

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Graphite-API 1.1.3 documentation

Graphite-API documentation

[image: GitHub project]

 Installation

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Graphite-API 1.1.3 documentation

Installation

Debian / Ubuntu: native package

If you run Debian 8 or Ubuntu 14.04 LTS, you can use one of the available
packages which provides a self-contained build of graphite-api. Builds are
available on the releases [https://github.com/brutasse/graphite-api/releases] page.

Once installed, Graphite-api should be running as a service and available on
port 8888. The package contains all the optional dependencies.

Python package

Prerequisites

Installing Graphite-API requires:

	Python 2 (2.6 and above) or 3 (3.3 and above), with development files. On
debian/ubuntu, you’ll want to install python-dev.

	gcc. On debian/ubuntu, install build-essential.

	Cairo, including development files. On debian/ubuntu, install the
libcairo2-dev package.

	libffi with development files, libffi-dev on debian/ubuntu.

	Pip, the Python package manager. On debian/ubuntu, install python-pip.

Global installation

To install Graphite-API globally on your system, run as root:

$ pip install graphite-api

Isolated installation (virtualenv)

If you want to isolate Graphite-API from the system-wide python environment,
you can install it in a virtualenv.

$ virtualenv /usr/share/python/graphite
$ /usr/share/python/graphite/bin/pip install graphite-api

Extra dependencies

When you install graphite-api, all the dependencies for running a Graphite
server that uses Whisper as a storage backend are installed. You can specify
extra dependencies:

	For Sentry [https://docs.getsentry.com] integration: pip install graphite-api[sentry].

	For Cyanite [https://github.com/brutasse/graphite-cyanite] integration: pip install graphite-api[cyanite].

	For Cache support: pip install graphite-api[cache]. You’ll also need the
driver for the type of caching you want to use (Redis, Memcache, etc.). See
the Flask-Cache docs [http://pythonhosted.org/Flask-Cache/#configuring-flask-cache] for supported cache types.

You can also combine several extra dependencies:

$ pip install graphite-api[sentry,cyanite]

 Copyright 2014, Bruno Renié.
 Created using Sphinx 1.3.5.

 Configuration

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Graphite-API 1.1.3 documentation

Configuration

/etc/graphite-api.yaml

The configuration file for Graphite-API lives at /etc/graphite-api.yaml
and uses the YAML format. Creating the configuration file is optional: if
Graphite-API doesn’t find the file, sane defaults are used. They are described
below.

Default values

search_index: /srv/graphite/index
finders:
 - graphite_api.finders.whisper.WhisperFinder
functions:
 - graphite_api.functions.SeriesFunctions
 - graphite_api.functions.PieFunctions
whisper:
 directories:
 - /srv/graphite/whisper
time_zone: <system timezone> or UTC

Config sections

Default sections

search_index

The location of the search index used for searching metrics. Note that it
needs to be a file that is writable by the Graphite-API process.

finders

A list of python paths to the storage finders you want to use when fetching
metrics.

functions

A list of python paths to function definitions for transforming / analyzing
time series data.

whisper

The configuration information for whisper. Only relevant when using
WhisperFinder. Simply holds a directories key listing all directories
containing whisper data.

time_zone

The time zone to use when generating graphs. By default, Graphite-API tries
to detect your system timezone. If detection fails it falls back to UTC. You
can also manually override it if you want another value than your system’s
timezone.

Extra sections

carbon

Configuration information for reading data from carbon’s cache. Items:

	hosts

	List of carbon-cache hosts, in the format hostname:port[:instance].

	timeout

	Socket timeout for carbon connections, in seconds.

	retry_delay

	Time to wait before trying to re-establish a failed carbon connection, in
seconds.

	hashing_keyfunc

	Python path to a hashing function for metrics. If you use Carbon with
consistent hashing and a custom function, you need to point to the same
hashing function.

	carbon_prefix

	Prefix for carbon’s internal metrics. When querying metrics starting with
this prefix, requests are made to all carbon-cache instances instead of
one instance selected by the key function. Default: carbon.

	replication_factor

	The replication factor of your carbon setup. Default: 1.

Example:

carbon:
 hosts:
 - 127.0.0.1:7002
 timeout: 1
 retry_delay: 15
 carbon_prefix: carbon
 replication_factor: 1

sentry_dsn

This is useful if you want to send Graphite-API’s exceptions to a Sentry [https://docs.getsentry.com]
instance for easier debugging.

Example:

sentry_dsn: https://key:secret@app.getsentry.com/12345

Note

Sentry integration requires Graphite-API to be installed with the
corresponding extra dependency:

$ pip install graphite-api[sentry]

allowed_origins

Allows you to do cross-domain (CORS) requests to the Graphite API. Say you
have a dashboard at dashboard.example.com that makes AJAX requests to
graphite.example.com, just set the value accordingly:

allowed_origins:
 - dashboard.example.com

You can specify as many origins as you want. A wildcard can be used to allow
all origins:

allowed_origins:
 - *

cache

Lets you configure a cache for graph rendering. This is done via
Flask-Cache [http://pythonhosted.org/Flask-Cache/] which supports a
number of backends including memcache, Redis, filesystem or in-memory
caching.

Cache configuration maps directly to Flask-Cache’s config values. For each
CACHE_* config value, set the lowercased name in the cache section,
without the prefix. Example:

cache:
 type: redis
 redis_host: localhost

This would configure Flask-Cache with CACHE_TYPE = 'redis' and
CACHE_REDIS_HOST = 'localhost'.

Some cache options have default values defined by Graphite-API:

	default_timeout: 60

	key_prefix: 'graphite-api:.

Note

Caching functionality requires you to install the cache extra dependency
but also the underlying driver. E.g. for redis, you’ll need:

$ pip install graphite-api[cache] redis

statsd

Attaches a statsd object to the application, which can be used for
instrumentation. Currently Graphite-API itself doesn’t use this,
but some backends do, like Graphite-Influxdb [https://github.com/vimeo/graphite-influxdb].

Example:

statsd:
 host: 'statsd_host'
 port: 8125 # not needed if default

Note

This requires the statsd module:

$ pip install statsd

render_errors

If True (default), full tracebacks are returned in the HTTP
response in case of application errors.

Custom location

If you need the Graphite-API config file to be stored in another place than
/etc/graphite-api.yaml, you can set a custom location using the
GRAPHITE_API_CONFIG environment variable:

export GRAPHITE_API_CONFIG=/var/lib/graphite/config.yaml

 Copyright 2014, Bruno Renié.
 Created using Sphinx 1.3.5.

 Deployment

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Graphite-API 1.1.3 documentation

Deployment

There are several options available, depending on your setup.

Gunicorn + nginx

First, you need to install Gunicorn. The easiest way is to use pip:

$ pip install gunicorn

If you have installed Graphite-API in a virtualenv, install Gunicorn in the
same virtualenv:

$ /usr/share/python/graphite/bin/pip install gunicorn

Next, create the script that will run Graphite-API using your process watcher
of choice.

Upstart

description "Graphite-API server"
start on runlevel [2345]
stop on runlevel [!2345]

respawn

exec gunicorn -w2 graphite_api.app:app -b 127.0.0.1:8888

Supervisor

[program:graphite-api]
command = gunicorn -w2 graphite_api.app:app -b 127.0.0.1:8888
autostart = true
autorestart = true

systemd

This is /etc/systemd/system/graphite-api.socket
[Unit]
Description=graphite-api socket

[Socket]
ListenStream=/run/graphite-api.sock
ListenStream=127.0.0.1:8888

[Install]
WantedBy=sockets.target

This is /etc/systemd/system/graphite-api.service
[Unit]
Description=Graphite-API service
Requires=graphite-api.socket

[Service]
ExecStart=/usr/bin/gunicorn -w2 graphite_api.app:app
Restart=on-failure
#User=graphite
#Group=graphite
ExecReload=/bin/kill -s HUP $MAINPID
ExecStop=/bin/kill -s TERM $MAINPID
PrivateTmp=true

[Install]
WantedBy=multi-user.target

Note

If you have installed Graphite-API and Gunicorn in a virtualenv, you
need to use the full path to Gunicorn. Instead of gunicorn, use
/usr/share/python/graphite/bin/gunicorn (assuming your virtualenv is
at /usr/share/python/graphite).

See the Gunicorn docs [http://docs.gunicorn.org/en/latest/] for configuration options and command-line flags.

Finally, configure the nginx vhost:

/etc/nginx/sites-available/graphite.conf

upstream graphite {
 server 127.0.0.1:8888 fail_timeout=0;
}

server {
 server_name graph;
 listen 80 default;
 root /srv/www/graphite;

 location / {
 try_files $uri @graphite;
 }

 location @graphite {
 proxy_pass http://graphite;
 }
}

Enable the vhost and restart nginx:

$ ln -s /etc/nginx/sites-available/graphite.conf /etc/nginx/sites-enabled
$ service nginx restart

Apache + mod_wsgi

First, you need to install mod_wsgi.

See the mod_wsgi InstallationInstructions [https://code.google.com/p/modwsgi/wiki/InstallationInstructions] for installation instructions.

Then create the graphite-api.wsgi:

/var/www/wsgi-scripts/graphite-api.wsgi

from graphite_api.app import app as application

Finally, configure the apache vhost:

/etc/httpd/conf.d/graphite.conf

LoadModule wsgi_module modules/mod_wsgi.so

WSGISocketPrefix /var/run/wsgi

Listen 8013
<VirtualHost *:8013>

 WSGIDaemonProcess graphite-api processes=5 threads=5 display-name='%{GROUP}' inactivity-timeout=120
 WSGIProcessGroup graphite-api
 WSGIApplicationGroup %{GLOBAL}
 WSGIImportScript /var/www/wsgi-scripts/graphite-api.wsgi process-group=graphite-api application-group=%{GLOBAL}

 WSGIScriptAlias / /var/www/wsgi-scripts/graphite-api.wsgi

 <Directory /var/www/wsgi-scripts/>
 Order deny,allow
 Allow from all
 </Directory>
 </VirtualHost>

Adapt the mod_wsgi configuration to your requirements.

See the mod_wsgi QuickConfigurationGuide [https://code.google.com/p/modwsgi/wiki/QuickConfigurationGuide] for an overview of configurations and mod_wsgi ConfigurationDirectives [https://code.google.com/p/modwsgi/wiki/ConfigurationDirectives] to see all configuration directives

Restart apache:

$ service httpd restart

Docker

Create a graphite-api.yaml configuration file with your desired config.

Create a Dockerfile:

FROM brutasse/graphite-api

Build your container:

docker build -t graphite-api .

