
Gpiozero Documentation
Release 1.2.0

Ben Nuttall

Mar 08, 2017

Contents

1 About 3

2 Install 5

3 Documentation 7

4 Development 9

5 Contributors 11

6 Table of Contents 13
6.1 Recipes . 13
6.2 Notes . 31
6.3 Input Devices . 32
6.4 Output Devices . 42
6.5 SPI Devices . 51
6.6 Boards and Accessories . 57
6.7 Internal Devices . 75
6.8 Generic Classes . 76
6.9 Source Tools . 80
6.10 Pins . 84
6.11 Exceptions . 90
6.12 Changelog . 92
6.13 License . 94

i

ii

Gpiozero Documentation, Release 1.2.0

A simple interface to everyday GPIO components used with Raspberry Pi.

Created by Ben Nuttall of the Raspberry Pi Foundation, Dave Jones, and other contributors.

Contents 1

https://github.com/bennuttall
https://www.raspberrypi.org/
https://github.com/waveform80

Gpiozero Documentation, Release 1.2.0

2 Contents

CHAPTER 1

About

Component interfaces are provided to allow a frictionless way to get started with physical computing:

from gpiozero import LED
from time import sleep

led = LED(17)

while True:
led.on()
sleep(1)
led.off()
sleep(1)

With very little code, you can quickly get going connecting your components together:

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button(3)

button.when_pressed = led.on
button.when_released = led.off

pause()

The library includes interfaces to many simple everyday components, as well as some more complex things like
sensors, analogue-to-digital converters, full colour LEDs, robotics kits and more.

3

Gpiozero Documentation, Release 1.2.0

4 Chapter 1. About

CHAPTER 2

Install

First, update your repositories list:

sudo apt-get update

Then install the package of your choice. Both Python 3 and Python 2 are supported. Python 3 is recommended:

sudo apt-get install python3-gpiozero

or:

sudo apt-get install python-gpiozero

5

Gpiozero Documentation, Release 1.2.0

6 Chapter 2. Install

CHAPTER 3

Documentation

Comprehensive documentation is available at https://gpiozero.readthedocs.org/.

7

https://gpiozero.readthedocs.org/

Gpiozero Documentation, Release 1.2.0

8 Chapter 3. Documentation

CHAPTER 4

Development

This project is being developed on GitHub. Join in:

• Provide suggestions, report bugs and ask questions as issues

• Provide examples we can use as recipes

• Contribute to the code

Alternatively, email suggestions and feedback to mailto:ben@raspberrypi.org

9

https://github.com/RPi-Distro/python-gpiozero
https://github.com/RPi-Distro/python-gpiozero/issues
http://gpiozero.readthedocs.org/en/latest/recipes.html
mailto:ben@raspberrypi.org

Gpiozero Documentation, Release 1.2.0

10 Chapter 4. Development

CHAPTER 5

Contributors

• Ben Nuttall (project maintainer)

• Dave Jones

• Martin O’Hanlon

• Andrew Scheller

• Schelto vanDoorn

11

https://github.com/bennuttall
https://github.com/waveform80
https://github.com/martinohanlon
https://github.com/lurch
https://github.com/pcopa

Gpiozero Documentation, Release 1.2.0

12 Chapter 5. Contributors

CHAPTER 6

Table of Contents

Recipes

The following recipes demonstrate some of the capabilities of the gpiozero library. Please note that all recipes are
written assuming Python 3. Recipes may work under Python 2, but no guarantees!

Pin Numbering

This library uses Broadcom (BCM) pin numbering for the GPIO pins, as opposed to physical (BOARD) number-
ing. Unlike in the RPi.GPIO library, this is not configurable.

Any pin marked GPIO in the diagram below can be used for generic components:

13

https://pypi.python.org/pypi/RPi.GPIO

Gpiozero Documentation, Release 1.2.0

3V3
Power

GPIO2
SDA I²C

GPIO3
SCL I²C

GPIO4

Ground

GPIO17

GPIO27

GPIO22

3V3
Power

GPIO10
SPI MOSI

GPIO9
SPI MISO

GPIO11
SPI SCLK

Ground

ID SD
I²C ID

GPIO5

GPIO6

GPIO13

GPIO19

GPIO26

Ground

5V
Power

5V
Power

Ground

GPIO14
UART0 TXD

GPIO15
UART0 RXD

GPIO18

Ground

GPIO23

GPIO24

Ground

GPIO25

GPIO8
SPI CE0

GPIO7
SPI CE1

ID SC
I²C ID

Ground

GPIO12

Ground

GPIO16

GPIO20

GPIO21

All Models

40-pin
models only

11

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

USB Ports

14 Chapter 6. Table of Contents

Gpiozero Documentation, Release 1.2.0

LED

Turn an LED on and off repeatedly:

from gpiozero import LED
from time import sleep

red = LED(17)

while True:
red.on()
sleep(1)
red.off()
sleep(1)

Alternatively:

from gpiozero import LED
from signal import pause

red = LED(17)

red.blink()

pause()

Note: Reaching the end of a Python script will terminate the process and GPIOs may be reset. Keep your script
alive with signal.pause(). See Keep your script running for more information.

6.1. Recipes 15

https://docs.python.org/3.4/library/signal.html#signal.pause

Gpiozero Documentation, Release 1.2.0

Button

Check if a Button is pressed:

from gpiozero import Button

button = Button(2)

while True:
if button.is_pressed:

print("Button is pressed")
else:

print("Button is not pressed")

Wait for a button to be pressed before continuing:

from gpiozero import Button

button = Button(2)

button.wait_for_press()
print("Button was pressed")

Run a function every time the button is pressed:

from gpiozero import Button
from signal import pause

def say_hello():
print("Hello!")

button = Button(2)

button.when_pressed = say_hello

pause()

16 Chapter 6. Table of Contents

Gpiozero Documentation, Release 1.2.0

Button controlled LED

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
asp

b
erry Pi M

od
el 2 v1.1

©
 R

asp
b

erry Pi 2014

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Turn on an LED when a Button is pressed:

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button(2)

button.when_pressed = led.on
button.when_released = led.off

pause()

Alternatively:

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button(2)

led.source = button.values

pause()

6.1. Recipes 17

Gpiozero Documentation, Release 1.2.0

Traffic Lights

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
asp

b
erry Pi M

od
el 2 v1.1

©
 R

asp
b

erry Pi 2014

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

A full traffic lights system.

Using a TrafficLights kit like Pi-Stop:

from gpiozero import TrafficLights
from time import sleep

lights = TrafficLights(2, 3, 4)

lights.green.on()

while True:
sleep(10)
lights.green.off()
lights.amber.on()
sleep(1)
lights.amber.off()
lights.red.on()
sleep(10)
lights.amber.on()
sleep(1)
lights.green.on()
lights.amber.off()
lights.red.off()

Alternatively:

from gpiozero import TrafficLights
from time import sleep
from signal import pause

lights = TrafficLights(2, 3, 4)

def traffic_light_sequence():

18 Chapter 6. Table of Contents

Gpiozero Documentation, Release 1.2.0

while True:
yield (0, 0, 1) # green
sleep(10)
yield (0, 1, 0) # amber
sleep(1)
yield (1, 0, 0) # red
sleep(10)
yield (1, 1, 0) # red+amber
sleep(1)

lights.source = traffic_light_sequence()

pause()

Using LED components:

from gpiozero import LED
from time import sleep

red = LED(2)
amber = LED(3)
green = LED(4)

green.on()
amber.off()
red.off()

while True:
sleep(10)
green.off()
amber.on()
sleep(1)
amber.off()
red.on()
sleep(10)
amber.on()
sleep(1)
green.on()
amber.off()
red.off()

Push button stop motion

Capture a picture with the camera module every time a button is pressed:

from gpiozero import Button
from picamera import PiCamera

button = Button(2)

with PiCamera() as camera:
camera.start_preview()
frame = 1
while True:

button.wait_for_press()
camera.capture('/home/pi/frame%03d.jpg' % frame)
frame += 1

See Push Button Stop Motion for a full resource.

6.1. Recipes 19

https://www.raspberrypi.org/learning/quick-reaction-game/

Gpiozero Documentation, Release 1.2.0

Reaction Game

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
asp

b
erry Pi M

od
el 2 v1.1

©
 R

asp
b

erry Pi 2014

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

When you see the light come on, the first person to press their button wins!

from gpiozero import Button, LED
from time import sleep
import random

led = LED(17)

player_1 = Button(2)
player_2 = Button(3)

time = random.uniform(5, 10)
sleep(time)
led.on()

while True:
if player_1.is_pressed:

print("Player 1 wins!")
break

if player_2.is_pressed:
print("Player 2 wins!")
break

led.off()

See Quick Reaction Game for a full resource.

GPIO Music Box

Each button plays a different sound!

from gpiozero import Button
import pygame.mixer
from pygame.mixer import Sound
from signal import pause

20 Chapter 6. Table of Contents

https://www.raspberrypi.org/learning/quick-reaction-game/

Gpiozero Documentation, Release 1.2.0

pygame.mixer.init()

sound_pins = {
2: Sound("samples/drum_tom_mid_hard.wav"),
3: Sound("samples/drum_cymbal_open.wav"),

}

buttons = [Button(pin) for pin in sound_pins]
for button in buttons:

sound = sound_pins[button.pin.number]
button.when_pressed = sound.play

pause()

See GPIO Music Box for a full resource.

All on when pressed

While the button is pressed down, the buzzer and all the lights come on.

FishDish:

from gpiozero import FishDish
from signal import pause

fish = FishDish()

fish.button.when_pressed = fish.on
fish.button.when_released = fish.off

pause()

Ryanteck TrafficHat:

from gpiozero import TrafficHat
from signal import pause

th = TrafficHat()

th.button.when_pressed = th.on
th.button.when_released = th.off

pause()

Using LED, Buzzer, and Button components:

from gpiozero import LED, Buzzer, Button
from signal import pause

button = Button(2)
buzzer = Buzzer(3)
red = LED(4)
amber = LED(5)
green = LED(6)

things = [red, amber, green, buzzer]

def things_on():
for thing in things:

thing.on()

6.1. Recipes 21

https://www.raspberrypi.org/learning/gpio-music-box/

Gpiozero Documentation, Release 1.2.0

def things_off():
for thing in things:

thing.off()

button.when_pressed = things_on
button.when_released = things_off

pause()

RGB LED

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
asp

b
erry Pi M

od
el 2 v1.1

©
 R

asp
b

erry Pi 2014

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Making colours with an RGBLED:

from gpiozero import RGBLED
from time import sleep

led = RGBLED(red=9, green=10, blue=11)

led.red = 1 # full red
sleep(1)
led.red = 0.5 # half red
sleep(1)

led.color = (0, 1, 0) # full green
sleep(1)
led.color = (1, 0, 1) # magenta
sleep(1)
led.color = (1, 1, 0) # yellow
sleep(1)
led.color = (0, 1, 1) # cyan
sleep(1)
led.color = (1, 1, 1) # white
sleep(1)

led.color = (0, 0, 0) # off
sleep(1)

22 Chapter 6. Table of Contents

Gpiozero Documentation, Release 1.2.0

slowly increase intensity of blue
for n in range(100):

led.blue = n/100
sleep(0.1)

Motion sensor

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
asp

b
erry Pi M

od
el 2 v1.1

©
 R

asp
b

erry Pi 2014

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Light an LED when a MotionSensor detects motion:

from gpiozero import MotionSensor, LED
from signal import pause

pir = MotionSensor(4)
led = LED(16)

pir.when_motion = led.on
pir.when_no_motion = led.off

pause()

6.1. Recipes 23

Gpiozero Documentation, Release 1.2.0

Light sensor

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
asp

b
erry Pi M

od
el 2 v1.1

©
 R

asp
b

erry Pi 2014

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Have a LightSensor detect light and dark:

from gpiozero import LightSensor

sensor = LightSensor(18)

while True:
sensor.wait_for_light()
print("It's light! :)")
sensor.wait_for_dark()
print("It's dark :(")

Run a function when the light changes:

from gpiozero import LightSensor, LED
from signal import pause

sensor = LightSensor(18)
led = LED(16)

sensor.when_dark = led.on
sensor.when_light = led.off

pause()

Or make a PWMLED change brightness according to the detected light level:

from gpiozero import LightSensor, LED
from signal import pause

sensor = LightSensor(18)
led = PWMLED(16)

led.source = sensor.values

pause()

24 Chapter 6. Table of Contents

Gpiozero Documentation, Release 1.2.0

Distance sensor

Have a DistanceSensor detect the distance to the nearest object:

from gpiozero import DistanceSensor
from time import sleep

sensor = DistanceSensor(23, 24)

while True:
print('Distance to nearest object is', sensor.distance, 'm')
sleep(1)

Run a function when something gets near the sensor:

from gpiozero import DistanceSensor, LED
from signal import pause

sensor = DistanceSensor(23, 24, max_distance=1, threshold_distance=0.2)
led = LED(16)

sensor.when_in_range = led.on
sensor.when_out_of_range = led.off

pause()

Motors

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
asp

b
erry Pi M

od
el 2 v1.1

©
 R

asp
b

erry Pi 2014

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d
io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Spin a Motor around forwards and backwards:

from gpiozero import Motor
from time import sleep

motor = Motor(forward=4, back=14)

while True:
motor.forward()
sleep(5)
motor.backward()
sleep(5)

6.1. Recipes 25

Gpiozero Documentation, Release 1.2.0

Robot

Make a Robot drive around in (roughly) a square:

from gpiozero import Robot
from time import sleep

robot = Robot(left=(4, 14), right=(17, 18))

for i in range(4):
robot.forward()
sleep(10)
robot.right()
sleep(1)

Make a robot with a distance sensor that runs away when things get within 20cm of it:

from gpiozero import Robot, DistanceSensor
from signal import pause

sensor = DistanceSensor(23, 24, max_distance=1, threshold_distance=0.2)
robot = Robot(left=(4, 14), right=(17, 18))

sensor.when_in_range = robot.backward
sensor.when_out_of_range = robot.stop
pause()

Button controlled robot

Use four GPIO buttons as forward/back/left/right controls for a robot:

from gpiozero import RyanteckRobot, Button
from signal import pause

robot = RyanteckRobot()

left = Button(26)
right = Button(16)
fw = Button(21)
bw = Button(20)

fw.when_pressed = robot.forward
fw.when_released = robot.stop

left.when_pressed = robot.left
left.when_released = robot.stop

right.when_pressed = robot.right
right.when_released = robot.stop

bw.when_pressed = robot.backward
bw.when_released = robot.stop

pause()

Keyboard controlled robot

Use up/down/left/right keys to control a robot:

26 Chapter 6. Table of Contents

Gpiozero Documentation, Release 1.2.0

import curses
from gpiozero import RyanteckRobot

robot = RyanteckRobot()

actions = {
curses.KEY_UP: robot.forward,
curses.KEY_DOWN: robot.backward,
curses.KEY_LEFT: robot.left,
curses.KEY_RIGHT: robot.right,
}

def main(window):
next_key = None
while True:

curses.halfdelay(1)
if next_key is None:

key = window.getch()
else:

key = next_key
next_key = None

if key != -1:
KEY DOWN
curses.halfdelay(3)
action = actions.get(key)
if action is not None:

action()
next_key = key
while next_key == key:

next_key = window.getch()
KEY UP
robot.stop()

curses.wrapper(main)

Note: This recipe uses the curses module. This module requires that Python is running in a terminal in order
to work correctly, hence this recipe will not work in environments like IDLE.

If you prefer a version that works under IDLE, the following recipe should suffice, but will require that you install
the evdev library with sudo pip install evdev first:

from gpiozero import RyanteckRobot
from evdev import InputDevice, list_devices, ecodes

robot = RyanteckRobot()

devices = [InputDevice(device) for device in list_devices()]
keyboard = devices[0] # this may vary

keypress_actions = {
ecodes.KEY_UP: robot.forward,
ecodes.KEY_DOWN: robot.backward,
ecodes.KEY_LEFT: robot.left,
ecodes.KEY_RIGHT: robot.right,

}

for event in keyboard.read_loop():
if event.type == ecodes.EV_KEY:

if event.value == 1: # key down
keypress_actions[event.code]()

if event.value == 0: # key up

6.1. Recipes 27

Gpiozero Documentation, Release 1.2.0

robot.stop()

Motion sensor robot

Make a robot drive forward when it detects motion:

from gpiozero import Robot, MotionSensor
from signal import pause

robot = Robot(left=(4, 14), right=(17, 18))
pir = MotionSensor(5)

pir.when_motion = robot.forward
pir.when_no_motion = robot.stop

pause()

Alternatively:

from gpiozero import Robot, MotionSensor
from signal import pause

robot = Robot(left=(4, 14), right=(17, 18))
pir = MotionSensor(5)

robot.source = zip(pir.values, pir.values)

pause()

28 Chapter 6. Table of Contents

Gpiozero Documentation, Release 1.2.0

Potentiometer

1
1

5
5

10
10

15
15

20
20

25
25

30
30

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

R
asp

b
erry Pi M

od
el 2 v1.1

©
 R

asp
b

erry Pi 2014

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

MCP3008

Continually print the value of a potentiometer (values between 0 and 1) connected to a MCP3008 analog to digital
converter:

from gpiozero import MCP3008

while True:
with MCP3008(channel=0) as pot:

print(pot.value)

Present the value of a potentiometer on an LED bar graph using PWM to represent states that won’t “fill” an LED:

from gpiozero import LEDBarGraph, MCP3008
from signal import pause

graph = LEDBarGraph(5, 6, 13, 19, 26, pwm=True)
pot = MCP3008(channel=0)
graph.source = pot.values
pause()

Measure temperature with an ADC

Wire a TMP36 temperature sensor to the first channel of an MCP3008 analog to digital converter:

from gpiozero import MCP3008
from time import sleep

def convert_temp(gen):
for value in gen:

6.1. Recipes 29

Gpiozero Documentation, Release 1.2.0

yield (value * 3.3 - 0.5) * 100

adc = MCP3008(channel=0)

for temp in convert_temp(adc.values):
print('The temperature is', temp, 'C')
sleep(1)

Full color LED controlled by 3 potentiometers

Wire up three potentiometers (for red, green and blue) and use each of their values to make up the colour of the
LED:

from gpiozero import RGBLED, MCP3008

led = RGBLED(red=2, green=3, blue=4)
red_pot = MCP3008(channel=0)
green_pot = MCP3008(channel=1)
blue_pot = MCP3008(channel=2)

while True:
led.red = red_pot.value
led.green = green_pot.value
led.blue = blue_pot.value

Alternatively, the following example is identical, but uses the source property rather than a while loop:

from gpiozero import RGBLED, MCP3008
from signal import pause

led = RGBLED(2, 3, 4)
red_pot = MCP3008(0)
green_pot = MCP3008(1)
blue_pot = MCP3008(2)

led.source = zip(red_pot.values, green_pot.values, blue_pot.values)

pause()

Please note the example above requires Python 3. In Python 2, zip() doesn’t support lazy evaluation so the
script will simply hang.

Controlling the Pi’s own LEDs

On certain models of Pi (specifically the model A+, B+, and 2B) it’s possible to control the power and activity
LEDs. This can be useful for testing GPIO functionality without the need to wire up your own LEDs (also useful
because the power and activity LEDs are “known good”).

