

gqlmod: Importing GraphQL

gqlmod allows you to import GraphQL Query (.gql) files as modules and call
the queries and mutations defined there. It will validate your queries at
import time, to surface any problems as soon as possible.

gqlmod also defines mechanisms for handling different services (called providers)
and different contexts with those services.

Contents:

	Using gqlmod
	Summary

	Example

	Writing Query Files

	Query functions

	Using different provider contexts

	Major Providers

	API Reference

	Writing a Provider
	Provider Classes

	Entry point

	Helpers

	Extensions

Indices and tables

	Index

	Module Index

Using gqlmod

Summary

	Install the gqlmod PyPI package, as well as any providers you need

	Call gqlmod.enable_gql_import() as soon as possible (maybe in your __main__.py or top-level __init__.py)

	Import your query file and start calling your queries.

Example

queries.gql

#~starwars~
query HeroForEpisode($ep: Episode!) {
 hero(episode: $ep) {
 name
 ... on Droid {
 primaryFunction
 }
 ... on Human {
 homePlanet
 }
 }
}

app.py

import gqlmod
gqlmod.enable_gql_import()

from queries import HeroForEpisode

resp = HeroForEpisode(ep='JEDI')
assert not resp.errors

print(resp.data)

Writing Query Files

Query files are simply text files full of named GraphQL queries and mutations.

One addition is the provider declaration:

#~starwars~

This tells the system what provider to connect to these queries, and therfore
how to actually query the service, what schema to validate against, etc.

The name of the provider should be in the provider’s docs.

Query functions

The generated functions have a specific form.

Query functions only take keyword arguments, matching the variables defined in
the query. Optional and arguments with defaults may naturally be omitted.

The function returns a graphql.ExecutionResult. It has the following
attributes:

	data: The result data

	errors: A list of errors that occurred, or an empty list if none occurred

Note that wether query functions are synchronous or asynchronous is up to the
provider; see its documentation.

Using different provider contexts

All installed providers are available at startup, initialized with no arguments.
For most services, this will allow you to execute queries as an anonymous user.
However, most applications will want to authenticate to the service. You can use
gqlmod.with_provider() to provide this data to the provider.

gqlmod.with_provider() is a context manager, and may be nested. That
is, you can globally authenticate as your app, but also in specific parts
authenticate as a user.

The specific arguments will vary by provider, but usually have this basic form:

with gqlmod.with_provider('spam-service', token=config['TOKEN']):
 resp = spam_queries.GetMenu(amount_of_spam=None)

Major Providers

Here is a list of some maintained providers:

	starwars: Builtin! A demo provider that works on static constant data.

	cirrus-ci: From gqlmod-cirrusci [https://pypi.org/project/gqlmod-cirrusci/], connects to Cirrus CI [https://cirrus-ci.org/]

	github: From gqlmod-github [https://pypi.org/project/gqlmod-github/], connects to the GitHub v4 API [https://developer.github.com/v4/]

You may be able to discover a provider at this places:

	The gqlmod topic on GitHub [https://github.com/topics/gqlmod]

	Searching gqlmod on PyPI [https://pypi.org/search/?q=gqlmod]

API Reference

	
gqlmod.with_provider(name, **params)

	Uses a new instance of the provider (with the given parameters) for the
duration of the context.

	
gqlmod.enable_gql_import()

	Enables importing .gql files.

Writing a Provider

Writing a provider is fairly staightforward.

	Define a provider class

	Add an entry point declaration

Provider Classes

A provider class is only required to be callable with a specific signature.

import graphql

class MyProvider:
 def __init__(self, token=None):
 self.token = token

 def __call__(self, query, variables):
 # Do stuff here

 return graphql.ExecutionResult(
 errors=[],
 data={'spam': 'eggs'}
)

The arguments it takes are:

	query: (string) The query to give to the server

	variables: (dict) The variables for that query

The provider should return a graphql.ExecutionResult as shown above.

Entry point

In order to be discoverable by gqlmod, providers must define entrypoints.
Specifically, in the graphql_providers group under the name you want .gql
files to use. This can take a few different forms, depending on your project. A few examples:

setup.cfg

[options.entry_points]
graphql_providers =
 starwars = gqlmod_starwars:StarWarsProvider

setup.py

setup(
 # ...
 entry_points={
 'graphql_providers': [
 'starwars = gqlmod_starwars:StarWarsProvider'
]
 },
 # ...
)

pyproject.toml

This is for poetry-based projects
[tool.poetry.plugins.graphql_providers]
"starwars" = "gqlmod_starwars:StarWarsProvider'"

Helpers

In order to help with common cases, gqlmod ships with several helpers

Note that many of them have additional requirements, which are encapsulated in extras.

urllib

Helpers for using urllib to build a provider. You probably want
UrllibJsonProvider.

