
GPathFinder Documentation
Release 1.2.0

José-Emilio Sánchez Aparicio, Giuseppe Sciortino, Daniel Villadrich Herrmannsdoerfer, Pablo Orenes Chueca, Jaime Rodríguez-Guerra Pedregal and Jean-Didier Maréchal

Nov 10, 2020

User guide

1 How to install 3

2 Quick usage 5

3 Input files 7

4 Output files 9

5 Reproducibility 11

6 List of parameters 13

7 Refinement 21

8 How to cite this software 23

9 Your first GPathFinder calculation 25

10 Understanding the different sections of the input file 31

11 Preparing ligand and protein files 33

12 Analyzing GPathFinder results 35

13 Developers guide 37

14 API documentation 41

i

ii

GPathFinder Documentation, Release 1.2.0

GPathFinder is an extension built over GaudiMM core to allow the identification of ligand binding pathways at atom-
istic level.

User guide 1

https://gpathfinder.readthedocs.io/en/latest/
https://anaconda.org/josan_bcn/gpathfinder
https://www.python.org/downloads/release/python-2716
http://www.apache.org/licenses/LICENSE-2.0

GPathFinder Documentation, Release 1.2.0

2 User guide

CHAPTER 1

How to install

Recommended steps:

1 - Download the latest stable copy of UCSF Chimera and install it with the .dmg file (macOS) or with the following
command (Linux):

chmod +x chimera-*.bin && sudo ./chimera-*.bin

Tip: When Chimera installer asks about Install symbolic link to chimera executable?, we recommend to choose
option /usr/bin, so GaudiMM will find Chimera installation without problem.

2 - Download Miniconda Python 2.7 Distribution for your platform and install it with:

bash Miniconda2*.sh

3 - Install gpathfinder with conda in a new environment called gpathfinder (or whatever name you prefer
after the -n flag), using these custom channels (-c flags):

conda create -n gpathfinder -c omnia -c conda-forge -c bioconda -c josan_bcn
→˓gpathfinder

4 - Activate the new environment as proposed:

conda activate gpathfinder

or

source activate gpathfinder

5 - Run it!

gpath

3

http://www.cgl.ucsf.edu/chimera/download.html
http://conda.pydata.org/miniconda.html

GPathFinder Documentation, Release 1.2.0

1.1 Check everything is OK

If everything went OK, you will get the usage screen:

Usage: gpath [OPTIONS] COMMAND [ARGS]...

GPathFinder: Indentification of ligand pathways by a multi-objective
genetic algorithm

(C) 2019, InsiliChem
https://github.com/insilichem/gpathfinder

Options:
--version Show the version and exit.
-h, --help Show this message and exit.

Commands:
prepare Create or edit a GPATH input file.
run Launch a GPATH input file.
view Analyze the results in a GPATH output file.

1.2 OS Compatibility

GPathFinder is compatible with Linux and macOS. This installation procedure has been checked with Chimera
v.1.13.1 and the following distributions:

• macOS Mojave 10.14

• Mint 19.1

• Debian 9.9.0

• Ubuntu 16.04 and 18.04

• OpenSUSE Leap 15.1

• Manjaro 18.0.4

If you find some difficulties when installing it in a concrete distribution, please use the issues page to report them.

4 Chapter 1. How to install

https://github.com/insilichem/gpathfinder/issues

CHAPTER 2

Quick usage

If you created a conda environment to use GPathFinder (as proposed in installation), first you need to activate it with:

conda activate name_of_the_environment

or

source activate name_of_the_environment

Running GAUDI jobs is quite easy with gaudi.cli.gaudi_run. Put in your terminal:

gpath run /path/to/input_file.yaml

You will need at least three input files. A .yaml file with the configuration of the job and two .mol2 files for the ligand
and the receptor molecules. To learn how to create input files, go to Input files. You can also check the tutorials
Understanding the different sections of the input file and Preparing ligand and protein files.

After the job is completed, you can use our home-made scripts to analyze them. A complete description of the output
files is provided in Output files, and some tutorials on how to perform different analysis are available in Analyzing
GPathFinder results.