Firstly you need to disable the usual triggers for the built-in LEDs. This can be done from the terminal with the
following commands:

$ echo none | sudo tee /sys/class/leds/led0/trigger
$ echo gpio | sudo tee /sys/class/leds/led1/trigger

Now you can control the LEDs with gpiozero like so:

from gpiozero import LED
from signal import pause

30 Chapter 6. Table of Contents

https://docs.python.org/3.4/reference/compound_stmts.html#while
https://docs.python.org/3.4/library/functions.html#zip

Gpiozero Documentation, Release 1.2.0

power = LED(35)
activity = LED(47)

activity.blink()
power.blink()
pause()

To revert the LEDs to their usual purpose you can either reboot your Pi or run the following commands:

$ echo mmc0 | sudo tee /sys/class/leds/led0/trigger
$ echo input | sudo tee /sys/class/leds/led1/trigger

Note: On the Pi Zero you can control the activity LED with this recipe, but there’s no separate power LED to
control (it’s also worth noting the activity LED is active low, so set active_high=False when constructing
your LED component.

On the original Pi 1 (model A or B), the activity LED can be controlled with GPIO16 (after disabling its trigger
as above) but the power LED is hard-wired on.

On the Pi 3B the LEDs are controlled by a GPIO expander which is not accessible from gpiozero (yet).

Notes

Keep your script running

The following script looks like it should turn an LED on:

from gpiozero import LED

led = LED(17)
led.on()

And it does, if you’re using the Python (or IPython or IDLE) shell. However, if you saved this script as a Python
file and ran it, it would flash on briefly, then the script would end and it would turn off.

The following file includes an intentional pause() to keep the script alive:

from gpiozero import LED
from signal import pause

led = LED(17)
led.on()
pause()

Now the script will stay running, leaving the LED on, until it is terminated manually (e.g. by pressing Ctrl+C).
Similarly, when setting up callbacks on button presses or other input devices, the script needs to be running for
the events to be detected:

from gpiozero import Button
from signal import pause

def hello():
print("Hello")

button = Button(2)
button.when_pressed = hello
pause()

6.2. Notes 31

https://docs.python.org/3.4/library/signal.html#signal.pause

Gpiozero Documentation, Release 1.2.0

Importing from GPIO Zero

In Python, libraries and functions used in a script must be imported by name at the top of the file, with the
exception of the functions built into Python by default.

For example, to use the Button interface from GPIO Zero, it should be explicitly imported:

from gpiozero import Button

Now Button is available directly in your script:

button = Button(2)

Alternatively, the whole GPIO Zero library can be imported:

import gpiozero

In this case, all references to items within GPIO Zero must be prefixed:

button = gpiozero.Button(2)

Input Devices

These input device component interfaces have been provided for simple use of everyday components. Components
must be wired up correctly before use in code.

Note: All GPIO pin numbers use Broadcom (BCM) numbering. See the Recipes page for more information.

Button

class gpiozero.Button(pin, pull_up=True, bounce_time=None)
Extends DigitalInputDevice and represents a simple push button or switch.

Connect one side of the button to a ground pin, and the other to any GPIO pin. Alternatively, connect one
side of the button to the 3V3 pin, and the other to any GPIO pin, then set pull_up to False in the Button
constructor.

The following example will print a line of text when the button is pushed:

from gpiozero import Button

button = Button(4)
button.wait_for_press()
print("The button was pressed!")

Parameters

• pin (int) – The GPIO pin which the button is attached to. See Notes for valid pin
numbers.

• pull_up (bool) – If True (the default), the GPIO pin will be pulled high by default.
In this case, connect the other side of the button to ground. If False, the GPIO pin
will be pulled low by default. In this case, connect the other side of the button to 3V3.

• bounce_time (float) – If None (the default), no software bounce compensation
will be performed. Otherwise, this is the length in time (in seconds) that the component
will ignore changes in state after an initial change.

32 Chapter 6. Table of Contents

https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#float

Gpiozero Documentation, Release 1.2.0

• hold_time (float) – The length of time (in seconds) to wait after the button is
pushed, until executing the when_held handler.

• hold_repeat (bool) – If True, the when_held handler will be repeatedly exe-
cuted as long as the device remains active, every hold_time seconds.

wait_for_press(timeout=None)
Pause the script until the device is activated, or the timeout is reached.

Parameters timeout (float) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device is active.

wait_for_release(timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.

Parameters timeout (float) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device is inactive.

is_pressed
Returns True if the device is currently active and False otherwise. This property is usually derived
from value. Unlike value, this is always a boolean.

pin
The Pin that the device is connected to. This will be None if the device has been closed (see the
close() method). When dealing with GPIO pins, query pin.number to discover the GPIO pin
(in BCM numbering) that the device is connected to.

pull_up
If True, the device uses a pull-up resistor to set the GPIO pin “high” by default. Defaults to False.

when_pressed
The function to run when the device changes state from inactive to active.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated will be passed as that parameter.

Set this property to None (the default) to disable the event.

when_released
The function to run when the device changes state from active to inactive.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that deactivated will be passed as that parameter.

Set this property to None (the default) to disable the event.

Line Sensor (TRCT5000)

class gpiozero.LineSensor(pin)
Extends DigitalInputDevice and represents a single pin line sensor like the TCRT5000 infra-red
proximity sensor found in the CamJam #3 EduKit.

A typical line sensor has a small circuit board with three pins: VCC, GND, and OUT. VCC should be
connected to a 3V3 pin, GND to one of the ground pins, and finally OUT to the GPIO specified as the value
of the pin parameter in the constructor.

The following code will print a line of text indicating when the sensor detects a line, or stops detecting a
line:

from gpiozero import LineSensor
from signal import pause

sensor = LineSensor(4)

6.3. Input Devices 33

https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
http://camjam.me/?page_id=1035

Gpiozero Documentation, Release 1.2.0

sensor.when_line = lambda: print('Line detected')
sensor.when_no_line = lambda: print('No line detected')
pause()

Parameters

• pin (int) – The GPIO pin which the button is attached to. See Notes for valid pin
numbers.

• queue_len (int) – The length of the queue used to store values read from the sensor.
This defaults to 5.

• sample_rate (float) – The number of values to read from the device (and append
to the internal queue) per second. Defaults to 100.

• threshold (float) – Defaults to 0.5. When the mean of all values in the internal
queue rises above this value, the sensor will be considered “active” by the is_active
property, and all appropriate events will be fired.

• partial (bool) – When False (the default), the object will not return a value for
is_active until the internal queue has filled with values. Only set this to True if
you require values immediately after object construction.

wait_for_line(timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.

Parameters timeout (float) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device is inactive.

wait_for_no_line(timeout=None)
Pause the script until the device is activated, or the timeout is reached.

Parameters timeout (float) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device is active.

pin
The Pin that the device is connected to. This will be None if the device has been closed (see the
close() method). When dealing with GPIO pins, query pin.number to discover the GPIO pin
(in BCM numbering) that the device is connected to.

when_line
The function to run when the device changes state from active to inactive.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that deactivated will be passed as that parameter.

Set this property to None (the default) to disable the event.

when_no_line
The function to run when the device changes state from inactive to active.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated will be passed as that parameter.

Set this property to None (the default) to disable the event.

Motion Sensor (D-SUN PIR)

class gpiozero.MotionSensor(pin, queue_len=1, sample_rate=10, threshold=0.5, partial=False)
Extends SmoothedInputDevice and represents a passive infra-red (PIR) motion sensor like the sort
found in the CamJam #2 EduKit.

34 Chapter 6. Table of Contents

https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
http://camjam.me/?page_id=623

Gpiozero Documentation, Release 1.2.0

A typical PIR device has a small circuit board with three pins: VCC, OUT, and GND. VCC should be
connected to a 5V pin, GND to one of the ground pins, and finally OUT to the GPIO specified as the value
of the pin parameter in the constructor.

The following code will print a line of text when motion is detected:

from gpiozero import MotionSensor

pir = MotionSensor(4)
pir.wait_for_motion()
print("Motion detected!")

Parameters

• pin (int) – The GPIO pin which the button is attached to. See Notes for valid pin
numbers.

• queue_len (int) – The length of the queue used to store values read from the sen-
sor. This defaults to 1 which effectively disables the queue. If your motion sensor is
particularly “twitchy” you may wish to increase this value.

• sample_rate (float) – The number of values to read from the device (and append
to the internal queue) per second. Defaults to 100.

• threshold (float) – Defaults to 0.5. When the mean of all values in the internal
queue rises above this value, the sensor will be considered “active” by the is_active
property, and all appropriate events will be fired.

• partial (bool) – When False (the default), the object will not return a value for
is_active until the internal queue has filled with values. Only set this to True if
you require values immediately after object construction.

wait_for_motion(timeout=None)
Pause the script until the device is activated, or the timeout is reached.

Parameters timeout (float) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device is active.

wait_for_no_motion(timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.

Parameters timeout (float) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device is inactive.

motion_detected
Returns True if the device is currently active and False otherwise.

pin
The Pin that the device is connected to. This will be None if the device has been closed (see the
close() method). When dealing with GPIO pins, query pin.number to discover the GPIO pin
(in BCM numbering) that the device is connected to.

when_motion
The function to run when the device changes state from inactive to active.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated will be passed as that parameter.

Set this property to None (the default) to disable the event.

when_no_motion
The function to run when the device changes state from active to inactive.

6.3. Input Devices 35

https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float

Gpiozero Documentation, Release 1.2.0

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that deactivated will be passed as that parameter.

Set this property to None (the default) to disable the event.

Light Sensor (LDR)

class gpiozero.LightSensor(pin, queue_len=5, charge_time_limit=0.01, threshold=0.1, par-
tial=False)

Extends SmoothedInputDevice and represents a light dependent resistor (LDR).

Connect one leg of the LDR to the 3V3 pin; connect one leg of a 1µf capacitor to a ground pin; connect
the other leg of the LDR and the other leg of the capacitor to the same GPIO pin. This class repeatedly
discharges the capacitor, then times the duration it takes to charge (which will vary according to the light
falling on the LDR).

The following code will print a line of text when light is detected:

from gpiozero import LightSensor

ldr = LightSensor(18)
ldr.wait_for_light()
print("Light detected!")

Parameters

• pin (int) – The GPIO pin which the button is attached to. See Notes for valid pin
numbers.

• queue_len (int) – The length of the queue used to store values read from the circuit.
This defaults to 5.

• charge_time_limit (float) – If the capacitor in the circuit takes longer than
this length of time to charge, it is assumed to be dark. The default (0.01 seconds) is
appropriate for a 0.01µf capacitor coupled with the LDR from the CamJam #2 EduKit.
You may need to adjust this value for different valued capacitors or LDRs.

• threshold (float) – Defaults to 0.1. When the mean of all values in the internal
queue rises above this value, the area will be considered “light”, and all appropriate
events will be fired.

• partial (bool) – When False (the default), the object will not return a value for
is_active until the internal queue has filled with values. Only set this to True if
you require values immediately after object construction.

wait_for_dark(timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.

Parameters timeout (float) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device is inactive.

wait_for_light(timeout=None)
Pause the script until the device is activated, or the timeout is reached.

Parameters timeout (float) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device is active.

light_detected
Returns True if the device is currently active and False otherwise.

pin
The Pin that the device is connected to. This will be None if the device has been closed (see the

36 Chapter 6. Table of Contents

https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#float
http://camjam.me/?page_id=623
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float

Gpiozero Documentation, Release 1.2.0

close() method). When dealing with GPIO pins, query pin.number to discover the GPIO pin
(in BCM numbering) that the device is connected to.

when_dark
The function to run when the device changes state from active to inactive.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that deactivated will be passed as that parameter.

Set this property to None (the default) to disable the event.

when_light
The function to run when the device changes state from inactive to active.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated will be passed as that parameter.

Set this property to None (the default) to disable the event.

Distance Sensor (HC-SR04)

class gpiozero.DistanceSensor(echo, trigger, queue_len=30, max_distance=1, thresh-
old_distance=0.3, partial=False)

Extends SmoothedInputDevice and represents an HC-SR04 ultrasonic distance sensor, as found in the
CamJam #3 EduKit.

The distance sensor requires two GPIO pins: one for the trigger (marked TRIG on the sensor) and another
for the echo (marked ECHO on the sensor). However, a voltage divider is required to ensure the 5V from
the ECHO pin doesn’t damage the Pi. Wire your sensor according to the following instructions:

1.Connect the GND pin of the sensor to a ground pin on the Pi.

2.Connect the TRIG pin of the sensor a GPIO pin.

3.Connect a 330Ω resistor from the ECHO pin of the sensor to a different GPIO pin.

4.Connect a 470Ω resistor from ground to the ECHO GPIO pin. This forms the required voltage divider.

5.Finally, connect the VCC pin of the sensor to a 5V pin on the Pi.

The following code will periodically report the distance measured by the sensor in cm assuming the TRIG
pin is connected to GPIO17, and the ECHO pin to GPIO18:

from gpiozero import DistanceSensor
from time import sleep

sensor = DistanceSensor(18, 17)
while True:

print('Distance: ', sensor.distance * 100)
sleep(1)

Parameters

• echo (int) – The GPIO pin which the ECHO pin is attached to. See Notes for valid
pin numbers.

• trigger (int) – The GPIO pin which the TRIG pin is attached to. See Notes for
valid pin numbers.

• queue_len (int) – The length of the queue used to store values read from the sensor.
This defaults to 30.

6.3. Input Devices 37

http://camjam.me/?page_id=1035
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int

Gpiozero Documentation, Release 1.2.0

• max_distance (float) – The value attribute reports a normalized value between
0 (too close to measure) and 1 (maximum distance). This parameter specifies the maxi-
mum distance expected in meters. This defaults to 1.

• threshold_distance (float) – Defaults to 0.3. This is the distance (in meters)
that will trigger the in_range and out_of_range events when crossed.

• partial (bool) – When False (the default), the object will not return a value for
is_active until the internal queue has filled with values. Only set this to True if
you require values immediately after object construction.

wait_for_in_range(timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.

Parameters timeout (float) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device is inactive.

wait_for_out_of_range(timeout=None)
Pause the script until the device is activated, or the timeout is reached.

Parameters timeout (float) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device is active.

distance
Returns the current distance measured by the sensor in meters. Note that this property will have a
value between 0 and max_distance.

echo
Returns the Pin that the sensor’s echo is connected to. This is simply an alias for the usual pin
attribute.

max_distance
The maximum distance that the sensor will measure in meters. This value is specified in the con-
structor and is used to provide the scaling for the value attribute. When distance is equal to
max_distance, value will be 1.

threshold_distance
The distance, measured in meters, that will trigger the when_in_range and
when_out_of_range events when crossed. This is simply a meter-scaled variant of the
usual threshold attribute.

trigger
Returns the Pin that the sensor’s trigger is connected to.

when_in_range
The function to run when the device changes state from active to inactive.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that deactivated will be passed as that parameter.

Set this property to None (the default) to disable the event.

when_out_of_range
The function to run when the device changes state from inactive to active.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated will be passed as that parameter.

Set this property to None (the default) to disable the event.

38 Chapter 6. Table of Contents

https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float

Gpiozero Documentation, Release 1.2.0

Base Classes

The classes in the sections above are derived from a series of base classes, some of which are effectively abstract.
The classes form the (partial) hierarchy displayed in the graph below:

Device

GPIODevice

SmoothedInputDevice

InputDevice

DigitalInputDevice

ButtonMotionSensor LightSensor LineSensor DistanceSensor

The following sections document these base classes for advanced users that wish to construct classes for their own
devices.

DigitalInputDevice

class gpiozero.DigitalInputDevice(pin, pull_up=False, bounce_time=None)
Represents a generic input device with typical on/off behaviour.

This class extends InputDevice with machinery to fire the active and inactive events for devices that op-
erate in a typical digital manner: straight forward on / off states with (reasonably) clean transitions between
the two.

Parameters bouncetime (float) – Specifies the length of time (in seconds) that the com-
ponent will ignore changes in state after an initial change. This defaults to None which
indicates that no bounce compensation will be performed.

SmoothedInputDevice

class gpiozero.SmoothedInputDevice(pin=None, pull_up=False, threshold=0.5, queue_len=5,
sample_wait=0.0, partial=False)

Represents a generic input device which takes its value from the mean of a queue of historical values.

This class extends InputDevice with a queue which is filled by a background thread which continually
polls the state of the underlying device. The mean of the values in the queue is compared to a threshold
which is used to determine the state of the is_active property.

6.3. Input Devices 39

https://docs.python.org/3.4/library/functions.html#float

Gpiozero Documentation, Release 1.2.0

Note: The background queue is not automatically started upon construction. This is to allow descendents
to set up additional components before the queue starts reading values. Effectively this is an abstract base
class.

This class is intended for use with devices which either exhibit analog behaviour (such as the charging time
of a capacitor with an LDR), or those which exhibit “twitchy” behaviour (such as certain motion sensors).

Parameters

• threshold (float) – The value above which the device will be considered “on”.

• queue_len (int) – The length of the internal queue which is filled by the background
thread.

• sample_wait (float) – The length of time to wait between retrieving the state of
the underlying device. Defaults to 0.0 indicating that values are retrieved as fast as
possible.

• partial (bool) – If False (the default), attempts to read the state of the device
(from the is_active property) will block until the queue has filled. If True, a
value will be returned immediately, but be aware that this value is likely to fluctuate
excessively.

close()
Shut down the device and release all associated resources. This method can be called on an already
closed device without raising an exception.

This method is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references
to the object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By contrast, the close method provides
a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an
LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device descendents can also be used as context managers using the with statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

is_active
Returns True if the device is currently active and False otherwise.

partial
If False (the default), attempts to read the value or is_active properties will block until the
queue has filled.

40 Chapter 6. Table of Contents

https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/reference/compound_stmts.html#with

Gpiozero Documentation, Release 1.2.0

queue_len
The length of the internal queue of values which is averaged to determine the overall state of the
device. This defaults to 5.

threshold
If value exceeds this amount, then is_active will return True.

value
Returns the mean of the values in the internal queue. This is compared to threshold to determine
whether is_active is True.

InputDevice

class gpiozero.InputDevice(pin, pull_up=False)
Represents a generic GPIO input device.

This class extends GPIODevice to add facilities common to GPIO input devices. The constructor adds
the optional pull_up parameter to specify how the pin should be pulled by the internal resistors. The
is_active property is adjusted accordingly so that True still means active regardless of the pull_up
setting.

Parameters

• pin (int) – The GPIO pin (in Broadcom numbering) that the device is connected to.
If this is None a GPIODeviceError will be raised.

• pull_up (bool) – If True, the pin will be pulled high with an internal resistor. If
False (the default), the pin will be pulled low.

pull_up
If True, the device uses a pull-up resistor to set the GPIO pin “high” by default. Defaults to False.

GPIODevice

class gpiozero.GPIODevice(pin)
Extends Device. Represents a generic GPIO device and provides the services common to all single-pin
GPIO devices (like ensuring two GPIO devices do no share a pin).

Parameters pin (int) – The GPIO pin (in BCM numbering) that the device is connected to.
If this is None, GPIOPinMissing will be raised. If the pin is already in use by another
device, GPIOPinInUse will be raised.

close()
Shut down the device and release all associated resources. This method can be called on an already
closed device without raising an exception.

This method is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references
to the object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By contrast, the close method provides
a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an
LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()

6.3. Input Devices 41

https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#int

Gpiozero Documentation, Release 1.2.0

>>> led = LED(16)
>>> led.blink()

Device descendents can also be used as context managers using the with statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

pin
The Pin that the device is connected to. This will be None if the device has been closed (see the
close() method). When dealing with GPIO pins, query pin.number to discover the GPIO pin
(in BCM numbering) that the device is connected to.

Output Devices

These output device component interfaces have been provided for simple use of everyday components. Compo-
nents must be wired up correctly before use in code.

Note: All GPIO pin numbers use Broadcom (BCM) numbering. See the Recipes page for more information.

