

	Must be on a property field of list type.

intersects

Example Use

{
 Animal {
 alias @filter(op_name: "intersects", value: ["$wanted"])
 name @output(out_name: "animal_name")
 }
}

This returns one row for every Animal whose list of aliases has a non-empty intersection
with the list of values supplied for the $wanted parameter.
Each row contains the matching Animal’s name in a column named animal_name.

Constraints and Rules

	Must be on a property field of list type.

has_edge_degree

Example Use

{
 Animal {
 name @output(out_name: "animal_name")

 out_Animal_ParentOf @filter(op_name: "has_edge_degree", value: ["$child_count"]) @optional {
 uuid
 }
 }
}

This returns one row for every Animal that has exactly $child_count children
(i.e. where the out_Animal_ParentOf edge appears exactly $child_count times).
Each row contains the matching Animal’s name, in a column named animal_name.

The uuid field within the out_Animal_ParentOf vertex field is added simply to satisfy
the GraphQL syntax rule that requires at least one field to exist within any {}.
Since this field is not marked with any directive, it has no effect on the query.

N.B.: Please note the @optional directive on the vertex field being filtered above.
If in your use case you expect to set $child_count to 0, you must also mark that
vertex field @optional. Recall that absence of @optional implies that at least one
such edge must exist. If the has_edge_degree filter is used with a parameter set to 0,
that requires the edge to not exist. Therefore, if the @optional is not present in this situation,
no valid result sets can be produced, and the resulting query will return no results.

Constraints and Rules

	Must be on a vertex field that is not the root vertex of the query.

	Tagged values are not supported as parameters for this filter.

	If the runtime parameter for this operator can be 0, it is strongly recommended to also apply
@optional to the vertex field being filtered (see N.B. above for details).

Type coercions

Type coercions are operations that create a new scope whose type is different than the type of the
enclosing scope of the coercion – they coerce the enclosing scope into a different type.
Type coercions are represented with GraphQL inline fragments.

Example Use

{
 Species {
 name @output(out_name: "species_name")
 out_Species_Eats {
 ... on Food {
 name @output(out_name: "food_name")
 }
 }
 }
}

Here, the out_Species_Eats vertex field is of the FoodOrSpecies union type. To proceed
with the query, the user must choose which of the types in the FoodOrSpecies union to use.
In this example, ... on Food indicates that the Food type was chosen, and any vertices
at that scope that are not of type Food are filtered out and discarded.

{
 Species {
 name @output(out_name: "species_name")
 out_Entity_Related {
 ... on Species {
 name @output(out_name: "food_name")
 }
 }
 }
}

In this query, the out_Entity_Related is of Entity type. However, the query only wants to
return results where the related entity is a Species, which ... on Species ensures is the case.

Meta fields

__typename

The compiler supports the standard GraphQL meta field __typename, which returns the runtime type
of the scope where the field is found. Assuming the GraphQL schema matches the database’s schema,
the runtime type will always be a subtype of (or exactly equal to) the static type of the scope
determined by the GraphQL type system. Below, we provide an example query in which
the runtime type is a subtype of the static type, but is not equal to it.

The __typename field is treated as a property field of type String, and supports
all directives that can be applied to any other property field.

Example Use

{
 Entity {
 __typename @output(out_name: "entity_type")
 name @output(out_name: "entity_name")
 }
}

This query returns one row for each Entity vertex. The scope in which __typename appears is
of static type Entity. However, Animal is a type of Entity, as are Species, Food,
and others. Vertices of all subtypes of Entity will therefore be returned, and the entity_type
column that outputs the __typename field will show their runtime type: Animal, Species,
Food, etc.

_x_count

The _x_count meta field is a non-standard meta field defined by the GraphQL compiler that makes it
possible to interact with the number of elements in a scope marked @fold. By applying directives
like @output and @filter to this meta field, queries can output the number of elements captured
in the @fold and filter down results to select only those with the desired fold sizes.

We use the _x_ prefix to signify that this is an extension meta field introduced by the compiler,
and not part of the canonical set of GraphQL meta fields defined by the GraphQL specification.
We do not use the GraphQL standard double-underscore (__) prefix for meta fields,
since all names with that prefix are
explicitly reserved and prohibited from being used [https://facebook.github.io/graphql/draft/#sec-Reserved-Names]
in directives, fields, or any other artifacts.