Run it:

docker run -t -i -p 8888:8888 graphite-api

/srv/graphite is a docker VOLUME. You can use that to provide whisper
data from the host (or from another docker container) to the graphite-api
container:

docker run -t -i -v /path/to/graphite:/srv/graphite -p 8888:8888 graphite-api

This container has all the extra packages included. Cyanite
backend and Sentry integration are available.

Nginx + uWSGI

First, you need to install uWSGI with Python support. On Debian, install uwsgi-plugin-python.

Then create the uWSGI file for Graphite-API in
/etc/uwsgi/apps-available/graphite-api.ini:

[uwsgi]
processes = 2
socket = localhost:8080
plugins = python27
module = graphite_api.app:app

If you installed Graphite-API in a virtualenv, specify the virtualenv path:

home = /var/www/wsgi-scripts/env

If you need a custom location for Graphite-API’s config file, set the
environment variable like this:

env = GRAPHITE_API_CONFIG=/var/www/wsgi-scripts/config.yml

Enable graphite-api.ini and restart uWSGI:

$ ln -s /etc/uwsgi/apps-available/graphite-api.ini /etc/uwsgi/apps-enabled
$ service uwsgi restart

Finally, configure the nginx vhost:

/etc/nginx/sites-available/graphite.conf

server {
 listen 80;

 location / {
 include uwsgi_params;
 uwsgi_pass localhost:8080;
 }
}

Enable the vhost and restart nginx:

$ ln -s /etc/nginx/sites-available/graphite.conf /etc/nginx/sites-enabled
$ service nginx restart

Other deployment methods

They currently aren’t described here but there are several other ways to serve
Graphite-API:

	nginx + circus + chaussette

If you feel like contributing some documentation, feel free to open pull a
request on the Graphite-API repository [https://github.com/brutasse/graphite-api].

 Copyright 2014, Bruno Renié.
 Created using Sphinx 1.3.5.

 HTTP API

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Graphite-API 1.1.3 documentation

HTTP API

Here is the general behavior of the API:

	When parameters are missing or wrong, an HTTP 400 response is returned with
the detailed errors in the response body.

	Request parameters can be passed via:

	JSON data in the request body (application/json content-type).

	Form data in the request body (application/www-form-urlencoded
content-type).

	Querystring parameters.

You can pass some parameters by querystring and others by json/form data if
you want to. Parameters are looked up in the order above, meaning that if a
parameter is present in both the form data and the querystring, only the one
from the querystring is taken into account.

	URLs are given without a trailing slash but adding a trailing slash is fine
for all API calls.

	Parameters are case-sensitive.

The Metrics API

These API endpoints are useful for finding and listing metrics available in
the system.

/metrics/find

Finds metrics under a given path. Other alias: /metrics.

Example:

GET /metrics/find?query=collectd.*

{"metrics": [{
 "is_leaf": 0,
 "name": "db01",
 "path": "collectd.db01."
}, {
 "is_leaf": 1,
 "name": "foo",
 "path": "collectd.foo"
}]}

Parameters:

	query (mandatory)

	The query to search for.

	format

	The output format to use. Can be completer (default) or treejson.

	wildcards (0 or 1)

	Whether to add a wildcard result at the end or no. Default: 0.

	from

	Epoch timestamp from which to consider metrics.

	until

	Epoch timestamp until which to consider metrics.

	jsonp (optional)

	Wraps the response in a JSONP callback.

/metrics/expand

Expands the given query with matching paths.

Parameters:

	query (mandatory)

	The metrics query. Can be specified multiple times.

	groupByExpr (0 or 1)

	Whether to return a flat list of results or group them by query. Default: 0.

	leavesOnly (0 or 1)

	Whether to only return leaves or both branches and leaves. Default: 0

	jsonp (optional)

	Wraps the response in a JSONP callback.

/metrics/index.json

Walks the metrics tree and returns every metric found as a sorted JSON array.

Parameters:

	jsonp (optional)

	Wraps the response in a jsonp callback.

Example:

GET /metrics/index.json

[
 "collectd.host1.load.longterm",
 "collectd.host1.load.midterm",
 "collectd.host1.load.shortterm"
]

/index

Rebuilds the search index by recursively querying the storage finders for
available paths.

Parameters:

	jsonp (optional)

	Wraps the response in a JSONP callback.

Example:

POST /index

{
 "success": true,
 "entries": 854
}

POST or PUT are supported.

The Render API – /render

Graphite-API provides a /render endpoint for generating graphs
and retrieving raw data. This endpoint accepts various arguments via query
string parameters, form data or JSON data.

To verify that the api is running and able to generate images, open
http://<api-host>:<port>/render?target=test in a browser. The api should
return a simple 600x300 image with the text “No Data”.

Once the api is running and you’ve begun feeding data into the storage
backend, use the parameters below to customize your graphs and pull out raw
data. For example:

single server load on large graph
http://graphite/render?target=server.web1.load&height=800&width=600

average load across web machines over last 12 hours
http://graphite/render?target=averageSeries(server.web*.load)&from=-12hours

number of registered users over past day as raw json data
http://graphite/render?target=app.numUsers&format=json

rate of new signups per minute
http://graphite/render?target=summarize(derivative(app.numUsers),"1min")&title=New_Users_Per_Minute

Note

Most of the functions and parameters are case sensitive.
For example &linewidth=2 will fail silently.
The correct parameter in this case is &lineWidth=2

Graphing Metrics

To begin graphing specific metrics, pass one or more target parameters and
specify a time window for the graph via from / until.

target

The target parameter specifies a path identifying one or several metrics,
optionally with functions acting on those metrics. Paths are documented below,
while functions are listed on the functions page.

Paths and Wildcards

Metric paths show the ”.” separated path from the root of the metrics
tree (often starting with servers) to a metric, for example
servers.ix02ehssvc04v.cpu.total.user.

Paths also support the following wildcards, which allows you to identify more
than one metric in a single path.

Asterisk

The asterisk (*) matches zero or more characters. It is non-greedy, so
you can have more than one within a single path element.

Example: servers.ix*ehssvc*v.cpu.total.* will return all total CPU
metrics for all servers matching the given name pattern.

Character list or range

Characters in square brackets ([...]) specify a single character
position in the path string, and match if the character in that position
matches one of the characters in the list or range.

A character range is indicated by 2 characters separated by a dash (-),
and means that any character between those 2 characters (inclusive) will
match. More than one range can be included within the square brackets, e.g.
foo[a-z0-9]bar will match foopbar, foo7bar etc..

If the characters cannot be read as a range, they are treated as a list
– any character in the list will match, e.g. foo[bc]ar will match
foobar and foocar. If you want to include a dash (-) in your
list, put it at the beginning or end, so it’s not interpreted as a range.

Value list

Comma-separated values within curly braces ({foo,bar,...})
are treated as value lists, and match if any of the values
matches the current point in the path. For example,
servers.ix01ehssvc04v.cpu.total.{user,system,iowait} will match the
user, system and I/O wait total CPU metrics for the specified server.

Note

All wildcards apply only within a single path element. In other words, they
do not include or cross dots (.) Therefore, servers.* will not
match servers.ix02ehssvc04v.cpu.total.user, while servers.*.*.*.*
will.

Examples

This will draw one or more metrics

Example:

&target=company.server05.applicationInstance04.requestsHandled
(draws one metric)

Let’s say there are 4 identical application instances running on each server:

&target=company.server05.applicationInstance*.requestsHandled
(draws 4 metrics / lines)

Now let’s say you have 10 servers:

&target=company.server*.applicationInstance*.requestsHandled
(draws 40 metrics / lines)

You can also run any number of functions on the various
metrics before graphing:

&target=averageSeries(company.server*.applicationInstance.requestsHandled)
(draws 1 aggregate line)

The target param can also be repeated to graph multiple related metrics:

&target=company.server1.loadAvg&target=company.server1.memUsage

Note

If more than 10 metrics are drawn the legend is no longer displayed. See the
hideLegend parameter for details.

from / until

These are optional parameters that specify the relative or absolute time
period to graph from specifies the beginning, until specifies the end.
If from is omitted, it defaults to 24 hours ago If until is omitted,
it defaults to the current time (now).

There are multiple possible formats for these functions:

&from=-RELATIVE_TIME
&from=ABSOLUTE_TIME

RELATIVE_TIME is a length of time since the current time. It is always
preceded by a minus sign (-) and followed by a unit of time. Valid units of
time:

	Abbreviation
	Unit

	s
	Seconds

	min
	Minutes

	h
	Hours

	d
	Days

	w
	Weeks

	mon
	30 Days (month)

	y
	365 Days (year)

ABSOLUTE_TIME is in the format HH:MM_YYMMDD, YYYYMMDD, MM/DD/YY, or any other
at(1)-compatible time format.

	Abbreviation
	Meaning

	HH
	Hours, in 24h clock format. Times before 12PM must include leading zeroes.

	MM
	Minutes

	YYYY
	4 Digit Year.

	MM
	Numeric month representation with leading zero

	DD
	Day of month with leading zero

&from and &until can mix absolute and relative time if desired.

Examples:

&from=-8d&until=-7d
(shows same day last week)

&from=04:00_20110501&until=16:00_20110501
(shows 4AM-4PM on May 1st, 2011)

&from=20091201&until=20091231
(shows December 2009)

&from=noon+yesterday
(shows data since 12:00pm on the previous day)

&from=6pm+today
(shows data since 6:00pm on the same day)

&from=january+1
(shows data since the beginning of the current year)

&from=monday
(show data since the previous monday)

Data Display Formats

Along with rendering an image, the api can also generate SVG [http://www.w3.org/Graphics/SVG/] with embedded metadata or return the raw
data in various formats for external graphing, analysis or monitoring.

format

Controls the format of data returned Affects all &targets passed in the
URL.

Examples:

&format=png
&format=raw
&format=csv
&format=json
&format=svg

png

Renders the graph as a PNG image of size determined by width and height

raw

Renders the data in a custom line-delimited format. Targets are output
one per line and are of the format <target name>,<start timestamp>,<end
timestamp>,<series step>|[data]*.

Example:

entries,1311836008,1311836013,1|1.0,2.0,3.0,5.0,6.0

csv

Renders the data in a CSV format suitable for import into a spreadsheet or for
processing in a script.

Example:

entries,2011-07-28 01:53:28,1.0
entries,2011-07-28 01:53:29,2.0
entries,2011-07-28 01:53:30,3.0
entries,2011-07-28 01:53:31,5.0
entries,2011-07-28 01:53:32,6.0

json

Renders the data as a json object. The jsonp option can be used to wrap this
data in a named call for cross-domain access.