LED

class gpiozero.LED(pin, active_high=True, initial_value=False)
Extends DigitalOutputDevice and represents a light emitting diode (LED).

Connect the cathode (short leg, flat side) of the LED to a ground pin; connect the anode (longer leg) to a
limiting resistor; connect the other side of the limiting resistor to a GPIO pin (the limiting resistor can be
placed either side of the LED).

The following example will light the LED:

from gpiozero import LED

led = LED(17)
led.on()

Parameters

• pin (int) – The GPIO pin which the LED is attached to. See Notes for valid pin
numbers.

• active_high (bool) – If True (the default), the LED will operate normally with
the circuit described above. If False you should wire the cathode to the GPIO pin, and
the anode to a 3V3 pin (via a limiting resistor).

• initial_value (bool) – If False (the default), the LED will be off initially. If
None, the LED will be left in whatever state the pin is found in when configured for
output (warning: this can be on). If True, the LED will be switched on initially.

blink(on_time=1, off_time=1, n=None, background=True)
Make the device turn on and off repeatedly.

42 Chapter 6. Table of Contents

https://docs.python.org/3.4/reference/compound_stmts.html#with
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool

Gpiozero Documentation, Release 1.2.0

Parameters

• on_time (float) – Number of seconds on. Defaults to 1 second.

• off_time (float) – Number of seconds off. Defaults to 1 second.

• n (int) – Number of times to blink; None (the default) means forever.

• background (bool) – If True (the default), start a background thread to continue
blinking and return immediately. If False, only return when the blink is finished
(warning: the default value of n will result in this method never returning).

off()
Turns the device off.

on()
Turns the device on.

toggle()
Reverse the state of the device. If it’s on, turn it off; if it’s off, turn it on.

is_lit
Returns True if the device is currently active and False otherwise. This property is usually derived
from value. Unlike value, this is always a boolean.

pin
The Pin that the device is connected to. This will be None if the device has been closed (see the
close() method). When dealing with GPIO pins, query pin.number to discover the GPIO pin
(in BCM numbering) that the device is connected to.

PWMLED

class gpiozero.PWMLED(pin, active_high=True, initial_value=0, frequency=100)
Extends PWMOutputDevice and represents a light emitting diode (LED) with variable brightness.

A typical configuration of such a device is to connect a GPIO pin to the anode (long leg) of the LED, and
the cathode (short leg) to ground, with an optional resistor to prevent the LED from burning out.

Parameters

• pin (int) – The GPIO pin which the LED is attached to. See Notes for valid pin
numbers.

• active_high (bool) – If True (the default), the on() method will set the GPIO
to HIGH. If False, the on() method will set the GPIO to LOW (the off() method
always does the opposite).

• initial_value (bool) – If 0 (the default), the LED will be off initially. Other
values between 0 and 1 can be specified as an initial brightness for the LED. Note that
None cannot be specified (unlike the parent class) as there is no way to tell PWM not
to alter the state of the pin.

• frequency (int) – The frequency (in Hz) of pulses emitted to drive the LED. De-
faults to 100Hz.

blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)
Make the device turn on and off repeatedly.

Parameters

• on_time (float) – Number of seconds on. Defaults to 1 second.

• off_time (float) – Number of seconds off. Defaults to 1 second.

• fade_in_time (float) – Number of seconds to spend fading in. Defaults to 0.

• fade_out_time (float) – Number of seconds to spend fading out. Defaults to 0.

6.4. Output Devices 43

https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float

Gpiozero Documentation, Release 1.2.0

• n (int) – Number of times to blink; None (the default) means forever.

• background (bool) – If True (the default), start a background thread to continue
blinking and return immediately. If False, only return when the blink is finished
(warning: the default value of n will result in this method never returning).

off()
Turns the device off.

on()
Turns the device on.

toggle()
Toggle the state of the device. If the device is currently off (value is 0.0), this changes it to “fully”
on (value is 1.0). If the device has a duty cycle (value) of 0.1, this will toggle it to 0.9, and so on.

is_lit
Returns True if the device is currently active (value is non-zero) and False otherwise.

pin
The Pin that the device is connected to. This will be None if the device has been closed (see the
close() method). When dealing with GPIO pins, query pin.number to discover the GPIO pin
(in BCM numbering) that the device is connected to.

value
The duty cycle of the PWM device. 0.0 is off, 1.0 is fully on. Values in between may be specified for
varying levels of power in the device.

RGBLED

class gpiozero.RGBLED(red, green, blue, active_high=True, initial_value=(0, 0, 0))
Extends Device and represents a full color LED component (composed of red, green, and blue LEDs).

Connect the common cathode (longest leg) to a ground pin; connect each of the other legs (representing the
red, green, and blue anodes) to any GPIO pins. You can either use three limiting resistors (one per anode)
or a single limiting resistor on the cathode.

The following code will make the LED purple:

from gpiozero import RGBLED

led = RGBLED(2, 3, 4)
led.color = (1, 0, 1)

Parameters

• red (int) – The GPIO pin that controls the red component of the RGB LED.

• green (int) – The GPIO pin that controls the green component of the RGB LED.

• blue (int) – The GPIO pin that controls the blue component of the RGB LED.

• active_high (bool) – Set to True (the default) for common cathode RGB LEDs.
If you are using a common anode RGB LED, set this to False.

• initial_value (bool) – The initial color for the LED. Defaults to black (0, 0,
0).

blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, on_color=(1, 1, 1),
off_color=(0, 0, 0), n=None, background=True)

Make the device turn on and off repeatedly.

Parameters

• on_time (float) – Number of seconds on. Defaults to 1 second.

44 Chapter 6. Table of Contents

https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#float

Gpiozero Documentation, Release 1.2.0

• off_time (float) – Number of seconds off. Defaults to 1 second.

• fade_in_time (float) – Number of seconds to spend fading in. Defaults to 0.

• fade_out_time (float) – Number of seconds to spend fading out. Defaults to 0.

• on_color (tuple) – The color to use when the LED is “on”. Defaults to white.

• off_color (tuple) – The color to use when the LED is “off”. Defaults to black.

• n (int) – Number of times to blink; None (the default) means forever.

• background (bool) – If True (the default), start a background thread to continue
blinking and return immediately. If False, only return when the blink is finished
(warning: the default value of n will result in this method never returning).

off()
Turn the LED off. This is equivalent to setting the LED color to black (0, 0, 0).

on()
Turn the LED on. This equivalent to setting the LED color to white (1, 1, 1).

toggle()
Toggle the state of the device. If the device is currently off (value is (0, 0, 0)), this changes it
to “fully” on (value is (1, 1, 1)). If the device has a specific color, this method inverts the color.

color
Represents the color of the LED as an RGB 3-tuple of (red, green, blue) where each value is
between 0 and 1.

For example, purple would be (1, 0, 1) and yellow would be (1, 1, 0), while orange would
be (1, 0.5, 0).

is_lit
Returns True if the LED is currently active (not black) and False otherwise.

Buzzer

class gpiozero.Buzzer(pin, active_high=True, initial_value=False)
Extends DigitalOutputDevice and represents a digital buzzer component.

Connect the cathode (negative pin) of the buzzer to a ground pin; connect the other side to any GPIO pin.

The following example will sound the buzzer:

from gpiozero import Buzzer

bz = Buzzer(3)
bz.on()

Parameters

• pin (int) – The GPIO pin which the buzzer is attached to. See Notes for valid pin
numbers.

• active_high (bool) – If True (the default), the buzzer will operate normally with
the circuit described above. If False you should wire the cathode to the GPIO pin, and
the anode to a 3V3 pin.

• initial_value (bool) – If False (the default), the buzzer will be silent initially.
If None, the buzzer will be left in whatever state the pin is found in when configured
for output (warning: this can be on). If True, the buzzer will be switched on initially.

beep(on_time=1, off_time=1, n=None, background=True)
Make the device turn on and off repeatedly.

6.4. Output Devices 45

https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/stdtypes.html#tuple
https://docs.python.org/3.4/library/stdtypes.html#tuple
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool

Gpiozero Documentation, Release 1.2.0

Parameters

• on_time (float) – Number of seconds on. Defaults to 1 second.

• off_time (float) – Number of seconds off. Defaults to 1 second.

• n (int) – Number of times to blink; None (the default) means forever.

• background (bool) – If True (the default), start a background thread to continue
blinking and return immediately. If False, only return when the blink is finished
(warning: the default value of n will result in this method never returning).

off()
Turns the device off.

on()
Turns the device on.

toggle()
Reverse the state of the device. If it’s on, turn it off; if it’s off, turn it on.

is_active
Returns True if the device is currently active and False otherwise. This property is usually derived
from value. Unlike value, this is always a boolean.

pin
The Pin that the device is connected to. This will be None if the device has been closed (see the
close() method). When dealing with GPIO pins, query pin.number to discover the GPIO pin
(in BCM numbering) that the device is connected to.

Motor

class gpiozero.Motor(forward, backward)
Extends CompositeDevice and represents a generic motor connected to a bi-directional motor driver
circuit (i.e. an H-bridge).

Attach an H-bridge motor controller to your Pi; connect a power source (e.g. a battery pack or the 5V pin)
to the controller; connect the outputs of the controller board to the two terminals of the motor; connect the
inputs of the controller board to two GPIO pins.

The following code will make the motor turn “forwards”:

from gpiozero import Motor

motor = Motor(17, 18)
motor.forward()

Parameters

• forward (int) – The GPIO pin that the forward input of the motor driver chip is
connected to.

• backward (int) – The GPIO pin that the backward input of the motor driver chip is
connected to.

backward(speed=1)
Drive the motor backwards.

Parameters speed (float) – The speed at which the motor should turn. Can be any value
between 0 (stopped) and the default 1 (maximum speed).

forward(speed=1)
Drive the motor forwards.

46 Chapter 6. Table of Contents

https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#bool
https://en.wikipedia.org/wiki/H_bridge
https://en.wikipedia.org/wiki/H_bridge
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#float

Gpiozero Documentation, Release 1.2.0

Parameters speed (float) – The speed at which the motor should turn. Can be any value
between 0 (stopped) and the default 1 (maximum speed).

stop()
Stop the motor.

Base Classes

The classes in the sections above are derived from a series of base classes, some of which are effectively abstract.
The classes form the (partial) hierarchy displayed in the graph below:

Device

GPIODevice

OutputDevice

DigitalOutputDevice

LED Buzzer

PWMOutputDevice

PWMLED

RGBLED

The following sections document these base classes for advanced users that wish to construct classes for their own
devices.

DigitalOutputDevice

class gpiozero.DigitalOutputDevice(pin, active_high=True, initial_value=False)
Represents a generic output device with typical on/off behaviour.

This class extends OutputDevice with a blink() method which uses an optional background thread
to handle toggling the device state without further interaction.

blink(on_time=1, off_time=1, n=None, background=True)
Make the device turn on and off repeatedly.

Parameters

• on_time (float) – Number of seconds on. Defaults to 1 second.

• off_time (float) – Number of seconds off. Defaults to 1 second.

• n (int) – Number of times to blink; None (the default) means forever.

6.4. Output Devices 47

https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#int

Gpiozero Documentation, Release 1.2.0

• background (bool) – If True (the default), start a background thread to continue
blinking and return immediately. If False, only return when the blink is finished
(warning: the default value of n will result in this method never returning).

close()
Shut down the device and release all associated resources. This method can be called on an already
closed device without raising an exception.

This method is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references
to the object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By contrast, the close method provides
a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an
LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device descendents can also be used as context managers using the with statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

off()
Turns the device off.

on()
Turns the device on.

PWMOutputDevice

class gpiozero.PWMOutputDevice(pin, active_high=True, initial_value=0, frequency=100)
Generic output device configured for pulse-width modulation (PWM).

Parameters

• pin (int) – The GPIO pin which the device is attached to. See Notes for valid pin
numbers.

• active_high (bool) – If True (the default), the on() method will set the GPIO
to HIGH. If False, the on() method will set the GPIO to LOW (the off() method
always does the opposite).

• initial_value (bool) – If 0 (the default), the device’s duty cycle will be 0 ini-
tially. Other values between 0 and 1 can be specified as an initial duty cycle. Note that
None cannot be specified (unlike the parent class) as there is no way to tell PWM not
to alter the state of the pin.

• frequency (int) – The frequency (in Hz) of pulses emitted to drive the device.
Defaults to 100Hz.

48 Chapter 6. Table of Contents

https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/reference/compound_stmts.html#with
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#int

Gpiozero Documentation, Release 1.2.0

blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)
Make the device turn on and off repeatedly.

Parameters

• on_time (float) – Number of seconds on. Defaults to 1 second.

• off_time (float) – Number of seconds off. Defaults to 1 second.

• fade_in_time (float) – Number of seconds to spend fading in. Defaults to 0.

• fade_out_time (float) – Number of seconds to spend fading out. Defaults to 0.

• n (int) – Number of times to blink; None (the default) means forever.

• background (bool) – If True (the default), start a background thread to continue
blinking and return immediately. If False, only return when the blink is finished
(warning: the default value of n will result in this method never returning).

close()
Shut down the device and release all associated resources. This method can be called on an already
closed device without raising an exception.

This method is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references
to the object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By contrast, the close method provides
a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an
LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device descendents can also be used as context managers using the with statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

off()
Turns the device off.

on()
Turns the device on.

pulse(fade_in_time=1, fade_out_time=1, n=None, background=True)
Make the device fade in and out repeatedly.

Parameters

• fade_in_time (float) – Number of seconds to spend fading in. Defaults to 1.

• fade_out_time (float) – Number of seconds to spend fading out. Defaults to 1.

• n (int) – Number of times to blink; None (the default) means forever.

6.4. Output Devices 49

https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/reference/compound_stmts.html#with
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#int

Gpiozero Documentation, Release 1.2.0

• background (bool) – If True (the default), start a background thread to continue
blinking and return immediately. If False, only return when the blink is finished
(warning: the default value of n will result in this method never returning).

toggle()
Toggle the state of the device. If the device is currently off (value is 0.0), this changes it to “fully”
on (value is 1.0). If the device has a duty cycle (value) of 0.1, this will toggle it to 0.9, and so on.

frequency
The frequency of the pulses used with the PWM device, in Hz. The default is 100Hz.

is_active
Returns True if the device is currently active (value is non-zero) and False otherwise.

value
The duty cycle of the PWM device. 0.0 is off, 1.0 is fully on. Values in between may be specified for
varying levels of power in the device.

OutputDevice

class gpiozero.OutputDevice(pin, active_high=True, initial_value=False)
Represents a generic GPIO output device.

This class extends GPIODevice to add facilities common to GPIO output devices: an on() method to
switch the device on, a corresponding off() method, and a toggle() method.

Parameters

• pin (int) – The GPIO pin (in BCM numbering) that the device is connected to. If this
is None a GPIOPinMissing will be raised.

• active_high (bool) – If True (the default), the on() method will set the GPIO
to HIGH. If False, the on() method will set the GPIO to LOW (the off() method
always does the opposite).

• initial_value (bool) – If False (the default), the device will be off initially. If
None, the device will be left in whatever state the pin is found in when configured for
output (warning: this can be on). If True, the device will be switched on initially.

off()
Turns the device off.

on()
Turns the device on.

toggle()
Reverse the state of the device. If it’s on, turn it off; if it’s off, turn it on.

active_high
When True, the value property is True when the device’s pin is high. When False the value
property is True when the device’s pin is low (i.e. the value is inverted).

This property can be set after construction; be warned that changing it will invert value (i.e. changing
this property doesn’t change the device’s pin state - it just changes how that state is interpreted).

value
Returns True if the device is currently active and False otherwise. Setting this property changes
the state of the device.

GPIODevice

class gpiozero.GPIODevice(pin)
Extends Device. Represents a generic GPIO device and provides the services common to all single-pin
GPIO devices (like ensuring two GPIO devices do no share a pin).

50 Chapter 6. Table of Contents

https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool

Gpiozero Documentation, Release 1.2.0

Parameters pin (int) – The GPIO pin (in BCM numbering) that the device is connected to.
If this is None, GPIOPinMissing will be raised. If the pin is already in use by another
device, GPIOPinInUse will be raised.

close()
Shut down the device and release all associated resources. This method can be called on an already
closed device without raising an exception.

This method is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references
to the object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By contrast, the close method provides
a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an
LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device descendents can also be used as context managers using the with statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

pin
The Pin that the device is connected to. This will be None if the device has been closed (see the
close() method). When dealing with GPIO pins, query pin.number to discover the GPIO pin
(in BCM numbering) that the device is connected to.

SPI Devices

SPI stands for Serial Peripheral Interface and is a mechanism allowing compatible devices to communicate with
the Pi. SPI is a four-wire protocol meaning it usually requires four pins to operate:

• A “clock” pin which provides timing information.

• A “MOSI” pin (Master Out, Slave In) which the Pi uses to send information to the device.

• A “MISO” pin (Master In, Slave Out) which the Pi uses to receive information from the device.

• A “select” pin which the Pi uses to indicate which device it’s talking to. This last pin is necessary because
multiple devices can share the clock, MOSI, and MISO pins, but only one device can be connected to each
select pin.

The gpiozero library provides two SPI implementations:

• A software based implementation. This is always available, can use any four GPIO pins for SPI communi-
cation, but is rather slow and won’t work with all devices.

6.5. SPI Devices 51

https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/reference/compound_stmts.html#with
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

Gpiozero Documentation, Release 1.2.0

• A hardware based implementation. This is only available when the SPI kernel module is loaded, and the
Python spidev library is available. It can only use specific pins for SPI communication (GPIO11=clock,
GPIO10=MOSI, GPIO9=MISO, while GPIO8 is select for device 0 and GPIO7 is select for device 1).
However, it is extremely fast and works with all devices.

SPI keyword args

When constructing an SPI device there are two schemes for specifying which pins it is connected to:

• You can specify port and device keyword arguments. The port parameter must be 0 (there is only one user-
accessible hardware SPI interface on the Pi using GPIO11 as the clock pin, GPIO10 as the MOSI pin, and
GPIO9 as the MISO pin), while the device parameter must be 0 or 1. If device is 0, the select pin will be
GPIO8. If device is 1, the select pin will be GPIO7.

• Alternatively you can specify clock_pin, mosi_pin, miso_pin, and select_pin keyword arguments. In this
case the pins can be any 4 GPIO pins (remember that SPI devices can share clock, MOSI, and MISO pins,
but not select pins - the gpiozero library will enforce this restriction).

You cannot mix these two schemes, i.e. attempting to specify port and clock_pin will result in SPIBadArgs
being raised. However, you can omit any arguments from either scheme. The defaults are:

• port and device both default to 0.

• clock_pin defaults to 11, mosi_pin defaults to 10, miso_pin defaults to 9, and select_pin defaults to 8.

Hence the following constructors are all equiavlent:

from gpiozero import MCP3008

MCP3008(channel=0)
MCP3008(channel=0, device=0)
MCP3008(channel=0, port=0, device=0)
MCP3008(channel=0, select_pin=8)
MCP3008(channel=0, clock_pin=11, mosi_pin=10, miso_pin=9, select_pin=8)

Note that the defaults describe equivalent sets of pins and that these pins are compatible with the hardware imple-
mentation. Regardless of which scheme you use, gpiozero will attempt to use the hardware implementation if it is
available and if the selected pins are compatible, falling back to the software implementation if not.

Analog to Digital Converters (ADC)

class gpiozero.MCP3001(**spi_args)
The MCP3001 is a 10-bit analog to digital converter with 1 channel

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for devices
operating in differential mode).

class gpiozero.MCP3002(channel=0, differential=False, **spi_args)
The MCP3002 is a 10-bit analog to digital converter with 2 channels (0-1).

channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), and the MCP3301 only has 1 channel.

differential
If True, the device is operated in pseudo-differential mode. In this mode one channel (specified by
the channel attribute) is read relative to the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP3008 in differential mode, channel 0 is read relative to channel 1).