Adding the _x_count meta field to your schema

Since the _x_count meta field is not currently part of the GraphQL standard, it has to be
explicitly added to all interfaces and types in your schema. There are two ways to do this.

The preferred way to do this is to use the EXTENDED_META_FIELD_DEFINITIONS constant as
a starting point for building your interfaces’ and types’ field descriptions:

from graphql import GraphQLInt, GraphQLField, GraphQLObjectType, GraphQLString
from graphql_compiler import EXTENDED_META_FIELD_DEFINITIONS

fields = EXTENDED_META_FIELD_DEFINITIONS.copy()
fields.update({
 'foo': GraphQLField(GraphQLString),
 'bar': GraphQLField(GraphQLInt),
 # etc.
})
graphql_type = GraphQLObjectType('MyType', fields)
etc.

If you are not able to programmatically define the schema, and instead simply have a pre-made
GraphQL schema object that you are able to mutate, the alternative approach is via the
insert_meta_fields_into_existing_schema() helper function defined by the compiler:

assuming that existing_schema is your GraphQL schema object
insert_meta_fields_into_existing_schema(existing_schema)
existing_schema was mutated in-place and all custom meta-fields were added

Example Use

{
 Animal {
 name @output(out_name: "name")
 out_Animal_ParentOf @fold {
 _x_count @output(out_name: "number_of_children")
 name @output(out_name: "child_names")
 }
 }
}

This query returns one row for each Animal vertex, containing its name, and the number and names
of its children. While the output type of the child_names selection is a list of strings,
the output type of the number_of_children selection is an integer.

{
 Animal {
 name @output(out_name: "name")
 out_Animal_ParentOf @fold {
 _x_count @filter(op_name: ">=", value: ["$min_children"])
 @output(out_name: "number_of_children")
 name @filter(op_name: "has_substring", value: ["$substr"])
 @output(out_name: "child_names")
 }
 }
}

Here, we’ve modified the above query to add two more filtering constraints to the returned rows:

	child Animal vertices must contain the value of $substr as a substring in their name, and

	Animal vertices must have at least $min_children children that satisfy the above filter.

Importantly, any filtering on _x_count is applied after any other filters and type coercions
that are present in the @fold in question. This order of operations matters a lot: selecting
Animal vertices with 3+ children, then filtering the children based on their names is not the same
as filtering the children first, and then selecting Animal vertices that have 3+ children that
matched the earlier filter.

Constraints and Rules

	The _x_count field is only allowed to appear within a vertex field marked @fold.

	Filtering on _x_count is always applied after any other filters and type coercions present
in that @fold.

	Filtering or outputting the value of the _x_count field must always be done at the innermost
scope of the @fold. It is invalid to expand vertex fields within a @fold after filtering
or outputting the value of the _x_count meta field.

How is filtering on _x_count different from @filter with has_edge_degree?

The has_edge_degree filter allows filtering based on the number of edges of a particular type.
There are situations in which filtering with has_edge_degree and filtering using = on _x_count
produce equivalent queries. Here is one such pair of queries:

{
 Species {
 name @output(out_name: "name")
 in_Animal_OfSpecies @filter(op_name: "has_edge_degree", value: ["$num_animals"]) {
 uuid
 }
 }
}

and

{
 Species {
 name @output(out_name: "name")
 in_Animal_OfSpecies @fold {
 _x_count @filter(op_name: "=", value: ["$num_animals"])
 }
 }
}

In both of these queries, we ask for the names of the Species vertices that have precisely
$num_animals members. However, we have expressed this question in two different ways: once
as a property of the Species vertex (“the degree of the in_Animal_OfSpecies is $num_animals”),
and once as a property of the list of Animal vertices produced by the @fold (“the number of
elements in the @fold is $num_animals”).