[{
 "target": "entries",
 "datapoints": [
 [1.0, 1311836008],
 [2.0, 1311836009],
 [3.0, 1311836010],
 [5.0, 1311836011],
 [6.0, 1311836012]
]
}]

svg

Renders the graph as SVG markup of size determined by width and height.
Metadata about the drawn graph is saved as an embedded script with the
variable metadata being set to an object describing the graph.

<script>
 <![CDATA[
 metadata = {
 "area": {
 "xmin": 39.195507812499997,
 "ymin": 33.96875,
 "ymax": 623.794921875,
 "xmax": 1122
 },
 "series": [
 {
 "start": 1335398400,
 "step": 1800,
 "end": 1335425400,
 "name": "summarize(test.data, \"30min\", \"sum\")",
 "color": "#859900",
 "data": [null, null, 1.0, null, 1.0, null, 1.0, null, 1.0, null, 1.0, null, null, null, null],
 "options": {},
 "valuesPerPoint": 1
 }
],
 "y": {
 "labelValues": [0, 0.25, 0.5, 0.75, 1.0],
 "top": 1.0,
 "labels": ["0 ", "0.25 ", "0.50 ", "0.75 ", "1.00 "],
 "step": 0.25,
 "bottom": 0
 },
 "x": {
 "start": 1335398400,
 "end": 1335423600
 },
 "font": {
 "bold": false,
 "name": "Sans",
 "italic": false,
 "size": 10
 },
 "options": {
 "lineWidth": 1.2
 }
 }
]]>
</script>

rawData

Deprecated since version 0.9.9: This option is deprecated in favor of format

Used to get numerical data out of the webapp instead of an image Can be set
to true, false, csv. Affects all &targets passed in the URL.

Example:

&target=carbon.agents.graphiteServer01.cpuUsage&from=-5min&rawData=true

Returns the following text:

carbon.agents.graphiteServer01.cpuUsage,1306217160,1306217460,60|0.0,0.00666666520965,0.00666666624282,0.0,0.0133345399694

Graph Parameters

areaAlpha

Default: 1.0

Takes a floating point number between 0.0 and 1.0.

Sets the alpha (transparency) value of filled areas when using an areaMode.

areaMode

Default: none

Enables filling of the area below the graphed lines. Fill area is the same
color as the line color associated with it. See areaAlpha to make this area
transparent. Takes one of the following parameters which determines the fill
mode to use:

	none

	Disables areaMode

	first

	Fills the area under the first target and no other

	all

	Fills the areas under each target

	stacked

	Creates a graph where the filled area of each target is stacked on one
another. Each target line is displayed as the sum of all previous lines
plus the value of the current line.

bgcolor

Default: white

Sets the background color of the graph.

	Color Names
	RGB Value

	black
	0,0,0

	white
	255,255,255

	blue
	100,100,255

	green
	0,200,0

	red
	200,0,50

	yellow
	255,255,0

	orange
	255, 165, 0

	purple
	200,100,255

	brown
	150,100,50

	aqua
	0,150,150

	gray
	175,175,175

	grey
	175,175,175

	magenta
	255,0,255

	pink
	255,100,100

	gold
	200,200,0

	rose
	200,150,200

	darkblue
	0,0,255

	darkgreen
	0,255,0

	darkred
	255,0,0

	darkgray
	111,111,111

	darkgrey
	111,111,111

RGB can be passed directly in the format #RRGGBB where RR, GG, and BB are
2-digit hex vaules for red, green and blue, respectively.

Examples:

&bgcolor=blue
&bgcolor=#2222FF

cacheTimeout

Default: the value of cache.default_timeout in your configuration file. By
default, 60 seconds.

colorList

Default: blue,green,red,purple,brown,yellow,aqua,grey,magenta,pink,gold,rose

Takes one or more comma-separated color names or RGB values (see bgcolor for
a list of color names) and uses that list in order as the colors of the lines.
If more lines / metrics are drawn than colors passed, the list is reused in
order.

Example:

&colorList=green,yellow,orange,red,purple,#DECAFF

drawNullAsZero

Default: false

Converts any None (null) values in the displayed metrics to zero at render
time.

fgcolor

Default: black

Sets the foreground color This only affects the title, legend text, and axis
labels.

See majorGridLineColor, and minorGridLineColor for further control of
colors.

See bgcolor for a list of color names and details on formatting this
parameter.

fontBold

Default: false

If set to true, makes the font bold.

Example:

&fontBold=true

fontItalic

Default: false

If set to true, makes the font italic / oblique.

Example:

&fontItalic=true

fontName

Default: ‘Sans’

Change the font used to render text on the graph The font must be installed
on the Graphite-API server.

Example:

&fontName=FreeMono

fontSize

Default: 10

Changes the font size Must be passed a positive floating point number or
integer equal to or greater than 1.

Example:

&fontSize=8

format

See: Data Display Formats

from

See: from / until

graphOnly

Default: false

Display only the graph area with no grid lines, axes, or legend.

graphType

Default: line

Sets the type of graph to be rendered. Currently there are only two graph
types:

	line

	A line graph displaying metrics as lines over time.

	pie

	A pie graph with each slice displaying an aggregate of each metric
calculated using the function specified by pieMode.

hideLegend

Default: <unset>

If set to true, the legend is not drawn.

If set to false, the legend is drawn.

If unset, the legend is displayed if there are less than 10 items.

Hint: If set to false the &height parameter may need to be increased
to accommodate the additional text.

Example:

&hideLegend=false

hideAxes

Default: false

If set to true the X and Y axes will not be rendered.

Example:

&hideAxes=true

hideXAxis

Default: false

If set to true the X Axis will not be rendered.

hideYAxis

Default: false

If set to true the Y Axis will not be rendered.

hideGrid

Default: false

If set to true the grid lines will not be rendered.

Example:

&hideGrid=true

height

Default: 300

Sets the height of the generated graph image in pixels.

See also: width

Example:

&width=650&height=250

jsonp

Default: <unset>

If set and combined with format=json, wraps the JSON response in a
function call named by the parameter specified.

leftColor

Default: color chosen from colorList.

In dual Y-axis mode, sets the color of all metrics associated with the left
Y-axis.

leftDashed

Default: false

In dual Y-axis mode, draws all metrics associated with the left Y-axis using
dashed lines.

leftWidth

Default: value of the parameter lineWidth

In dual Y-axis mode, sets the line width of all metrics associated with the
left Y-axis.

lineMode

Default: slope

Sets the line drawing behavior. Takes one of the following parameters:

	slope

	Slope line mode draws a line from each point to the next. Periods with Null
values will not be drawn.

	staircase

	Staircase draws a flat line for the duration of a time period and then a
vertical line up or down to the next value.

	connected

	Like a slope line, but values are always connected with a slope line,
regardless of whether or not there are Null values between them.

Example:

&lineMode=staircase

lineWidth

Default: 1.2

Takes any floating point or integer (negative numbers do not error but will
cause no line to be drawn). Changes the width of the line in pixels.

Example:

&lineWidth=2

logBase

Default: <unset>

If set, draws the graph with a logarithmic scale of the specified base (e.g.
10 for common logarithm).

majorGridLineColor

Default: rose

Sets the color of the major grid lines.

See bgcolor for valid color names and formats.

Example:

&majorGridLineColor=#FF22FF

margin

Default: 10

Sets the margin around a graph image in pixels on all sides.

Example:

&margin=20

max

Deprecated since version 0.9.0: See yMax

maxDataPoints

Set the maximum numbers of datapoints returned when using json content.

If the number of datapoints in a selected range exceeds the maxDataPoints
value then the datapoints over the whole period are consolidated.

minorGridLineColor

Default: grey

Sets the color of the minor grid lines.

See bgcolor for valid color names and formats.

Example:

&minorGridLineColor=darkgrey

minorY

Sets the number of minor grid lines per major line on the y-axis.

Example:

&minorY=3

min

Deprecated since version 0.9.0: See yMin

minXStep

Default: 1

Sets the minimum pixel-step to use between datapoints drawn. Any value below
this will trigger a point consolidation of the series at render time. The
default value of 1 combined with the default lineWidth of 1.2 will
cause a minimal amount of line overlap between close-together points. To
disable render-time point consolidation entirely, set this to 0 though
note that series with more points than there are pixels in the graph area
(e.g. a few month’s worth of per-minute data) will look very ‘smooshed’ as
there will be a good deal of line overlap. In response, one may use lineWidth
to compensate for this.

noCache

Default: False

Set it to disable caching in rendered graphs.

pieMode

Default: average

The type of aggregation to use to calculate slices of a pie when
graphType=pie. One of:

	average

	The average of non-null points in the series.

	maximum

	The maximum of non-null points in the series.

	minimum

	The minimum of non-null points in the series.

rightColor

Default: color chosen from colorList

In dual Y-axis mode, sets the color of all metrics associated with the right
Y-axis.

rightDashed

Default: false

In dual Y-axis mode, draws all metrics associated with the right Y-axis using
dashed lines.

rightWidth

Default: value of the parameter lineWidth

In dual Y-axis mode, sets the line width of all metrics associated with the
right Y-axis.

template

Default: default

Used to specify a template from graphTemplates.conf to use for default
colors and graph styles.

Example:

&template=plain

thickness

Deprecated since version 0.9.0: See: lineWidth

title

Default: <unset>

Puts a title at the top of the graph, center aligned. If unset, no title is
displayed.

Example:

&title=Apache Busy Threads, All Servers, Past 24h

tz

Default: The timezone specified in the graphite-api configuration

Time zone to convert all times into.

Examples:

&tz=America/Los_Angeles
&tz=UTC

uniqueLegend

Default: false

Display only unique legend items, removing any duplicates.

until

See: from / until

vtitle

Default: <unset>

Labels the y-axis with vertical text. If unset, no y-axis label is displayed.

Example:

&vtitle=Threads

vtitleRight

Default: <unset>

In dual Y-axis mode, sets the title of the right Y-Axis (see: vtitle).

width

Default: 330

Sets the width of the generated graph image in pixels.

See also: height

Example:

&width=650&height=250

xFormat

Default: Determined automatically based on the time-width of the X axis

Sets the time format used when displaying
the X-axis. See datetime.date.strftime() [http://docs.python.org/library/datetime.html#datetime.date.strftime] for
format specification details.

yAxisSide

Default: left

Sets the side of the graph on which to render the Y-axis. Accepts values of
left or right.

yDivisors

Default: 4,5,6

Sets the preferred number of intermediate values to display on the Y-axis (Y
values between the minimum and maximum). Note that Graphite will ultimately
choose what values (and how many) to display based on a ‘pretty’ factor,
which tries to maintain a sensible scale (e.g. preferring intermediary values
like 25%,50%,75% over 33.3%,66.6%). To explicitly set the Y-axis values, see
yStep.

yLimit

Reserved for future use

See: yMax

yLimitLeft

Reserved for future use

See: yMaxLeft

yLimitRight

Reserved for future use

See: yMaxRight

yMin

Default: The lowest value of any of the series displayed

Manually sets the lower bound of the graph. Can be passed any integer or
floating point number.