52 Chapter 6. Table of Contents

http://www.farnell.com/datasheets/630400.pdf
http://www.farnell.com/datasheets/1599363.pdf

Gpiozero Documentation, Release 1.2.0

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for devices
operating in differential mode).

class gpiozero.MCP3004(channel=0, differential=False, **spi_args)
The MCP3004 is a 10-bit analog to digital converter with 4 channels (0-3).

channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), and the MCP3301 only has 1 channel.

differential
If True, the device is operated in pseudo-differential mode. In this mode one channel (specified by
the channel attribute) is read relative to the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP3008 in differential mode, channel 0 is read relative to channel 1).

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for devices
operating in differential mode).

class gpiozero.MCP3008(channel=0, differential=False, **spi_args)
The MCP3008 is a 10-bit analog to digital converter with 8 channels (0-7).

channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), and the MCP3301 only has 1 channel.

differential
If True, the device is operated in pseudo-differential mode. In this mode one channel (specified by
the channel attribute) is read relative to the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP3008 in differential mode, channel 0 is read relative to channel 1).

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for devices
operating in differential mode).

class gpiozero.MCP3201(**spi_args)
The MCP3201 is a 12-bit analog to digital converter with 1 channel

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for devices
operating in differential mode).

class gpiozero.MCP3202(channel=0, differential=False, **spi_args)
The MCP3202 is a 12-bit analog to digital converter with 2 channels (0-1).

channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), and the MCP3301 only has 1 channel.

differential
If True, the device is operated in pseudo-differential mode. In this mode one channel (specified by
the channel attribute) is read relative to the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP3008 in differential mode, channel 0 is read relative to channel 1).

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for devices
operating in differential mode).

class gpiozero.MCP3204(channel=0, differential=False, **spi_args)
The MCP3204 is a 12-bit analog to digital converter with 4 channels (0-3).

6.5. SPI Devices 53

http://www.farnell.com/datasheets/808965.pdf
http://www.farnell.com/datasheets/808965.pdf
http://www.farnell.com/datasheets/1669366.pdf
http://www.farnell.com/datasheets/1669376.pdf
http://www.farnell.com/datasheets/808967.pdf

Gpiozero Documentation, Release 1.2.0

channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), and the MCP3301 only has 1 channel.

differential
If True, the device is operated in pseudo-differential mode. In this mode one channel (specified by
the channel attribute) is read relative to the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP3008 in differential mode, channel 0 is read relative to channel 1).

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for devices
operating in differential mode).

class gpiozero.MCP3208(channel=0, differential=False, **spi_args)
The MCP3208 is a 12-bit analog to digital converter with 8 channels (0-7).

channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), and the MCP3301 only has 1 channel.

differential
If True, the device is operated in pseudo-differential mode. In this mode one channel (specified by
the channel attribute) is read relative to the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP3008 in differential mode, channel 0 is read relative to channel 1).

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for devices
operating in differential mode).

class gpiozero.MCP3301(**spi_args)
The MCP3301 is a signed 13-bit analog to digital converter. Please note that the MCP3301 always operates
in differential mode between its two channels and the output value is scaled from -1 to +1.

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for devices
operating in differential mode).

class gpiozero.MCP3302(channel=0, differential=False, **spi_args)
The MCP3302 is a 12/13-bit analog to digital converter with 4 channels (0-3). When operated in differential
mode, the device outputs a signed 13-bit value which is scaled from -1 to +1. When operated in single-ended
mode (the default), the device outputs an unsigned 12-bit value scaled from 0 to 1.

channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), and the MCP3301 only has 1 channel.

differential
If True, the device is operated in pseudo-differential mode. In this mode one channel (specified by
the channel attribute) is read relative to the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP3008 in differential mode, channel 0 is read relative to channel 1).

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for devices
operating in differential mode).

class gpiozero.MCP3304(channel=0, differential=False, **spi_args)
The MCP3304 is a 12/13-bit analog to digital converter with 8 channels (0-7). When operated in differential
mode, the device outputs a signed 13-bit value which is scaled from -1 to +1. When operated in single-ended
mode (the default), the device outputs an unsigned 12-bit value scaled from 0 to 1.

54 Chapter 6. Table of Contents

http://www.farnell.com/datasheets/808967.pdf
http://www.farnell.com/datasheets/1669397.pdf
http://www.farnell.com/datasheets/1486116.pdf
http://www.farnell.com/datasheets/1486116.pdf

Gpiozero Documentation, Release 1.2.0

channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), and the MCP3301 only has 1 channel.

differential
If True, the device is operated in pseudo-differential mode. In this mode one channel (specified by
the channel attribute) is read relative to the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP3008 in differential mode, channel 0 is read relative to channel 1).

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for devices
operating in differential mode).

Base Classes

The classes in the sections above are derived from a series of base classes, some of which are effectively abstract.
The classes form the (partial) hierarchy displayed in the graph below:

Device

SPIDevice

AnalogInputDevice

MCP3xxx

MCP33xx MCP3004 MCP3008 MCP3204 MCP3208

MCP3301 MCP3302 MCP3304

The following sections document these base classes for advanced users that wish to construct classes for their own
devices.

6.5. SPI Devices 55

Gpiozero Documentation, Release 1.2.0

AnalogInputDevice

class gpiozero.AnalogInputDevice(bits=None, **spi_args)
Represents an analog input device connected to SPI (serial interface).

Typical analog input devices are analog to digital converters (ADCs). Several classes are provided for
specific ADC chips, including MCP3004, MCP3008, MCP3204, and MCP3208.

The following code demonstrates reading the first channel of an MCP3008 chip attached to the Pi’s SPI
pins:

from gpiozero import MCP3008

pot = MCP3008(0)
print(pot.value)

The value attribute is normalized such that its value is always between 0.0 and 1.0 (or in special cases,
such as differential sampling, -1 to +1). Hence, you can use an analog input to control the brightness of a
PWMLED like so:

from gpiozero import MCP3008, PWMLED

pot = MCP3008(0)
led = PWMLED(17)
led.source = pot.values

bits
The bit-resolution of the device/channel.

raw_value
The raw value as read from the device.

value
The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for devices
operating in differential mode).

SPIDevice

class gpiozero.SPIDevice(**spi_args)
Extends Device. Represents a device that communicates via the SPI protocol.

See SPI keyword args for information on the keyword arguments that can be specified with the constructor.

close()
Shut down the device and release all associated resources. This method can be called on an already
closed device without raising an exception.

This method is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references
to the object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By contrast, the close method provides
a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an
LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()

56 Chapter 6. Table of Contents

https://en.wikipedia.org/wiki/Analog-to-digital_converter

Gpiozero Documentation, Release 1.2.0

>>> led = LED(16)
>>> led.blink()

Device descendents can also be used as context managers using the with statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

Boards and Accessories

These additional interfaces are provided to group collections of components together for ease of use, and as
examples. They are composites made up of components from the various Input Devices and Output Devices
provided by GPIO Zero. See those pages for more information on using components individually.

Note: All GPIO pin numbers use Broadcom (BCM) numbering. See the Recipes page for more information.

LEDBoard

class gpiozero.LEDBoard(*pins, pwm=False, active_high=True, initial_value=False,
**named_pins)

Extends LEDCollection and represents a generic LED board or collection of LEDs.

The following example turns on all the LEDs on a board containing 5 LEDs attached to GPIO pins 2 through
6:

from gpiozero import LEDBoard

leds = LEDBoard(2, 3, 4, 5, 6)
leds.on()

Parameters

• *pins (int) – Specify the GPIO pins that the LEDs of the board are attached to. You
can designate as many pins as necessary. You can also specify LEDBoard instances to
create trees of LEDs.

• pwm (bool) – If True, construct PWMLED instances for each pin. If False (the
default), construct regular LED instances. This parameter can only be specified as a
keyword parameter.

• active_high (bool) – If True (the default), the on() method will set all the
associates pins to HIGH. If False, the on() method will set all pins to LOW (the
off() method always does the opposite).

• initial_value (bool) – If False (the default), all LEDs will be off initially. If
None, each device will be left in whatever state the pin is found in when configured for
output (warning: this can be on). If True, the device will be switched on initially.

• **named_pins – Sepcify GPIO pins that LEDs of the board are attached to, asso-
ciated each LED with a property name. You can designate as many pins as necessary
and any name provided it’s not already in use by something else. You can also specify
LEDBoard instances to create trees of LEDs.

6.6. Boards and Accessories 57

https://docs.python.org/3.4/reference/compound_stmts.html#with
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool

Gpiozero Documentation, Release 1.2.0

blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)
Make all the LEDs turn on and off repeatedly.

Parameters

• on_time (float) – Number of seconds on. Defaults to 1 second.

• off_time (float) – Number of seconds off. Defaults to 1 second.

• fade_in_time (float) – Number of seconds to spend fading in. Defaults to 0.
Must be 0 if pwm was False when the class was constructed (ValueError will be
raised if not).

• fade_out_time (float) – Number of seconds to spend fading out. Defaults to 0.
Must be 0 if pwm was False when the class was constructed (ValueError will be
raised if not).

• n (int) – Number of times to blink; None (the default) means forever.

• background (bool) – If True, start a background thread to continue blinking and
return immediately. If False, only return when the blink is finished (warning: the
default value of n will result in this method never returning).

close()
Shut down the device and release all associated resources. This method can be called on an already
closed device without raising an exception.

This method is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references
to the object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By contrast, the close method provides
a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an
LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device descendents can also be used as context managers using the with statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

off(*args)
Turn all the output devices off.

on(*args)
Turn all the output devices on.

pulse(fade_in_time=1, fade_out_time=1, n=None, background=True)
Make the device fade in and out repeatedly.

Parameters

58 Chapter 6. Table of Contents

https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/exceptions.html#ValueError
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/exceptions.html#ValueError
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/reference/compound_stmts.html#with

Gpiozero Documentation, Release 1.2.0

• fade_in_time (float) – Number of seconds to spend fading in. Defaults to 1.

• fade_out_time (float) – Number of seconds to spend fading out. Defaults to 1.

• n (int) – Number of times to blink; None (the default) means forever.

• background (bool) – If True (the default), start a background thread to continue
blinking and return immediately. If False, only return when the blink is finished
(warning: the default value of n will result in this method never returning).

toggle(*args)
Toggle all the output devices. For each device, if it’s on, turn it off; if it’s off, turn it on.

leds
A flat iterator over all LEDs contained in this collection (and all sub-collections).

source
The iterable to use as a source of values for value.

source_delay
The delay (measured in seconds) in the loop used to read values from source. Defaults to 0.01
seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

value
A tuple containing a value for each subordinate device. This property can also be set to update the
state of all subordinate output devices.

values
An infinite iterator of values read from value.

LEDBarGraph

class gpiozero.LEDBarGraph(*pins, initial_value=0)
Extends LEDCollection to control a line of LEDs representing a bar graph. Positive values (0 to 1) light
the LEDs from first to last. Negative values (-1 to 0) light the LEDs from last to first.

The following example demonstrates turning on the first two and last two LEDs in a board containing five
LEDs attached to GPIOs 2 through 6:

from gpiozero import LEDBarGraph
from time import sleep

graph = LEDBarGraph(2, 3, 4, 5, 6)
graph.value = 2/5 # Light the first two LEDs only
sleep(1)
graph.value = -2/5 # Light the last two LEDs only
sleep(1)
graph.off()

As with other output devices, source and values are supported:

from gpiozero import LEDBarGraph, MCP3008
from signal import pause

graph = LEDBarGraph(2, 3, 4, 5, 6, pwm=True)
pot = MCP3008(channel=0)
graph.source = pot.values
pause()

Parameters

• *pins (int) – Specify the GPIO pins that the LEDs of the bar graph are attached to.
You can designate as many pins as necessary.

6.6. Boards and Accessories 59

https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#int

Gpiozero Documentation, Release 1.2.0

• initial_value (float) – The initial value of the graph given as a float between
-1 and +1. Defaults to 0.0. This parameter can only be specified as a keyword parameter.

• pwm (bool) – If True, construct PWMLED instances for each pin. If False (the
default), construct regular LED instances. This parameter can only be specified as a
keyword parameter.

off()
Turn all the output devices off.

on()
Turn all the output devices on.

toggle()
Toggle all the output devices. For each device, if it’s on, turn it off; if it’s off, turn it on.

leds
A flat iterator over all LEDs contained in this collection (and all sub-collections).

source
The iterable to use as a source of values for value.

source_delay
The delay (measured in seconds) in the loop used to read values from source. Defaults to 0.01
seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

value
The value of the LED bar graph. When no LEDs are lit, the value is 0. When all LEDs are lit, the
value is 1. Values between 0 and 1 light LEDs linearly from first to last. Values between 0 and -1 light
LEDs linearly from last to first.

To light a particular number of LEDs, simply divide that number by the number of LEDs. For example,
if your graph contains 3 LEDs, the following will light the first:

from gpiozero import LEDBarGraph

graph = LEDBarGraph(12, 16, 19)
graph.value = 1/3

Note: Setting value to -1 will light all LEDs. However, querying it subsequently will return 1 as both
representations are the same in hardware. The readable range of value is effectively -1 < value <= 1.

values
An infinite iterator of values read from value.

TrafficLights

class gpiozero.TrafficLights(red=None, amber=None, green=None, pwm=False)
Extends LEDBoard for devices containing red, amber, and green LEDs.

The following example initializes a device connected to GPIO pins 2, 3, and 4, then lights the amber LED
attached to GPIO 3:

from gpiozero import TrafficLights

traffic = TrafficLights(2, 3, 4)
traffic.amber.on()

Parameters

60 Chapter 6. Table of Contents

https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#bool

Gpiozero Documentation, Release 1.2.0

• red (int) – The GPIO pin that the red LED is attached to.

• amber (int) – The GPIO pin that the amber LED is attached to.

• green (int) – The GPIO pin that the green LED is attached to.

• pwm (bool) – If True, construct PWMLED instances to represent each LED. If False
(the default), construct regular LED instances.

blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)
Make all the LEDs turn on and off repeatedly.

Parameters

• on_time (float) – Number of seconds on. Defaults to 1 second.

• off_time (float) – Number of seconds off. Defaults to 1 second.

• fade_in_time (float) – Number of seconds to spend fading in. Defaults to 0.
Must be 0 if pwm was False when the class was constructed (ValueError will be
raised if not).

• fade_out_time (float) – Number of seconds to spend fading out. Defaults to 0.
Must be 0 if pwm was False when the class was constructed (ValueError will be
raised if not).

• n (int) – Number of times to blink; None (the default) means forever.

• background (bool) – If True, start a background thread to continue blinking and
return immediately. If False, only return when the blink is finished (warning: the
default value of n will result in this method never returning).

close()
Shut down the device and release all associated resources. This method can be called on an already
closed device without raising an exception.

This method is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references
to the object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By contrast, the close method provides
a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an
LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device descendents can also be used as context managers using the with statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

off(*args)
Turn all the output devices off.

6.6. Boards and Accessories 61

https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/exceptions.html#ValueError
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/exceptions.html#ValueError
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/reference/compound_stmts.html#with

Gpiozero Documentation, Release 1.2.0

on(*args)
Turn all the output devices on.

pulse(fade_in_time=1, fade_out_time=1, n=None, background=True)
Make the device fade in and out repeatedly.

Parameters

• fade_in_time (float) – Number of seconds to spend fading in. Defaults to 1.

• fade_out_time (float) – Number of seconds to spend fading out. Defaults to 1.

• n (int) – Number of times to blink; None (the default) means forever.

• background (bool) – If True (the default), start a background thread to continue
blinking and return immediately. If False, only return when the blink is finished
(warning: the default value of n will result in this method never returning).

toggle(*args)
Toggle all the output devices. For each device, if it’s on, turn it off; if it’s off, turn it on.

leds
A flat iterator over all LEDs contained in this collection (and all sub-collections).

source
The iterable to use as a source of values for value.

source_delay
The delay (measured in seconds) in the loop used to read values from source. Defaults to 0.01
seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

value
A tuple containing a value for each subordinate device. This property can also be set to update the
state of all subordinate output devices.

values
An infinite iterator of values read from value.

PiLITEr

class gpiozero.PiLiter(pwm=False)
Extends LEDBoard for the Ciseco Pi-LITEr: a strip of 8 very bright LEDs.

The Pi-LITEr pins are fixed and therefore there’s no need to specify them when constructing this class. The
following example turns on all the LEDs of the Pi-LITEr:

from gpiozero import PiLiter

lite = PiLiter()
lite.on()

Parameters pwm (bool) – If True, construct PWMLED instances for each pin. If False (the
default), construct regular LED instances. This parameter can only be specified as a keyword
parameter.

blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)
Make all the LEDs turn on and off repeatedly.

Parameters

• on_time (float) – Number of seconds on. Defaults to 1 second.

• off_time (float) – Number of seconds off. Defaults to 1 second.

62 Chapter 6. Table of Contents

https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#bool
http://shop.ciseco.co.uk/pi-liter-8-led-strip-for-the-raspberry-pi/
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float

Gpiozero Documentation, Release 1.2.0

• fade_in_time (float) – Number of seconds to spend fading in. Defaults to 0.
Must be 0 if pwm was False when the class was constructed (ValueError will be
raised if not).

• fade_out_time (float) – Number of seconds to spend fading out. Defaults to 0.
Must be 0 if pwm was False when the class was constructed (ValueError will be
raised if not).

• n (int) – Number of times to blink; None (the default) means forever.

• background (bool) – If True, start a background thread to continue blinking and
return immediately. If False, only return when the blink is finished (warning: the
default value of n will result in this method never returning).

close()
Shut down the device and release all associated resources. This method can be called on an already
closed device without raising an exception.

This method is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references
to the object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By contrast, the close method provides
a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an
LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device descendents can also be used as context managers using the with statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

off(*args)
Turn all the output devices off.

on(*args)
Turn all the output devices on.

pulse(fade_in_time=1, fade_out_time=1, n=None, background=True)
Make the device fade in and out repeatedly.

Parameters

• fade_in_time (float) – Number of seconds to spend fading in. Defaults to 1.

• fade_out_time (float) – Number of seconds to spend fading out. Defaults to 1.

• n (int) – Number of times to blink; None (the default) means forever.

• background (bool) – If True (the default), start a background thread to continue
blinking and return immediately. If False, only return when the blink is finished
(warning: the default value of n will result in this method never returning).

6.6. Boards and Accessories 63

https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/exceptions.html#ValueError
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/exceptions.html#ValueError
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/reference/compound_stmts.html#with
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#bool

Gpiozero Documentation, Release 1.2.0

toggle(*args)
Toggle all the output devices. For each device, if it’s on, turn it off; if it’s off, turn it on.

leds
A flat iterator over all LEDs contained in this collection (and all sub-collections).

source
The iterable to use as a source of values for value.

source_delay
The delay (measured in seconds) in the loop used to read values from source. Defaults to 0.01
seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

value
A tuple containing a value for each subordinate device. This property can also be set to update the
state of all subordinate output devices.

values
An infinite iterator of values read from value.

PiLITEr Bar Graph

class gpiozero.PiLiterBarGraph(initial_value=0)
Extends LEDBarGraph to treat the Ciseco Pi-LITEr as an 8-segment bar graph.