To understand better the complete process of a GPathFinder calculation, you have also available the tutorial Your first
GPathFinder calculation.

5

GPathFinder Documentation, Release 1.2.0

6 Chapter 2. Quick usage

CHAPTER 3

Input files

GPathFinder needs the previous preparation of three mandatory input files:

• A .yaml file with the configuration of the calculation.

• A .mol2 file containing the 3D structure of the ligand molecule.

• A .mol2 file containing the 3D structure of the receptor molecule.

If you are considering to minimize the sample structures generated by Normal Mode Analysis for the global motions of
the receptor, and your receptor has non-standard residues, you will also need a .prmtop file with the receptor topology
and the parametrization of such non-standard residues.

3.1 .yaml configuration file

GPathFinder uses a YAML-formatted input file for setting up the calculation. YAML is a human-readable serialization
format, already implemented in a broad range of languages. Input files must contain these five sections:

• output. Project options. Configure it to your liking

• ga. Genetic algorithm configuration. Normally, you don’t have to touch this, except maybe the number of
generations and population size.

• similarity. The similarity function to compare potentially redundant solutions.

• genes. List of descriptors used to define an individual

• objectives. The list of functions that will evaluate your individuals.

Normally, you can start from one of our standard input files, where Genetic Algorithm parameters have been set to
appropiate values for a general case. You should choose the input file depending on the following:

• What kind of experiment you want to perform: discover (un)binding pathways or analyze a known pathway
(initial and final points given in advance).

• If you want to minimize the receptor samples before starting the actual calculation or not.

• What method you will use to evaluate the solutions (clashes, vina, smina).

7

GPathFinder Documentation, Release 1.2.0

Link Use Minimization Clashes Vina Smina
Input file 1 Discover unbinding pathways No Yes No No
Input file 2 Discover unbinding pathways No Yes Yes No
Input file 3 Discover unbinding pathways Yes Yes Yes No
Input file 4 Discover unbinding pathways No Yes No Yes
Input file 5 Discover unbinding pathways Yes Yes No Yes
Input file 6 Discover binding pathways No Yes No No
Input file 7 Discover binding pathways No Yes Yes No
Input file 8 Discover binding pathways Yes Yes Yes No
Input file 9 Discover binding pathways No Yes No Yes
Input file 10 Discover binding pathways Yes Yes No Yes
Input file 11 Analyze a known pathway No Yes No No
Input file 12 Analyze a known pathway No Yes Yes No
Input file 13 Analyze a known pathway Yes Yes Yes No
Input file 14 Analyze a known pathway No Yes No Yes
Input file 15 Analyze a known pathway Yes Yes No Yes

If you want to deepen the knowledge of the different parameters and fine-tune the input file, you can follow the tutorial
Understanding the different sections of the input file

There is also a list of all the parameters and their default values in List of parameters

3.2 .mol2 files for ligand and receptor

A typical workflow to prepare the two files for the ligand and receptor molecules starts from a .pdb structure of the
Protein Data Bank. Of course, you can also use your own ligand and/or receptor files. For example, you can test a
different ligand from the crystallographic one, or a conformation of the receptor obtained from a Molecular Dynamics
simulation.

The requirements for the receptor file are:

• Small molecules that are not essential to consider in the calculation (like solvent molecules) should be removed.

• Alternative locations for residues (i.e. rotamers) should be removed. Only one conformation for each residue is
allowed.

• In the case of clashes evaluation, it is not necessary to add Hydrogens if the user doesn’t want to consider them.

• In the case of clashes+vina evaluation, adding Hydrogens is mandatory.

• In the case of minimizing the NMA samples, you have to take special care of terminal residues correctness and
repair possible missing residues in your structure. Otherwise, OpenMM (in charge of the minimization) will
complain and the calculation will be stopped.

The requirements for the ligand file are:

• In the case of unbinding pathway discovery, it is recommended that the 3D coordinates correspond to the binded
position. Otherwise, the center of the binding site should be indicated explicitly in the .yaml configuration file
(parameter gaudi.genes.path.origin).

