gpiozero 2.0.1 Documentation
Release 2.0.1

Ben Nuttall

Feb 18, 2024

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Installing GPIO Zero
Basic Recipes

Advanced Recipes
Configuring Remote GPIO
Remote GPIO Recipes

Pi Zero USB OTG
Source/Values
Command-line Tools
Frequently Asked Questions
Backwards Compatibility
Migrating from RPi.GPIO
Contributing

Development

API - Input Devices

API - Output Devices

API - SPI Devices

API - Boards and Accessories
API - Internal Devices
API - Generic Classes

API - Device Source Tools
API - Fonts

API - Tones

API - Pi Information

API - Pins

CONTENTS

37
45
53
57
61
69
79
87
93
929
101
105
125
147
157
189
197
203
211
215
217

221

25 API - Exceptions
26 Changelog

27 License

Python Module Index

Index

239

245

255

257

259

CHAPTER
ONE

INSTALLING GPIO ZERO

GPIO Zero is installed by default in the Raspberry Pi OS' desktop image, Raspberry Pi OS? Lite image, and the
Raspberry Pi Desktop® image for PC/Mac, all available from raspberrypi.org*. Follow these guides to installing on
other operating systems, including for PCs using the remote GPIO (page 45) feature.

1.1 Raspberry Pi

GPIO Zero is packaged in the apt repositories of Raspberry Pi OS, Debian® and Ubuntu®. It is also available on
PyPI.

1.1.1 apt

First, update your repositories list:

[pi@raspberrypi:~$ sudo apt update

Then install the package for Python 3:

[pi@raspberrypi:~$ sudo apt install python3-gpiozero

or Python 2:

[pi@raspberrypi:~$ sudo apt install python-gpiozero

1.1.2 pip

If you're using another operating system on your Raspberry Pi, you may need to use pip to install GPIO Zero instead.
Install pip using get-pip® and then type:

[pi@raspberrypi:~$ sudo pip3 install gpiozero

or for Python 2:

[pi@raspberrypi:~$ sudo pip install gpiozero

To install GPIO Zero in a virtual environment, see the Development (page 101) page.

! https://www.raspberrypi.org/software/operating-systems/

2 https://www.raspberrypi.org/sof tware/operating-systems/

3 https://www.raspberrypi.org/sof tware/raspberry- pi-desktop/
4 https://www.raspberrypi.org/software/

5 https://packages.debian.org/buster/python3-gpiozero

6 https://packages.ubuntu.com/hirsute/python3- gpiozero

7 https://pypi.org/project/gpiozero/

8 https://pip.pypa.io/en/stable/installing/

https://www.raspberrypi.org/software/operating-systems/
https://www.raspberrypi.org/software/operating-systems/
https://www.raspberrypi.org/software/raspberry-pi-desktop/
https://www.raspberrypi.org/software/
https://packages.debian.org/buster/python3-gpiozero
https://packages.ubuntu.com/hirsute/python3-gpiozero
https://pypi.org/project/gpiozero/
https://pip.pypa.io/en/stable/installing/

gpiozero 2.0.1 Documentation, Release 2.0.1

1.2 PC/Mac

In order to use GPIO Zero’s remote GPIO feature from a PC or Mac, you’ll need to install GPIO Zero on that
computer using pip. See the Configuring Remote GPIO (page 45) page for more information.

1.3 Documentation

This documentation is also available for offline installation like so:

[pi@raspberrypi:~$ sudo apt install python-gpiozero-doc }

This will install the HTML version of the documentation under the /usr/share/doc/
python-gpiozero-doc/html path. To view the offline documentation you have several options:

You can open the documentation directly by visiting file:///usr/share/doc/python-gpiozero-doc/html/index.html in
your browser. However, be aware that using £i1e: // URLs sometimes breaks certain elements. To avoid this, you
can view the docs from an http: // style URL by starting a trivial HTTP server with Python, like so:

[$ python3 -m http.server —-d /usr/share/doc/python-gpiozero-doc/html }

Then visit http://localhost:8000/ in your browser.

Alternatively, the package also integrates into Debian’s doc-base’ system, so you can install one of the doc-base
clients (dochelp, dwww, dhelp, doc-central, etc.) and use its interface to locate this document.

If you want to view the documentation offline on a different device, such as an eReader, there are Epub and PDF
versions of the documentation available for download from the ReadTheDocs site'”. Simply click on the “Read the
Docs” box at the bottom-left corner of the page (under the table of contents) and select “PDF” or “Epub” from the
“Downloads” section.

9 https://wiki.debian.org/doc-base
10 https://gpiozero.readthedocs.io/

2 Chapter 1. Installing GPIO Zero

file:///usr/share/doc/python-gpiozero-doc/html/index.html
http://localhost:8000/
https://wiki.debian.org/doc-base
https://gpiozero.readthedocs.io/

CHAPTER
TWO

BASIC RECIPES

The following recipes demonstrate some of the capabilities of the GPIO Zero library. Please note that all recipes are
written assuming Python 3. Recipes may work under Python 2, but no guarantees!

2.1 Importing GPIO Zero

In Python, libraries and functions used in a script must be imported by name at the top of the file, with the exception
of the functions built into Python by default.

For example, to use the But ton (page 105) interface from GPIO Zero, it should be explicitly imported:

[from gpiozero import Button

Now But ton (page 105) is available directly in your script:

[button = Button (2)

Alternatively, the whole GPIO Zero library can be imported:

[import gpiozero

In this case, all references to items within GPIO Zero must be prefixed:

[button = gpiozero.Button (2)

2.2 Pin Numbering

This library uses Broadcom (BCM) pin numbering for the GPIO pins, as opposed to physical (BOARD) numbering.
Unlike in the RPi.GPIO'! library, this is not configurable. However, translation from other schemes can be used by
providing prefixes to pin numbers (see below).