Requires the no extras.

	
class gqlmod.helpers.urllib.UrllibJsonProvider

	A UrllibProvider that uses a JSON-based POST

	
class gqlmod.helpers.urllib.UrllibProvider

	Help build an HTTP-based provider based on requests.

You should fill in endpoint and possibly override
modify_request().

	
endpoint = None

	The URL to send requests to

	
modify_request(req)

	Apply policies about the request, primarily authentication.

Accepts a urllib.request.Request [https://docs.python.org/3/library/urllib.request.html#urllib.request.Request] object.

aiohttp

Helpers for using aiohttp to build a provider.

Requires the aiohttp extra.

	
class gqlmod.helpers.aiohttp.AiohttpProvider

	Help build an HTTP-based provider based on aiohttp.

You should fill in endpoint and possibly override
modify_request_args().

	
endpoint = None

	The URL to send requests to.

	
modify_request_args(kwargs)

	Apply policies about the request, primarily authentication.

	
timeout = None

	Timeout policy to use, if any.

	
use_json = False

	Whether a JSON-based or form-like request should be used.

Extensions

In addition to the core querying interface, providers may influence the import
process in a few different ways. These are all implemented as optional methods
on the provider instance.

get_schema_str()

Providers may override the standard schema discovery mechanism by implementing
get_schema_str(). This is useful for providers that don’t have a primary
service or don’t allow anonymous access at all.

This method must be synchronous. An async variation is not supported.

Default behavior: Issue a GraphQL introspection query via the standard query
path.

Parameters: None.

Returns: A str [https://docs.python.org/3/library/stdtypes.html#str] of the schema, in standard GraphQL schema
language.

codegen_extra_kwargs()

Providers may add keyword arguments (variables) to the query call inside the
generated module. These will be passed through the query pipeline back to the
provider.

Default behavior: No additional variables are inserted.

Parameters:

	graphql_ast (positional, graphql.language.OperationDefinitionNode [https://graphql-core-next.readthedocs.io/en/latest/modules/language.html#graphql.language.OperationDefinitionNode]): The AST of the GraphQL query in question

	schema (positional, graphql.type.GraphQLSchema [https://graphql-core-next.readthedocs.io/en/latest/modules/type.html#graphql.type.GraphQLSchema]): The schema of the service

Returns: A dict [https://docs.python.org/3/library/stdtypes.html#dict] of the names mapping to either simple values or
ast.AST [https://docs.python.org/3/library/ast.html#ast.AST] instances. (Note that the returned AST will be embedded into
a right-hand expression context.)

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 gqlmod	

 	
 	
 gqlmod.helpers.aiohttp	

 	
 	
 gqlmod.helpers.urllib	

Index

 A
 | E
 | G
 | M
 | T
 | U
 | W

A

 	
 	AiohttpProvider (class in gqlmod.helpers.aiohttp)

E

 	
 	enable_gql_import() (in module gqlmod)

 	
 	endpoint (gqlmod.helpers.aiohttp.AiohttpProvider attribute)

 	(gqlmod.helpers.urllib.UrllibProvider attribute)

G

 	
 	gqlmod (module)

 	
 	gqlmod.helpers.aiohttp (module)

 	gqlmod.helpers.urllib (module)

M

 	
 	modify_request() (gqlmod.helpers.urllib.UrllibProvider method)

 	
 	modify_request_args() (gqlmod.helpers.aiohttp.AiohttpProvider method)

T

 	
 	timeout (gqlmod.helpers.aiohttp.AiohttpProvider attribute)

U

 	
 	UrllibJsonProvider (class in gqlmod.helpers.urllib)

 	
 	UrllibProvider (class in gqlmod.helpers.urllib)

 	use_json (gqlmod.helpers.aiohttp.AiohttpProvider attribute)

W

 	
 	with_provider() (in module gqlmod)

 nav.xhtml

 Table of Contents

 		
 gqlmod: Importing GraphQL

 		
 Using gqlmod

 		
 Summary

 		
 Example

 		
 Writing Query Files

 		
 Query functions

 		
 Using different provider contexts

 		
 Major Providers

 		
 API Reference

 		
 Writing a Provider

 		
 Provider Classes

 		
 Entry point

 		
 Helpers

 		
 urllib

 		
 aiohttp

 		
 Extensions

 		
 get_schema_str()

 		
 codegen_extra_kwargs()

_static/file.png

_static/minus.png

_static/plus.png