• In the case of clashes evaluation, it is not necessary to add Hydrogens if the user doesn’t want to consider them.

• In the case of clashes+vina evaluation, adding Hydrogens is mandatory.

A tutorial on how to generate .mol2 files using UCSF Chimera starting from a crystallographic structure of the PDB is
provided in Preparing ligand and protein files

8 Chapter 3. Input files

https://raw.githubusercontent.com/insilichem/gpathfinder/master/examples/input_files/unbinding_clashes.yaml
https://raw.githubusercontent.com/insilichem/gpathfinder/master/examples/input_files/unbinding_clashes_vina.yaml
https://raw.githubusercontent.com/insilichem/gpathfinder/master/examples/input_files/unbinding_clashes_vina_minimize.yaml
https://raw.githubusercontent.com/insilichem/gpathfinder/master/examples/input_files/unbinding_clashes_smina.yaml
https://raw.githubusercontent.com/insilichem/gpathfinder/master/examples/input_files/unbinding_clashes_smina_minimize.yaml
https://raw.githubusercontent.com/insilichem/gpathfinder/master/examples/input_files/binding_clashes.yaml
https://raw.githubusercontent.com/insilichem/gpathfinder/master/examples/input_files/binding_clashes_vina.yaml
https://raw.githubusercontent.com/insilichem/gpathfinder/master/examples/input_files/binding_clashes_vina_minimize.yaml
https://raw.githubusercontent.com/insilichem/gpathfinder/master/examples/input_files/binding_clashes_smina.yaml
https://raw.githubusercontent.com/insilichem/gpathfinder/master/examples/input_files/binding_clashes_smina_minimize.yaml
https://raw.githubusercontent.com/insilichem/gpathfinder/master/examples/input_files/analyze_clashes.yaml
https://raw.githubusercontent.com/insilichem/gpathfinder/master/examples/input_files/analyze_clashes_vina.yaml
https://raw.githubusercontent.com/insilichem/gpathfinder/master/examples/input_files/analyze_clashes_vina_minimize.yaml
https://raw.githubusercontent.com/insilichem/gpathfinder/master/examples/input_files/analyze_clashes_smina.yaml
https://raw.githubusercontent.com/insilichem/gpathfinder/master/examples/input_files/analyze_clashes_smina_minimize.yaml
https://www.rcsb.org/

CHAPTER 4

Output files

This section aims to provide the user with a complete description of all the files returned as output of a GPathFinder cal-
culation. To learn how to perform different analysis over this data, you can check the tutorial Analyzing GPathFinder
results.

The results of the calculation will be saved inside a folder on the path indicated in the output.path parameter of
the .yaml input file. This folder will contain:

• A ‘.gaudi-log‘ file: contains the log information of the calculation, with data about the time employed in the
execution, the evolution of the scores along the calculation and possible errors/warnings.

• A ‘.yaml‘ file: contains a replica of the .yaml input file employed in the calculation.

• A ‘.gpath-output‘ file: contains a summary of the obtained results, with data about their scores and name of the
file that actually has the pathway. Can be used to get an overview of the quality of the solutions.

• A ‘summary.csv‘ file: contains a summary of the scoring of all obtained results, detailed by frame. Also
contains the coordinates of every solution (considering the center of mass of the ligand at every frame of the
pathway). Can be used to see at a frame detail the quality of a concrete solution and differences between
solutions.

• A set of ‘.zip‘ files: contain the different pathways obtained from the calculation. The number of solutions will
be equal to the population size if output.pareto was set to False or equal to the size of the pareto frontier
(i.e. dominant solutions) otherwise.

Optional files

• A ‘.nmd‘ file: contains the information about the prody modes calculated in Normal Mode Analysis of the
receptor molecule. This file only will be present if gaudi.genes.path_normalmodes.write_modes
was set to True.

• A ‘.samples‘ file: contains the information about all the samples generated during Normal Mode Analy-
sis of the receptor molecule. This file only will be present if gaudi.genes.path_normalmodes.
write_samples was set to True.