Any pin marked “GPIO” in the diagram below can be used as a pin number. For example, if an LED was attached
to “GPIO17” you would specify the pin number as 17 rather than 11:

1T https://pypi.python.org/pypi/RPi.GPIO

https://pypi.python.org/pypi/RPi.GPIO

gpiozero 2.0.1 Documentation, Release 2.0.1

3v3

Power

GPIO2
SDA I’C

GPIO3
SCL I’C

GPIO4

Ground

GPIO17

GPIO27

GPIO22

3v3

Power

GPIO10
SPI MOSI

GPIO9
SPI MISO

GPIO11

SPI SCLK

Ground

ID SD

I*)C ID

GPIO5

GPIO6

GPIO13

GPIO19

GPI1026

Ground

All Models

®
®
Q
o
©
)
O,
©
9,
©
@

OO HE®OO®

N
~

: 100000,
0l00]:10] -

40-pin
models only

#SB Ports *

5V

Power

5V
Power
Ground
GPIO14

UARTO TXD

GPIO15

UARTO RXD

GPIO18

Ground

GPI1023

GPI1024

Ground

GPIO25

GPIO8

SPI CEO

GPIO7
SPI CE1

ID SC

I*)C ID

Ground

GPIO12

Ground

GPIO16

GPI1020

GPIO21

If you wish to use physical (BOARD) numbering you can specify the pin number as “BOARD11”. If you are familiar
with the wiringPi'? pin numbers (another physical layout) you could use “WPI0” instead. Finally, you can specify
pins as “header:number”, e.g. “J8:11” meaning physical pin 11 on header J8 (the GPIO header on modern Pis).
Hence, the following lines are all equivalent:

>>>
>>>
>>>
>>>
>>>

led
led
led
led
led

LED (17)

LED ("GPIO17")
LED ("BCM17")
LED ("BOARD11")
LED ("WPIO")

12 hitps://projects.drogon.net/raspberry-pi/wiringpi/pins/

(continues on next page)

Chapter 2. Basic Recipes

https://projects.drogon.net/raspberry-pi/wiringpi/pins/

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
{>>> led = LED("J8:11")

Note that these alternate schemes are merely translations. If you request the state of a device on the command line,
the associated pin number will always be reported in the Broadcom (BCM) scheme:

>>> led = LED ("BOARD11")
>>> led
<gpiozero.LED object on pin GPIO17, active_high=True, is_active=False>

Throughout this manual we will use the default integer pin numbers, in the Broadcom (BCM) layout shown above.

2.3 LED

LLLLLLILINLY]]]
DSl (DISPLAY)

L L
(V43WVD) ISD

¥T0Z Id Ausqdsey &
T'TA Z I9POW Id A1iagdsey

fl

Turn an LED (page 125) on and off repeatedly:

from gpiozero import LED
from time import sleep

red = LED(17)

while True:
red.on ()
sleep (1)
red.off ()
sleep (1)

Alternatively:

from gpiozero import LED
from signal import pause

red = LED(17)

red.blink ()

(continues on next page)

2.3. LED 5

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

pause ()

Note: Reaching the end of a Python script will terminate the process and GPIOs may be reset. Keep your script
alive with signal.pause () 3. See How do I keep my script running? (page 79) for more information.

2.4 LED with variable brightness

ININENNNNNNNNNN
DSI (DISPLAY)

[&

©)

102 I|d Auaqdsey
T'TA Z I9PON Id Auisqdsey

L L
(V43WVD) ISD

fl

Any regular LED can have its brightness value set using PWM (pulse-width-modulation). In GPIO Zero, this can be
achieved using PWMLED (page 127) using values between 0 and 1:

from gpiozero import PWMLED
from time import sleep

led = PWMLED (17)

while True:
led.value = 0 # off

sleep (1)

led.value = 0.5 # half brightness
sleep (1)

led.value = 1 # full brightness
sleep (1)

Similarly to blinking on and off continuously, a PWMLED can pulse (fade in and out continuously):

from gpiozero import PWMLED
from signal import pause

led = PWMLED (17)

(continues on next page)

13 https://docs.python.org/3.9/library/signal.html#signal. pause

6 Chapter 2. Basic Recipes

https://docs.python.org/3.9/library/signal.html#signal.pause

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

led.pulse ()

pause ()

2.5 Button

TULLILTIN Y]]
DSI (DISPLAY)

L L
(V43WYD) ISD

102 |d Auvqdsey ©
e o o o o
e o o o o

]
@
w

o
o
®
3
=

<
iU
=
5]
=%
@
N)
<
i
-

fl
Check if a But t on (page 105) is pressed:

from gpiozero import Button
button = Button (2)

while True:
if button.is_pressed:
print ("Button is pressed")
else:
print ("Button is not pressed")

Wait for a button to be pressed before continuing:

from gpiozero import Button
button = Button (2)

button.wait_for_press|()
print ("Button was pressed")

Run a function every time the button is pressed:

from gpiozero import Button
from signal import pause

def say_hello():
print ("Hello!")
(continues on next page)

2.5. Button 7

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

button = Button (2)

button.when_pressed = say_hello

pause ()

Note: Note that the line button.when_pressed = say_hello does not run the function say_hello,
rather it creates a reference to the function to be called when the button is pressed. Accidental use of button.
when_pressed = say_hello () would set the when_pressed action to None'* (the return value of this
function) which would mean nothing happens when the button is pressed.

Similarly, functions can be attached to button releases:

from gpiozero import Button
from signal import pause

def say_hello():
print ("Hello!")

def say_goodbye () :
print ("Goodbye!")

button = Button (2)

button.when_pressed = say_hello
button.when_released = say_goodbye

pause ()

2.6 Button controlled LED

o g
19903

€)

. A

VRV
[

u
]
111
%
=] o]0

- U\

14 https://docs.python.org/3.9/library/constants.html#None

8 Chapter 2. Basic Recipes

https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

Turn on an LED (page 125) when a But ton (page 105) is pressed:

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button (2)

button.when_pressed = led.on
button.when_released = led.off

pause ()

Alternatively:

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button (2)

led.source = button

pause ()

2.7 Button controlled camera

Using the button press to trigger PiCamera to take a picture using button.when_pressed = camera.
capture would not work because the capture () method requires an out put parameter. However, this can be
achieved using a custom function which requires no parameters:

from gpiozero import Button
from picamera import PiCamera
from datetime import datetime
from signal import pause

button Button (2)
camera = PiCamera ()

def capture():
camera.capture (f'/home/pi/{datetime.now() :$Y-%m-%d-%$H-%M-%S}.jpg")

button.when_pressed = capture

pause ()

Another example could use one button to start and stop the camera preview, and another to capture:

from gpiozero import Button
from picamera import PiCamera
from datetime import datetime
from signal import pause

left_button = Button (2)
right_button Button (3)
camera = PiCamera ()

def capture():
camera.capture (f'/home/pi/{datetime.now() :$Y-%m-%d-%$H-3M-%S}.jpg")

(continues on next page)

2.7. Button controlled camera 9

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

left_button.when_pressed = camera.start_preview
left_button.when_released = camera.stop_preview
right_button.when_pressed = capture

pause ()

2.8 Shutdown button

The Button (page 105) class also provides the ability to run a function when the button has been held for a given
length of time. This example will shut down the Raspberry Pi when the button is held for 2 seconds:

from gpiozero import Button
from subprocess import check_call
from signal import pause

def shutdown () :
check_call(['sudo', 'poweroff'])

shutdown_btn = Button (17, hold_time=2)
shutdown_btn.when_held = shutdown

pause ()

2.9 LEDBoard

o= ¢
19903

€)

!

o
11 01
10
3po
o o o
o o o

A RARARAN)

VPR

- U\

A collection of LEDs can be accessed using LEDBoard (page 157):

from gpiozero import LEDBoard
from time import sleep
from signal import pause

leds = LEDBoard(5, 6, 13, 19, 26)
(continues on next page)

10 Chapter 2. Basic Recipes

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

leds.on ()

sleep (1)

leds.off ()

sleep (1)

leds.value = (1, 0, 1, 0, 1)
sleep (1)

leds.blink ()

pause ()

Using LEDBoard (page 157) with pwm=True allows each LED’s brightness to be controlled:

from gpiozero import LEDBoard
from signal import pause

leds = LEDBoard(5, 6, 13, 19, 26, pwm=True)
leds.value = (0.2, 0.4, 0.6, 0.8, 1.0)

pause ()

See more LEDBoard (page 157) examples in the advanced LEDBoard recipes (page 37).