When we add additional filtering within the Animal vertices of the in_Animal_OfSpecies vertex
field, this distinction becomes very important. Compare the following two queries:

{
 Species {
 name @output(out_name: "name")
 in_Animal_OfSpecies @filter(op_name: "has_edge_degree", value: ["$num_animals"]) {
 out_Animal_LivesIn {
 name @filter(op_name: "=", value: ["$location"])
 }
 }
 }
}

versus

{
 Species {
 name @output(out_name: "name")
 in_Animal_OfSpecies @fold {
 out_Animal_LivesIn {
 _x_count @filter(op_name: "=", value: ["$num_animals"])
 name @filter(op_name: "=", value: ["$location"])
 }
 }
 }
}

In the first, for the purposes of the has_edge_degree filtering, the location where the animals
live is irrelevant: the has_edge_degree only makes sure that the Species vertex has the
correct number of edges of type in_Animal_OfSpecies, and that’s it. In contrast, the second query
ensures that only Species vertices that have $num_animals animals that live in the selected
location are returned – the location matters since the @filter on the _x_count field applies
to the number of elements in the @fold scope.

The GraphQL schema

This section assumes that the reader is familiar with the way schemas work in the
reference implementation of GraphQL [http://graphql.org/learn/schema/].

The GraphQL schema used with the compiler must contain the custom directives and custom Date
and DateTime scalar types defined by the compiler:

directive @recurse(depth: Int!) on FIELD

directive @filter(value: [String!]!, op_name: String!) on FIELD | INLINE_FRAGMENT

directive @tag(tag_name: String!) on FIELD

directive @output(out_name: String!) on FIELD

directive @output_source on FIELD

directive @optional on FIELD

directive @fold on FIELD

scalar DateTime

scalar Date

If constructing the schema programmatically, one can simply import the the Python object
representations of the custom directives and the custom types:

from graphql_compiler import DIRECTIVES # the list of custom directives
from graphql_compiler import GraphQLDate, GraphQLDateTime # the custom types

Since the GraphQL and OrientDB type systems have different rules, there is no one-size-fits-all
solution to writing the GraphQL schema for a given database schema.
However, the following rules of thumb are useful to keep in mind:

	Generally, represent OrientDB abstract classes as GraphQL interfaces. In GraphQL’s type system,
GraphQL interfaces cannot inherit from other GraphQL interfaces.

	Generally, represent OrientDB non-abstract classes as GraphQL types,
listing the GraphQL interfaces that they implement. In GraphQL’s type system, GraphQL types
cannot inherit from other GraphQL types.

	Inheritance relationships between two OrientDB non-abstract classes,
or between two OrientDB abstract classes, introduce some difficulties in GraphQL.
When modelling your data in OrientDB, it’s best to avoid such inheritance if possible.

	If it is impossible to avoid having two non-abstract OrientDB classes A and B such that
B inherits from A, you have two options:

	You may choose to represent the A OrientDB class as a GraphQL interface,
which the GraphQL type corresponding to B can implement.
In this case, the GraphQL schema preserves the inheritance relationship
between A and B, but sacrifices the representation of any inheritance relationships
A may have with any OrientDB superclasses.

	You may choose to represent both A and B as GraphQL types. The tradeoff in this case is
exactly the opposite from the previous case: the GraphQL schema
sacrifices the inheritance relationship between A and B, but preserves the
inheritance relationships of A with its superclasses.
In this case, it is recommended to create a GraphQL union type A | B,
and to use that GraphQL union type for any vertex fields that
in OrientDB would be of type A.

	If it is impossible to avoid having two abstract OrientDB classes A and B such that
B inherits from A, you similarly have two options:

	You may choose to represent B as a GraphQL type that can implement the GraphQL interface
corresponding to A. This makes the GraphQL schema preserve the inheritance relationship
between A and B, but sacrifices the ability for other GraphQL types to inherit from B.

	You may choose to represent both A and B as GraphQL interfaces, sacrificing the schema’s
representation of the inheritance between A and B, but allowing GraphQL types
to inherit from both A and B. If necessary, you can then create a GraphQL
union type A | B and use it for any vertex fields that in OrientDB would be of type A.

	It is legal to fully omit classes and fields that are not representable in GraphQL. The compiler
currently does not support OrientDB’s EmbeddedMap type nor embedded non-primitive typed fields,
so such fields can simply be omitted in the GraphQL representation of their classes.
Alternatively, the entire OrientDB class and all edges that may point to it may be omitted
entirely from the GraphQL schema.

Execution model

Since the GraphQL compiler can target multiple different query languages, each with its own
behaviors and limitations, the execution model must also be defined as a function of the
compilation target language. While we strive to minimize the differences between
compilation targets, some differences are unavoidable.