9

GPathFinder Documentation, Release 1.2.0

4.1 Contents of the .zip corresponding to each solution

Each .zip file contains all the necessary information to reproduce at atomic level the pathway proposed by GPathFinder
as a solution for your problem. Inside the file there are the following contents:

• Two ‘.mol2‘ files with the original 3D structures of the ligand and the receptor.

• A ‘.gaudi‘ file with the summary of the files.

• Another ‘.zip‘ file which contains a set of .pdb files with all the frames of the pathway (each one has a con-
formation of the ligand and receptor molecules). You can open these .pdb files in any visualization tool like a
MD-movie and work with them and analyze each frame. An example of a pathway that represents a GPathFinder
solution can be found here.

Moreover, an allele.txt and a scores.txt files are present with all the necessary information to reconstruct the pathway
from the original structures and the score information for every frame. These additional files can be used by your own
scripts to analyze the results in further detail.

Finally, a trajectory.pdb file which contains the route that follows the ligand, as a set of points that represent the center
of the ligand at each step of the trajectory. This can be used to easily compare the trajectory of different solutions
obtained from GPathFinder calculations.

10 Chapter 4. Output files

https://raw.githubusercontent.com/insilichem/gpathfinder/master/examples/output_files/example_pathway.zip

CHAPTER 5

Reproducibility

One of the key aspects of every research project is its reproducibility. Sometimes, specially when using softwares
in their early lifecycle, provide enough information to reproduce calculations could be hard due to high amount of
changes in the default values.

When reporting results obtained by a GPathFinder calculation, you should provide the following information:

• The full .yaml file, for example, in the supporting information.

• The version of the program you have used (for example, v.1.0.1). This will allow to deduce the values for the
parameters that are not explicitly reported in the .yaml file.

The information of the default parameters for each version is provided in List of parameters section.

11

GPathFinder Documentation, Release 1.2.0

12 Chapter 5. Reproducibility

CHAPTER 6

List of parameters

6.1 Parameters for version 1.2.0

Genetic Algorithm parameters

• population (int): size of the starting population, in number of individuals. Default: 12

• generations (int): number of generations to simulate. Default: 500

• mu (float): the number of children to select at each generation, expressed as a multiplier of ga.population.
Default: 1

• lambda_ (float): the number of children to produce at each generation, expressed as a multiplier of ga.
population. Default: 1.0

• mut_eta (float): crowding degree of the mutation. A high eta will produce a mutant resembling its parent, while
a small eta will produce a solution much more different. Default: 5

• mut_pb (float): the probability that an offspring is produced by mutation. Default: 0.8

• mut_indpb (float): independent probability for each gene to be mutated. Default: 1.0

• cx_eta (float): crowding degree of the crossover. A high eta will produce children resembling to their parents,
while a small eta will produce solutions much more different. Default: 5

• cx_pb (float): the probability that an offspring is produced by crossover. Default: 0.2

Path gene

• radius_rotamers (float): Maximum distance (in Angstroms) from any point of the ligand in every frame that is
searched for possible rotamers of the protein side-chain. Default: 3.0

• max_step_separation (float): Maximum distance (in Angstroms) from one point of the ligand in the pathway
to the next one. If not set by the user, GPathFinder calculates the value from the size of the ligand. Default:
None

• min_step_increment (float): Minimum distance increment (in Angstroms) from the ligand’s origin that has to
be the ligand in one frame of the pathway with respect of the ligand’s distance from the origin of the previous

13

GPathFinder Documentation, Release 1.2.0

frame of the pathway. If not set by the user, GPathFinder calculates the value as 2/5 by max_step_separation.
Default: None

• mut_pos_pb (float): When a mutation occurs, this value is the probability of such mutation to be of the type
positions, that is, the mutation changes the actual trajectory of the pathway. Warning: parameter for advanced
users, usually the default value is correct for the vast majority of the systems. Default: 0.10