2.10 LEDBarGraph

~ TR x| EEtE &
&Bx)

VRV

u
]
1111
%
L]
°p

ARAN WA YA .

:

UV

- mvUmyvy L

[l

A collection of LEDs can be treated like a bar graph using LEDBarGraph (page 160):

from gpiozero import LEDBarGraph
from time import sleep

graph = LEDBarGraph(5, 6, 13, 19, 26, 20)
graph.value = 1 # (1, 1, 1, 1, 1, 1)

sleep (1)
(continues on next page)

2.10. LEDBarGraph 11

gpiozero 2.0.1 Documentation, Release 2.0.1

graph.value = 1/2 # (1, 1, 1, 0, O,
sleep (1)

graph.value = -1/2 # (0, 0, 0, 1, 1
sleep (1)

graph.valuve = 1/4 # (1, 0, 0, 0, O,
sleep (1)

graph.value = -1 # (1, 1, 1, 1, 1,
sleep (1)

(continued from previous page)

J

Note values are essentially rounded to account for the fact LEDs can only be on or off when pwm=False (the

default).

However, using LEDBarGraph (page 160) with pwm=True allows more precise values using LED brightness:

from gpiozero import LEDBarGraph
from time import sleep

graph = LEDBarGraph(5, 6, 13, 19, 26,
graph.value = 1/10 # (0.5, 0, 0, O,
sleep (1)

graph.value = 3/10 # (1, 0.5, 0, O,
sleep (1)

graph.value = -3/10 # (0, 0, 0, 0.5,
sleep (1)

graph.value = 9/10 # (1, 1, 1, 1, O.
sleep (1)

graph.value = 95/100 # (1, 1, 1, 1,
sleep (1)

pwm=True)

0)

0)

2.11 LEDCharDisplay

LLLLLLILIN Y]]
DSI (DISPLAY)

L L
(V43WVD) ISD

¥102 Id Asqdsey 6

T'TA Z I9PO |d Auisqdsey

fl

TR R b
R Ty PRI
oo em)ll .
::.'P“'.H .
it ||
L L B

A common 7-segment display'> can be used to represent a variety of characters using LEDCharDisplay (page 162)
(which actually supports an arbitrary number of segments):

15 https://en.wikipedia.org/wiki/Seven-segment_display

12

Chapter 2. Basic Recipes

https://en.wikipedia.org/wiki/Seven-segment_display

gpiozero 2.0.1 Documentation, Release 2.0.1

from gpiozero import LEDCharDisplay
from time import sleep

display = LEDCharDisplay (21, 20, 16, 22, 23, 24, 12, dp=25)
for char in '321GO':
display.value = char
sleep (1)
display.off ()
Alternatively:
from gpiozero import LEDCharDisplay
from signal import pause
display = LEDCharDisplay (21, 20, 16, 22, 23, 24, 12, dp=25)
display.source_delay = 1
display.source = '321GO '
pause ()
See a multi-character example in the advanced recipes (page 38) chapter.
2.12 Traffic Lights
Sttt M
- A~ g . el ¢ e— b
5 .'.“.q = .‘ PR 7/.' =
\,.leﬁ 9l S3sss Masaas ||
:." iy TS e |-
e & o o o (A" v
“.: = :: © o 0 o o e o o 0 o ::

- Uy

A full traffic lights system.

il

Usinga TrafficLights (page 167) kit like Pi-Stop:

from gpiozero import TrafficLights
from time import sleep

(continues on next page)

2.12. Traffic Lights

13

gpiozero 2.0.1 Documentation, Release 2.0.1

lights = TrafficLights (2, 3, 4)
lights.green.on ()

while True:
sleep (10)
lights.green.off ()
lights.amber.on ()
sleep (1)
lights.amber.off ()
lights.red.on ()
sleep (10)
lights.amber.on ()
sleep (1)
lights.green.on()
lights.amber.off ()
lights.red.off ()

(continued from previous page)

Alternatively:

from gpiozero import TrafficLights
from time import sleep
from signal import pause

lights = TrafficLights (2, 3, 4)

def traffic_light_sequence() :
while True:

yield (0, 0, 1) # green
sleep(10)
yield (0, 1, 0) # amber
sleep (1)
yield (1, 0, 0) # red
sleep(10)
yield (1, 1, 0) # red+amber
sleep (1)

lights.source = traffic_light_sequence ()

pause ()

Using LED (page 125) components:

from gpiozero import LED
from time import sleep

red = LED(2)
amber = LED(3)
green = LED (4)

green.on ()
amber.off ()
red.off ()

while True:
sleep (10)
green.off ()
amber.on ()
sleep (1)
amber.off ()

(continues on next page)

14

Chapter 2. Basic Recipes

gpiozero 2.0.1 Documentation, Release 2.0.1

red.on ()
sleep (10)
amber.on ()
sleep (1)
green.on ()
amber.off ()
red.off ()

(continued from previous page)

2.13 Push button stop motion

Capture a picture with the camera module every time a button is pressed:

from gpiozero import Button
from picamera import PiCamera

button = Button (2)
camera = PiCamera ()

camera.start_preview ()

frame = 1

while True:
button.wait_for_press ()
camera.capture (f'/home/pi/frame{frame:03d}.jpg")
frame += 1

See Push Button Stop Motion'® for a full resource.

2.14 Reaction Game

- B POt
.... 9. 33340 B s

L 9/ 33331 B

= i tiiinod
— [S osinn o

=. 2 Exxid
RN
S NREEER L

- VU

When you see the light come on, the first person to press their button wins!

16 hitps://projects.raspberrypi.org/en/projects/push-button-stop-motion

2.13. Push button stop motion

15

https://projects.raspberrypi.org/en/projects/push-button-stop-motion

gpiozero 2.0.1 Documentation, Release 2.0.1

from gpiozero import Button, LED
from time import sleep
import random

led = LED(17)

player_1 = Button(2)
player_2 = Button(3)

time = random.uniform(5, 10)
sleep (time)
led.on ()

while True:
if player_1.is_pressed:
print ("Player 1 wins!")
break
if player_2.is_pressed:
print ("Player 2 wins!")
break

led.off ()

See Quick Reaction Game'” for a full resource.