Example:

&yMin=0

yMax

Default: The highest value of any of the series displayed

Manually sets the upper bound of the graph. Can be passed any integer or
floating point number.

Example:

&yMax=0.2345

yMaxLeft

In dual Y-axis mode, sets the upper bound of the left Y-Axis (see: yMax).

yMaxRight

In dual Y-axis mode, sets the upper bound of the right Y-Axis (see: yMax).

yMinLeft

In dual Y-axis mode, sets the lower bound of the left Y-Axis (see: yMin).

yMinRight

In dual Y-axis mode, sets the lower bound of the right Y-Axis (see: yMin).

yStep

Default: Calculated automatically

Manually set the value step between Y-axis labels and grid lines.

yStepLeft

In dual Y-axis mode, Manually set the value step between the left Y-axis
labels and grid lines (see: yStep).

yStepRight

In dual Y-axis mode, Manually set the value step between the right Y-axis
labels and grid lines (see: yStep).

yUnitSystem

Default: si

Set the unit system for compacting Y-axis values (e.g. 23,000,000 becomes
23M). Value can be one of:

	si

	Use si units (powers of 1000) - K, M, G, T, P.

	binary

	Use binary units (powers of 1024) - Ki, Mi, Gi, Ti, Pi.

	none

	Dont compact values, display the raw number.

 Copyright 2014, Bruno Renié.
 Created using Sphinx 1.3.5.

 Built-in functions

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Graphite-API 1.1.3 documentation

Built-in functions

Functions are used to transform, combine, and perform computations on series
data. They are applied by manipulating the target parameters in the
Render API.

Usage

Most functions are applied to one series list. Functions with the
parameter *seriesLists can take an arbitrary number of series lists.
To pass multiple series lists to a function which only takes one, use the
group() function.

List of functions

	
absolute(seriesList)

	Takes one metric or a wildcard seriesList and applies the mathematical abs
function to each datapoint transforming it to its absolute value.

Example:

&target=absolute(Server.instance01.threads.busy)
&target=absolute(Server.instance*.threads.busy)

	
aggregateLine(seriesList, func='avg')

	Draws a horizontal line based the function applied to the series.

Note: By default, the graphite renderer consolidates data points by
averaging data points over time. If you are using the ‘min’ or ‘max’
function for aggregateLine, this can cause an unusual gap in the
line drawn by this function and the data itself. To fix this, you
should use the consolidateBy() function with the same function
argument you are using for aggregateLine. This will ensure that the
proper data points are retained and the graph should line up
correctly.

Example:

&target=aggregateLine(server.connections.total, 'avg')

	
alias(seriesList, newName)

	Takes one metric or a wildcard seriesList and a string in quotes.
Prints the string instead of the metric name in the legend.

Example:

&target=alias(Sales.widgets.largeBlue,"Large Blue Widgets")

	
aliasByMetric(seriesList)

	Takes a seriesList and applies an alias derived from the base metric name.

Example:

&target=aliasByMetric(carbon.agents.graphite.creates)

	
aliasByNode(seriesList, *nodes)

	Takes a seriesList and applies an alias derived from one or more “node”
portion/s of the target name. Node indices are 0 indexed.

Example:

&target=aliasByNode(ganglia.*.cpu.load5,1)

	
aliasSub(seriesList, search, replace)

	
Runs series names through a regex search/replace.

Example:

&target=aliasSub(ip.*TCP*,"^.*TCP(\d+)","\1")

	
alpha(seriesList, alpha)

	Assigns the given alpha transparency setting to the series. Takes a float
value between 0 and 1.

	
areaBetween(*seriesLists)

	Draws the vertical area in between the two series in seriesList. Useful for
visualizing a range such as the minimum and maximum latency for a service.

areaBetween expects exactly one argument that results in exactly two
series (see example below). The order of the lower and higher values
series does not matter. The visualization only works when used in
conjunction with areaMode=stacked.

Most likely use case is to provide a band within which another metric
should move. In such case applying an alpha(), as in the second
example, gives best visual results.

Example:

&target=areaBetween(service.latency.{min,max})&areaMode=stacked

&target=alpha(areaBetween(service.latency.{min,max}),0.3)&areaMode=stacked

If for instance, you need to build a seriesList, you should use the
group function, like so:

&target=areaBetween(group(minSeries(a.*.min),maxSeries(a.*.max)))

	
asPercent(seriesList, total=None)

	Calculates a percentage of the total of a wildcard series. If total is
specified, each series will be calculated as a percentage of that total.
If total is not specified, the sum of all points in the wildcard series
will be used instead.

The total parameter may be a single series or a numeric value.

Example:

&target=asPercent(Server01.connections.{failed,succeeded},
 Server01.connections.attempted)
&target=asPercent(apache01.threads.busy,1500)
&target=asPercent(Server01.cpu.*.jiffies)

	
averageAbove(seriesList, n)

	Takes one metric or a wildcard seriesList followed by an integer N.
Out of all metrics passed, draws only the metrics with an average value
above N for the time period specified.

Example:

&target=averageAbove(server*.instance*.threads.busy,25)

Draws the servers with average values above 25.

	
averageBelow(seriesList, n)

	Takes one metric or a wildcard seriesList followed by an integer N.
Out of all metrics passed, draws only the metrics with an average value
below N for the time period specified.

Example:

&target=averageBelow(server*.instance*.threads.busy,25)

Draws the servers with average values below 25.

	
averageOutsidePercentile(seriesList, n)

	Removes functions lying inside an average percentile interval

	
averageSeries(*seriesLists)

	Short Alias: avg()

Takes one metric or a wildcard seriesList.
Draws the average value of all metrics passed at each time.

Example:

&target=averageSeries(company.server.*.threads.busy)

	
averageSeriesWithWildcards(seriesList, *positions)

	Call averageSeries after inserting wildcards at the given position(s).

Example:

&target=averageSeriesWithWildcards(
 host.cpu-[0-7].cpu-{user,system}.value, 1)

This would be the equivalent of:

&target=averageSeries(host.*.cpu-user.value)&target=averageSeries(
 host.*.cpu-system.value)

	
cactiStyle(seriesList, system=None)

	Takes a series list and modifies the aliases to provide column aligned
output with Current, Max, and Min values in the style of cacti. Optionally
takes a “system” value to apply unit formatting in the same style as the
Y-axis.
NOTE: column alignment only works with monospace fonts such as terminus.

Example:

&target=cactiStyle(ganglia.*.net.bytes_out,"si")

	
changed(seriesList)

	Takes one metric or a wildcard seriesList.
Output 1 when the value changed, 0 when null or the same
Example:

&target=changed(Server01.connections.handled)

	
color(seriesList, theColor)

	Assigns the given color to the seriesList

Example:

&target=color(collectd.hostname.cpu.0.user, 'green')
&target=color(collectd.hostname.cpu.0.system, 'ff0000')
&target=color(collectd.hostname.cpu.0.idle, 'gray')
&target=color(collectd.hostname.cpu.0.idle, '6464ffaa')

	
consolidateBy(seriesList, consolidationFunc)

	Takes one metric or a wildcard seriesList and a consolidation function
name.

Valid function names are ‘sum’, ‘average’, ‘min’, and ‘max’

When a graph is drawn where width of the graph size in pixels is smaller
than the number of datapoints to be graphed, Graphite consolidates the
values to to prevent line overlap. The consolidateBy() function changes
the consolidation function from the default of ‘average’ to one of ‘sum’,
‘max’, or ‘min’. This is especially useful in sales graphs, where
fractional values make no sense and a ‘sum’ of consolidated values is
appropriate.

Example:

&target=consolidateBy(Sales.widgets.largeBlue, 'sum')
&target=consolidateBy(Servers.web01.sda1.free_space, 'max')

	
constantLine(value)

	Takes a float F.

Draws a horizontal line at value F across the graph.

Example:

&target=constantLine(123.456)

	
countSeries(*seriesLists)

	Draws a horizontal line representing the number of nodes found in the
seriesList.

Example:

&target=countSeries(carbon.agents.*.*)

	
cumulative(seriesList)

	Takes one metric or a wildcard seriesList, and an optional function.

Valid functions are ‘sum’, ‘average’, ‘min’, and ‘max’

Sets the consolidation function to ‘sum’ for the given metric seriesList.

Alias for consolidateBy(series, 'sum')

Example:

&target=cumulative(Sales.widgets.largeBlue)

	
currentAbove(seriesList, n)

	Takes one metric or a wildcard seriesList followed by an integer N.
Out of all metrics passed, draws only the metrics whose value is above N
at the end of the time period specified.

Example:

&target=currentAbove(server*.instance*.threads.busy,50)

Draws the servers with more than 50 busy threads.

	
currentBelow(seriesList, n)

	Takes one metric or a wildcard seriesList followed by an integer N.
Out of all metrics passed, draws only the metrics whose value is below N
at the end of the time period specified.

Example:

&target=currentBelow(server*.instance*.threads.busy,3)

Draws the servers with less than 3 busy threads.

	
dashed(seriesList, dashLength=5)

	Takes one metric or a wildcard seriesList, followed by a float F.

Draw the selected metrics with a dotted line with segments of length F
If omitted, the default length of the segments is 5.0

Example:

&target=dashed(server01.instance01.memory.free,2.5)

	
derivative(seriesList)

	This is the opposite of the integral function. This is useful for taking a
running total metric and calculating the delta between subsequent data
points.

This function does not normalize for periods of time, as a true derivative
would. Instead see the perSecond() function to calculate a rate of change
over time.

Example:

&target=derivative(company.server.application01.ifconfig.TXPackets)

Each time you run ifconfig, the RX and TXPackets are higher (assuming there
is network traffic.) By applying the derivative function, you can get an
idea of the packets per minute sent or received, even though you’re only
recording the total.

	
diffSeries(*seriesLists)

	Subtracts series 2 through n from series 1.

Example:

&target=diffSeries(service.connections.total,
 service.connections.failed)

To diff a series and a constant, one should use offset instead of
(or in addition to) diffSeries.

