

Welcome to gpib-ctypes’s documentation!

Contents:

	gpib-ctypes
	Features

	Testing

	Credits

	Installation
	Stable release

	From sources

	Usage
	Handle-level GPIB API

	Object-oriented GPIB API

	Example usage with pyvisa and the pure Python backend pyvisa-py

	gpib_ctypes
	gpib_ctypes package

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.2.1 (2018-11-28)

	0.2.0 (2018-11-27)

	0.1.1 (2018-11-27)

	0.1.0 (2018-01-01)

Indices and tables

	Index

	Module Index

	Search Page

gpib-ctypes

[image: _images/gpib_ctypes.svg]
 [https://pypi.python.org/pypi/gpib_ctypes][image: _images/gpib_ctypes1.svg]
 [https://travis-ci.org/tivek/gpib_ctypes][image: Documentation Status]
 [https://gpib-ctypes.readthedocs.io/en/latest/?badge=latest][image: Updates]
 [https://pyup.io/repos/github/tivek/gpib_ctypes/]Cross-platform Python bindings for the NI GPIB and linux-gpib C interfaces.

	Free software: GNU General Public License v2

	Documentation: https://gpib-ctypes.readthedocs.io.

Features

	cross-platform: tested on Microsoft Windows and Linux

	API-compatible with the linux-gpib Python bindings

	no Python dependencies except the standard library

Testing

Currently tested with:
* NI GPIB-USB-HI, Microsoft Windows 7 32-bit, NI GPIB driver version 3.1.0.49154,
* NI GPIB-USB-HI, Arch Linux 64-bit current, linux-gpib 4.1.0

More testers welcome with different hardware and OS configurations!

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Stable release

TO DO: we still do not have a stable release on pypi

To install gpib-ctypes, run this command in your terminal:

$ pip install gpib_ctypes

This is the preferred method to install gpib-ctypes, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for gpib-ctypes can be downloaded from the Github repo [https://github.com/tivek/gpib_ctypes].

You can install directly from the repo using pip:

$ pip install git+https://github.com/tivek/gpib_ctypes

Alternatively, install from a local copy of the source. You can either clone the public repository:

$ git clone git://github.com/tivek/gpib_ctypes

Or download the tarball [https://github.com/tivek/gpib_ctypes/tarball/master]:

$ curl -OL https://github.com/tivek/gpib_ctypes/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use gpib-ctypes in a project, import all submodules at once:

import gpib_ctypes

… or import gpib and Gpib submodules separately as below.

Handle-level GPIB API

Identify instrument at board 0, primary address 23.

from gpib_ctypes import gpib

try:
 dev_handle = gpib.dev(0, 23)

 gpib.write(dev_handle, b'*IDN?')
 result = gpib.read(dev_handle, 1000)

except gpib.GpibError as err:
 # do something with err.code
 pass

Object-oriented GPIB API

Identify instrument at board 0, primary address 23.

from gpib_ctypes import Gpib

try:
 dev = Gpib.Gpib(0, 23)

 dev.write(b'*IDN?')
 result = dev.read(1000)

except gpib.GpibError as err:
 # do something with err.code
 pass

Example usage with pyvisa and the pure Python backend pyvisa-py

pyvisa-py will try to load the root-level gpib module, eg. from the linux-gpib project.
To make pyvisa-py use gpib_ctypes.gpib instead, monkey patch it by calling gpib_ctypes.make_default_gpib().

from gpib_ctypes import make_default_gpib
make_default_gpib()

import visa
rm = visa.ResourceManager('@py')

resources = rm.list_resources()
example result: ('GPIB0::14::INSTR', 'GPIB0::23::INSTR')

dev = rm.open_resource('GPIB0::23::INSTR')

gpib_ctypes

	gpib_ctypes package
	Subpackages
	gpib_ctypes.gpib package
	Submodules

	gpib_ctypes.gpib.constants module

	gpib_ctypes.gpib.gpib module

	Module contents

	Submodules

	gpib_ctypes.Gpib module

	Module contents

gpib_ctypes package

Subpackages

	gpib_ctypes.gpib package
	Submodules

	gpib_ctypes.gpib.constants module

	gpib_ctypes.gpib.gpib module

	Module contents

Submodules

gpib_ctypes.Gpib module

	
class gpib_ctypes.Gpib.Gpib(name='gpib0', pad=None, sad=0, timeout=13, send_eoi=1, eos_mode=0)