2.15 GPIO Music Box

3 o PPN
& ek

= TR %
= i
I
- ,VU_ ,\./\./| 22332 RS- p

Each button plays a different sound!

from gpiozero import Button
import pygame.mixer

from pygame.mixer import Sound
from signal import pause

(continues on next page)

17 https://projects.raspberrypi.org/en/projects/python-quick-reaction-game

16 Chapter 2. Basic Recipes

https://projects.raspberrypi.org/en/projects/python-quick-reaction-game

gpiozero 2.0.1 Documentation, Release 2.0.1

pygame.mixer.init ()

button_sounds = {
Button (2): Sound("samples/drum_tom_mid_hard.wav"),
Button (3) : Sound("samples/drum_cymbal_open.wav"),
}

for button, sound in button_sounds.items () :
button.when_pressed = sound.play

pause ()

(continued from previous page)

See GPIO Music Box'® for a full resource.

2.16 All on when pressed

While the button is pressed down, the buzzer and all the lights come on.

FishDish (page 173):

from gpiozero import FishDish
from signal import pause

fish = FishDish ()

fish.button.when_pressed = fish.on
fish.button.when_released = fish.off

pause ()

Ryanteck TrafficHat (page 173):

from gpiozero import TrafficHat
from signal import pause

th TrafficHat ()

th.button.when_pressed = th.on
th.button.when_released = th.off

pause ()

Using LED (page 125), Buzzer (page 131), and But ton (page 105) components:

from gpiozero import LED, Buzzer, Button
from signal import pause

button = Button (2)
buzzer = Buzzer (3)
red = LED (4)

amber = LED(5)
green = LED (6)

things = [red, amber, green, buzzer]

def things_on():
for thing in things:

18 https://projects.raspberrypi.org/en/projects/gpio-music-box

(continues on next page)

2.16. All on when pressed

17

https://projects.raspberrypi.org/en/projects/gpio-music-box

gpiozero 2.0.1 Documentation, Release 2.0.1

thing.on ()
def things_off () :
for thing in things:
thing.off ()

button.when_pressed = things_on
button.when_released = things_off

pause ()

(continued from previous page)

2.17 Full color LED

DSl (DISPLAY)

L L
(V43WVD) ISD

#7102 Id Auaqdsey o
T'TA Z ISPOIN Id Auisqdsey

>

ETHERNET

ﬂ ﬂ '\! \J‘ '\j \J‘

Making colours with an RGBLED (page 128):

’ccc-w
cc:cc c:
IPPPE RS,
IPPPE A,

\V/£

bA

from gpiozero import RGBLED
from time import sleep

led = RGBLED (red=9, green=10, blue=11)

led.red = 1 # full red
sleep (1)

led.red = 0.5 # half red
sleep (1)

led.color = (0, 1, 0) # full green
sleep (1)

led.color = (1, 0, 1) # magenta
sleep (1)

led.color = (1, 1, 0) # yellow
sleep (1)

led.color = (0, 1, 1) # cyan

sleep (1)

led.color = (1, 1, 1) # white
sleep (1)

(continues on next page)

18

Chapter 2. Basic Recipes

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

led.color = (0, 0, 0) # off
sleep (1)

slowly increase intensity of blue
for n in range(100) :

led.blue = n/100

sleep(0.1)

2.18 Motion sensor

DSI (DISPLAY;

‘ ‘ ‘
IRINRRNRNNRRNND
) -

L L
(V43WYD) ISD

102 1d Auagdsey o
e o o o o
e o o o o

T'TA Z I9POW Id Ausqdsey

fl

Light an LED (page 125) when a Mot ionSensor (page 109) detects motion:

from gpiozero import MotionSensor, LED
from signal import pause

pir = MotionSensor (4)
led LED (16)

(continues on next page)

2.18. Motion sensor 19

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

pir.when_motion = led.on
pir.when_no_motion = led.off
pause ()

2.19 Light sensor

— oS! (BISFA N . 99
b e : ¥ ¥
'3_::’3 . .

10
9po

- MyvEvy ekl [REEEH FEEREN B

Have a Light Sensor (page 111) detect light and dark:

from gpiozero import LightSensor
sensor = LightSensor (18)

while True:
sensor.wait_for_light ()

print ("It's light! :)")
sensor.wait_for_dark ()
print ("It's dark : (")

Run a function when the light changes:

from gpiozero import LightSensor, LED
from signal import pause

sensor = LightSensor (18)
led = LED(16)

sensor.when_dark = led.on
sensor.when_light = led.off

pause ()

Or make a PWMLED (page 127) change brightness according to the detected light level:

20 Chapter 2. Basic Recipes

gpiozero 2.0.1 Documentation, Release 2.0.1

from gpiozero import LightSensor, PWMLED
from signal import pause

sensor = LightSensor (18)
led = PWMLED (16)

led.source = sensor

pause ()

2.20 Distance sensor

TLLLLLILILLL]]
DSI (DISPLAY)

L
(V43IWVD) 1SD

$102 Id Auagdsey o

pel
Q
w
T
o
5]
3
3
<
i
=
9]
a
©
N
<
=
i

-oouu-oouu-oouuo-oocum-uo

Note: In the diagram above, the wires leading from the sensor to the breadboard can be omitted; simply plug the
sensor directly into the breadboard facing the edge (unfortunately this is difficult to illustrate in the diagram without
the sensor’s diagram obscuring most of the breadboard!)

Have a DistanceSensor (page 113) detect the distance to the nearest object:

from gpiozero import DistanceSensor
from time import sleep

sensor = DistanceSensor (23, 24)
while True:

print ('Distance to nearest object is', sensor.distance, 'm')
sleep (1)

Run a function when something gets near the sensor:

from gpiozero import DistanceSensor, LED
from signal import pause

(continues on next page)

2.20. Distance sensor 21

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

sensor = DistanceSensor (23, 24, max_distance=1, threshold_distance=0.2)
led = LED(16)

sensor.when_in_range = led.on
sensor.when_out_of_range = led.off
pause ()

2.21 Rotary encoder

‘ ‘ ‘
ININENNNNNNNNNN
) -

DSI (DISPLAY;

N/ E
b

L L
(V43WVD) ISD

(@)
2
[
n
o
o
[0}
3
3
<
)
)
o
=
B

>
c
=
5

T'TA Z I9POIN Id Auisqdsey

ETHERNET

Note: In this recipe, I've used a common anode RGB LED. Often, Pi projects use common cathode RGB LEDs
because they’re slightly easier to think about electrically. However, in this case all three components can be found in
an illuminated rotary encoder which incorporates a common anode RGB LED, and a momentary push button. This
is also the reason for the button being wired active-low, contrary to most other examples in this documentation.