The Pi-LITEr pins are fixed and therefore there’s no need to specify them when constructing this class. The
following example sets the graph value to 0.5:

from gpiozero import PiLiterBarGraph

graph = PiLiterBarGraph()
graph.value = 0.5

Parameters initial_value (bool) – The initial value of the graph given as a float between
-1 and +1. Defaults to 0.0.

off()
Turn all the output devices off.

on()
Turn all the output devices on.

toggle()
Toggle all the output devices. For each device, if it’s on, turn it off; if it’s off, turn it on.

leds
A flat iterator over all LEDs contained in this collection (and all sub-collections).

source
The iterable to use as a source of values for value.

source_delay
The delay (measured in seconds) in the loop used to read values from source. Defaults to 0.01
seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

value
The value of the LED bar graph. When no LEDs are lit, the value is 0. When all LEDs are lit, the
value is 1. Values between 0 and 1 light LEDs linearly from first to last. Values between 0 and -1 light
LEDs linearly from last to first.

To light a particular number of LEDs, simply divide that number by the number of LEDs. For example,
if your graph contains 3 LEDs, the following will light the first:

64 Chapter 6. Table of Contents

http://shop.ciseco.co.uk/pi-liter-8-led-strip-for-the-raspberry-pi/
https://docs.python.org/3.4/library/functions.html#bool

Gpiozero Documentation, Release 1.2.0

from gpiozero import LEDBarGraph

graph = LEDBarGraph(12, 16, 19)
graph.value = 1/3

Note: Setting value to -1 will light all LEDs. However, querying it subsequently will return 1 as both
representations are the same in hardware. The readable range of value is effectively -1 < value <= 1.

values
An infinite iterator of values read from value.

PI-TRAFFIC

class gpiozero.PiTraffic
Extends TrafficLights for the Low Voltage Labs PI-TRAFFIC: vertical traffic lights board when at-
tached to GPIO pins 9, 10, and 11.

There’s no need to specify the pins if the PI-TRAFFIC is connected to the default pins (9, 10, 11). The
following example turns on the amber LED on the PI-TRAFFIC:

from gpiozero import PiTraffic

traffic = PiTraffic()
traffic.amber.on()

To use the PI-TRAFFIC board when attached to a non-standard set of pins, simply use the parent class,
TrafficLights.

blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)
Make all the LEDs turn on and off repeatedly.

Parameters

• on_time (float) – Number of seconds on. Defaults to 1 second.

• off_time (float) – Number of seconds off. Defaults to 1 second.

• fade_in_time (float) – Number of seconds to spend fading in. Defaults to 0.
Must be 0 if pwm was False when the class was constructed (ValueError will be
raised if not).

• fade_out_time (float) – Number of seconds to spend fading out. Defaults to 0.
Must be 0 if pwm was False when the class was constructed (ValueError will be
raised if not).

• n (int) – Number of times to blink; None (the default) means forever.

• background (bool) – If True, start a background thread to continue blinking and
return immediately. If False, only return when the blink is finished (warning: the
default value of n will result in this method never returning).

close()
Shut down the device and release all associated resources. This method can be called on an already
closed device without raising an exception.

This method is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references
to the object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By contrast, the close method provides
a means of ensuring that the object is shut down.

6.6. Boards and Accessories 65

http://lowvoltagelabs.com/products/pi-traffic/
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/exceptions.html#ValueError
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/exceptions.html#ValueError
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#bool

Gpiozero Documentation, Release 1.2.0

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an
LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device descendents can also be used as context managers using the with statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

off(*args)
Turn all the output devices off.

on(*args)
Turn all the output devices on.

pulse(fade_in_time=1, fade_out_time=1, n=None, background=True)
Make the device fade in and out repeatedly.

Parameters

• fade_in_time (float) – Number of seconds to spend fading in. Defaults to 1.

• fade_out_time (float) – Number of seconds to spend fading out. Defaults to 1.

• n (int) – Number of times to blink; None (the default) means forever.

• background (bool) – If True (the default), start a background thread to continue
blinking and return immediately. If False, only return when the blink is finished
(warning: the default value of n will result in this method never returning).

toggle(*args)
Toggle all the output devices. For each device, if it’s on, turn it off; if it’s off, turn it on.

leds
A flat iterator over all LEDs contained in this collection (and all sub-collections).

source
The iterable to use as a source of values for value.

source_delay
The delay (measured in seconds) in the loop used to read values from source. Defaults to 0.01
seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

value
A tuple containing a value for each subordinate device. This property can also be set to update the
state of all subordinate output devices.

values
An infinite iterator of values read from value.

66 Chapter 6. Table of Contents

https://docs.python.org/3.4/reference/compound_stmts.html#with
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#bool

Gpiozero Documentation, Release 1.2.0

TrafficLightsBuzzer

class gpiozero.TrafficLightsBuzzer(lights, buzzer, button)
Extends CompositeDevice and is a generic class for HATs with traffic lights, a button and a buzzer.

Parameters

• lights (TrafficLights) – An instance of TrafficLights representing the
traffic lights of the HAT.

• buzzer (Buzzer) – An instance of Buzzer representing the buzzer on the HAT.

• button (Button) – An instance of Button representing the button on the HAT.

off()
Turn all the output devices off.

on()
Turn all the output devices on.

toggle()
Toggle all the output devices. For each device, if it’s on, turn it off; if it’s off, turn it on.

source
The iterable to use as a source of values for value.

source_delay
The delay (measured in seconds) in the loop used to read values from source. Defaults to 0.01
seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

value
A tuple containing a value for each subordinate device. This property can also be set to update the
state of all subordinate output devices.

values
An infinite iterator of values read from value.

Fish Dish

class gpiozero.FishDish(pwm=False)
Extends TrafficLightsBuzzer for the Pi Supply FishDish: traffic light LEDs, a button and a buzzer.

The FishDish pins are fixed and therefore there’s no need to specify them when constructing this class. The
following example waits for the button to be pressed on the FishDish, then turns on all the LEDs:

from gpiozero import FishDish

fish = FishDish()
fish.button.wait_for_press()
fish.lights.on()

Parameters pwm (bool) – If True, construct PWMLED instances to represent each LED. If
False (the default), construct regular LED instances.

off()
Turn all the output devices off.

on()
Turn all the output devices on.

toggle()
Toggle all the output devices. For each device, if it’s on, turn it off; if it’s off, turn it on.

6.6. Boards and Accessories 67

https://docs.python.org/3.4/library/functions.html#bool

Gpiozero Documentation, Release 1.2.0

source
The iterable to use as a source of values for value.

source_delay
The delay (measured in seconds) in the loop used to read values from source. Defaults to 0.01
seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

value
A tuple containing a value for each subordinate device. This property can also be set to update the
state of all subordinate output devices.

values
An infinite iterator of values read from value.

Traffic HAT

class gpiozero.TrafficHat(pwm=False)
Extends TrafficLightsBuzzer for the Ryanteck Traffic HAT: traffic light LEDs, a button and a
buzzer.

The Traffic HAT pins are fixed and therefore there’s no need to specify them when constructing this class.
The following example waits for the button to be pressed on the Traffic HAT, then turns on all the LEDs:

from gpiozero import TrafficHat

hat = TrafficHat()
hat.button.wait_for_press()
hat.lights.on()

Parameters pwm (bool) – If True, construct PWMLED instances to represent each LED. If
False (the default), construct regular LED instances.

off()
Turn all the output devices off.

on()
Turn all the output devices on.

toggle()
Toggle all the output devices. For each device, if it’s on, turn it off; if it’s off, turn it on.

source
The iterable to use as a source of values for value.

source_delay
The delay (measured in seconds) in the loop used to read values from source. Defaults to 0.01
seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

value
A tuple containing a value for each subordinate device. This property can also be set to update the
state of all subordinate output devices.

values
An infinite iterator of values read from value.

Robot

class gpiozero.Robot(left=None, right=None)
Extends CompositeDevice to represent a generic dual-motor robot.

68 Chapter 6. Table of Contents

https://docs.python.org/3.4/library/functions.html#bool

Gpiozero Documentation, Release 1.2.0

This class is constructed with two tuples representing the forward and backward pins of the left and right
controllers respectively. For example, if the left motor’s controller is connected to GPIOs 4 and 14, while
the right motor’s controller is connected to GPIOs 17 and 18 then the following example will turn the robot
left:

from gpiozero import Robot

robot = Robot(left=(4, 14), right=(17, 18))
robot.left()

Parameters

• left (tuple) – A tuple of two GPIO pins representing the forward and backward
inputs of the left motor’s controller.

• right (tuple) – A tuple of two GPIO pins representing the forward and backward
inputs of the right motor’s controller.

backward(speed=1)
Drive the robot backward by running both motors backward.

Parameters speed (float) – Speed at which to drive the motors, as a value between 0
(stopped) and 1 (full speed). The default is 1.

forward(speed=1)
Drive the robot forward by running both motors forward.

Parameters speed (float) – Speed at which to drive the motors, as a value between 0
(stopped) and 1 (full speed). The default is 1.

left(speed=1)
Make the robot turn left by running the right motor forward and left motor backward.

Parameters speed (float) – Speed at which to drive the motors, as a value between 0
(stopped) and 1 (full speed). The default is 1.

reverse()
Reverse the robot’s current motor directions. If the robot is currently running full speed forward, it
will run full speed backward. If the robot is turning left at half-speed, it will turn right at half-speed.
If the robot is currently stopped it will remain stopped.

right(speed=1)
Make the robot turn right by running the left motor forward and right motor backward.

Parameters speed (float) – Speed at which to drive the motors, as a value between 0
(stopped) and 1 (full speed). The default is 1.

stop()
Stop the robot.

source
The iterable to use as a source of values for value.

source_delay
The delay (measured in seconds) in the loop used to read values from source. Defaults to 0.01
seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

values
An infinite iterator of values read from value.

6.6. Boards and Accessories 69

https://docs.python.org/3.4/library/stdtypes.html#tuple
https://docs.python.org/3.4/library/stdtypes.html#tuple
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float

Gpiozero Documentation, Release 1.2.0

Ryanteck MCB Robot

class gpiozero.RyanteckRobot
Extends Robot for the Ryanteck MCB robot.

The Ryanteck MCB pins are fixed and therefore there’s no need to specify them when constructing this
class. The following example turns the robot left:

from gpiozero import RyanteckRobot

robot = RyanteckRobot()
robot.left()

backward(speed=1)
Drive the robot backward by running both motors backward.

Parameters speed (float) – Speed at which to drive the motors, as a value between 0
(stopped) and 1 (full speed). The default is 1.

forward(speed=1)
Drive the robot forward by running both motors forward.

Parameters speed (float) – Speed at which to drive the motors, as a value between 0
(stopped) and 1 (full speed). The default is 1.

left(speed=1)
Make the robot turn left by running the right motor forward and left motor backward.

Parameters speed (float) – Speed at which to drive the motors, as a value between 0
(stopped) and 1 (full speed). The default is 1.

reverse()
Reverse the robot’s current motor directions. If the robot is currently running full speed forward, it
will run full speed backward. If the robot is turning left at half-speed, it will turn right at half-speed.
If the robot is currently stopped it will remain stopped.

right(speed=1)
Make the robot turn right by running the left motor forward and right motor backward.

Parameters speed (float) – Speed at which to drive the motors, as a value between 0
(stopped) and 1 (full speed). The default is 1.

stop()
Stop the robot.

source
The iterable to use as a source of values for value.

source_delay
The delay (measured in seconds) in the loop used to read values from source. Defaults to 0.01
seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

values
An infinite iterator of values read from value.

CamJam #3 Kit Robot

class gpiozero.CamJamKitRobot
Extends Robot for the CamJam #3 EduKit robot controller.

The CamJam robot controller pins are fixed and therefore there’s no need to specify them when constructing
this class. The following example turns the robot left:

70 Chapter 6. Table of Contents

https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
http://camjam.me/?page_id=1035

Gpiozero Documentation, Release 1.2.0

from gpiozero import CamJamKitRobot

robot = CamJamKitRobot()
robot.left()

backward(speed=1)
Drive the robot backward by running both motors backward.

Parameters speed (float) – Speed at which to drive the motors, as a value between 0
(stopped) and 1 (full speed). The default is 1.

forward(speed=1)
Drive the robot forward by running both motors forward.

Parameters speed (float) – Speed at which to drive the motors, as a value between 0
(stopped) and 1 (full speed). The default is 1.

left(speed=1)
Make the robot turn left by running the right motor forward and left motor backward.

Parameters speed (float) – Speed at which to drive the motors, as a value between 0
(stopped) and 1 (full speed). The default is 1.

reverse()
Reverse the robot’s current motor directions. If the robot is currently running full speed forward, it
will run full speed backward. If the robot is turning left at half-speed, it will turn right at half-speed.
If the robot is currently stopped it will remain stopped.

right(speed=1)
Make the robot turn right by running the left motor forward and right motor backward.

Parameters speed (float) – Speed at which to drive the motors, as a value between 0
(stopped) and 1 (full speed). The default is 1.

stop()
Stop the robot.

source
The iterable to use as a source of values for value.

source_delay
The delay (measured in seconds) in the loop used to read values from source. Defaults to 0.01
seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

values
An infinite iterator of values read from value.

Energenie

class gpiozero.Energenie(socket=None, initial_value=False)
Extends Device to represent an Energenie socket controller.

This class is constructed with a socket number and an optional initial state (defaults to False, meaning
off). Instances of this class can be used to switch peripherals on and off. For example:

from gpiozero import Energenie

lamp = Energenie(1)
lamp.on()

Parameters

6.6. Boards and Accessories 71

https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float
https://energenie4u.co.uk/index.php/catalogue/product/ENER002-2PI

Gpiozero Documentation, Release 1.2.0

• socket (int) – Which socket this instance should control. This is an integer number
between 1 and 4.

• initial_value (bool) – The initial state of the socket. As Energenie sockets pro-
vide no means of reading their state, you must provide an initial state for the socket,
which will be set upon construction. This defaults to False which will switch the
socket off.

close()
Shut down the device and release all associated resources. This method can be called on an already
closed device without raising an exception.

This method is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references
to the object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By contrast, the close method provides
a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an
LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device descendents can also be used as context managers using the with statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

is_active
Returns True if the device is currently active and False otherwise. This property is usually derived
from value. Unlike value, this is always a boolean.

source
The iterable to use as a source of values for value.

source_delay
The delay (measured in seconds) in the loop used to read values from source. Defaults to 0.01
seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

values
An infinite iterator of values read from value.

Base Classes

The classes in the sections above are derived from a series of base classes, some of which are effectively abstract.
The classes form the (partial) hierarchy displayed in the graph below:

72 Chapter 6. Table of Contents

https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/reference/compound_stmts.html#with

Gpiozero Documentation, Release 1.2.0

Device

CompositeDevice

CompositeOutputDevice

LEDCollection

LEDBoard LEDBarGraph

PiLiter PiLiterBarGraphTrafficLights

PiTraffic

TrafficLightsBuzzer

FishDish TrafficHat

Robot

RyanteckRobot CamJamKitRobot

Motor

Energenie

For composite devices, the following chart shows which devices are composed of which other devices:

RGBLED

PWMLED

LEDBoard

LED

LEDBarGraph TrafficLightsBuzzer

TrafficLights Buzzer Button

Robot

Motor

The following sections document these base classes for advanced users that wish to construct classes for their own
devices.

LEDCollection

class gpiozero.LEDCollection(*args, **kwargs)
Extends CompositeOutputDevice. Abstract base class for LEDBoard and LEDBarGraph.

leds
A flat iterator over all LEDs contained in this collection (and all sub-collections).

CompositeOutputDevice

class gpiozero.CompositeOutputDevice(*args, _order=None, **kwargs)
Extends CompositeDevice with on(), off(), and toggle() methods for controlling subordinate

6.6. Boards and Accessories 73

Gpiozero Documentation, Release 1.2.0

output devices. Also extends value to be writeable.

Parameters _order (list) – If specified, this is the order of named items specified by key-
word arguments (to ensure that the value tuple is constructed with a specific order). All
keyword arguments must be included in the collection. If omitted, an alphabetically sorted
order will be selected for keyword arguments.

off()
Turn all the output devices off.

on()
Turn all the output devices on.

toggle()
Toggle all the output devices. For each device, if it’s on, turn it off; if it’s off, turn it on.

value
A tuple containing a value for each subordinate device. This property can also be set to update the
state of all subordinate output devices.

CompositeDevice

class gpiozero.CompositeDevice(*args, _order=None, **kwargs)
Extends Device. Represents a device composed of multiple devices like simple HATs, H-bridge motor
controllers, robots composed of multiple motors, etc.

The constructor accepts subordinate devices as positional or keyword arguments. Positional arguments form
unnamed devices accessed via the all attribute, while keyword arguments are added to the device as named
(read-only) attributes.

Parameters _order (list) – If specified, this is the order of named items specified by key-
word arguments (to ensure that the value tuple is constructed with a specific order). All
keyword arguments must be included in the collection. If omitted, an alphabetically sorted
order will be selected for keyword arguments.

close()
Shut down the device and release all associated resources. This method can be called on an already
closed device without raising an exception.

This method is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references
to the object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By contrast, the close method provides
a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an
LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device descendents can also be used as context managers using the with statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...

74 Chapter 6. Table of Contents

https://docs.python.org/3.4/library/stdtypes.html#list
https://docs.python.org/3.4/library/stdtypes.html#list
https://docs.python.org/3.4/reference/compound_stmts.html#with

Gpiozero Documentation, Release 1.2.0

>>> with LED(16) as led:
... led.on()
...

Internal Devices

GPIO Zero also provides several “internal” devices which represent facilities provided by the operating system
itself. These can be used to react to things like the time of day, or whether a server is available on the network.

Warning: These devices are experimental and their API is not yet considered stable. We welcome any
comments from testers, especially regarding new “internal devices” that you’d find useful!

TimeOfDay

class gpiozero.TimeOfDay(start_time, end_time, utc=True)
Extends InternalDevice to provide a device which is active when the computer’s clock indicates that
the current time is between start_time and end_time (inclusive) which are time instances.

The following example turns on a lamp attached to an Energenie plug between 7 and 8 AM:

from datetime import time
from gpiozero import TimeOfDay, Energenie
from signal import pause

lamp = Energenie(0)
morning = TimeOfDay(time(7), time(8))
morning.when_activated = lamp.on
morning.when_deactivated = lamp.off
pause()

Parameters

• start_time (time) – The time from which the device will be considered active.

• end_time (time) – The time after which the device will be considered inactive.

• utc (bool) – If True (the default), a naive UTC time will be used for the comparison
rather than a local time-zone reading.

PingServer

class gpiozero.PingServer(host)
Extends InternalDevice to provide a device which is active when a host on the network can be pinged.

The following example lights an LED while a server is reachable (note the use of source_delay to
ensure the server is not flooded with pings):

from gpiozero import PingServer, LED
from signal import pause

server = PingServer('my-server')
led = LED(4)
led.source_delay = 1
led.source = server.values
pause()

6.7. Internal Devices 75

https://docs.python.org/3.4/library/datetime.html#datetime.time
https://docs.python.org/3.4/library/datetime.html#datetime.time
https://docs.python.org/3.4/library/datetime.html#datetime.time
https://docs.python.org/3.4/library/functions.html#bool

Gpiozero Documentation, Release 1.2.0

Parameters host (str) – The hostname or IP address to attempt to ping.

Base Classes

The classes in the sections above are derived from a series of base classes, some of which are effectively abstract.
The classes form the (partial) hierarchy displayed in the graph below:

Device

InternalDevice

TimeOfDay PingServer

The following sections document these base classes for advanced users that wish to construct classes for their own
devices.

InternalDevice

class gpiozero.InternalDevice
Extends Device to provide a basis for devices which have no specific hardware representation. These
are effectively pseudo-devices and usually represent operating system services like the internal clock, file
systems or network facilities.