Path_torsion gene

• flexibility (int or float): Maximum number of degrees a bond can rotate. Default: 360.0

• anchor (str): Molecule/atom_serial_number of reference atom for torsions. If not set, the nearest atom to the
molecule geometric center is selected. Default: None

• rotatable_atom_types (list of str): Which type of atom types (as in chimera.Atom.idatmType) should rotate.
Default: (‘C3’, ‘N3’, ‘C2’, ‘N2’, ‘P’)

• rotatable_atom_names (list of str): Which type of atom names (as in chimera.Atom.name) should rotate.
Default: ()

• non_rotatable_bonds (list of str): Which bonds (identified by [Molecule/SerialNumber1,
Molecule/SerialNumber2]) are not allowed to rotate. Default: ()

• non_rotatable_selection (str): Which bonds (identified by a Chimera selection query) are not allowed to rotate.
Default: ()

Path_rotamers gene

• library {‘Dunbrack’, ‘Dynameomics’}: The rotamer library to use. Default: Dunbrack

Path_normalmodes gene

• method {‘prody’, ‘gaussian’, ‘pca’}: prody to calculate normal modes using prody algorithms, gaussian to read
normal modes from a gaussian output file and pca to perform a PCA analysis over a MD trajectory (.dcd file).
Default: prody

• modes (list of int): Modes to be used to move the molecule. Default:
[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]

• pca_atoms {‘calpha’, ‘backbone’, ‘all’}: which atoms of the receptor are selected in the PCA analysis. Default:
calpha

• group_by {‘residues’, ‘mass’, ‘calpha’, ‘’}: method to group atoms when using a coarse grain model of the
receptor. Default: residues

• group_lambda (int): Either number of residues per group (default=15), or total mass per group (default=100)

• n_samples (int): number of conformations to generate. Default: 100

• rmsd (float): average RMSD, in Angstroms, that conformations will have with respect to the initial conforma-
tion. Default: 2.0

• minimize (bool): whether to minimize the resulting samples or not. Default: False

• forcefields (list of str): Used when minimize is True to indicate which forcefields to use. It can be a .prmtop file
containing the parametrization and topology of the Protein. Default: (‘amber99sbildn.xml’,)

• minimization_tolerance (float): used when minimize is True. Convergence criteria for energy minimization. In
kJ/mol. Default: 10.0

• minimization_iterations (int): used when minimize is True. Max attempts to converge at minimization. De-
fault: 1000

Path_scoring objective

14 Chapter 6. List of parameters

GPathFinder Documentation, Release 1.2.0

• radius (float): maximum distance, in Angstroms, from any point of the ligand in every frame that is searched
for possible interactions. Default: 5.0

• method {‘sum’, ‘average’, ‘max’}: Method used to calculate the score (i.e. sum, average or maximum of the
scores of all frames). Default: average

• clash_threshold (float): used when the scoring is clashes. Maximum overlap of van-der-Waals spheres. If the
overlap is greater, it’s considered a clash. Default: 0.6

• bond_separation (int): used when the scoring is clashes. Ignore clashes between atoms within n bonds. De-
fault: 4

• same_residue (bool): used when the scoring is clashes. Include intra-molecular clashes. Default: True

• smoothness_threshold (float): used when method is smoothness. RMSD between ligands on two consecutive
frames that is permitted considering a perfect score of smoothness. Default: 0.0

• smina_scoring (str): used when the scoring is smina to specify alternative builtin scoring function (e.g.
vinardo). Default: None

• smina_custom_scoring (str): used when the scoring is smina to specify a custom scoring function file. Default:
None

• smina_custom_atoms (str): used when the scoring is smina to specify a custom atom type parameters file.
Default: None

6.2 Parameters for version 1.1.0

Genetic Algorithm parameters

• population (int): size of the starting population, in number of individuals. Default: 12

• generations (int): number of generations to simulate. Default: 500

• mu (float): the number of children to select at each generation, expressed as a multiplier of ga.population.
Default: 1

• lambda_ (float): the number of children to produce at each generation, expressed as a multiplier of ga.
population. Default: 1.0