For the sake of clarity, the diagram shows the three separate components, but this same circuit will work equally well
with this commonly available illuminated rotary encoder'? instead.

Have a RotaryEncoder (page 115), an RGBLED (page 128), and But t on (page 105) act as a color picker:

from threading import Event
from colorzero import Color
from gpiozero import RotaryEncoder, RGBLED, Button

rotor = RotaryEncoder (16, 20, wrap=True, max_steps=180)
rotor.steps = -180

led = RGBLED (22, 23, 24, active_high=False)

btn = Button (21, pull_up=False)

led.color = Color ('"#£f00")

done = Event ()

def change_hue () :
(continues on next page)

19 https://shop.pimoroni.com/products/rotary-encoder-illuminated-rgb

22 Chapter 2. Basic Recipes

https://shop.pimoroni.com/products/rotary-encoder-illuminated-rgb

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
Scale the rotor steps (-180..180) to 0..1
hue = (rotor.steps + 180) / 360
led.color = Color (h=hue, s=1, v=1)

def show_color():
print (f'Hue {led.color.hue.deg:.1f}° = {led.color.html}'")

def stop_script():
print ('Exiting')
done.set ()

print ('Select a color by turning the knob')
rotor.when_rotated = change_hue

print ('Push the button to see the HTML code for the color')
btn.when_released = show_color

print ('Hold the button to exit')

btn.when_held = stop_script

done.wait ()

2.22 Servo

Control a Servo (page 137) between its minimum, mid-point and maximum positions in sequence:

from gpiozero import Servo
from time import sleep

servo = Servo (l1l7)

while True:
servo.min ()
sleep(2)
servo.mid ()
sleep(2)
servo.max ()
sleep(2)

Use a button to control the Servo (page 137) between its minimum and maximum positions:

from gpiozero import Servo, Button

servo = Servo(l7)
btn = Button(14)

while True:
servo.min ()
btn.wait_for_press|()
servo.max ()
btn.wait_for_press/()

Automate the Servo (page 137) to continuously slowly sweep:

from gpiozero import Servo
from gpiozero.tools import sin_values
from signal import pause

servo = Servo(l7)

servo.source = sin_values /()

(continues on next page)

2.22. Servo 23

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

servo.source_delay = 0.1

pause ()

Use AngularServo (page 139) so you can specify an angle:

from gpiozero import AngularServo
from time import sleep

servo = AngularServo (17, min_angle=-90, max_angle=90)

while True:
servo.angle = —-90
sleep(2)
servo.angle = —45
sleep(2)
servo.angle = 0
sleep(2)
servo.angle = 45
sleep(2)
servo.angle = 90
sleep(2)

2.23 Motors

TLITLLLLITRLL]]
)

DS (DISPLAY)

[
(V43WvD) 1SD

ETHERNET

102 Id Auagdsey o
V..
.

T'TA Z I9POW Id Auagdsey
AAAA
AmA AAAAA

J..

fl

Spin a Mot or (page 134) around forwards and backwards:

from gpiozero import Motor
from time import sleep

motor = Motor (forward=4, backward=14)

while True:
motor.forward ()
sleep (5)
motor.backward ()
sleep (5)

24 Chapter 2. Basic Recipes

gpiozero 2.0.1 Documentation, Release 2.0.1

2.24 Robot

DSI (DISPLAY)

e o o0 e o o0
e o o0 o e .
e o 000000 ofp o
e o 000000 offe o
e o 0000 0 offe offe o
e o o000 0 ofic ofle o
e o o000 0 ol ofle o
pel
1
X
%g— e o o000 0 off ofle o
'g_(_l: ® e 0o 00000 ofle o
= 3
0 < e e o000 0 ofp o
ENNNRNENNENNNNE 3 o
< = ® o 0o 0 0 0 0 0 . .
I L ECZ) ® o 0o 0 0 0 0 0 ° o
(V43WYD) ISD N o
O o
=2
NN
< o
o
-

Make a Robot (page 176) drive around in (roughly) a square:

from gpiozero import Robot, Motor
from time import sleep

robot = Robot (left=Motor (4, 14), right=Motor (17, 18))

for i in range (4):
robot . forward ()
sleep (10)
robot.right ()
sleep (1)

Make a Robot (page 176) with a DistanceSensor (page 113) that runs away when things get within 20cm of
it:

from gpiozero import Robot, Motor, DistanceSensor

from signal import pause
(continues on next page)

2.24. Robot 25

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

sensor = DistanceSensor (23, 24, max_distance=1, threshold_distance=0.2)
robot = Robot (left=Motor (4, 14), right=Motor (17, 18))

sensor.when_in_range = robot.backward
sensor.when_out_of_range = robot.stop
pause ()

2.25 Button controlled robot

LLLLILTRINLL]]
DSI (DISPLAY)

I I
(V43WYD) ISD

pe)
o8
i)
n O
2o
o
o<l
33
33
T =<
NS
(X0
=y
N
<
=
i

Use four GPIO buttons as forward/back/left/right controls for a Robot (page 176):

from gpiozero import Robot, Motor, Button
from signal import pause

robot = Robot (left=Motor (4, 14), right=Motor (17, 18))

(continues on next page)

26 Chapter 2. Basic Recipes

gpiozero 2.0.1 Documentation, Release 2.0.1

left = Button (26)
right = Button (16)
fw = Button(21)

bw = Button (20)

fw.when_pressed = robot.forward
fw.when_released = robot.stop

left .when_pressed = robot.left
left.when_released = robot.stop

right .when_pressed = robot.right
right .when_released = robot.stop

bw.when_pressed = robot.backward
bw.when_released = robot.stop

pause ()

(continued from previous page)

2.25. Button controlled robot

27

gpiozero 2.0.1 Documentation, Release 2.0.1

2.26 Keyboard controlled robot

DSI (DISPLAY)

e o o0 e o oo
e o o o o .
® e 000000 ofb o
e 0o 00000 offe o
© o 0o 00 0 0 offs ofie o
@ oo 0o 0 0 0 ofis ofle o
e oo 0o 0 o o ofis ofle o
pel
1
X
%E— e oo 000 0 ofs ofle o
'g_(_l: ® e 0o 00000 ofle o
= =
0 < e e o000 0 ofp o
NERRRRRNRNRNNN] 3
< = ® o 0o 0 0 0 0 0 . .
I L ECZ) ® o 0o 0 0 0 0 0 ° o
(V43WYD) ISD N o
S o
=2
NN
< .
o
o

Use up/down/left/right keys to control a Robot (page 176):

import curses
from gpiozero import Robot, Motor

robot = Robot (left=Motor (4, 14), right=Motor (17, 18))

actions = {
curses.KEY_UP: robot . forward,
curses.KEY_DOWN: robot.backward,
curses.KEY_LEFT: robot.left,
curses.KEY_RIGHT: robot.right,

def main (window) :
next_key = None
while True:
curses.halfdelay (1)
(continues on next page)

28 Chapter 2. Basic Recipes

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

if next_key is None:
key = window.getch ()
else:
key = next_key
next_key = None
if key != -1:
KEY PRESSED
curses.halfdelay (3)
action = actions.get (key)
if action is not None:
action ()
next_key = key
while next_key == key:
next_key = window.getch ()
KEY RELEASED
robot.stop ()

curses.wrapper (main)

Note: This recipe uses the standard curses?’ module. This module requires that Python is running in a terminal

in order to work correctly, hence this recipe will not work in environments like IDLE.