Example:

&target=offset(service.connections.total, -5)

&target=offset(diffSeries(service.connections.total,
 service.connections.failed), -4)

	
divideSeries(dividendSeriesList, divisorSeriesList)

	Takes a dividend metric and a divisor metric and draws the division result.
A constant may not be passed. To divide by a constant, use the scale()
function (which is essentially a multiplication operation) and use the
inverse of the dividend. (Division by 8 = multiplication by 1/8 or 0.125)

Example:

&target=divideSeries(Series.dividends,Series.divisors)

	
drawAsInfinite(seriesList)

	Takes one metric or a wildcard seriesList.
If the value is zero, draw the line at 0. If the value is above zero, draw
the line at infinity. If the value is null or less than zero, do not draw
the line.

Useful for displaying on/off metrics, such as exit codes. (0 = success,
anything else = failure.)

Example:

drawAsInfinite(Testing.script.exitCode)

	
exclude(seriesList, pattern)

	Takes a metric or a wildcard seriesList, followed by a regular expression
in double quotes. Excludes metrics that match the regular expression.

Example:

&target=exclude(servers*.instance*.threads.busy,"server02")

	
formatPathExpressions(seriesList)

	Returns a comma-separated list of unique path expressions.

	
grep(seriesList, pattern)

	Takes a metric or a wildcard seriesList, followed by a regular expression
in double quotes. Excludes metrics that don’t match the regular
expression.

Example:

&target=grep(servers*.instance*.threads.busy,"server02")

	
group(*seriesLists)

	Takes an arbitrary number of seriesLists and adds them to a single
seriesList. This is used to pass multiple seriesLists to a function which
only takes one.

	
groupByNode(seriesList, nodeNum, callback)

	Takes a serieslist and maps a callback to subgroups within as defined by a
common node.

Example:

&target=groupByNode(ganglia.by-function.*.*.cpu.load5,2,"sumSeries")

Would return multiple series which are each the result of applying the
“sumSeries” function to groups joined on the second node (0 indexed)
resulting in a list of targets like:

sumSeries(ganglia.by-function.server1.*.cpu.load5),
sumSeries(ganglia.by-function.server2.*.cpu.load5),...

	
highestAverage(seriesList, n=1)

	Takes one metric or a wildcard seriesList followed by an integer N.
Out of all metrics passed, draws only the top N metrics with the highest
average value for the time period specified.

Example:

&target=highestAverage(server*.instance*.threads.busy,5)

Draws the top 5 servers with the highest average value.

	
highestCurrent(seriesList, n=1)

	Takes one metric or a wildcard seriesList followed by an integer N.
Out of all metrics passed, draws only the N metrics with the highest value
at the end of the time period specified.

Example:

&target=highestCurrent(server*.instance*.threads.busy,5)

Draws the 5 servers with the highest busy threads.

	
highestMax(seriesList, n=1)

	Takes one metric or a wildcard seriesList followed by an integer N.

Out of all metrics passed, draws only the N metrics with the highest
maximum value in the time period specified.

Example:

&target=highestMax(server*.instance*.threads.busy,5)

Draws the top 5 servers who have had the most busy threads during the time
period specified.

	
hitcount(seriesList, intervalString, alignToInterval=False)

	Estimate hit counts from a list of time series.

This function assumes the values in each time series represent
hits per second. It calculates hits per some larger interval
such as per day or per hour. This function is like summarize(),
except that it compensates automatically for different time scales
(so that a similar graph results from using either fine-grained
or coarse-grained records) and handles rarely-occurring events
gracefully.

	
holtWintersAberration(seriesList, delta=3)

	Performs a Holt-Winters forecast using the series as input data and plots
the positive or negative deviation of the series data from the forecast.

	
holtWintersConfidenceArea(seriesList, delta=3)

	Performs a Holt-Winters forecast using the series as input data and plots
the area between the upper and lower bands of the predicted forecast
deviations.

	
holtWintersConfidenceBands(seriesList, delta=3)

	Performs a Holt-Winters forecast using the series as input data and plots
upper and lower bands with the predicted forecast deviations.

	
holtWintersForecast(seriesList)

	Performs a Holt-Winters forecast using the series as input data. Data from
one week previous to the series is used to bootstrap the initial forecast.

	
identity(name, step=60)

	Identity function:
Returns datapoints where the value equals the timestamp of the datapoint.
Useful when you have another series where the value is a timestamp, and
you want to compare it to the time of the datapoint, to render an age

Example:

&target=identity("The.time.series")

This would create a series named “The.time.series” that contains points
where x(t) == t.

Accepts optional second argument as ‘step’ parameter (default step is
60 sec)

	
integral(seriesList)

	This will show the sum over time, sort of like a continuous addition
function. Useful for finding totals or trends in metrics that are
collected per minute.

Example:

&target=integral(company.sales.perMinute)

This would start at zero on the left side of the graph, adding the sales
each minute, and show the total sales for the time period selected at the
right side, (time now, or the time specified by ‘&until=’).

	
invert(seriesList)

	Takes one metric or a wildcard seriesList, and inverts each datapoint
(i.e. 1/x).

Example:

&target=invert(Server.instance01.threads.busy)

	
isNonNull(seriesList)

	Takes a metric or wild card seriesList and counts up how many
non-null values are specified. This is useful for understanding
which metrics have data at a given point in time (ie, to count
which servers are alive).

Example:

&target=isNonNull(webapp.pages.*.views)

Returns a seriesList where 1 is specified for non-null values, and
0 is specified for null values.

	
keepLastValue(seriesList, limit=inf)

	Takes one metric or a wildcard seriesList, and optionally a limit to the
number of ‘None’ values to skip over. Continues the line with the last
received value when gaps (‘None’ values) appear in your data, rather than
breaking your line.

Example:

&target=keepLastValue(Server01.connections.handled)
&target=keepLastValue(Server01.connections.handled, 10)

	
legendValue(seriesList, *valueTypes)

	Takes one metric or a wildcard seriesList and a string in quotes.
Appends a value to the metric name in the legend. Currently one or several
of: last, avg, total, min, max. The last argument can be si
(default) or binary, in that case values will be formatted in the
corresponding system.

Example:

&target=legendValue(Sales.widgets.largeBlue, 'avg', 'max', 'si')

	
limit(seriesList, n)

	Takes one metric or a wildcard seriesList followed by an integer N.

Only draw the first N metrics. Useful when testing a wildcard in a
metric.

Example:

&target=limit(server*.instance*.memory.free,5)

Draws only the first 5 instance’s memory free.

	
lineWidth(seriesList, width)

	Takes one metric or a wildcard seriesList, followed by a float F.

Draw the selected metrics with a line width of F, overriding the default
value of 1, or the &lineWidth=X.X parameter.

Useful for highlighting a single metric out of many, or having multiple
line widths in one graph.

Example:

&target=lineWidth(server01.instance01.memory.free,5)

	
logarithm(seriesList, base=10)

	Takes one metric or a wildcard seriesList, a base, and draws the y-axis in
logarithmic format. If base is omitted, the function defaults to base 10.

Example:

&target=log(carbon.agents.hostname.avgUpdateTime,2)

	
lowestAverage(seriesList, n=1)

	Takes one metric or a wildcard seriesList followed by an integer N.
Out of all metrics passed, draws only the bottom N metrics with the lowest
average value for the time period specified.

Example:

&target=lowestAverage(server*.instance*.threads.busy,5)

Draws the bottom 5 servers with the lowest average value.

	
lowestCurrent(seriesList, n=1)

	Takes one metric or a wildcard seriesList followed by an integer N.
Out of all metrics passed, draws only the N metrics with the lowest value
at the end of the time period specified.

Example:

&target=lowestCurrent(server*.instance*.threads.busy,5)

Draws the 5 servers with the least busy threads right now.

	
mapSeries(seriesList, mapNode)

	Short form: map().

Takes a seriesList and maps it to a list of sub-seriesList. Each
sub-seriesList has the given mapNode in common.

Example (note: This function is not very useful alone. It should be used
with reduceSeries()):

mapSeries(servers.*.cpu.*,1) =>
 [
 servers.server1.cpu.*,
 servers.server2.cpu.*,
 ...
 servers.serverN.cpu.*
]

	
maxSeries(*seriesLists)

	Takes one metric or a wildcard seriesList. For each datapoint from each
metric passed in, pick the maximum value and graph it.

Example:

&target=maxSeries(Server*.connections.total)

	
maximumAbove(seriesList, n)

	Takes one metric or a wildcard seriesList followed by a constant n.
Draws only the metrics with a maximum value above n.

Example:

&target=maximumAbove(system.interface.eth*.packetsSent,1000)

This would only display interfaces which at one point sent more than
1000 packets/min.

	
maximumBelow(seriesList, n)

	Takes one metric or a wildcard seriesList followed by a constant n.
Draws only the metrics with a maximum value below n.

Example:

&target=maximumBelow(system.interface.eth*.packetsSent,1000)

This would only display interfaces which always sent less than 1000
packets/min.

	
minSeries(*seriesLists)

	Takes one metric or a wildcard seriesList.
For each datapoint from each metric passed in, pick the minimum value and
graph it.

Example:

&target=minSeries(Server*.connections.total)

	
minimumAbove(seriesList, n)

	Takes one metric or a wildcard seriesList followed by a constant n.
Draws only the metrics with a minimum value above n.

Example:

&target=minimumAbove(system.interface.eth*.packetsSent,1000)

This would only display interfaces which always sent more than 1000
packets/min.

	
minimumBelow(seriesList, n)

	Takes one metric or a wildcard seriesList followed by a constant n.
Draws only the metrics with a minimum value below n.

Example:

&target=minimumBelow(system.interface.eth*.packetsSent,1000)

This would only display interfaces which sent at one point less than
1000 packets/min.

	
mostDeviant(seriesList, n)

	Takes one metric or a wildcard seriesList followed by an integer N.
Draws the N most deviant metrics.
To find the deviants, the standard deviation (sigma) of each series
is taken and ranked. The top N standard deviations are returned.

Example:

&target=mostDeviant(server*.instance*.memory.free, 5)

Draws the 5 instances furthest from the average memory free.

	
movingAverage(seriesList, windowSize)

	Graphs the moving average of a metric (or metrics) over a fixed number of
past points, or a time interval.

Takes one metric or a wildcard seriesList followed by a number N of
datapoints or a quoted string with a length of time like ‘1hour’ or ‘5min’
(See from / until in the render_api_ for examples of time formats).
Graphs the average of the preceeding datapoints for each point on the
graph. All previous datapoints are set to None at the beginning of the
graph.