	Bases: object

Three ways to create a Gpib object:
Gpib(“name”)

returns a board or device object, from a name in the config file

	Gpib(board_index)

	returns a board object, with the given board number

	Gpib(board_index, pad[, sad[, timeout[, send_eoi[, eos_mode]]]])

	returns a device object, like ibdev()

	
ask(option)

	

	
clear()

	

	
close()

	

	
command(str)

	

	
config(option, value)

	

	
ibcnt()

	

	
ibloc()

	

	
ibsta()

	

	
interface_clear()

	

	
lines()

	

	
listener(pad, sad=0)

	

	
read(len=512)

	

	
remote_enable(val)

	

	
serial_poll()

	

	
timeout(value)

	

	
trigger()

	

	
wait(mask)

	

	
write(str)

	

	
write_async(str)

	

Module contents

Top-level package for gpib-ctypes.

	
gpib_ctypes.make_default_gpib()

	Monkeypatches gpib_ctypes.gpib and gpib_ctypes.Gpib modules to be
used as the only gpib and Gpib modules by the running process.

Example usage with pyvisa-py:

from gpib_ctypes import make_default_gpib
make_default_gpib() # call early in __main__

import visa
rm = visa.ResourceManager(‘@py’) # rm now uses gpib_ctypes

gpib_ctypes.gpib package

Submodules

gpib_ctypes.gpib.constants module

gpib_ctypes.gpib.gpib module

	
exception gpib_ctypes.gpib.gpib.GpibError(funcname)

	Bases: Exception

Exception class with helpful GPIB error messages
GpibError(gpib_function_name)

	
gpib_ctypes.gpib.gpib.ask(handle, conf)

	Query configuration by calling ibask.

	Args:

	handle (int): board or device handle
conf (int): gpib.Iba* constant designating configuration settings

	Returns:

	int: configuration setting value

	
gpib_ctypes.gpib.gpib.clear(handle)

	Clear device by calling ibclr.

	Args:

	handle (int): device handle

	Returns:

	int: ibsta value

	
gpib_ctypes.gpib.gpib.close(handle)

	Close board or device handle by calling ibonl.

	Args:

	handle (int): board or device handle to close

	Returns:

	int: ibsta value

	
gpib_ctypes.gpib.gpib.command(handle, cmd)

	Write command bytes by calling ibcmd.

	Args:

	handle (int): board handle
cmd (bytes): sequence of bytes to write

	Returns:

	int: ibsta value

	
gpib_ctypes.gpib.gpib.config(handle, conf, value)

	Change configuration by calling ibconfig.

	Args:

	handle (int): board or device handle
conf (int): gpib.Ibc* constant designating configuration settings
value (int): configuration setting value

	Returns:

	int: ibsta value

	
gpib_ctypes.gpib.gpib.dev(board, pad, sad=0, tmo=14, sendeoi=1, eos=0)

	Get a device handle by calling ibdev.

	Args:

	board (int): board number
pad (int): primary address
sad (int): secondary address, default gpib.NO_SAD
tmo (int): timeout constant, default gpib.T30s
sendeoi (int): assert EOI on write, default 1
eos (int): end-of-string termination, default 0

	Returns:

	int: board or device handle

	
gpib_ctypes.gpib.gpib.find(name)

	Get a device handle based on a name from configuration file
by calling ibfind.

	Args:

	name (string)

	Returns:

	int: board or device handle

	
gpib_ctypes.gpib.gpib.ibcnt()

	Get number of transferred bytes by calling ThreadIbcntl or reading ibcnt.

	Args:

	none

	Returns:

	int: number of transferred bytes

	
gpib_ctypes.gpib.gpib.ibloc(handle)

	Push device to local mode by calling ibloc.

	Args:

	handle (int): device handle

	Returns:

	int: ibsta value

	
gpib_ctypes.gpib.gpib.ibsta()

	Get status value by calling ThreadIbsta or reading ibsta.