Generic Classes

The GPIO Zero class hierarchy is quite extensive. It contains several base classes (most of which are documented
in their corresponding chapters):

• Device is the root of the hierarchy, implementing base functionality like close() and context manager
handlers.

• GPIODevice represents individual devices that attach to a single GPIO pin

• SPIDevice represents devices that communicate over an SPI interface (implemented as four GPIO pins)

• InternalDevice represents devices that are entirely internal to the Pi (usually operating system related
services)

• CompositeDevice represents devices composed of multiple other devices like HATs

There are also several mixin classes for adding important functionality at numerous points in the hierarchy, which
is illustrated below:

76 Chapter 6. Table of Contents

https://docs.python.org/3.4/library/stdtypes.html#str
https://en.wikipedia.org/wiki/Mixin

Gpiozero Documentation, Release 1.2.0

ValuesMixin

SourceMixin

SharedMixin

EventsMixin

HoldMixin

Device

GPIODevice

SmoothedInputDevice

InputDevice AnalogInputDevice

SPIDevice

MCP3xxx

MCP33xx

CompositeDevice

CompositeOutputDevice

LEDCollection InternalDevice DigitalInputDevice

Button MotionSensor LightSensor LineSensorDistanceSensor

OutputDevice

DigitalOutputDevice

LEDBuzzer

PWMOutputDevice

PWMLED

RGBLED

MCP3004 MCP3008 MCP3204MCP3208

MCP3301 MCP3302 MCP3304

LEDBoard LEDBarGraph

PiLiter PiLiterBarGraphTrafficLights

PiTraffic

TrafficLightsBuzzer

FishDishTrafficHat

Robot Energenie

RyanteckRobotCamJamKitRobot

Motor

TimeOfDay PingServer

Device

class gpiozero.Device
Represents a single device of any type; GPIO-based, SPI-based, I2C-based, etc. This is the base class of
the device hierarchy. It defines the basic services applicable to all devices (specifically thhe is_active
property, the value property, and the close() method).

close()
Shut down the device and release all associated resources. This method can be called on an already
closed device without raising an exception.

This method is primarily intended for interactive use at the command line. It disables the device and
releases its pin(s) for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references
to the object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By contrast, the close method provides
a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an
LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device descendents can also be used as context managers using the with statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

closed
Returns True if the device is closed (see the close() method). Once a device is closed you can no
longer use any other methods or properties to control or query the device.

is_active
Returns True if the device is currently active and False otherwise. This property is usually derived
from value. Unlike value, this is always a boolean.

6.8. Generic Classes 77

https://docs.python.org/3.4/reference/compound_stmts.html#with

Gpiozero Documentation, Release 1.2.0

value
Returns a value representing the device’s state. Frequently, this is a boolean value, or a number
between 0 and 1 but some devices use larger ranges (e.g. -1 to +1) and composite devices usually
use tuples to return the states of all their subordinate components.

ValuesMixin

class gpiozero.ValuesMixin(...)
Adds a values property to the class which returns an infinite generator of readings from the value
property. There is rarely a need to use this mixin directly as all base classes in GPIO Zero include it.

Note: Use this mixin first in the parent class list.

values
An infinite iterator of values read from value.

SourceMixin

class gpiozero.SourceMixin(...)
Adds a source property to the class which, given an iterable, sets value to each member of that iterable
until it is exhausted. This mixin is generally included in novel output devices to allow their state to be driven
from another device.

Note: Use this mixin first in the parent class list.

source
The iterable to use as a source of values for value.

source_delay
The delay (measured in seconds) in the loop used to read values from source. Defaults to 0.01
seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

SharedMixin

class gpiozero.SharedMixin(...)
This mixin marks a class as “shared”. In this case, the meta-class (GPIOMeta) will use _shared_key()
to convert the constructor arguments to an immutable key, and will check whether any existing instances
match that key. If they do, they will be returned by the constructor instead of a new instance. An internal
reference counter is used to determine how many times an instance has been “constructed” in this way.

When close() is called, an internal reference counter will be decremented and the instance will only
close when it reaches zero.

classmethod _shared_key(*args, **kwargs)
Given the constructor arguments, returns an immutable key representing the instance. The default
simply assumes all positional arguments are immutable.

EventsMixin

class gpiozero.EventsMixin(...)
Adds edge-detected when_activated() and when_deactivated() events to a device based on
changes to the is_active property common to all devices. Also adds wait_for_active() and
wait_for_inactive() methods for level-waiting.

78 Chapter 6. Table of Contents

Gpiozero Documentation, Release 1.2.0

Note: Note that this mixin provides no means of actually firing its events; call _fire_events() in
sub-classes when device state changes to trigger the events. This should also be called once at the end of
initialization to set initial states.

wait_for_active(timeout=None)
Pause the script until the device is activated, or the timeout is reached.

Parameters timeout (float) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device is active.

wait_for_inactive(timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.

Parameters timeout (float) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device is inactive.

active_time
The length of time (in seconds) that the device has been active for. When the device is inactive, this is
None.

inactive_time
The length of time (in seconds) that the device has been inactive for. When the device is active, this is
None.

when_activated
The function to run when the device changes state from inactive to active.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated will be passed as that parameter.

Set this property to None (the default) to disable the event.

when_deactivated
The function to run when the device changes state from active to inactive.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that deactivated will be passed as that parameter.

Set this property to None (the default) to disable the event.

HoldMixin

class gpiozero.HoldMixin(...)
Extends EventsMixin to add the when_held event and the machinery to fire that event repeatedly
(when hold_repeat is True) at internals defined by hold_time.

held_time
The length of time (in seconds) that the device has been held for. This is counted from the first execu-
tion of the when_held event rather than when the device activated, in contrast to active_time.
If the device is not currently held, this is None.

hold_repeat
If True, when_held will be executed repeatedly with hold_time seconds between each invoca-
tion.

hold_time
The length of time (in seconds) to wait after the device is activated, until executing the when_held
handler. If hold_repeat is True, this is also the length of time between invocations of
when_held.

6.8. Generic Classes 79

https://docs.python.org/3.4/library/functions.html#float
https://docs.python.org/3.4/library/functions.html#float

Gpiozero Documentation, Release 1.2.0

is_held
When True, the device has been active for at least hold_time seconds.

when_held
The function to run when the device has remained active for hold_time seconds.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated will be passed as that parameter.

Set this property to None (the default) to disable the event.

Source Tools

GPIO Zero includes several utility routines which are intended to be used with the source and values attributes
common to most devices in the library. These utility routines are in the tools module of GPIO Zero and are
typically imported as follows:

from gpiozero.tools import scaled, negated, conjunction

Given that source and values deal with infinite iterators, another excellent source of utilities is the
itertools module in the standard library.

Warning: While the devices API is now considered stable and won’t change in backwards incompatible
ways, the tools API is not yet considered stable. It is potentially subject to change in future versions. We
welcome any comments from testers!

Single source conversions

gpiozero.tools.absoluted(values)
Returns values with all negative elements negated (so that they’re positive). For example:

from gpiozero import PWMLED, Motor, MCP3008
from gpiozero.tools import absoluted, scaled
from signal import pause

led = PWMLED(4)
motor = Motor(22, 27)
pot = MCP3008(channel=0)
motor.source = scaled(pot.values, -1, 1)
led.source = absoluted(motor.values)
pause()

gpiozero.tools.clamped(values, output_min=0, output_max=1)
Returns values clamped from output_min to output_max, i.e. any items less than output_min will be returned
as output_min and any items larger than output_max will be returned as output_max (these default to 0 and
1 respectively). For example:

from gpiozero import PWMLED, MCP3008
from gpiozero.tools import clamped
from signal import pause

led = PWMLED(4)
pot = MCP3008(channel=0)
led.source = clamped(pot.values, 0.5, 1.0)
pause()

80 Chapter 6. Table of Contents

https://docs.python.org/3.4/library/itertools.html#module-itertools

Gpiozero Documentation, Release 1.2.0

gpiozero.tools.inverted(values)
Returns the inversion of the supplied values (1 becomes 0, 0 becomes 1, 0.1 becomes 0.9, etc.). For example:

from gpiozero import MCP3008, PWMLED
from gpiozero.tools import inverted
from signal import pause

led = PWMLED(4)
pot = MCP3008(channel=0)
led.source = inverted(pot.values)
pause()

gpiozero.tools.negated(values)
Returns the negation of the supplied values (True becomes False, and False becomes True). For
example:

from gpiozero import Button, LED
from gpiozero.tools import negated
from signal import pause

led = LED(4)
btn = Button(17)
led.source = negated(btn.values)
pause()

gpiozero.tools.post_delayed(values, delay)
Waits for delay seconds after returning each item from values.

gpiozero.tools.pre_delayed(values, delay)
Waits for delay seconds before returning each item from values.

gpiozero.tools.quantized(values, steps, output_min=0, output_max=1)
Returns values quantized to steps increments. All items in values are assumed to be between output_min
and output_max (use scaled() to ensure this if necessary).

For example, to quantize values between 0 and 1 to 5 “steps” (0.0, 0.25, 0.5, 0.75, 1.0):

from gpiozero import PWMLED, MCP3008
from gpiozero.tools import quantized
from signal import pause

led = PWMLED(4)
pot = MCP3008(channel=0)
led.source = quantized(pot.values, 4)
pause()

gpiozero.tools.queued(values, qsize)
Queues up readings from values (the number of readings queued is determined by qsize) and begins yielding
values only when the queue is full. For example, to “cascade” values along a sequence of LEDs:

from gpiozero import LEDBoard, Button
from gpiozero.tools import queued
from signal import pause

leds = LEDBoard(5, 6, 13, 19, 26)
btn = Button(17)
for i in range(4):

leds[i].source = queued(leds[i + 1].values, 5)
leds[i].source_delay = 0.01

leds[4].source = btn.values
pause()

gpiozero.tools.scaled(values, output_min, output_max, input_min=0, input_max=1)

6.9. Source Tools 81

Gpiozero Documentation, Release 1.2.0

Returns values scaled from output_min to output_max, assuming that all items in values lie between in-
put_min and input_max (which default to 0 and 1 respectively). For example, to control the direction of a
motor (which is represented as a value between -1 and 1) using a potentiometer (which typically provides
values between 0 and 1):

from gpiozero import Motor, MCP3008
from gpiozero.tools import scaled
from signal import pause

motor = Motor(20, 21)
pot = MCP3008(channel=0)
motor.source = scaled(pot.values, -1, 1)
pause()

Warning: If values contains elements that lie outside input_min to input_max (inclusive) then the
function will not produce values that lie within output_min to output_max (inclusive).

Combining sources

gpiozero.tools.all_values(*values)
Returns the logical conjunction of all supplied values (the result is only True if and only if all input values
are simultaneously True). One or more values can be specified. For example, to light an LED only when
both buttons are pressed:

from gpiozero import LED, Button
from gpiozero.tools import all_values
from signal import pause

led = LED(4)
btn1 = Button(20)
btn2 = Button(21)
led.source = all_values(btn1.values, btn2.values)
pause()

gpiozero.tools.any_values(*values)
Returns the logical disjunction of all supplied values (the result is True if any of the input values are
currently True). One or more values can be specified. For example, to light an LED when any button is
pressed:

from gpiozero import LED, Button
from gpiozero.tools import any_values
from signal import pause

led = LED(4)
btn1 = Button(20)
btn2 = Button(21)
led.source = any_values(btn1.values, btn2.values)
pause()

gpiozero.tools.averaged(*values)
Returns the mean of all supplied values. One or more values can be specified. For example, to light a
PWMLED as the average of several potentiometers connected to an MCP3008 ADC:

from gpiozero import MCP3008, PWMLED
from gpiozero.tools import averaged
from signal import pause

pot1 = MCP3008(channel=0)
pot2 = MCP3008(channel=1)

82 Chapter 6. Table of Contents

https://en.wikipedia.org/wiki/Logical_conjunction
https://en.wikipedia.org/wiki/Logical_disjunction

Gpiozero Documentation, Release 1.2.0

pot3 = MCP3008(channel=2)
led = PWMLED(4)
led.source = averaged(pot1.values, pot2.values, pot3.values)
pause()

Artifical sources

gpiozero.tools.cos_values(period=360)
Provides an infinite source of values representing a cosine wave (from -1 to +1) which repeats every period
values. For example, to produce a “siren” effect with a couple of LEDs that repeats once a second:

from gpiozero import PWMLED
from gpiozero.tools import cos_values, scaled, inverted
from signal import pause

red = PWMLED(2)
blue = PWMLED(3)
red.source_delay = 0.01
blue.source_delay = 0.01
red.source = scaled(cos_values(100), 0, 1, -1, 1)
blue.source = inverted(red.values)
pause()

If you require a different range than -1 to +1, see scaled().

gpiozero.tools.random_values()
Provides an infinite source of random values between 0 and 1. For example, to produce a “flickering candle”
effect with an LED:

from gpiozero import PWMLED
from gpiozero.tools import random_values
from signal import pause

led = PWMLED(4)
led.source = random_values()
pause()

If you require a wider range than 0 to 1, see scaled().

gpiozero.tools.sin_values(period=360)
Provides an infinite source of values representing a sine wave (from -1 to +1) which repeats every period
values. For example, to produce a “siren” effect with a couple of LEDs that repeats once a second:

from gpiozero import PWMLED
from gpiozero.tools import sin_values, scaled, inverted
from signal import pause

red = PWMLED(2)
blue = PWMLED(3)
red.source_delay = 0.01
blue.source_delay = 0.01
red.source = scaled(sin_values(100), 0, 1, -1, 1)
blue.source = inverted(red.values)
pause()

If you require a different range than -1 to +1, see scaled().

6.9. Source Tools 83

Gpiozero Documentation, Release 1.2.0

Pins

As of release 1.1, the GPIO Zero library can be roughly divided into two things: pins and the devices that are
connected to them. The majority of the documentation focuses on devices as pins are below the level that most
users are concerned with. However, some users may wish to take advantage of the capabilities of alternative GPIO
implementations or (in future) use GPIO extender chips. This is the purpose of the pins portion of the library.

When you construct a device, you pass in a GPIO pin number. However, what the library actually expects is a
Pin implementation. If it finds a simple integer number instead, it uses one of the following classes to provide
the Pin implementation (classes are listed in favoured order):

1. gpiozero.pins.rpigpio.RPiGPIOPin

2. gpiozero.pins.rpio.RPIOPin

3. gpiozero.pins.pigpiod.PiGPIOPin

4. gpiozero.pins.native.NativePin

You can change the default pin implementation by over-writing the DefaultPin global in the devicesmodule
like so:

from gpiozero.pins.native import NativePin
import gpiozero.devices
Force the default pin implementation to be NativePin
gpiozero.devices.DefaultPin = NativePin

from gpiozero import LED

This will now use NativePin instead of RPiGPIOPin
led = LED(16)

Alternatively, instead of passing an integer to the device constructor, you can pass a Pin object itself:

from gpiozero.pins.native import NativePin
from gpiozero import LED

led = LED(NativePin(16))

This is particularly useful with implementations that can take extra parameters such as PiGPIOPin which can
address pins on remote machines:

from gpiozero.pins.pigpiod import PiGPIOPin
from gpiozero import LED

led = LED(PiGPIOPin(16, host='my_other_pi'))

In future, this separation of pins and devices should also permit the library to utilize pins that are part of IO
extender chips. For example:

from gpiozero import IOExtender, LED

ext = IOExtender()
led = LED(ext.pins[0])
led.on()

Warning: While the devices API is now considered stable and won’t change in backwards incompatible
ways, the pins API is not yet considered stable. It is potentially subject to change in future versions. We
welcome any comments from testers!

84 Chapter 6. Table of Contents

Gpiozero Documentation, Release 1.2.0

Warning: The astute and mischievous reader may note that it is possible to mix pin implementations, e.g.
using RPiGPIOPin for one pin, and NativePin for another. This is unsupported, and if it results in your
script crashing, your components failing, or your Raspberry Pi turning into an actual raspberry pie, you have
only yourself to blame.

RPiGPIOPin

class gpiozero.pins.rpigpio.RPiGPIOPin
Uses the RPi.GPIO library to interface to the Pi’s GPIO pins. This is the default pin implementation if the
RPi.GPIO library is installed. Supports all features including PWM (via software).

Because this is the default pin implementation you can use it simply by specifying an integer number for
the pin in most operations, e.g.:

from gpiozero import LED

led = LED(12)

However, you can also construct RPi.GPIO pins manually if you wish:

from gpiozero.pins.rpigpio import RPiGPIOPin
from gpiozero import LED

led = LED(RPiGPIOPin(12))

RPIOPin

class gpiozero.pins.rpio.RPIOPin
Uses the RPIO library to interface to the Pi’s GPIO pins. This is the default pin implementation if the
RPi.GPIO library is not installed, but RPIO is. Supports all features including PWM (hardware via DMA).

Note: Please note that at the time of writing, RPIO is only compatible with Pi 1’s; the Raspberry Pi 2
Model B is not supported. Also note that root access is required so scripts must typically be run with sudo.

You can construct RPIO pins manually like so:

from gpiozero.pins.rpio import RPIOPin
from gpiozero import LED

led = LED(RPIOPin(12))

PiGPIOPin

class gpiozero.pins.pigpiod.PiGPIOPin
Uses the pigpio library to interface to the Pi’s GPIO pins. The pigpio library relies on a daemon (pigpiod)
to be running as root to provide access to the GPIO pins, and communicates with this daemon over a network
socket.

While this does mean only the daemon itself should control the pins, the architecture does have several
advantages:

•Pins can be remote controlled from another machine (the other machine doesn’t even have to be a
Raspberry Pi; it simply needs the pigpio client library installed on it)

•The daemon supports hardware PWM via the DMA controller

6.10. Pins 85

https://pypi.python.org/pypi/RPi.GPIO
https://pythonhosted.org/RPIO/
http://abyz.co.uk/rpi/pigpio/
http://abyz.co.uk/rpi/pigpio/

Gpiozero Documentation, Release 1.2.0

•Your script itself doesn’t require root privileges; it just needs to be able to communicate with the
daemon

You can construct pigpiod pins manually like so:

from gpiozero.pins.pigpiod import PiGPIOPin
from gpiozero import LED

led = LED(PiGPIOPin(12))

This is particularly useful for controlling pins on a remote machine. To accomplish this simply specify the
host (and optionally port) when constructing the pin:

from gpiozero.pins.pigpiod import PiGPIOPin
from gpiozero import LED
from signal import pause

led = LED(PiGPIOPin(12, host='192.168.0.2'))

Note: In some circumstances, especially when playing with PWM, it does appear to be possible to get the
daemon into “unusual” states. We would be most interested to hear any bug reports relating to this (it may
be a bug in our pin implementation). A workaround for now is simply to restart the pigpiod daemon.

NativePin

class gpiozero.pins.native.NativePin
Uses a built-in pure Python implementation to interface to the Pi’s GPIO pins. This is the default pin
implementation if no third-party libraries are discovered.

Warning: This implementation does not currently support PWM. Attempting to use any class which re-
quests PWM will raise an exception. This implementation is also experimental; we make no guarantees
it will not eat your Pi for breakfast!

You can construct native pin instances manually like so:

from gpiozero.pins.native import NativePin
from gpiozero import LED

led = LED(NativePin(12))

Abstract Pin

class gpiozero.Pin
Abstract base class representing a GPIO pin or a pin from an IO extender.