Example:

&target=movingAverage(Server.instance01.threads.busy,10)
&target=movingAverage(Server.instance*.threads.idle,'5min')

	
movingMedian(seriesList, windowSize)

	Graphs the moving median of a metric (or metrics) over a fixed number of
past points, or a time interval.

Takes one metric or a wildcard seriesList followed by a number N of
datapoints or a quoted string with a length of time like ‘1hour’ or ‘5min’
(See from / until in the render_api_ for examples of time formats).
Graphs the median of the preceeding datapoints for each point on the
graph. All previous datapoints are set to None at the beginning of the
graph.

Example:

&target=movingMedian(Server.instance01.threads.busy,10)
&target=movingMedian(Server.instance*.threads.idle,'5min')

	
multiplySeries(*seriesLists)

	Takes two or more series and multiplies their points. A constant may not be
used. To multiply by a constant, use the scale() function.

Example:

&target=multiplySeries(Series.dividends,Series.divisors)

	
multiplySeriesWithWildcards(seriesList, *position)

	Call multiplySeries after inserting wildcards at the given position(s).

Example:

&target=multiplySeriesWithWildcards(
 web.host-[0-7].{avg-response,total-request}.value, 2)

This would be the equivalent of:

&target=multiplySeries(web.host-0.{avg-response,total-request}.value)
&target=multiplySeries(web.host-1.{avg-response,total-request}.value)
...

	
nPercentile(seriesList, n)

	Returns n-percent of each series in the seriesList.

	
nonNegativeDerivative(seriesList, maxValue=None)

	Same as the derivative function above, but ignores datapoints that trend
down. Useful for counters that increase for a long time, then wrap or
reset. (Such as if a network interface is destroyed and recreated by
unloading and re-loading a kernel module, common with USB / WiFi cards.

Example:

&target=nonNegativederivative(
 company.server.application01.ifconfig.TXPackets)

	
offset(seriesList, factor)

	Takes one metric or a wildcard seriesList followed by a constant, and adds
the constant to each datapoint.

Example:

&target=offset(Server.instance01.threads.busy,10)

	
offsetToZero(seriesList)

	Offsets a metric or wildcard seriesList by subtracting the minimum
value in the series from each datapoint.

Useful to compare different series where the values in each series
may be higher or lower on average but you’re only interested in the
relative difference.

An example use case is for comparing different round trip time
results. When measuring RTT (like pinging a server), different
devices may come back with consistently different results due to
network latency which will be different depending on how many
network hops between the probe and the device. To compare different
devices in the same graph, the network latency to each has to be
factored out of the results. This is a shortcut that takes the
fastest response (lowest number in the series) and sets that to zero
and then offsets all of the other datapoints in that series by that
amount. This makes the assumption that the lowest response is the
fastest the device can respond, of course the more datapoints that
are in the series the more accurate this assumption is.

Example:

&target=offsetToZero(Server.instance01.responseTime)
&target=offsetToZero(Server.instance*.responseTime)

	
perSecond(seriesList, maxValue=None)

	Derivative adjusted for the series time interval
This is useful for taking a running total metric and showing how many
requests per second were handled.

Example:

&target=perSecond(company.server.application01.ifconfig.TXPackets)

Each time you run ifconfig, the RX and TXPackets are higher (assuming there
is network traffic.) By applying the derivative function, you can get an
idea of the packets per minute sent or received, even though you’re only
recording the total.

	
percentileOfSeries(seriesList, n, interpolate=False)

	percentileOfSeries returns a single series which is composed of the
n-percentile values taken across a wildcard series at each point.
Unless interpolate is set to True, percentile values are actual values
contained in one of the supplied series.

	
randomWalkFunction(name, step=60)

	Short Alias: randomWalk()

Returns a random walk starting at 0. This is great for testing when there
is no real data in whisper.

Example:

&target=randomWalk("The.time.series")

This would create a series named “The.time.series” that contains points
where x(t) == x(t-1)+random()-0.5, and x(0) == 0.

Accepts an optional second argument as step parameter (default step is
60 sec).

	
rangeOfSeries(*seriesLists)

	Takes a wildcard seriesList.
Distills down a set of inputs into the range of the series

Example:

&target=rangeOfSeries(Server*.connections.total)

	
reduceSeries(seriesLists, reduceFunction, reduceNode, *reduceMatchers)

	Short form: reduce().

Takes a list of seriesLists and reduces it to a list of series by means of
the reduceFunction.

Reduction is performed by matching the reduceNode in each series against
the list of reduceMatchers. The each series is then passed to the
reduceFunction as arguments in the order given by reduceMatchers. The
reduceFunction should yield a single series.

The resulting list of series are aliased so that they can easily be
nested in other functions.

Example: Map/Reduce asPercent(bytes_used,total_bytes) for each server.

Assume that metrics in the form below exist:

servers.server1.disk.bytes_used
servers.server1.disk.total_bytes
servers.server2.disk.bytes_used
servers.server2.disk.total_bytes
servers.server3.disk.bytes_used
servers.server3.disk.total_bytes
...
servers.serverN.disk.bytes_used
servers.serverN.disk.total_bytes

To get the percentage of disk used for each server:

reduceSeries(mapSeries(servers.*.disk.*,1),
 "asPercent",3,"bytes_used","total_bytes") =>

 alias(asPercent(servers.server1.disk.bytes_used,
 servers.server1.disk.total_bytes),
 "servers.server1.disk.reduce.asPercent"),
 alias(asPercent(servers.server2.disk.bytes_used,
 servers.server2.disk.total_bytes),
 "servers.server2.disk.reduce.asPercent"),
 ...
 alias(asPercent(servers.serverN.disk.bytes_used,
 servers.serverN.disk.total_bytes),
 "servers.serverN.disk.reduce.asPercent")

In other words, we will get back the following metrics:

servers.server1.disk.reduce.asPercent,
servers.server2.disk.reduce.asPercent,
...
servers.serverN.disk.reduce.asPercent

See also

mapSeries()

	
removeAbovePercentile(seriesList, n)

	Removes data above the nth percentile from the series or list of series
provided. Values above this percentile are assigned a value of None.

	
removeAboveValue(seriesList, n)

	Removes data above the given threshold from the series or list of series
provided. Values above this threshole are assigned a value of None.

	
removeBelowPercentile(seriesList, n)

	Removes data below the nth percentile from the series or list of series
provided. Values below this percentile are assigned a value of None.

	
removeBelowValue(seriesList, n)

	Removes data below the given threshold from the series or list of series
provided. Values below this threshole are assigned a value of None.

	
removeBetweenPercentile(seriesList, n)

	Removes lines who do not have an value lying in the x-percentile of all
the values at a moment

	
removeEmptySeries(seriesList)

	Takes one metric or a wildcard seriesList. Out of all metrics
passed, draws only the metrics with not empty data.

Example:

&target=removeEmptySeries(server*.instance*.threads.busy)

Draws only live servers with not empty data.

	
scale(seriesList, factor)

	Takes one metric or a wildcard seriesList followed by a constant, and
multiplies the datapoint by the constant provided at each point.

Example:

&target=scale(Server.instance01.threads.busy,10)
&target=scale(Server.instance*.threads.busy,10)

	
scaleToSeconds(seriesList, seconds)

	Takes one metric or a wildcard seriesList and returns “value per seconds”
where seconds is a last argument to this functions.

Useful in conjunction with derivative or integral function if you want
to normalize its result to a known resolution for arbitrary retentions

	
secondYAxis(seriesList)

	Graph the series on the secondary Y axis.

	
sinFunction(name, amplitude=1, step=60)

	Short Alias: sin()

Just returns the sine of the current time. The optional amplitude parameter
changes the amplitude of the wave.

Example:

&target=sin("The.time.series", 2)

This would create a series named “The.time.series” that contains sin(x)*2.

A third argument can be provided as a step parameter (default is 60 secs).

	
smartSummarize(seriesList, intervalString, func='sum')

	Smarter experimental version of summarize.

	
sortByMaxima(seriesList)

	Takes one metric or a wildcard seriesList.

Sorts the list of metrics by the maximum value across the time period
specified. Useful with the &areaMode=all parameter, to keep the
lowest value lines visible.

Example:

&target=sortByMaxima(server*.instance*.memory.free)

	
sortByMinima(seriesList)

	Takes one metric or a wildcard seriesList.

Sorts the list of metrics by the lowest value across the time period
specified.

Example:

&target=sortByMinima(server*.instance*.memory.free)

	
sortByName(seriesList)

	Takes one metric or a wildcard seriesList.

Sorts the list of metrics by the metric name.

	
sortByTotal(seriesList)

	Takes one metric or a wildcard seriesList.

Sorts the list of metrics by the sum of values across the time period
specified.

	
stacked(seriesLists, stackName='__DEFAULT__')

	Takes one metric or a wildcard seriesList and change them so they are
stacked. This is a way of stacking just a couple of metrics without having
to use the stacked area mode (that stacks everything). By means of this a
mixed stacked and non stacked graph can be made

It can also take an optional argument with a name of the stack, in case
there is more than one, e.g. for input and output metrics.

Example:

&target=stacked(company.server.application01.ifconfig.TXPackets, 'tx')

	
stddevSeries(*seriesLists)

	Takes one metric or a wildcard seriesList.
Draws the standard deviation of all metrics passed at each time.

Example:

&target=stddevSeries(company.server.*.threads.busy)

	
stdev(seriesList, points, windowTolerance=0.1)

	Takes one metric or a wildcard seriesList followed by an integer N.
Draw the Standard Deviation of all metrics passed for the past N
datapoints. If the ratio of null points in the window is greater than
windowTolerance, skip the calculation. The default for windowTolerance is
0.1 (up to 10% of points in the window can be missing). Note that if this
is set to 0.0, it will cause large gaps in the output anywhere a single
point is missing.

Example:

&target=stdev(server*.instance*.threads.busy,30)
&target=stdev(server*.instance*.cpu.system,30,0.0)

	
substr(seriesList, start=0, stop=0)

	Takes one metric or a wildcard seriesList followed by 1 or 2 integers.
Assume that the metric name is a list or array, with each element
separated by dots. Prints n - length elements of the array (if only one
integer n is passed) or n - m elements of the array (if two integers n and
m are passed). The list starts with element 0 and ends with element
(length - 1).

Example:

&target=substr(carbon.agents.hostname.avgUpdateTime,2,4)

The label would be printed as “hostname.avgUpdateTime”.

	
sumSeries(*seriesLists)

	Short form: sum()

This will add metrics together and return the sum at each datapoint. (See
integral for a sum over time)

Example:

&target=sum(company.server.application*.requestsHandled)

This would show the sum of all requests handled per minute (provided
requestsHandled are collected once a minute). If metrics with different
retention rates are combined, the coarsest metric is graphed, and the sum
of the other metrics is averaged for the metrics with finer retention
rates.

	
sumSeriesWithWildcards(seriesList, *positions)

	Call sumSeries after inserting wildcards at the given position(s).