	Args:

	none

	Returns:

	int: ibsta value

	
gpib_ctypes.gpib.gpib.interface_clear(handle)

	Clear interface by calling ibsic.

	Args:

	handle (int): board handle

	Returns:

	int: ibsta value

	
gpib_ctypes.gpib.gpib.lines(board)

	Obtain the status of the control and handshaking bus
lines of the bus.

	Args:

	board (int): board handle

	Returns:

	int: line capability and status bits

	
gpib_ctypes.gpib.gpib.listener(board, pad, sad=0)

	Check if listener is present at address by calling ibln.

	Args:

	board (int): board or device handle, or board number
pad (int): primary address
sad (int): secondary address, default gpib.NO_SAD

	Returns:

	bool: True if listener is present, False otherwise

	
gpib_ctypes.gpib.gpib.read(handle, length)

	Read a number of data bytes by calling ibread.

	Args:

	handle (int): board or device handle
length (int): number of bytes to read

	Returns:

	bytes: sequence of bytes which was read

	
gpib_ctypes.gpib.gpib.remote_enable(handle, enable)

	Set remote enable by calling ibsre.

	Args:

	handle (int): board handle
enable (int): if non-zero, set remote enable

	Returns:

	int: ibsta value

	
gpib_ctypes.gpib.gpib.serial_poll(handle)

	Read status byte by calling ibrsp.

	Args:

	handle (int): device handle

	Returns:

	int: serial poll status byte

	
gpib_ctypes.gpib.gpib.spoll_bytes(handle)

	Get length of status byte queue by calling ibspb.

	Args:

	handle (int): device handle

	Returns:

	int: status byte queue length

	
gpib_ctypes.gpib.gpib.timeout(handle, t)

	Set IO timeout by calling ibtmo.

	Args:

	handle (int): board or device handle
t (int): timeout, one of constants from gpib.TNONE to gpib.T100s

	Returns:

	int: ibsta value

	
gpib_ctypes.gpib.gpib.trigger(handle)

	Trigger device by calling ibtrg.

	Args:

	handle (int): device handle

	Returns:

	int: ibsta value

	
gpib_ctypes.gpib.gpib.version()

	Get the GPIB library version. Not implemented on Windows.

	Args:

	none

	Returns:

	str: GPIB library version

	
gpib_ctypes.gpib.gpib.wait(handle, eventmask)

	Wait for event by calling ibwait.

	Args:

	handle (int): board or device handle
eventmask (int): ibsta bits designating events to wait for

	Returns:

	int: ibsta value

	
gpib_ctypes.gpib.gpib.write(handle, data)

	Write data bytes by calling ibwrt.

	Args:

	handle (int): board or device handle
data (bytes): sequence of bytes to write

	Returns:

	int: ibsta value

	
gpib_ctypes.gpib.gpib.write_async(handle, data)

	Write data bytes asynchronously by calling ibwrta.

	Args:

	handle (int): board or device handle
data (bytes): sequence of bytes to write

	Returns:

	int: ibsta value

Module contents

Python interface for the linux-gpib library or the NI GPIB C
library on Windows and Linux. Adheres to the linux-gpib Python API.

All functions return the value of ibsta except where otherwise specified.

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/tivek/gpib_ctypes/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

gpib-ctypes could always use more documentation, whether as part of the
official gpib-ctypes docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/tivek/gpib_ctypes/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up gpib_ctypes for local development.

	Fork the gpib_ctypes repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/gpib_ctypes.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv gpib_ctypes
$ cd gpib_ctypes/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 gpib_ctypes tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check
https://travis-ci.org/tivek/gpib_ctypes/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_gpib_ctypes

Credits

Development Lead

	Tomislav Ivek <tomislav.ivek@gmail.com>

Contributors

None yet. Why not be the first?

History

0.2.1 (2018-11-28)

	Fix gpib.ibfind string marshalling

0.2.0 (2018-11-27)

	Safe cleanup using Gpib.close()

0.1.1 (2018-11-27)

	Bugfix release

0.1.0 (2018-01-01)

	First release on PyPI.