Descendents should override property getters and setters to accurately represent the capabilities of pins. The
following functions must be overridden:

•_get_function()

•_set_function()

•_get_state()

The following functions may be overridden if applicable:

•close()

86 Chapter 6. Table of Contents

Gpiozero Documentation, Release 1.2.0

•_set_state()

•_get_frequency()

•_set_frequency()

•_get_pull()

•_set_pull()

•_get_bounce()

•_set_bounce()

•_get_edges()

•_set_edges()

•_get_when_changed()

•_set_when_changed()

•output_with_state()

•input_with_pull()

Warning: Descendents must ensure that pin instances representing the same physical hardware are
identical, right down to object identity. The framework relies on this to correctly clean up resources at
interpreter shutdown.

close()
Cleans up the resources allocated to the pin. After this method is called, this Pin instance may no
longer be used to query or control the pin’s state.

input_with_pull(pull)
Sets the pin’s function to “input” and specifies an initial pull-up for the pin. By default this is equivalent
to performing:

pin.function = 'input'
pin.pull = pull

However, descendents may override this order to provide the smallest possible delay between config-
uring the pin for input and pulling the pin up/down (which can be important for avoiding “blips” in
some configurations).

output_with_state(state)
Sets the pin’s function to “output” and specifies an initial state for the pin. By default this is equivalent
to performing:

pin.function = 'output'
pin.state = state

However, descendents may override this in order to provide the smallest possible delay between con-
figuring the pin for output and specifying an initial value (which can be important for avoiding “blips”
in active-low configurations).

bounce
The amount of bounce detection (elimination) currently in use by edge detection, measured in seconds.
If bounce detection is not currently in use, this is None.

If the pin does not support edge detection, attempts to set this property will raise
PinEdgeDetectUnsupported. If the pin supports edge detection, the class must implement
bounce detection, even if only in software.

6.10. Pins 87

Gpiozero Documentation, Release 1.2.0

edges
The edge that will trigger execution of the function or bound method assigned to when_changed.
This can be one of the strings “both” (the default), “rising”, “falling”, or “none”.

If the pin does not support edge detection, attempts to set this property will raise
PinEdgeDetectUnsupported.

frequency
The frequency (in Hz) for the pin’s PWM implementation, or None if PWM is not currently in use.
This value always defaults to None and may be changed with certain pin types to activate or deactivate
PWM.

If the pin does not support PWM, PinPWMUnsupported will be raised when attempting to set this
to a value other than None.

function
The function of the pin. This property is a string indicating the current function or purpose of the pin.
Typically this is the string “input” or “output”. However, in some circumstances it can be other strings
indicating non-GPIO related functionality.

With certain pin types (e.g. GPIO pins), this attribute can be changed to configure the function of a
pin. If an invalid function is specified, for this attribute, PinInvalidFunction will be raised.

pull
The pull-up state of the pin represented as a string. This is typically one of the strings “up”, “down”,
or “floating” but additional values may be supported by the underlying hardware.

If the pin does not support changing pull-up state (for example because of a fixed pull-up resistor),
attempts to set this property will raise PinFixedPull. If the specified value is not supported by the
underlying hardware, PinInvalidPull is raised.

state
The state of the pin. This is 0 for low, and 1 for high. As a low level view of the pin, no swapping is
performed in the case of pull ups (see pull for more information).

If PWM is currently active (when frequency is not None), this represents the PWM duty cycle as
a value between 0.0 and 1.0.

If a pin is currently configured for input, and an attempt is made to set this attribute, PinSetInput
will be raised. If an invalid value is specified for this attribute, PinInvalidState will be raised.

when_changed
A function or bound method to be called when the pin’s state changes (more specifically when the edge
specified by edges is detected on the pin). The function or bound method must take no parameters.

If the pin does not support edge detection, attempts to set this property will raise
PinEdgeDetectUnsupported.

Utilities

The pins module also contains a database of information about the various revisions of Raspberry Pi. This is used
internally to raise warnings when non-physical pins are used, or to raise exceptions when pull-downs are requested
on pins with physical pull-up resistors attached. The following functions and classes can be used to query this
database:

gpiozero.pi_info(revision=None)
Returns a PiBoardInfo instance containing information about a revision of the Raspberry Pi.

Parameters revision (str) – The revision of the Pi to return information about. If this is
omitted or None (the default), then the library will attempt to determine the model of Pi it
is running on and return information about that.

88 Chapter 6. Table of Contents

https://docs.python.org/3.4/library/stdtypes.html#str

Gpiozero Documentation, Release 1.2.0

class gpiozero.PiBoardInfo
This class is a namedtuple() derivative used to represent information about a particular model of Rasp-
berry Pi. While it is a tuple, it is strongly recommended that you use the following named attributes to
access the data contained within.

revision
A string indicating the revision of the Pi. This is unique to each revision and can be considered the
“key” from which all other attributes are derived. However, in itself the string is fairly meaningless.

model
A string containing the model of the Pi (for example, “B”, “B+”, “A+”, “2B”, “CM” (for the Compute
Module), or “Zero”).

pcb_revision
A string containing the PCB revision number which is silk-screened onto the Pi (on some models).

Note: This is primarily useful to distinguish between the model B revision 1.0 and 2.0 (not to be
confused with the model 2B) which had slightly different pinouts on their 26-pin GPIO headers.

released
A string containing an approximate release date for this revision of the Pi (formatted as yyyyQq, e.g.
2012Q1 means the first quarter of 2012).

soc
A string indicating the SoC (system on a chip) that this revision of the Pi is based upon.

manufacturer
A string indicating the name of the manufacturer (usually “Sony” but a few others exist).

memory
An integer indicating the amount of memory (in Mb) connected to the SoC.

Note: This can differ substantially from the amount of RAM available to the operating system as
the GPU’s memory is shared with the CPU. When the camera module is activated, at least 128Mb of
RAM is typically reserved for the GPU.

storage
A string indicating the type of bootable storage used with this revision of Pi, e.g. “SD”, “MicroSD”,
or “eMMC” (for the Compute Module).

usb
An integer indicating how many USB ports are physically present on this revision of the Pi.

Note: This does not include the micro-USB port used to power the Pi. On the Compute Module this
is listed as 0 as the compute module itself doesn’t have any physical USB headers, despite providing
one on the I/O development board and having the pins for one on the module itself.

ethernet
An integer indicating how many Ethernet ports are physically present on this revision of the Pi.

wifi
A bool indicating whether this revision of the Pi has wifi built-in.

bluetooth
A bool indicating whether this revision of the Pi has bluetooth built-in.

csi
An integer indicating the number of CSI (camera) ports available on this revision of the Pi.

dsi
An integer indicating the number of DSI (display) ports available on this revision of the Pi.

6.10. Pins 89

https://docs.python.org/3.4/library/collections.html#collections.namedtuple
https://en.wikipedia.org/wiki/System_on_a_chip

Gpiozero Documentation, Release 1.2.0

headers
A dictionary which maps header labels to dictionaries which map physical pin numbers to
PinInfo tuples. For example, to obtain information about pin 12 on header P1 you would query
headers['P1'][12].

class gpiozero.PinInfo
This class is a namedtuple() derivative used to represent information about a pin present on a GPIO
header. The following attributes are defined:

number
An integer containing the physical pin number on the header (starting from 1 in accordance with
convention).

function
A string describing the function of the pin. Some common examples include “GND” (for pins con-
necting to ground), “3V3” (for pins which output 3.3 volts), “GPIO9” (for GPIO9 in the Broadcom
numbering scheme), etc.

pull_up
A bool indicating whether the pin has a physical pull-up resistor permanently attached (this is usually
False but GPIO2 and GPIO3 are usually True). This is used internally by gpiozero to raise errors
when pull-down is requested on a pin with a physical pull-up resistor.

Exceptions

The following exceptions are defined by GPIO Zero. Please note that multiple inheritance is heavily used in the
exception hierarchy to make testing for exceptions easier. For example, to capture any exception generated by
GPIO Zero’s code:

from gpiozero import *

led = PWMLED(17)
try:

led.value = 2
except GPIOZeroError:

print('A GPIO Zero error occurred')

Since all GPIO Zero’s exceptions descend from GPIOZeroError, this will work. However, certain specific
errors have multiple parents. For example, in the case that an out of range value is passed to OutputDevice.
value you would expect a ValueError to be raised. In fact, a OutputDeviceBadValue error will be
raised. However, note that this descends from both GPIOZeroError (indirectly) and from ValueError so
you can still do:

from gpiozero import *

led = PWMLED(17)
try:

led.value = 2
except ValueError:

print('Bad value specified')

Errors

exception gpiozero.GPIOZeroError
Base class for all exceptions in GPIO Zero

exception gpiozero.DeviceClosed
Error raised when an operation is attempted on a closed device

90 Chapter 6. Table of Contents

https://docs.python.org/3.4/library/collections.html#collections.namedtuple
https://docs.python.org/3.4/library/exceptions.html#ValueError
https://docs.python.org/3.4/library/exceptions.html#ValueError

Gpiozero Documentation, Release 1.2.0

exception gpiozero.BadEventHandler
Error raised when an event handler with an incompatible prototype is specified

exception gpiozero.BadQueueLen
Error raised when non-positive queue length is specified

exception gpiozero.BadWaitTime
Error raised when an invalid wait time is specified

exception gpiozero.CompositeDeviceError
Base class for errors specific to the CompositeDevice hierarchy

exception gpiozero.CompositeDeviceBadName
Error raised when a composite device is constructed with a reserved name

exception gpiozero.EnergenieSocketMissing
Error raised when socket number is not specified

exception gpiozero.EnergenieBadSocket
Error raised when an invalid socket number is passed to Energenie

exception gpiozero.SPIError
Base class for errors related to the SPI implementation

exception gpiozero.SPIBadArgs
Error raised when invalid arguments are given while constructing SPIDevice

exception gpiozero.GPIODeviceError
Base class for errors specific to the GPIODevice hierarchy

exception gpiozero.GPIODeviceClosed
Deprecated descendent of DeviceClosed

exception gpiozero.GPIOPinInUse
Error raised when attempting to use a pin already in use by another device

exception gpiozero.GPIOPinMissing
Error raised when a pin number is not specified

exception gpiozero.InputDeviceError
Base class for errors specific to the InputDevice hierarchy

exception gpiozero.OutputDeviceError
Base class for errors specified to the OutputDevice hierarchy

exception gpiozero.OutputDeviceBadValue
Error raised when value is set to an invalid value

exception gpiozero.PinError
Base class for errors related to pin implementations

exception gpiozero.PinInvalidFunction
Error raised when attempting to change the function of a pin to an invalid value

exception gpiozero.PinInvalidState
Error raised when attempting to assign an invalid state to a pin

exception gpiozero.PinInvalidPull
Error raised when attempting to assign an invalid pull-up to a pin

exception gpiozero.PinInvalidEdges
Error raised when attempting to assign an invalid edge detection to a pin

exception gpiozero.PinSetInput
Error raised when attempting to set a read-only pin

exception gpiozero.PinFixedPull
Error raised when attempting to set the pull of a pin with fixed pull-up

6.11. Exceptions 91

Gpiozero Documentation, Release 1.2.0

exception gpiozero.PinEdgeDetectUnsupported
Error raised when attempting to use edge detection on unsupported pins

exception gpiozero.PinPWMError
Base class for errors related to PWM implementations

exception gpiozero.PinPWMUnsupported
Error raised when attempting to activate PWM on unsupported pins

exception gpiozero.PinPWMFixedValue
Error raised when attempting to initialize PWM on an input pin

exception gpiozero.PinMultiplePins
Error raised when multiple pins support the requested function

exception gpiozero.PinNoPins
Error raised when no pins support the requested function

exception gpiozero.PinUnknownPi
Error raised when gpiozero doesn’t recognize a revision of the Pi

Warnings

exception gpiozero.GPIOZeroWarning
Base class for all warnings in GPIO Zero

exception gpiozero.SPIWarning
Base class for warnings related to the SPI implementation

exception gpiozero.SPISoftwareFallback
Warning raised when falling back to the software implementation

Changelog

Release 1.2.0 (2016-04-10)

• Added Energenie class for controlling Energenie plugs (#69)

• Added LineSensor class for single line-sensors (#109)

• Added DistanceSensor class for HC-SR04 ultra-sonic sensors (#114)

• Added SnowPi class for the Ryanteck Snow-pi board (#130)

• Added when_held (and related properties) to Button (#115)

• Fixed issues with installing GPIO Zero for python 3 on Raspbian Wheezy releases (#140)

• Added support for lots of ADC chips (MCP3xxx family) (#162) - many thanks to pcopa and lurch!

• Added support for pigpiod as a pin implementation with PiGPIOPin (#180)

• Many refinements to the base classes mean more consistency in composite devices and several bugs
squashed (#164, #175, #182, #189, #193, #229)

• GPIO Zero is now aware of what sort of Pi it’s running on via pi_info() and has a fairly extensive
database of Pi information which it uses to determine when users request impossible things (like pull-down
on a pin with a physical pull-up resistor) (#222)

• The source/values system was enhanced to ensure normal usage doesn’t stress the CPU and lots of utilities
were added (#181, #251)

And I’ll just add a note of thanks to the many people in the community who contributed to this release: we’ve had
some great PRs, suggestions, and bug reports in this version. Of particular note:

92 Chapter 6. Table of Contents

https://github.com/RPi-Distro/python-gpiozero/issues/69
https://github.com/RPi-Distro/python-gpiozero/issues/109
https://github.com/RPi-Distro/python-gpiozero/issues/114
https://github.com/RPi-Distro/python-gpiozero/issues/130
https://github.com/RPi-Distro/python-gpiozero/issues/115
https://github.com/RPi-Distro/python-gpiozero/issues/140
https://github.com/RPi-Distro/python-gpiozero/issues/162
https://github.com/RPi-Distro/python-gpiozero/issues/180
https://github.com/RPi-Distro/python-gpiozero/issues/164
https://github.com/RPi-Distro/python-gpiozero/issues/175
https://github.com/RPi-Distro/python-gpiozero/issues/182
https://github.com/RPi-Distro/python-gpiozero/issues/189
https://github.com/RPi-Distro/python-gpiozero/issues/193
https://github.com/RPi-Distro/python-gpiozero/issues/229
https://github.com/RPi-Distro/python-gpiozero/issues/222
https://github.com/RPi-Distro/python-gpiozero/issues/181
https://github.com/RPi-Distro/python-gpiozero/issues/251

Gpiozero Documentation, Release 1.2.0

• Schelto van Doorn was instrumental in adding support for numerous ADC chips

• Alex Eames generously donated a RasPiO Analog board which was extremely useful in developing the
software SPI interface (and testing the ADC support)

• Andrew Scheller squashed several dozen bugs (usually a day or so after Dave had introduced them ;)

As always, many thanks to the whole community - we look forward to hearing from you more in 1.3!

Release 1.1.0 (2016-02-08)

• Documentation converted to reST and expanded to include generic classes and several more recipes (#80,
#82, #101, #119, #135, #168)

• New CamJamKitRobot class with the pre-defined motor pins for the new CamJam EduKit

• New LEDBarGraph class (many thanks to Martin O’Hanlon!) (#126, #176)

• New Pin implementation abstracts out the concept of a GPIO pin paving the way for alternate library
support and IO extenders in future (#141)

• New LEDBoard.blink() method which works properly even when background is set to False (#94,
#161)

• New RGBLED.blink() method which implements (rudimentary) color fading too! (#135, #174)

• New initial_value attribute on OutputDevice ensures consistent behaviour on construction (#118)

• New active_high attribute on PWMOutputDevice and RGBLED allows use of common anode devices
(#143, #154)

• Loads of new ADC chips supported (many thanks to GitHub user pcopa!) (#150)

Release 1.0.0 (2015-11-16)

• Debian packaging added (#44)

• PWMLED class added (#58)

• TemperatureSensor removed pending further work (#93)

• Buzzer.beep() alias method added (#75)

• Motor PWM devices exposed, and Robot motor devices exposed (#107)

Release 0.9.0 (2015-10-25)

Fourth public beta

• Added source and values properties to all relevant classes (#76)

• Fix names of parameters in Motor constructor (#79)

• Added wrappers for LED groups on add-on boards (#81)

Release 0.8.0 (2015-10-16)

Third public beta

• Added generic AnalogInputDevice class along with specific classes for the MCP3008 and MCP3004
(#41)

• Fixed DigitalOutputDevice.blink() (#57)

6.12. Changelog 93

https://github.com/RPi-Distro/python-gpiozero/issues/80
https://github.com/RPi-Distro/python-gpiozero/issues/82
https://github.com/RPi-Distro/python-gpiozero/issues/101
https://github.com/RPi-Distro/python-gpiozero/issues/119
https://github.com/RPi-Distro/python-gpiozero/issues/135
https://github.com/RPi-Distro/python-gpiozero/issues/168
https://github.com/RPi-Distro/python-gpiozero/issues/126
https://github.com/RPi-Distro/python-gpiozero/issues/176
https://github.com/RPi-Distro/python-gpiozero/issues/141
https://github.com/RPi-Distro/python-gpiozero/issues/94
https://github.com/RPi-Distro/python-gpiozero/issues/161
https://github.com/RPi-Distro/python-gpiozero/issues/135
https://github.com/RPi-Distro/python-gpiozero/issues/174
https://github.com/RPi-Distro/python-gpiozero/issues/118
https://github.com/RPi-Distro/python-gpiozero/issues/143
https://github.com/RPi-Distro/python-gpiozero/issues/154
https://github.com/RPi-Distro/python-gpiozero/issues/150
https://github.com/RPi-Distro/python-gpiozero/issues/44
https://github.com/RPi-Distro/python-gpiozero/issues/58
https://github.com/RPi-Distro/python-gpiozero/issues/93
https://github.com/RPi-Distro/python-gpiozero/issues/75
https://github.com/RPi-Distro/python-gpiozero/issues/107
https://github.com/RPi-Distro/python-gpiozero/issues/76
https://github.com/RPi-Distro/python-gpiozero/issues/79
https://github.com/RPi-Distro/python-gpiozero/issues/81
https://github.com/RPi-Distro/python-gpiozero/issues/41
https://github.com/RPi-Distro/python-gpiozero/issues/57

Gpiozero Documentation, Release 1.2.0

Release 0.7.0 (2015-10-09)

Second public beta

Release 0.6.0 (2015-09-28)

First public beta

Release 0.5.0 (2015-09-24)

Release 0.4.0 (2015-09-23)

Release 0.3.0 (2015-09-22)

Release 0.2.0 (2015-09-21)

Initial release

License

Copyright 2015 Raspberry Pi Foundation.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the follow-
ing disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DI-
RECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

94 Chapter 6. Table of Contents

http://raspberrypi.org/

Index

Symbols
_shared_key() (gpiozero.SharedMixin class method),

78

A
absoluted() (in module gpiozero.tools), 80
active_high (gpiozero.OutputDevice attribute), 50
active_time (gpiozero.EventsMixin attribute), 79
all_values() (in module gpiozero.tools), 82
AnalogInputDevice (class in gpiozero), 56
any_values() (in module gpiozero.tools), 82
averaged() (in module gpiozero.tools), 82

B
backward() (gpiozero.CamJamKitRobot method), 71
backward() (gpiozero.Motor method), 46
backward() (gpiozero.Robot method), 69
backward() (gpiozero.RyanteckRobot method), 70
BadEventHandler, 90
BadQueueLen, 91
BadWaitTime, 91
beep() (gpiozero.Buzzer method), 45
bits (gpiozero.AnalogInputDevice attribute), 56
blink() (gpiozero.DigitalOutputDevice method), 47
blink() (gpiozero.LED method), 42
blink() (gpiozero.LEDBoard method), 57
blink() (gpiozero.PiLiter method), 62
blink() (gpiozero.PiTraffic method), 65
blink() (gpiozero.PWMLED method), 43
blink() (gpiozero.PWMOutputDevice method), 48
blink() (gpiozero.RGBLED method), 44
blink() (gpiozero.TrafficLights method), 61
bluetooth (gpiozero.PiBoardInfo attribute), 89
bounce (gpiozero.Pin attribute), 87
Button (class in gpiozero), 32
Buzzer (class in gpiozero), 45