Example:

&target=sumSeriesWithWildcards(host.cpu-[0-7].cpu-{user,system}.value,
 1)

This would be the equivalent of:

&target=sumSeries(host.*.cpu-user.value)&target=sumSeries(
 host.*.cpu-system.value)

	
summarize(seriesList, intervalString, func='sum', alignToFrom=False)

	Summarize the data into interval buckets of a certain size.

By default, the contents of each interval bucket are summed together.
This is useful for counters where each increment represents a discrete
event and retrieving a “per X” value requires summing all the events in
that interval.

Specifying ‘avg’ instead will return the mean for each bucket, which can
be more useful when the value is a gauge that represents a certain value
in time.

‘max’, ‘min’ or ‘last’ can also be specified.

By default, buckets are calculated by rounding to the nearest interval.
This works well for intervals smaller than a day. For example, 22:32 will
end up in the bucket 22:00-23:00 when the interval=1hour.

Passing alignToFrom=true will instead create buckets starting at the from
time. In this case, the bucket for 22:32 depends on the from time. If
from=6:30 then the 1hour bucket for 22:32 is 22:30-23:30.

Example:

total errors per hour
&target=summarize(counter.errors, "1hour")

new users per week
&target=summarize(nonNegativeDerivative(gauge.num_users), "1week")

average queue size per hour
&target=summarize(queue.size, "1hour", "avg")

maximum queue size during each hour
&target=summarize(queue.size, "1hour", "max")

2010 Q1-4
&target=summarize(metric, "13week", "avg", true)&from=midnight+20100101

	
threshold(value, label=None, color=None)

	Takes a float F, followed by a label (in double quotes) and a color.
(See bgcolor in the render_api_ for valid color names & formats.)

Draws a horizontal line at value F across the graph.

Example:

&target=threshold(123.456, "omgwtfbbq", red)

	
timeShift(seriesList, timeShift, resetEnd=True)

	Takes one metric or a wildcard seriesList, followed by a quoted string
with the length of time (See from / until in the render_api_ for
examples of time formats).

Draws the selected metrics shifted in time. If no sign is given, a minus
sign (-) is implied which will shift the metric back in time. If a plus
sign (+) is given, the metric will be shifted forward in time.

Will reset the end date range automatically to the end of the base stat
unless resetEnd is False. Example case is when you timeshift to last week
and have the graph date range set to include a time in the future, will
limit this timeshift to pretend ending at the current time. If resetEnd is
False, will instead draw full range including future time.

Useful for comparing a metric against itself at a past periods or
correcting data stored at an offset.

Example:

&target=timeShift(Sales.widgets.largeBlue,"7d")
&target=timeShift(Sales.widgets.largeBlue,"-7d")
&target=timeShift(Sales.widgets.largeBlue,"+1h")

	
timeSlice(seriesList, startSliceAt, endSliceAt='now')

	Takes one metric or a wildcard metric, followed by a quoted
string with the time to start the line and another quoted string
with the time to end the line. The start and end times are
inclusive. See from / until in the render api for examples of
time formats.

Useful for filtering out a part of a series of data from a wider
range of data.

Example:

&target=timeSlice(network.core.port1,"00:00 20140101","11:59 20140630")
&target=timeSlice(network.core.port1,"12:00 20140630","now")

	
timeStack(seriesList, timeShiftUnit, timeShiftStart, timeShiftEnd)

	Takes one metric or a wildcard seriesList, followed by a quoted string
with the length of time (See from / until in the render_api_ for
examples of time formats). Also takes a start multiplier and end
multiplier for the length of time-

Create a seriesList which is composed the orginal metric series stacked
with time shifts starting time shifts from the start multiplier through
the end multiplier.

Useful for looking at history, or feeding into averageSeries or
stddevSeries.

Example:

create a series for today and each of the previous 7 days
&target=timeStack(Sales.widgets.largeBlue,"1d",0,7)

	
transformNull(seriesList, default=0)

	Takes a metric or wild card seriesList and an optional value
to transform Nulls to. Default is 0. This method compliments
drawNullAsZero flag in graphical mode but also works in text only
mode.

Example:

&target=transformNull(webapp.pages.*.views,-1)

This would take any page that didn’t have values and supply negative 1 as
a default. Any other numeric value may be used as well.

	
useSeriesAbove(seriesList, value, search, replace)

	Compares the maximum of each series against the given value. If the
series maximum is greater than value, the regular expression search and
replace is applied against the series name to plot a related metric.

e.g. given useSeriesAbove(ganglia.metric1.reqs,10,’reqs’,’time’),
the response time metric will be plotted only when the maximum value of the
corresponding request/s metric is > 10

Example:

&target=useSeriesAbove(ganglia.metric1.reqs,10,"reqs","time")

	
weightedAverage(seriesListAvg, seriesListWeight, node)

	Takes a series of average values and a series of weights and
produces a weighted average for all values.

The corresponding values should share a node as defined
by the node parameter, 0-indexed.

Example:

&target=weightedAverage(*.transactions.mean,*.transactions.count,0)

 Copyright 2014, Bruno Renié.
 Created using Sphinx 1.3.5.

 Storage finders

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Graphite-API 1.1.3 documentation

Storage finders

Graphite-API searches and fetches metrics from time series databases using an
interface called finders. The default finder provided with Graphite-API is
the one that integrates with Whisper databases.

Customizing finders can be done in the finders section of the Graphite-API
configuration file:

finders:
 - graphite_api.finders.whisper.WhisperFinder

Several values are allowed, to let you store different kinds of metrics at
different places or smoothly handle transitions from one time series database
to another.

The default finder reads data from a Whisper database.

Custom finders

finders being a list of arbitrary python paths, it is relatively easy to
write a custom finder if you want to read data from other places than Whisper.
A finder is a python class with a find_nodes() method:

class CustomFinder(object):
 def find_nodes(self, query):
 # ...

query is a FindQuery object. find_nodes() is the entry point when
browsing the metrics tree. It must yield leaf or branch nodes matching the
query:

from graphite_api.node import LeafNode, BranchNode

class CustomFinder(object):
 def find_nodes(self, query):
 # find some paths matching the query, then yield them
 # is_branch or is_leaf are predicates you need to implement
 for path in matches:
 if is_branch(path):
 yield BranchNode(path)
 if is_leaf(path):
 yield LeafNode(path, CustomReader(path))

LeafNode is created with a reader, which is the class responsible for
fetching the datapoints for the given path. It is a simple class with 2
methods: fetch() and get_intervals():

from graphite_api.intervals import IntervalSet, Interval

class CustomReader(object):
 __slots__ = ('path',) # __slots__ is recommended to save memory on readers

 def __init__(self, path):
 self.path = path

 def fetch(self, start_time, end_time):
 # fetch data
 time_info = _from_, _to_, _step_
 return time_info, series

 def get_intervals(self):
 return IntervalSet([Interval(start, end)])

fetch() must return a list of 2 elements: the time info for the data and
the datapoints themselves. The time info is a list of 3 items: the start time
of the datapoints (in unix time), the end time and the time step (in seconds)
between the datapoints.

The datapoints is a list of points found in the database for the required
interval. There must be (end - start) / step points in the dataset even if
the database has gaps: gaps can be filled with None values.

get_intervals() is a method that hints graphite-web about the time range
available for this given metric in the database. It must return an
IntervalSet of one or more Interval objects.

Fetching multiple paths at once

If your storage backend allows it, fetching multiple paths at once is useful
to avoid sequential fetches and save time and resources. This can be achieved
in three steps:

	Subclass LeafNode and add a __fetch_multi__ class attribute to your
subclass:

class CustomLeafNode(LeafNode):
 __fetch_multi__ = 'custom'

The string 'custom' is used to identify backends and needs to be unique
per-backend.

	Add the __fetch_multi__ attribute to your finder class:

class CustomFinder(objects):
 __fetch_multi__ = 'custom'

	Implement a fetch_multi() method on your finder:

class CustomFinder(objects):
 def fetch_multi(self, nodes, start_time, end_time):
 paths = [node.path for node in nodes]
 # fetch paths
 return time_info, series

time_info is the same structure as the one returned by fetch().
series is a dictionnary with paths as keys and datapoints as values.

Installing custom finders

In order for your custom finder to be importable, you need to package it under
a namespace of your choice. Python packaging won’t be covered here but you can
look at third-party finders to get some inspiration:

	Cyanite finder [https://github.com/brutasse/graphite-cyanite]

Configuration

Graphite-API instantiates finders and passes it its whole parsed configuration
file, as a Python data structure. External finders can require extra sections
in the configuration file to setup access to the time series database they
communicate with. For instance, let’s say your CustomFinder needs two
configuration parameters, a host and a user:

class CustomFinder(object):
 def __init__(self, config):
 config.setdefault('custom', {})
 self.user = config['custom'].get('user', 'default')
 self.host = config['custom'].get('host', 'localhost')

The configuration file would look like:

finders:
 - custom.CustomFinder
custom:
 user: myuser
 host: example.com

When possible, try to use sane defaults that would “just work” for most common
setups. Here if the custom section isn’t provided, the finder uses
default as user and localhost as host.

 Copyright 2014, Bruno Renié.
 Created using Sphinx 1.3.5.

 Custom functions

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Graphite-API 1.1.3 documentation

Custom functions

Just like with storage finders, it is possible to extend Graphite-API to add
custom processing functions.

To give an example, let’s implement a function that reverses the time series,
placing old values at the end and recent values at the beginning.

reverse.py

def reverseSeries(requestContex, seriesList):
 reverse = []
 for series in seriesList:
 reverse.append(TimeSeries(series.name, series.start, series.end,
 series.step, series[::-1]))
 return reverse

The first argument, requestContext, holds some information about the
request parameters. seriesList is the list of paths found for the request
target.

Once you’ve created your function, declare it in a dictionnary:

ReverseFunctions = {
 'reverseSeries': reverseSeries,
}

Add your module to the Graphite-API Python path and add it to the
configuration:

functions:
 - graphite_api.functions.SeriesFunctions
 - graphite_api.functions.PieFunctions
 - reverse.ReverseFunctions

 Copyright 2014, Bruno Renié.
 Created using Sphinx 1.3.5.

 Graphite-API releases

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Graphite-API 1.1.3 documentation

Graphite-API releases

1.1.3 – 2016-05-23

	Remove extra parenthesis from aliasByMetric().