If you prefer a version that works under IDLE, the following recipe should suffice:

from gpiozero import Robot, Motor
from evdev import InputDevice, list_devices, ecodes

robot = Robot (left=Motor (4, 14), right=Motor (17, 18))

Get the list of available input devices

devices = [InputDevice (device) for device in list_devices ()]

Filter out everything that's not a keyboard. Keyboards are defined as any
device which has keys, and which specifically has keys 1..31 (roughly Esc,
the numeric keys, the first row of QWERTY plus a few more) and which does
not have key 0 (reserved)

must_have = {i for i in range(l, 32)}
must_not_have = {0}
devices = [
dev
for dev in devices
for keys in (set (dev.capabilities() .get (ecodes.EV_KEY, []1)),)

if must_have.issubset (keys)

and must_not_have.isdisjoint (keys)
1
Pick the first keyboard
keyboard = devices[0]

keypress_actions = {
ecodes.KEY_UP: robot.forward,
ecodes.KEY_DOWN: robot.backward,
ecodes.KEY_LEFT: robot.left,
ecodes.KEY_RIGHT: robot.right,

for event in keyboard.read_loop() :
if event.type == ecodes.EV_KEY and event.code in keypress_actions:
if event.value == 1: # key pressed
keypress_actions[event.code] ()

(continues on next page)

20 https://docs.python.org/3.9/library/curses.html#module-curses

2.26. Keyboard controlled robot

29

https://docs.python.org/3.9/library/curses.html#module-curses

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

if event.value == 0: # key released
robot.stop ()

Note: This recipe uses the third-party evdev module. Install this library with sudo pip3 install evdev
first. Be aware that evdev will only work with local input devices; this recipe will not work over SSH.

2.27 Motion sensor robot

LLLLLLILLNYL]]
DSI (DISPLAY)

oo 0 00 oo o0
e o o0 o e .
e o000 000 ofp o
® o0 00000 offe o
e o0 000 0 offc offe o
e o000 0 0 oflc ofle o
e o000 0 0 ofle ofle o
e X
o
o
g-g' e o000 0 0 offis ofle o
¥ -8-2 © o 000000 ofle o
o< ® o0 00 0 0 0 oflp o
(LLLITERRLIIER] 3 -
< = e o 000000 . .
' Eg e e 000000 . .
(V43WvD) ISD N
S o
o
AN
<
=
-

Make a robot drive forward when it detects motion:

30 Chapter 2. Basic Recipes

gpiozero 2.0.1 Documentation, Release 2.0.1

from gpiozero import Robot, Motor, MotionSensor
from signal import pause

robot = Robot (left=Motor (4, 14), right=Motor (17, 18))
pir = MotionSensor (5)

pir.when_motion = robot.forward
pir.when_no_motion = robot.stop
pause ()

Alternatively:

from gpiozero import Robot, Motor, MotionSensor
from gpiozero.tools import zip_values
from signal import pause

robot = Robot (left=Motor (4, 14), right=Motor (17, 18))
pir = MotionSensor (5)

robot.source = zip_values (pir, pir)

pause ()

2.28 Potentiometer

DSl (DISPLAY) -

L L
(V43WVD) ISD

#7102 Id Auaqdsey o
2 G.19po Id Ausagdsey

MCP3008
. oo 0

LA B o e o 0
® o oo CIIIunmUmD © © O O O O O O O O 0O
® © 0 0 0 0 0 00 0SSOSO GOSN OO OGS OCOD
e o o ® © 0 0 0 0 0 0 0 0 0 0 0 0o
e o 9 ® ® 0 0 0 0 0 0 0 0 0 0 0o
H
e o e o . .
e o e o e o . .

Continually print the value of a potentiometer (values between 0 and 1) connected to a MCP 3008 (page 149) analog
to digital converter:

2.28. Potentiometer 31

gpiozero 2.0.1 Documentation, Release 2.0.1

from gpiozero import MCP3008
pot = MCP3008 (channel=0)

while True:
print (pot.value)

Present the value of a potentiometer on an LED bar graph using PWM to represent states that won’t “fill” an LED:

from gpiozero import LEDBarGraph, MCP3008
from signal import pause

graph = LEDBarGraph(5, 6, 13, 19, 26, pwm=True)
pot = MCP3008 (channel=0)

graph.source = pot

pause ()

2.29 Measure temperature with an ADC

Wire a TMP36 temperature sensor to the first channel of an MCP3008 (page 149) analog to digital converter:

from gpiozero import MCP3008
from time import sleep

def convert_temp (gen) :
for value in gen:
yield (value * 3.3 - 0.5) * 100

adc = MCP3008 (channel=0)
for temp in convert_temp (adc.values) :

print ('The temperature is', temp, 'C')
sleep (1)

32 Chapter 2. Basic Recipes

gpiozero 2.0.1 Documentation, Release 2.0.1

2.30 Full color LED controlled by 3 potentiometers

DSI (DISPLAY)

id Aluaqdsey

L L
(V43WVD) ISD

ETHERNET

27002 'd Ausaden::

TALA T I9Ro

.
.
.
. e e 0o 00 00 . e 000000 .
.
MCP3008
e o 0 e o o0
¢ s s CIIIlhlhmlmhIIIUUnmnD ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o
© 6 0o 0 0 s CIIT'=nmD 6 6 6 0 0 0 0 0 0 o
© 6 0 0 0 00 00 CI:TIuID © 6 © 0 o o o o o
© 606 0606000060000 000000000000
o0 o0
o0 o0

Wire up three potentiometers (for red, green and blue) and use each of their values to make up the colour of the
LED:

from gpiozero import RGBLED, MCP3008

led = RGBLED (red=2, green=3, blue=4)
red_pot = MCP3008 (channel=0)
green_pot = MCP3008 (channel=1)
blue_pot = MCP3008 (channel=2)

while True:
led.red = red_pot.value
led.green = green_pot.value
led.blue = blue_pot.value