C
CamJamKitRobot (class in gpiozero), 70
channel (gpiozero.MCP3002 attribute), 52
channel (gpiozero.MCP3004 attribute), 53
channel (gpiozero.MCP3008 attribute), 53
channel (gpiozero.MCP3202 attribute), 53

channel (gpiozero.MCP3204 attribute), 53
channel (gpiozero.MCP3208 attribute), 54
channel (gpiozero.MCP3302 attribute), 54
channel (gpiozero.MCP3304 attribute), 54
clamped() (in module gpiozero.tools), 80
close() (gpiozero.CompositeDevice method), 74
close() (gpiozero.Device method), 77
close() (gpiozero.DigitalOutputDevice method), 48
close() (gpiozero.Energenie method), 72
close() (gpiozero.GPIODevice method), 41
close() (gpiozero.LEDBoard method), 58
close() (gpiozero.PiLiter method), 63
close() (gpiozero.Pin method), 87
close() (gpiozero.PiTraffic method), 65
close() (gpiozero.PWMOutputDevice method), 49
close() (gpiozero.SmoothedInputDevice method), 40
close() (gpiozero.SPIDevice method), 56
close() (gpiozero.TrafficLights method), 61
closed (gpiozero.Device attribute), 77
color (gpiozero.RGBLED attribute), 45
CompositeDevice (class in gpiozero), 74
CompositeDeviceBadName, 91
CompositeDeviceError, 91
CompositeOutputDevice (class in gpiozero), 73
cos_values() (in module gpiozero.tools), 83
csi (gpiozero.PiBoardInfo attribute), 89

D
Device (class in gpiozero), 77
DeviceClosed, 90
differential (gpiozero.MCP3002 attribute), 52
differential (gpiozero.MCP3004 attribute), 53
differential (gpiozero.MCP3008 attribute), 53
differential (gpiozero.MCP3202 attribute), 53
differential (gpiozero.MCP3204 attribute), 54
differential (gpiozero.MCP3208 attribute), 54
differential (gpiozero.MCP3302 attribute), 54
differential (gpiozero.MCP3304 attribute), 55
DigitalInputDevice (class in gpiozero), 39
DigitalOutputDevice (class in gpiozero), 47
distance (gpiozero.DistanceSensor attribute), 38
DistanceSensor (class in gpiozero), 37
dsi (gpiozero.PiBoardInfo attribute), 89

95

Gpiozero Documentation, Release 1.2.0

E
echo (gpiozero.DistanceSensor attribute), 38
edges (gpiozero.Pin attribute), 87
Energenie (class in gpiozero), 71
EnergenieBadSocket, 91
EnergenieSocketMissing, 91
ethernet (gpiozero.PiBoardInfo attribute), 89
EventsMixin (class in gpiozero), 78

F
FishDish (class in gpiozero), 67
forward() (gpiozero.CamJamKitRobot method), 71
forward() (gpiozero.Motor method), 46
forward() (gpiozero.Robot method), 69
forward() (gpiozero.RyanteckRobot method), 70
frequency (gpiozero.Pin attribute), 88
frequency (gpiozero.PWMOutputDevice attribute), 50
function (gpiozero.Pin attribute), 88
function (gpiozero.PinInfo attribute), 90

G
GPIODevice (class in gpiozero), 41
GPIODeviceClosed, 91
GPIODeviceError, 91
GPIOPinInUse, 91
GPIOPinMissing, 91
GPIOZeroError, 90
GPIOZeroWarning, 92

H
headers (gpiozero.PiBoardInfo attribute), 90
held_time (gpiozero.HoldMixin attribute), 79
hold_repeat (gpiozero.HoldMixin attribute), 79
hold_time (gpiozero.HoldMixin attribute), 79
HoldMixin (class in gpiozero), 79

I
inactive_time (gpiozero.EventsMixin attribute), 79
input_with_pull() (gpiozero.Pin method), 87
InputDevice (class in gpiozero), 41
InputDeviceError, 91
InternalDevice (class in gpiozero), 76
inverted() (in module gpiozero.tools), 80
is_active (gpiozero.Buzzer attribute), 46
is_active (gpiozero.Device attribute), 77
is_active (gpiozero.Energenie attribute), 72
is_active (gpiozero.PWMOutputDevice attribute), 50
is_active (gpiozero.SmoothedInputDevice attribute), 40
is_held (gpiozero.HoldMixin attribute), 79
is_lit (gpiozero.LED attribute), 43
is_lit (gpiozero.PWMLED attribute), 44
is_lit (gpiozero.RGBLED attribute), 45
is_pressed (gpiozero.Button attribute), 33

L
LED (class in gpiozero), 42
LEDBarGraph (class in gpiozero), 59

LEDBoard (class in gpiozero), 57
LEDCollection (class in gpiozero), 73
leds (gpiozero.LEDBarGraph attribute), 60
leds (gpiozero.LEDBoard attribute), 59
leds (gpiozero.LEDCollection attribute), 73
leds (gpiozero.PiLiter attribute), 64
leds (gpiozero.PiLiterBarGraph attribute), 64
leds (gpiozero.PiTraffic attribute), 66
leds (gpiozero.TrafficLights attribute), 62
left() (gpiozero.CamJamKitRobot method), 71
left() (gpiozero.Robot method), 69
left() (gpiozero.RyanteckRobot method), 70
light_detected (gpiozero.LightSensor attribute), 36
LightSensor (class in gpiozero), 36
LineSensor (class in gpiozero), 33

M
manufacturer (gpiozero.PiBoardInfo attribute), 89
max_distance (gpiozero.DistanceSensor attribute), 38
MCP3001 (class in gpiozero), 52
MCP3002 (class in gpiozero), 52
MCP3004 (class in gpiozero), 53
MCP3008 (class in gpiozero), 53
MCP3201 (class in gpiozero), 53
MCP3202 (class in gpiozero), 53
MCP3204 (class in gpiozero), 53
MCP3208 (class in gpiozero), 54
MCP3301 (class in gpiozero), 54
MCP3302 (class in gpiozero), 54
MCP3304 (class in gpiozero), 54
memory (gpiozero.PiBoardInfo attribute), 89
model (gpiozero.PiBoardInfo attribute), 89
motion_detected (gpiozero.MotionSensor attribute), 35
MotionSensor (class in gpiozero), 34
Motor (class in gpiozero), 46

N
NativePin (class in gpiozero.pins.native), 86
negated() (in module gpiozero.tools), 81
number (gpiozero.PinInfo attribute), 90

O
off() (gpiozero.Buzzer method), 46
off() (gpiozero.CompositeOutputDevice method), 74
off() (gpiozero.DigitalOutputDevice method), 48
off() (gpiozero.FishDish method), 67
off() (gpiozero.LED method), 43
off() (gpiozero.LEDBarGraph method), 60
off() (gpiozero.LEDBoard method), 58
off() (gpiozero.OutputDevice method), 50
off() (gpiozero.PiLiter method), 63
off() (gpiozero.PiLiterBarGraph method), 64
off() (gpiozero.PiTraffic method), 66
off() (gpiozero.PWMLED method), 44
off() (gpiozero.PWMOutputDevice method), 49
off() (gpiozero.RGBLED method), 45
off() (gpiozero.TrafficHat method), 68
off() (gpiozero.TrafficLights method), 61

96 Index

Gpiozero Documentation, Release 1.2.0

off() (gpiozero.TrafficLightsBuzzer method), 67
on() (gpiozero.Buzzer method), 46
on() (gpiozero.CompositeOutputDevice method), 74
on() (gpiozero.DigitalOutputDevice method), 48
on() (gpiozero.FishDish method), 67
on() (gpiozero.LED method), 43
on() (gpiozero.LEDBarGraph method), 60
on() (gpiozero.LEDBoard method), 58
on() (gpiozero.OutputDevice method), 50
on() (gpiozero.PiLiter method), 63
on() (gpiozero.PiLiterBarGraph method), 64
on() (gpiozero.PiTraffic method), 66
on() (gpiozero.PWMLED method), 44
on() (gpiozero.PWMOutputDevice method), 49
on() (gpiozero.RGBLED method), 45
on() (gpiozero.TrafficHat method), 68
on() (gpiozero.TrafficLights method), 62
on() (gpiozero.TrafficLightsBuzzer method), 67
output_with_state() (gpiozero.Pin method), 87
OutputDevice (class in gpiozero), 50
OutputDeviceBadValue, 91
OutputDeviceError, 91

P
partial (gpiozero.SmoothedInputDevice attribute), 40
pcb_revision (gpiozero.PiBoardInfo attribute), 89
pi_info() (in module gpiozero), 88
PiBoardInfo (class in gpiozero), 88
PiGPIOPin (class in gpiozero.pins.pigpiod), 85
PiLiter (class in gpiozero), 62
PiLiterBarGraph (class in gpiozero), 64
Pin (class in gpiozero), 86
pin (gpiozero.Button attribute), 33
pin (gpiozero.Buzzer attribute), 46
pin (gpiozero.GPIODevice attribute), 42
pin (gpiozero.LED attribute), 43
pin (gpiozero.LightSensor attribute), 36
pin (gpiozero.LineSensor attribute), 34
pin (gpiozero.MotionSensor attribute), 35
pin (gpiozero.PWMLED attribute), 44
PinEdgeDetectUnsupported, 91
PinError, 91
PinFixedPull, 91
PingServer (class in gpiozero), 75
PinInfo (class in gpiozero), 90
PinInvalidEdges, 91
PinInvalidFunction, 91
PinInvalidPull, 91
PinInvalidState, 91
PinMultiplePins, 92
PinNoPins, 92
PinPWMError, 92
PinPWMFixedValue, 92
PinPWMUnsupported, 92
PinSetInput, 91
PinUnknownPi, 92
PiTraffic (class in gpiozero), 65
post_delayed() (in module gpiozero.tools), 81

pre_delayed() (in module gpiozero.tools), 81
pull (gpiozero.Pin attribute), 88
pull_up (gpiozero.Button attribute), 33
pull_up (gpiozero.InputDevice attribute), 41
pull_up (gpiozero.PinInfo attribute), 90
pulse() (gpiozero.LEDBoard method), 58
pulse() (gpiozero.PiLiter method), 63
pulse() (gpiozero.PiTraffic method), 66
pulse() (gpiozero.PWMOutputDevice method), 49
pulse() (gpiozero.TrafficLights method), 62
PWMLED (class in gpiozero), 43
PWMOutputDevice (class in gpiozero), 48

Q
quantized() (in module gpiozero.tools), 81
queue_len (gpiozero.SmoothedInputDevice attribute),

40
queued() (in module gpiozero.tools), 81

R
random_values() (in module gpiozero.tools), 83
raw_value (gpiozero.AnalogInputDevice attribute), 56
released (gpiozero.PiBoardInfo attribute), 89
reverse() (gpiozero.CamJamKitRobot method), 71
reverse() (gpiozero.Robot method), 69
reverse() (gpiozero.RyanteckRobot method), 70
revision (gpiozero.PiBoardInfo attribute), 89
RGBLED (class in gpiozero), 44
right() (gpiozero.CamJamKitRobot method), 71
right() (gpiozero.Robot method), 69
right() (gpiozero.RyanteckRobot method), 70
Robot (class in gpiozero), 68
RPiGPIOPin (class in gpiozero.pins.rpigpio), 85
RPIOPin (class in gpiozero.pins.rpio), 85
RyanteckRobot (class in gpiozero), 70

S
scaled() (in module gpiozero.tools), 81
SharedMixin (class in gpiozero), 78
sin_values() (in module gpiozero.tools), 83
SmoothedInputDevice (class in gpiozero), 39
soc (gpiozero.PiBoardInfo attribute), 89
source (gpiozero.CamJamKitRobot attribute), 71
source (gpiozero.Energenie attribute), 72
source (gpiozero.FishDish attribute), 67
source (gpiozero.LEDBarGraph attribute), 60
source (gpiozero.LEDBoard attribute), 59
source (gpiozero.PiLiter attribute), 64
source (gpiozero.PiLiterBarGraph attribute), 64
source (gpiozero.PiTraffic attribute), 66
source (gpiozero.Robot attribute), 69
source (gpiozero.RyanteckRobot attribute), 70
source (gpiozero.SourceMixin attribute), 78
source (gpiozero.TrafficHat attribute), 68
source (gpiozero.TrafficLights attribute), 62
source (gpiozero.TrafficLightsBuzzer attribute), 67
source_delay (gpiozero.CamJamKitRobot attribute), 71
source_delay (gpiozero.Energenie attribute), 72

Index 97

Gpiozero Documentation, Release 1.2.0

source_delay (gpiozero.FishDish attribute), 68
source_delay (gpiozero.LEDBarGraph attribute), 60
source_delay (gpiozero.LEDBoard attribute), 59
source_delay (gpiozero.PiLiter attribute), 64
source_delay (gpiozero.PiLiterBarGraph attribute), 64
source_delay (gpiozero.PiTraffic attribute), 66
source_delay (gpiozero.Robot attribute), 69
source_delay (gpiozero.RyanteckRobot attribute), 70
source_delay (gpiozero.SourceMixin attribute), 78
source_delay (gpiozero.TrafficHat attribute), 68
source_delay (gpiozero.TrafficLights attribute), 62
source_delay (gpiozero.TrafficLightsBuzzer attribute),

67
SourceMixin (class in gpiozero), 78
SPIBadArgs, 91
SPIDevice (class in gpiozero), 56
SPIError, 91
SPISoftwareFallback, 92
SPIWarning, 92
state (gpiozero.Pin attribute), 88
stop() (gpiozero.CamJamKitRobot method), 71
stop() (gpiozero.Motor method), 47
stop() (gpiozero.Robot method), 69
stop() (gpiozero.RyanteckRobot method), 70
storage (gpiozero.PiBoardInfo attribute), 89

T
threshold (gpiozero.SmoothedInputDevice attribute),

41
threshold_distance (gpiozero.DistanceSensor attribute),

38
TimeOfDay (class in gpiozero), 75
toggle() (gpiozero.Buzzer method), 46
toggle() (gpiozero.CompositeOutputDevice method),

74
toggle() (gpiozero.FishDish method), 67
toggle() (gpiozero.LED method), 43
toggle() (gpiozero.LEDBarGraph method), 60
toggle() (gpiozero.LEDBoard method), 59
toggle() (gpiozero.OutputDevice method), 50
toggle() (gpiozero.PiLiter method), 64
toggle() (gpiozero.PiLiterBarGraph method), 64
toggle() (gpiozero.PiTraffic method), 66
toggle() (gpiozero.PWMLED method), 44
toggle() (gpiozero.PWMOutputDevice method), 50
toggle() (gpiozero.RGBLED method), 45
toggle() (gpiozero.TrafficHat method), 68
toggle() (gpiozero.TrafficLights method), 62
toggle() (gpiozero.TrafficLightsBuzzer method), 67
TrafficHat (class in gpiozero), 68
TrafficLights (class in gpiozero), 60
TrafficLightsBuzzer (class in gpiozero), 67
trigger (gpiozero.DistanceSensor attribute), 38

U
usb (gpiozero.PiBoardInfo attribute), 89

V
value (gpiozero.AnalogInputDevice attribute), 56
value (gpiozero.CompositeOutputDevice attribute), 74
value (gpiozero.Device attribute), 77
value (gpiozero.FishDish attribute), 68
value (gpiozero.LEDBarGraph attribute), 60
value (gpiozero.LEDBoard attribute), 59
value (gpiozero.MCP3001 attribute), 52
value (gpiozero.MCP3002 attribute), 52
value (gpiozero.MCP3004 attribute), 53
value (gpiozero.MCP3008 attribute), 53
value (gpiozero.MCP3201 attribute), 53
value (gpiozero.MCP3202 attribute), 53
value (gpiozero.MCP3204 attribute), 54
value (gpiozero.MCP3208 attribute), 54
value (gpiozero.MCP3301 attribute), 54
value (gpiozero.MCP3302 attribute), 54
value (gpiozero.MCP3304 attribute), 55
value (gpiozero.OutputDevice attribute), 50
value (gpiozero.PiLiter attribute), 64
value (gpiozero.PiLiterBarGraph attribute), 64
value (gpiozero.PiTraffic attribute), 66
value (gpiozero.PWMLED attribute), 44
value (gpiozero.PWMOutputDevice attribute), 50
value (gpiozero.SmoothedInputDevice attribute), 41
value (gpiozero.TrafficHat attribute), 68
value (gpiozero.TrafficLights attribute), 62
value (gpiozero.TrafficLightsBuzzer attribute), 67
values (gpiozero.CamJamKitRobot attribute), 71
values (gpiozero.Energenie attribute), 72
values (gpiozero.FishDish attribute), 68
values (gpiozero.LEDBarGraph attribute), 60
values (gpiozero.LEDBoard attribute), 59
values (gpiozero.PiLiter attribute), 64
values (gpiozero.PiLiterBarGraph attribute), 65
values (gpiozero.PiTraffic attribute), 66
values (gpiozero.Robot attribute), 69
values (gpiozero.RyanteckRobot attribute), 70
values (gpiozero.TrafficHat attribute), 68
values (gpiozero.TrafficLights attribute), 62
values (gpiozero.TrafficLightsBuzzer attribute), 67
values (gpiozero.ValuesMixin attribute), 78
ValuesMixin (class in gpiozero), 78

W
wait_for_active() (gpiozero.EventsMixin method), 79
wait_for_dark() (gpiozero.LightSensor method), 36
wait_for_in_range() (gpiozero.DistanceSensor

method), 38
wait_for_inactive() (gpiozero.EventsMixin method), 79
wait_for_light() (gpiozero.LightSensor method), 36
wait_for_line() (gpiozero.LineSensor method), 34
wait_for_motion() (gpiozero.MotionSensor method),

35
wait_for_no_line() (gpiozero.LineSensor method), 34
wait_for_no_motion() (gpiozero.MotionSensor

method), 35

98 Index

Gpiozero Documentation, Release 1.2.0

wait_for_out_of_range() (gpiozero.DistanceSensor
method), 38

wait_for_press() (gpiozero.Button method), 33
wait_for_release() (gpiozero.Button method), 33
when_activated (gpiozero.EventsMixin attribute), 79
when_changed (gpiozero.Pin attribute), 88
when_dark (gpiozero.LightSensor attribute), 37
when_deactivated (gpiozero.EventsMixin attribute), 79
when_held (gpiozero.HoldMixin attribute), 80
when_in_range (gpiozero.DistanceSensor attribute), 38
when_light (gpiozero.LightSensor attribute), 37
when_line (gpiozero.LineSensor attribute), 34
when_motion (gpiozero.MotionSensor attribute), 35
when_no_line (gpiozero.LineSensor attribute), 34
when_no_motion (gpiozero.MotionSensor attribute),

35
when_out_of_range (gpiozero.DistanceSensor at-

tribute), 38
when_pressed (gpiozero.Button attribute), 33
when_released (gpiozero.Button attribute), 33
wifi (gpiozero.PiBoardInfo attribute), 89

Index 99

	About
	Install
	Documentation
	Development
	Contributors
	Table of Contents
	Recipes
	Notes
	Input Devices
	Output Devices
	SPI Devices
	Boards and Accessories
	Internal Devices
	Generic Classes
	Source Tools
	Pins
	Exceptions
	Changelog
	License