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 gpib_ctypes	

 	
 	
 gpib_ctypes.Gpib	

 	
 	
 gpib_ctypes.gpib	

 	
 	
 gpib_ctypes.gpib.constants	

 	
 	
 gpib_ctypes.gpib.gpib	

Index

 A
 | C
 | D
 | F
 | G
 | I
 | L
 | M
 | R
 | S
 | T
 | V
 | W

A

 	
 	ask() (gpib_ctypes.Gpib.Gpib method)

 	(in module gpib_ctypes.gpib.gpib)

C

 	
 	clear() (gpib_ctypes.Gpib.Gpib method)

 	(in module gpib_ctypes.gpib.gpib)

 	close() (gpib_ctypes.Gpib.Gpib method)

 	(in module gpib_ctypes.gpib.gpib)

 	
 	command() (gpib_ctypes.Gpib.Gpib method)

 	(in module gpib_ctypes.gpib.gpib)

 	config() (gpib_ctypes.Gpib.Gpib method)

 	(in module gpib_ctypes.gpib.gpib)

D

 	
 	dev() (in module gpib_ctypes.gpib.gpib)

F

 	
 	find() (in module gpib_ctypes.gpib.gpib)

G

 	
 	Gpib (class in gpib_ctypes.Gpib)

 	gpib_ctypes (module)

 	gpib_ctypes.Gpib (module)

 	
 	gpib_ctypes.gpib (module)

 	gpib_ctypes.gpib.constants (module)

 	gpib_ctypes.gpib.gpib (module)

 	GpibError

I

 	
 	ibcnt() (gpib_ctypes.Gpib.Gpib method)

 	(in module gpib_ctypes.gpib.gpib)

 	ibloc() (gpib_ctypes.Gpib.Gpib method)

 	(in module gpib_ctypes.gpib.gpib)

 	
 	ibsta() (gpib_ctypes.Gpib.Gpib method)

 	(in module gpib_ctypes.gpib.gpib)

 	interface_clear() (gpib_ctypes.Gpib.Gpib method)

 	(in module gpib_ctypes.gpib.gpib)

L

 	
 	lines() (gpib_ctypes.Gpib.Gpib method)

 	(in module gpib_ctypes.gpib.gpib)

 	
 	listener() (gpib_ctypes.Gpib.Gpib method)

 	(in module gpib_ctypes.gpib.gpib)

M

 	
 	make_default_gpib() (in module gpib_ctypes)

R

 	
 	read() (gpib_ctypes.Gpib.Gpib method)

 	(in module gpib_ctypes.gpib.gpib)

 	
 	remote_enable() (gpib_ctypes.Gpib.Gpib method)

 	(in module gpib_ctypes.gpib.gpib)

S

 	
 	serial_poll() (gpib_ctypes.Gpib.Gpib method)

 	(in module gpib_ctypes.gpib.gpib)

 	
 	spoll_bytes() (in module gpib_ctypes.gpib.gpib)

T

 	
 	timeout() (gpib_ctypes.Gpib.Gpib method)

 	(in module gpib_ctypes.gpib.gpib)

 	
 	trigger() (gpib_ctypes.Gpib.Gpib method)

 	(in module gpib_ctypes.gpib.gpib)

V

 	
 	version() (in module gpib_ctypes.gpib.gpib)

W

 	
 	wait() (gpib_ctypes.Gpib.Gpib method)

 	(in module gpib_ctypes.gpib.gpib)

 	write() (gpib_ctypes.Gpib.Gpib method)

 	(in module gpib_ctypes.gpib.gpib)

 	
 	write_async() (gpib_ctypes.Gpib.Gpib method)

 	(in module gpib_ctypes.gpib.gpib)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to gpib-ctypes’s documentation!

 		
 gpib-ctypes

 		
 Features

 		
 Testing

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Handle-level GPIB API

 		
 Object-oriented GPIB API

 		
 Example usage with pyvisa and the pure Python backend pyvisa-py

 		
 gpib_ctypes

 		
 gpib_ctypes package

 		
 Subpackages

 		
 Submodules

 		
 gpib_ctypes.Gpib module

 		
 Module contents

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.2.1 (2018-11-28)

 		
 0.2.0 (2018-11-27)

 		
 0.1.1 (2018-11-27)

 		
 0.1.0 (2018-01-01)

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