• mut_eta (float): crowding degree of the mutation. A high eta will produce a mutant resembling its parent, while
a small eta will produce a solution much more different. Default: 5

• mut_pb (float): the probability that an offspring is produced by mutation. Default: 0.8

• mut_indpb (float): independent probability for each gene to be mutated. Default: 1.0

• cx_eta (float): crowding degree of the crossover. A high eta will produce children resembling to their parents,
while a small eta will produce solutions much more different. Default: 5

• cx_pb (float): the probability that an offspring is produced by crossover. Default: 0.2

Path gene

• radius_rotamers (float): Maximum distance (in Angstroms) from any point of the ligand in every frame that is
searched for possible rotamers of the protein side-chain. Default: 3.0

• max_step_separation (float): Maximum distance (in Angstroms) from one point of the ligand in the pathway
to the next one. If not set by the user, GPathFinder calculates the value from the size of the ligand. Default:
None

6.2. Parameters for version 1.1.0 15

GPathFinder Documentation, Release 1.2.0

• min_step_increment (float): Minimum distance increment (in Angstroms) from the ligand’s origin that has to
be the ligand in one frame of the pathway with respect of the ligand’s distance from the origin of the previous
frame of the pathway. If not set by the user, GPathFinder calculates the value as 2/5 by max_step_separation.
Default: None

• mut_pos_pb (float): When a mutation occurs, this value is the probability of such mutation to be of the type
positions, that is, the mutation changes the actual trajectory of the pathway. Warning: parameter for advanced
users, usually the default value is correct for the vast majority of the systems. Default: 0.10

Path_torsion gene

• flexibility (int or float): Maximum number of degrees a bond can rotate. Default: 360.0

• anchor (str): Molecule/atom_serial_number of reference atom for torsions. If not set, the nearest atom to the
molecule geometric center is selected. Default: None

• rotatable_atom_types (list of str): Which type of atom types (as in chimera.Atom.idatmType) should rotate.
Default: (‘C3’, ‘N3’, ‘C2’, ‘N2’, ‘P’)

• rotatable_atom_names (list of str): Which type of atom names (as in chimera.Atom.name) should rotate.
Default: ()

• non_rotatable_bonds (list of str): Which bonds (identified by [Molecule/SerialNumber1,
Molecule/SerialNumber2]) are not allowed to rotate. Default: ()

• non_rotatable_selection (str): Which bonds (identified by a Chimera selection query) are not allowed to rotate.
Default: ()

Path_rotamers gene

• library {‘Dunbrack’, ‘Dynameomics’}: The rotamer library to use. Default: Dunbrack

Path_normalmodes gene

• method {‘prody’, ‘gaussian’}: prody to calculate normal modes using prody algorithms and gaussian to read
normal modes from a gaussian output file. Default: prody

• modes (list of int): Modes to be used to move the molecule. Default:
[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]

• group_by {‘residues’, ‘mass’, ‘calpha’, ‘’}: method to group atoms when using a coarse grain model of the
receptor. Default: residues

• group_lambda (int): Either number of residues per group (default=15), or total mass per group (default=100)

• n_samples (int): number of conformations to generate. Default: 100

• rmsd (float): average RMSD, in Angstroms, that conformations will have with respect to the initial conforma-
tion. Default: 2.0

• minimize (bool): whether to minimize the resulting samples or not. Default: False

• forcefields (list of str): Used when minimize is True to indicate which forcefields to use. It can be a .prmtop file
containing the parametrization and topology of the Protein. Default: (‘amber99sbildn.xml’,)

• minimization_tolerance (float): used when minimize is True. Convergence criteria for energy minimization. In
kJ/mol. Default: 10.0

• minimization_iterations (int): used when minimize is True. Max attempts to converge at minimization. De-
fault: 1000

Path_scoring objective

• radius (float): maximum distance, in Angstroms, from any point of the ligand in every frame that is searched
for possible interactions. Default: 5.0