Alternatively, the following example is identical, but uses the source (page 200) property rather than a while?!
loop:

from gpiozero import RGBLED, MCP3008
from gpiozero.tools import zip_values
from signal import pause

led = RGBLED (2, 3, 4)
red_pot = MCP3008 (0)

green_pot = MCP3008 (1)
blue_pot = MCP3008(2)

(continues on next page)

21 https://docs.python.org/3.9/reference/compound_stmts. html#while

2.30. Full color LED controlled by 3 potentiometers 33

https://docs.python.org/3.9/reference/compound_stmts.html#while

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

led.source = zip_values (red_pot, green_pot, blue_pot)

pause ()

2.31 Timed heat lamp

If you have a pet (e.g. a tortoise) which requires a heat lamp to be switched on for a certain amount of time each day,
you can use an Energenie Pi-mote?” to remotely control the lamp, and the TimeOfDay (page 190) class to control
the timing:

from gpiozero import Energenie, TimeOfDay
from datetime import time
from signal import pause

lamp = Energenie (1)
daytime = TimeOfDay (time (8), time (20))

daytime.when_activated = lamp.on
daytime.when_deactivated = lamp.off

pause ()

2.32 Internet connection status indicator

You can use a pair of green and red LEDs to indicate whether or not your internet connection is working. Simply use
the PingServer (page 191) class to identify whether a ping to google.com is successful. If successful, the green
LED is lit, and if not, the red LED is lit:

from gpiozero import LED, PingServer
from gpiozero.tools import negated
from signal import pause

green = LED(17)
red = LED(18)

google = PingServer ('google.com')
google.when_activated = green.on
google.when_deactivated = green.off

red.source = negated(green)

pause ()

22 https://energenie4u.co.uk/catalogue/product/ENER002-2PT

34 Chapter 2. Basic Recipes

https://energenie4u.co.uk/catalogue/product/ENER002-2PI

gpiozero 2.0.1 Documentation, Release 2.0.1

2.33 CPU Temperature Bar Graph

You can read the Raspberry Pi’s own CPU temperature using the built-in CPUTemperature (page 192) class, and
display this on a “bar graph” of LEDs:

from gpiozero import LEDBarGraph, CPUTemperature
from signal import pause

cpu = CPUTemperature (min_temp=50, max_temp=90)
leds = LEDBarGraph(2, 3, 4, 5, 6, 7, 8, pwm=True)

leds.source = cpu

pause ()

2.34 More recipes

Continue to:
* Advanced Recipes (page 37)
* Remote GPIO Recipes (page 53)

2.33. CPU Temperature Bar Graph 35

gpiozero 2.0.1 Documentation, Release 2.0.1

36 Chapter 2. Basic Recipes

CHAPTER
THREE

ADVANCED RECIPES

The following recipes demonstrate some of the capabilities of the GPIO Zero library. Please note that all recipes are
written assuming Python 3. Recipes may work under Python 2, but no guarantees!

3.1 LEDBoard

You can iterate over the LEDs in a LEDBoard (page 157) object one-by-one:

from gpiozero import LEDBoard
from time import sleep

leds = LEDBoard(5, 6, 13, 19, 26)

for led in leds:
led.on ()
sleep (1)
led.off ()

LEDBoard (page 157) also supports indexing. This means you can access the individual LED (page 125) objects
using leds [1] where 1 is an integer from O up to (not including) the number of LEDs:

from gpiozero import LEDBoard
from time import sleep

leds = LEDBoard(2, 3, 4, 5, 6, 7, 8, 9)

leds[0] .on () # first led on
sleep (1)

leds[7] .on () # last led on
sleep (1)

leds[-1].0ff () # last led off
sleep (1)

This also means you can use slicing to access a subset of the LEDs:

from gpiozero import LEDBoard
from time import sleep

leds = LEDBoard(2, 3, 4, 5, 6, 7, 8, 9)

for led in leds[3:]: # leds 3 and onward
led.on ()

sleep (1)

leds.off ()

for led in leds[:2]: # leds 0 and 1
led.on ()

(continues on next page)

37

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

sleep (1)
leds.off ()

for led in leds[::2]: # even leds (0, 2, 4...)
led.on ()

sleep (1)

leds.off ()

for led in leds[1::2]: # odd leds (1, 3, 5...)
led.on ()

sleep (1)

leds.off ()

LEDBoard (page 157) objects can have their LED objects named upon construction. This means the individual
LEDs can be accessed by their name:

from gpiozero import LEDBoard
from time import sleep

leds = LEDBoard(red=2, green=3, blue=4)

leds.red.on ()

sleep (1)
leds.green.on()
sleep (1)
leds.blue.on ()
sleep (1)

LEDBoard (page 157) objects can also be nested within other LEDBoard (page 157) objects:

from gpiozero import LEDBoard
from time import sleep

leds = LEDBoard(red=LEDBoard(top=2, bottom=3), green=LEDBoard (top=4, bottom=5))

leds.red.on () ## both reds on

sleep (1)

leds.green.on () # both greens on

sleep (1)

leds.off () # all off

sleep (1)

leds.red.top.on() # top red on

sleep (1)

leds.green.bottom.on () # bottom green on
sleep (1)

3.2 Multi-character 7-segment display

The 7-segment display demonstrated in the previous chapter is often available in multi-character variants (typically
4 characters long). Such displays are multiplexed meaning that the LED pins are typically the same as for the single
character display but are shared across all characters. Each character in turn then has its own common line which
can be tied to ground (in the case of a common cathode display) to enable that particular character. By activating
each character in turn very quickly, the eye can be fooled into thinking four different characters are being displayed
simultaneously.

In such circuits you should not attempt to sink all the current from a single character (which may have up to 8 LEDs, in
the case of a decimal-point, active) into a single GPIO. Rather, use some appropriate transistor (or similar component,
e.g. an opto-coupler) to tie the digit’s cathode to ground, and control that component from a GPIO.

38 Chapter 3. Advanced Recipes

gpiozero 2.0.1 Documentation, Release 2.0.1

TITTTCTTTETTT)
(DISPLAY)

o]
o
o
o
3
-]
N
o
=4
=

1+ A Z |9POI Id AL

This circuit demonstrates a 4-character 7-segment (actually 8-segment, with decimal-point) display, controlled by the
Pi’s GPIOs with 4 2N-3904 NPN transistors to control the digits.

Warning: You are strongly advised to check the data-sheet for your particular multi-character 7-segment display.
The pin-outs of these displays vary significantly and are very likely to be different to that shown on the breadboard
above. For this reason, the schematic for this circuit is provided below; adapt it to your particular display.