The compiler abides by the following principles:

	When the database is queried with a compiled query string, its response must always be in the
form of a list of results.

	The precise format of each such result is defined by each compilation target separately.

	Both gremlin and MATCH return data in a tabular format, where each result is
a row of the table, and fields marked for output are columns.

	However, future compilation targets may have a different format. For example, each result
may appear in the nested tree format used by the standard GraphQL specification.

	Each such result must satisfy all directives and types in its corresponding GraphQL query.

	The returned list of results is not guaranteed to be complete!

	In other words, there may have been additional result sets that satisfy all directives and
types in the corresponding GraphQL query, but were not returned by the database.

	However, compilation target implementations are encouraged to return complete results
if at all practical. The MATCH compilation target is guaranteed to produce complete results.

Completeness of returned results

To explain the completeness of returned results in more detail, assume the database contains
the following example graph:

a ---->_ x
|____ /|
 |/
 / |____
 / \/
b ----> y

Let a, b, x, y be the values of the name property field of four vertices.
Let the vertices named a and b be of type S, and let x and y be of type T.
Let vertex a be connected to both x and y via directed edges of type E.
Similarly, let vertex b also be connected to both x and y via directed edges of type E.

Consider the GraphQL query:

{
 S {
 name @output(out_name: "s_name")
 out_E {
 name @output(out_name: "t_name")
 }
 }
}

Between the data in the database and the query’s structure, it is clear that combining any of
a or b with any of x or y would produce a valid result. Therefore,
the complete result list, shown here in JSON format, would be:

[
 {"s_name": "a", "t_name": "x"},
 {"s_name": "a", "t_name": "y"},
 {"s_name": "b", "t_name": "x"},
 {"s_name": "b", "t_name": "y"},
]

This is precisely what the MATCH compilation target is guaranteed to produce.
The remainder of this section is only applicable to the gremlin compilation target. If using
MATCH, all of the queries listed in the remainder of this section will produce the same, complete
result list.

Since the gremlin compilation target does not guarantee a complete result list,
querying the database using a query string generated by the gremlin compilation target
will produce only a partial result list resembling the following:

[
 {"s_name": "a", "t_name": "x"},
 {"s_name": "b", "t_name": "x"},
]

Due to limitations in the underlying query language, gremlin will by default produce at most one
result for each of the starting locations in the query. The above GraphQL query started at
the type S, so each s_name in the returned result list is therefore distinct. Furthermore,
there is no guarantee (and no way to know ahead of time) whether x or y will be returned as
the t_name value in each result, as they are both valid results.

Users may apply the @output_source directive on the last scope of the query
to alter this behavior:

{
 S {
 name @output(out_name: "s_name")
 out_E @output_source {
 name @output(out_name: "t_name")
 }
 }
}

Rather than producing at most one result for each S, the query will now produce
at most one result for each distinct value that can be found at out_E, where the directive
is applied:

[
 {"s_name": "a", "t_name": "x"},
 {"s_name": "a", "t_name": "y"},
]

Conceptually, applying the @output_source directive makes it as if the query were written in
the opposite order:

{
 T {
 name @output(out_name: "t_name")
 in_E {
 name @output(out_name: "s_name")
 }
 }
}

Miscellaneous

Expanding @optional vertex fields

Including an optional statement in GraphQL has no performance issues on its own,
but if you continue expanding vertex fields within an optional scope,
there may be significant performance implications.

Going forward, we will refer to two different kinds of @optional directives.

	A “simple” optional is a vertex with an @optional directive that does not expand
any vertex fields within it.
For example:

{
 Animal {
 name @output(out_name: "name")
 in_Animal_ParentOf @optional {
 name @output(out_name: "parent_name")
 }
 }
}

OrientDB MATCH currently allows the last step in any traversal to be optional.
Therefore, the equivalent MATCH traversal for the above GraphQL is as follows:

SELECT
 Animal___1.name as `name`,
 Animal__in_Animal_ParentOf___1.name as `parent_name`
FROM (
 MATCH {
 class: Animal,
 as: Animal___1
 }.in('Animal_ParentOf') {
 as: Animal__in_Animal_ParentOf___1
 }
 RETURN $matches
)

	A “compound” optional is a vertex with an @optional directive which does expand
vertex fields within it.
For example:

{
 Animal {
 name @output(out_name: "name")
 in_Animal_ParentOf @optional {
 name @output(out_name: "parent_name")
 in_Animal_ParentOf {
 name @output(out_name: "grandparent_name")
 }
 }
 }
}

Currently, this cannot represented by a simple MATCH query.
Specifically, the following is NOT a valid MATCH statement,
because the optional traversal follows another edge:

-- NOT A VALID QUERY
SELECT
 Animal___1.name as `name`,
 Animal__in_Animal_ParentOf___1.name as `parent_name`
FROM (
 MATCH {
 class: Animal,
 as: Animal___1
 }.in('Animal_ParentOf') {
 optional: true,
 as: Animal__in_Animal_ParentOf___1
 }.in('Animal_ParentOf') {
 as: Animal__in_Animal_ParentOf__in_Animal_ParentOf___1
 }
 RETURN $matches
)

Instead, we represent a compound optional by taking an union (UNIONALL) of two distinct
MATCH queries. For instance, the GraphQL query above can be represented as follows:

SELECT EXPAND($final_match)
LET
 $match1 = (
 SELECT
 Animal___1.name AS `name`
 FROM (
 MATCH {
 class: Animal,
 as: Animal___1,
 where: (
 (in_Animal_ParentOf IS null)
 OR
 (in_Animal_ParentOf.size() = 0)
),
 }
)
),
 $match2 = (
 SELECT
 Animal___1.name AS `name`,
 Animal__in_Animal_ParentOf___1.name AS `parent_name`
 FROM (
 MATCH {
 class: Animal,
 as: Animal___1
 }.in('Animal_ParentOf') {
 as: Animal__in_Animal_ParentOf___1
 }.in('Animal_ParentOf') {
 as: Animal__in_Animal_ParentOf__in_Animal_ParentOf___1
 }
)
),
 $final_match = UNIONALL($match1, $match2)

In the first case where the optional edge is not followed,
we have to explicitly filter out all vertices where the edge could have been followed.
This is to eliminate duplicates between the two MATCH selections.

The previous example is not exactly how we implement compound optionals
(we also have SELECT statements within $match1 and $match2),
but it illustrates the the general idea.

Performance Penalty

If we have many compound optionals in the given GraphQL,
the above procedure results in the union of a large number of MATCH queries.
Specifically, for n compound optionals, we generate 2n different MATCH queries.
For each of the 2n subsets S of the n optional edges:

	We remove the @optional restriction for each traversal in S.

	For each traverse t in the complement of S, we entirely discard t
along with all the vertices and directives within it, and we add a filter
on the previous traverse to ensure that the edge corresponding to t does not exist.

Therefore, we get a performance penalty that grows exponentially
with the number of compound optional edges.
This is important to keep in mind when writing queries with many optional directives.

If some of those compound optionals contain @optional vertex fields of their own,
the performance penalty grows since we have to account for all possible subsets of @optional
statements that can be satisfied simultaneously.

Optional type_equivalence_hints parameter

This compilation parameter is a workaround for the limitations of the GraphQL and Gremlin
type systems:

	GraphQL does not allow type to inherit from another type, only to implement an interface.

	Gremlin does not have first-class support for inheritance at all.

Assume the following GraphQL schema:

type Animal {
 name: String
}

type Cat {
 name: String
}

type Dog {
 name: String
}

union AnimalCatDog = Animal | Cat | Dog

type Foo {
 adjacent_animal: AnimalCatDog
}

An appropriate type_equivalence_hints value here would be { Animal: AnimalCatDog }.
This lets the compiler know that the AnimalCatDog union type is implicitly equivalent to
the Animal type, as there are no other types that inherit from Animal in the database schema.
This allows the compiler to perform accurate type coercions in Gremlin, as well as optimize away
type coercions across edges of union type if the coercion is coercing to the
union’s equivalent type.

Setting type_equivalence_hints = { Animal: AnimalCatDog } during compilation
would enable the use of a @fold on the adjacent_animal vertex field of Foo:

{
 Foo {
 adjacent_animal @fold {
 ... on Animal {
 name @output(out_name: "name")
 }
 }
 }
}

License

Licensed under the Apache 2.0 License. Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language
governing permissions and limitations under the License.

Copyright 2017-present Kensho Technologies, LLC. The present date is determined by the timestamp
of the most recent commit in the repository.

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