16 Chapter 6. List of parameters

GPathFinder Documentation, Release 1.2.0

• method {‘sum’, ‘average’, ‘max’}: Method used to calculate the score (i.e. sum, average or maximum of the
scores of all frames). Default: average

• clash_threshold (float): used when the scoring is clashes. Maximum overlap of van-der-Waals spheres. If the
overlap is greater, it’s considered a clash. Default: 0.6

• bond_separation (int): used when the scoring is clashes. Ignore clashes between atoms within n bonds. De-
fault: 4

• same_residue (bool): used when the scoring is clashes. Include intra-molecular clashes. Default: True

• smoothness_threshold (float): used when method is smoothness. RMSD between ligands on two consecutive
frames that is permitted considering a perfect score of smoothness. Default: 0.0

• smina_scoring (str): used when the scoring is smina to specify alternative builtin scoring function (e.g.
vinardo). Default: None

• smina_custom_scoring (str): used when the scoring is smina to specify a custom scoring function file. Default:
None

• smina_custom_atoms (str): used when the scoring is smina to specify a custom atom type parameters file.
Default: None

6.3 Parameters for versions 1.0.x

Genetic Algorithm parameters

• population (int): size of the starting population, in number of individuals. Default: 12

• generations (int): number of generations to simulate. Default: 500

• mu (float): the number of children to select at each generation, expressed as a multiplier of ga.population.
Default: 1

• lambda_ (float): the number of children to produce at each generation, expressed as a multiplier of ga.
population. Default: 1.0

• mut_eta (float): crowding degree of the mutation. A high eta will produce a mutant resembling its parent, while
a small eta will produce a solution much more different. Default: 5

• mut_pb (float): the probability that an offspring is produced by mutation. Default: 0.8

• mut_indpb (float): independent probability for each gene to be mutated. Default: 1.0

• cx_eta (float): crowding degree of the crossover. A high eta will produce children resembling to their parents,
while a small eta will produce solutions much more different. Default: 5

• cx_pb (float): the probability that an offspring is produced by crossover. Default: 0.2

Path gene

• radius_rotamers (float): Maximum distance (in Angstroms) from any point of the ligand in every frame that is
searched for possible rotamers of the protein side-chain. Default: 3.0

• max_step_separation (float): Maximum distance (in Angstroms) from one point of the ligand in the pathway
to the next one. If not set by the user, GPathFinder calculates the value from the size of the ligand. Default:
None

• min_step_increment (float): Minimum distance increment (in Angstroms) from the ligand’s origin that has to
be the ligand in one frame of the pathway with respect of the ligand’s distance from the origin of the previous
frame of the pathway. If not set by the user, GPathFinder calculates the value as 2/5 by max_step_separation.
Default: None

6.3. Parameters for versions 1.0.x 17

GPathFinder Documentation, Release 1.2.0

• mut_pos_pb (float): When a mutation occurs, this value is the probability of such mutation to be of the type
positions, that is, the mutation changes the actual trajectory of the pathway. Warning: parameter for advanced
users, usually the default value is correct for the vast majority of the systems. Default: 0.10

Path_torsion gene

• flexibility (int or float): Maximum number of degrees a bond can rotate. Default: 360.0

• anchor (str): Molecule/atom_serial_number of reference atom for torsions. If not set, the nearest atom to the
molecule geometric center is selected. Default: None

• rotatable_atom_types (list of str): Which type of atom types (as in chimera.Atom.idatmType) should rotate.
Default: (‘C3’, ‘N3’, ‘C2’, ‘N2’, ‘P’)

• rotatable_atom_names (list of str): Which type of atom names (as in chimera.Atom.name) should rotate.
Default: ()

• non_rotatable_bonds (list of str): Which bonds (identified by [Molecule/SerialNumber1,
Molecule/SerialNumber2]) are not allowed to rotate. Default: ()

• non_rotatable_selection (str): Which bonds (identified by a Chimera selection query) are not allowed to rotate.
Default: ()

Path_rotamers gene

• library {‘Dunbrack’, ‘Dynameomics’}: The rotamer library to use. Default: Dunbrack