—1o-s0dv

{Grio26 p— N o

V10D v : v
Y

€910

——{v-sodv ©
=] GPI02 DAL 12C GPIO21
V,
] GPIO3 5CL1 12C GPI020 R1-R8 " \/Q
———d GPIO4 RaspberryPi GPIO16 330Q 8 O
] GPIO17 Model 2 V1.1 cpionn I A da = @
] GPi027 ID_SC 12C ID EEPROM WA — /\/\Q
s . Y A 1 .
— 0 SPIO_MOSI GPIOB SPI0_ CEON \~ 3 o
—c GPIO25
\l a V,
e Gri0 GPI024) l\/\Nv 2 1 R Q\/m
=] ID_SD 12¢ ID EEPROM GPI023 e —s Er3
—]cri0s GPIO18 PCM CLK L AMWN—— 322 O = o)
o S
05 GPIO15 UARTO_RXD m"§ @
~
GPIO13 GPIO14 UARTO. DD e /\
- 7\
{crio10 7\
o
: =

MW
R9-R12
33k0

zo1a ©

1910 \/ : \ U

Ql-Q4
2N 3904

The following code can be used to scroll a message across the display:

from itertools import cycle

from collections import deque

from gpiozero import LEDMultiCharDisplay
from signal import pause

display = LEDMultiCharDisplay (
LEDCharDisplay (22, 23, 24, 25, 21, 20, 16, dp=12), 26, 19, 13, 6)

def scroller (message, chars=4):

(continues on next page)

3.2. Multi-character 7-segment display 39

gpiozero 2.0.1 Documentation, Release 2.0.1

d = deque (maxlen=chars)
for ¢ in cycle (message):
d.append(c)
if len(d) == chars:
yield ''.join (d)
display.source_delay 0.2
display.source = scroller ('GPIO 2ERO ")
pause ()

(continued from previous page)

3.3 Who’s home indicator

Using a number of green-red LED pairs, you can show the status of who’s home, according to which IP addresses
you can ping successfully. Note that this assumes each person’s mobile phone has a reserved IP address on the home

router.

from gpiozero import PingServer, LEDBoard

from gpiozero.tools import negated

from signal import pause

status = LEDBoard (
mum=LEDBoard (red=14, green=15),
dad=LEDBoard (red=17, green=18),
alice=LEDBoard (red=21, green=22)

statuses {
PingServer ('192.168.1.5"):
PingServer ('192.168.1.6"):
PingServer ('192.168.1.7"):

status.mum,
status.dad,
status.alice,

for server, leds in statuses.items () :
leds.green.source = server
leds.green.source_delay 60

leds.red.source negated (leds.green)

pause ()

Alternatively, using the STATUS Zero” board:

from gpiozero import PingServer, StatusZero
from gpiozero.tools import negated
from signal import pause

status StatusZero ('mum', 'dad', 'alice')
statuses = {
PingServer ('192.168.1.5"):
PingServer ('192.168.1.6"):

PingServer ('192.168.1.7"):

status.mum,
status.dad,
status.alice,

for server, leds in statuses.items () :
leds.green.source server
leds.green.source_delay 60

leds.red.source negated(leds.green)

23 https://thepihut.com/status

(continues on next page)

40 Chapter 3

. Advanced Recipes

https://thepihut.com/status

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

pause ()

3.4 Travis build LED indicator

Use LEDs to indicate the status of a Travis build. A green light means the tests are passing, a red light means the
build is broken:

from travispy import TravisPy

from gpiozero import LED

from gpiozero.tools import negated
from time import sleep

from signal import pause

def build_passed(repo) :
t = TravisPy ()
r = t.repo (repo)
while True:
yield r.last_build_state == 'passed'

red = LED(12)
green = LED(16)

green.source = build_passed('gpiozero/gpiozero")
green.source_delay = 60 * 5 # check every 5 minutes

red.source = negated(green)

pause ()

Note this recipe requires travispy>*. Install with sudo pip3 install travispy.

3.5 Button controlled robot

Alternatively to the examples in the simple recipes, you can use four buttons to program the directions and add a fifth
button to process them in turn, like a Bee-Bot or Turtle robot.

from gpiozero import Button, Robot, Motor
from time import sleep
from signal import pause

robot = Robot (Motor (17, 18), Motor (22, 23))

left = Button(2)
right = Button (3)
forward = Button (4)
backward = Button (5)
go = Button (6)

instructions = []

def add_instruction (btn) :
instructions.append ({
left: (-1, 1),

right: (iL, =iy,

(continues on next page)

24 https://travispy.readthedocs.io/

3.4. Travis build LED indicator 41

https://travispy.readthedocs.io/

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

forward: (L, 4y,
backward: (-1, -1),
} [btn])

def do_instructions():
instructions.append((0, 0))
robot.source_delay = 0.5
robot.source = instructions
sleep (robot.source_delay * len(instructions))
del instructions(:]

go.when_pressed = do_instructions
for button in (left, right, forward, backward) :
button.when_pressed = add_instruction

pause ()

3.6 Robot controlled by 2 potentiometers

Use two potentiometers to control the left and right motor speed of a robot:

from gpiozero import Robot, Motor, MCP3008
from gpiozero.tools import zip_values
from signal import pause

robot = Robot (left=Motor (4, 14), right=Motor (17, 18))

left_pot = MCP3008(0)
right_pot = MCP3008 (1)

robot.source = zip_values (left_pot, right_pot)

pause ()

To include reverse direction, scale the potentiometer values from 0->1 to -1->1:

from gpiozero import Robot, Motor, MCP3008
from gpiozero.tools import scaled
from signal import pause

robot = Robot (left=Motor (4, 14), right=Motor (17, 18))

left_pot = MCP3008(0)
right_pot = MCP3008 (1)

robot.source = zip(scaled(left_pot, -1, 1), scaled(right_pot, -1, 1))

pause ()

Note: Please note the example above requires Python 3. In Python 2, zip () %° doesn’t support lazy evaluation so
the script will simply hang.

25 https://docs.python.org/3.9/library/functions.html#zip

42 Chapter 3. Advanced Recipes

https://docs.python.org/3.9/library/functions.html#zip

gpiozero 2.0.1 Documentation, Release 2.0.1

3.7 BlueDot LED

BlueDot is a Python library an Android app which allows you to easily add Bluetooth control to your Raspberry Pi
project. A simple example to control a LED using the BlueDot app:

from bluedot import BlueDot
from gpiozero import LED

bd = BlueDot ()
led = LED(17)

while True:
bd.wait_for_press()
led.on ()
bd.wait_for_release ()
led.off ()

Note this recipe requires b1uedot and the associated Android app. See the BlueDot documentation?® for installation
instructions.

3.8 BlueDot robot

You can create a Bluetooth controlled robot which moves forward when the dot is pressed and stops when it is released:

from bluedot import BlueDot
from gpiozero import Robot, Motor
from signal import pause

bd = BlueDot ()
robot = Robot (left=Motor (4, 14), right=Motor (17, 18))

def move (pos) :

if