	Fix leap year handling in graphite_api.render.attime.

	Allow colon and hash in node names in aliasByNode()

	Fix calling reduceFunction in reduceSeries

	Revert a whisper patch which broken multiple retentions handling.

	Specify which function is invalid when providing an invalid consolidation
function.

1.1.2 – 2015-11-19

	Fix regression in multi fetch handling: paths were queried multiple times,
leading to erroneous behaviour and slowdown.

	Continue on IndexError in remove{Above,Below}Percentile functions.

1.1.1 – 2015-10-23

	Fix areaMode=stacked.

	Fix error when calling functions that use fetchWithBootstrap and the
bootstrap range isn’t available (fill with nulls instead).

1.1 – 2015-10-05

	Add CarbonLink support.

	Add support for configuring a cache backend and the noCache and
cacheTimeout API options.

	When no timezone is provided in the configuration file, try to guess from
the system’s timezone with a fallback to UTC.

	Now supporting Flask >= 0.8 and Pyparsing >= 1.5.7.

	Add support for fetch_multi() in storage finders. This is useful for
database-backed finders such as Cyanite because it allows fetching all time
series at once instead of sequentially.

	Add multiplySeriesWithWildcards, minimumBelow, changed,
timeSlice and removeEmptySeries functions.

	Add optional step argument to time, sin and randomWalk
functions.

	Add /metrics API call as an alias to /metrics/find.

	Add missing /metrics/index.json API call.

	Allow wildcards origins (*) in CORS configuration.

	Whisper finder now logs debug information.

	Fix parsing dates such as “feb27” during month days > 28.

	Change sum() to return null instead of 0 when all series’ datapoints
are null at the same time. This is graphite-web’s behavior.

	Extract paths of all targets before fetching data. This is a significant
optimization for storage backends such as Cyanite that allow bulk-fetching
metrics.

	Add JSONP support to all API endpoints that can return JSON.

	Fix 500 error when generating a SVG graph without any data.

	Return tracebacks in the HTTP response when app errors occur. This behavior
can be disabled in the configuration.

	Fixes for the following graphite-web issues:
	#639 [https://github.com/graphite-project/graphite-web/issues/639] –
proper timezone handling of from and until with client-supplied
timezones.

	#540 [https://github.com/graphite-project/graphite-web/issues/540] –
provide the last data point when rendering to JSON format.

	#381 [https://github.com/graphite-project/graphite-web/issues/381] –
make areaBetween() work either when passed 2 arguments or a single
wildcard series of length 2.

	#702 [https://github.com/graphite-project/graphite-web/pull/702] –
handle backslash as path separator on windows.

	#410 [https://github.com/graphite-project/graphite-web/pull/410] – SVG
output sometimes had an extra </g> tag.

1.0.1 – 2014-03-21

	time_zone set to UTC by default instead of Europe/Berlin.

	Properly log app exceptions.

	Fix constantLine for python 3.

	Create whisper directories if they don’t exist.

	Fixes for the following graphite-web issues:
	#645 [https://github.com/graphite-project/graphite-web/pull/645], #625 [https://github.com/graphite-project/graphite-web/issues/625] – allow
constantLine to work even if there are no other targets in the graph.

1.0.0 – 2014-03-20

Version 1.0 is based on the master branch of Graphite-web, mid-March 2014,
with the following modifications:

	New /index API endpoint for re-building the index (replaces the
build-index command-line script from graphite-web).

	Removal of memcache integration.

	Removal of Pickle integration.

	Removal of remote rendering.

	Support for Python 3.

	A lot more tests and test coverage.

	Fixes for the following graphite-web issues:
	(meta) #647 [https://github.com/graphite-project/graphite-web/issues/647]
– strip out the API from graphite-web.

	#665 [https://github.com/graphite-project/graphite-web/pull/665] –
address some DeprecationWarnings.

	#658 [https://github.com/graphite-project/graphite-web/issues/658] –
accept a float value in maxDataPoints.

	#654 [https://github.com/graphite-project/graphite-web/pull/654] –
ignore invalid logBase values (<=1).

	#591 [https://github.com/graphite-project/graphite-web/issues/591] –
accept JSON data additionaly to querystring params or form data.

 Copyright 2014, Bruno Renié.
 Created using Sphinx 1.3.5.

 Python Module Index

 Navigation

 	
 index

 	
 modules |

 	Graphite-API 1.1.3 documentation

 Python Module Index

 g

 			

 		
 g	

 	[image: -]
 	
 graphite_api	

 	
 	
 graphite_api.functions	

 Copyright 2014, Bruno Renié.
 Created using Sphinx 1.3.5.

 Index

 Navigation

 	
 index

 	
 modules |

 	Graphite-API 1.1.3 documentation

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	

 	absolute() (in module graphite_api.functions)

 	aggregateLine() (in module graphite_api.functions)

 	alias() (in module graphite_api.functions)

 	aliasByMetric() (in module graphite_api.functions)

 	aliasByNode() (in module graphite_api.functions)

 	aliasSub() (in module graphite_api.functions)

 	alpha() (in module graphite_api.functions)

 	

 	areaBetween() (in module graphite_api.functions)

 	asPercent() (in module graphite_api.functions)

 	averageAbove() (in module graphite_api.functions)

 	averageBelow() (in module graphite_api.functions)

 	averageOutsidePercentile() (in module graphite_api.functions)

 	averageSeries() (in module graphite_api.functions)

 	averageSeriesWithWildcards() (in module graphite_api.functions)

C

 	

 	cactiStyle() (in module graphite_api.functions)

 	changed() (in module graphite_api.functions)

 	color() (in module graphite_api.functions)

 	consolidateBy() (in module graphite_api.functions)

 	constantLine() (in module graphite_api.functions)

 	

 	countSeries() (in module graphite_api.functions)

 	cumulative() (in module graphite_api.functions)

 	currentAbove() (in module graphite_api.functions)

 	currentBelow() (in module graphite_api.functions)

D

 	

 	dashed() (in module graphite_api.functions)

 	derivative() (in module graphite_api.functions)

 	diffSeries() (in module graphite_api.functions)

 	

 	divideSeries() (in module graphite_api.functions)

 	drawAsInfinite() (in module graphite_api.functions)

E

 	

 	exclude() (in module graphite_api.functions)

F

 	

 	formatPathExpressions() (in module graphite_api.functions)

G

 	

 	graphite_api.functions (module)

 	grep() (in module graphite_api.functions)

 	

 	group() (in module graphite_api.functions)

 	groupByNode() (in module graphite_api.functions)

H

 	

 	highestAverage() (in module graphite_api.functions)

 	highestCurrent() (in module graphite_api.functions)

 	highestMax() (in module graphite_api.functions)

 	hitcount() (in module graphite_api.functions)

 	

 	holtWintersAberration() (in module graphite_api.functions)

 	holtWintersConfidenceArea() (in module graphite_api.functions)

 	holtWintersConfidenceBands() (in module graphite_api.functions)

 	holtWintersForecast() (in module graphite_api.functions)

I

 	

 	identity() (in module graphite_api.functions)

 	integral() (in module graphite_api.functions)

 	

 	invert() (in module graphite_api.functions)

 	isNonNull() (in module graphite_api.functions)

K

 	

 	keepLastValue() (in module graphite_api.functions)

L

 	

 	legendValue() (in module graphite_api.functions)

 	limit() (in module graphite_api.functions)

 	lineWidth() (in module graphite_api.functions)

 	

 	logarithm() (in module graphite_api.functions)

 	lowestAverage() (in module graphite_api.functions)

 	lowestCurrent() (in module graphite_api.functions)

M

 	

 	mapSeries() (in module graphite_api.functions)

 	maximumAbove() (in module graphite_api.functions)

 	maximumBelow() (in module graphite_api.functions)

 	maxSeries() (in module graphite_api.functions)

 	minimumAbove() (in module graphite_api.functions)

 	minimumBelow() (in module graphite_api.functions)

 	

 	minSeries() (in module graphite_api.functions)

 	mostDeviant() (in module graphite_api.functions)

 	movingAverage() (in module graphite_api.functions)

 	movingMedian() (in module graphite_api.functions)

 	multiplySeries() (in module graphite_api.functions)

 	multiplySeriesWithWildcards() (in module graphite_api.functions)

N

 	

 	nonNegativeDerivative() (in module graphite_api.functions)

 	

 	nPercentile() (in module graphite_api.functions)

O

 	

 	offset() (in module graphite_api.functions)

 	

 	offsetToZero() (in module graphite_api.functions)

P

 	

 	percentileOfSeries() (in module graphite_api.functions)

 	

 	perSecond() (in module graphite_api.functions)

R

 	

 	randomWalkFunction() (in module graphite_api.functions)

 	rangeOfSeries() (in module graphite_api.functions)

 	reduceSeries() (in module graphite_api.functions)

 	removeAbovePercentile() (in module graphite_api.functions)

 	removeAboveValue() (in module graphite_api.functions)

 	

 	removeBelowPercentile() (in module graphite_api.functions)

 	removeBelowValue() (in module graphite_api.functions)

 	removeBetweenPercentile() (in module graphite_api.functions)

 	removeEmptySeries() (in module graphite_api.functions)

S

 	

 	scale() (in module graphite_api.functions)

 	scaleToSeconds() (in module graphite_api.functions)

 	secondYAxis() (in module graphite_api.functions)

 	sinFunction() (in module graphite_api.functions)

 	smartSummarize() (in module graphite_api.functions)

 	sortByMaxima() (in module graphite_api.functions)

 	sortByMinima() (in module graphite_api.functions)

 	sortByName() (in module graphite_api.functions)

 	

 	sortByTotal() (in module graphite_api.functions)

 	stacked() (in module graphite_api.functions)

 	stddevSeries() (in module graphite_api.functions)

 	stdev() (in module graphite_api.functions)

 	substr() (in module graphite_api.functions)

 	summarize() (in module graphite_api.functions)

 	sumSeries() (in module graphite_api.functions)

 	sumSeriesWithWildcards() (in module graphite_api.functions)

T

 	

 	threshold() (in module graphite_api.functions)

 	timeShift() (in module graphite_api.functions)

 	timeSlice() (in module graphite_api.functions)

 	

 	timeStack() (in module graphite_api.functions)

 	transformNull() (in module graphite_api.functions)

U

 	

 	useSeriesAbove() (in module graphite_api.functions)

W

 	

 	weightedAverage() (in module graphite_api.functions)

 Copyright 2014, Bruno Renié.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/down-pressed.png

_static/up.png

_static/minus.png

_static/ajax-loader.gif

_static/file.png

_static/plus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Graphite-API 1.1.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