Path_normalmodes gene

• method {‘prody’, ‘gaussian’}: prody to calculate normal modes using prody algorithms and gaussian to read
normal modes from a gaussian output file. Default: prody

• modes (list of int): Modes to be used to move the molecule. Default:
[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]

• group_by {‘residues’, ‘mass’, ‘calpha’, ‘’}: method to group atoms when using a coarse grain model of the
receptor. Default: residues

• group_lambda (int): Either number of residues per group (default=15), or total mass per group (default=100)

• n_samples (int): number of conformations to generate. Default: 100

• rmsd (float): average RMSD, in Angstroms, that conformations will have with respect to the initial conforma-
tion. Default: 2.0

• minimize (bool): whether to minimize the resulting samples or not. Default: False

• forcefields (list of str): Used when minimize is True to indicate which forcefields to use. It can be a .prmtop file
containing the parametrization and topology of the Protein. Default: (‘amber99sbildn.xml’,)

• minimization_tolerance (float): used when minimize is True. Convergence criteria for energy minimization. In
kJ/mol. Default: 10.0

• minimization_iterations (int): used when minimize is True. Max attempts to converge at minimization. De-
fault: 1000

Path_scoring objective

• radius (float): maximum distance, in Angstroms, from any point of the ligand in every frame that is searched
for possible interactions. Default: 5.0

• method {‘sum’, ‘average’, ‘max’}: Method used to calculate the score (i.e. sum, average or maximum of the
scores of all frames). Default: average

• clash_threshold (float): used when the scoring is clashes. Maximum overlap of van-der-Waals spheres. If the
overlap is greater, it’s considered a clash. Default: 0.6

18 Chapter 6. List of parameters

GPathFinder Documentation, Release 1.2.0

• bond_separation (int): used when the scoring is clashes. Ignore clashes between atoms within n bonds. De-
fault: 4

• same_residue (bool): used when the scoring is clashes. Include intra-molecular clashes. Default: True

• smoothness_threshold (float): used when method is smoothness. RMSD between ligands on two consecutive
frames that is permitted considering a perfect score of smoothness. Default: 0.0

6.3. Parameters for versions 1.0.x 19

GPathFinder Documentation, Release 1.2.0

20 Chapter 6. List of parameters

CHAPTER 7

Refinement

The refinement funtion allows to generate a more continious path of configurations in between each frame generated
by GPathFinder using an RRT-algorithm. It can be used as follows:

• Place the directory containing the gaudi GPathFinder result files into the refinement_input_files directory of the
GPathFinder module

• In the terminal, run: python refinement.py <directory> <path_number (int)> <start_frame> <end_frame>

The refinement_input_files directory already contains example files suited to be run, for example:

python refinement.py 1ldi_a_clashes_01 0 10 20

runs the refinement process of the path in file 1ldi_a_clashes_02_000 through frames 10 to 20 and outputs a log file
and the path .pdb file in the refinemnt_output_files directory.

21

GPathFinder Documentation, Release 1.2.0

22 Chapter 7. Refinement

CHAPTER 8

How to cite this software

GPathFinder is scientific software, funded by public research grants (Spanish MINECO’s project
CTQ2017-87889-P, and Generalitat de Catalunya’s project 2017SGR1323)

GaudiMM, root development over GPathFinder is built, is also scientific software, funded by public research grants
(Spanish MINECO’s project CTQ2014-54071-P, Generalitat de Catalunya’s project 2014SGR989 and research
grant 2015FI_B00768, COST Action CM1306).

If you make use of GPathFinder in scientific publications, please cite our article in IJMS. GaudiMM has also its own
article in JCC. It will help measure the impact of our research and future funding!

@article {IJMS:ijms20133155,
author = {Sánchez-Aparicio, José-Emilio and Sciortino, Giuseppe and Viladrich

→˓Herrmannsdoerfer, Daniel and Orenes Chueca, Pablo and Rodríguez-Guerra Pedregal,
→˓Jaime and Maréchal, Jean-Didier},

title = {GPathFinder: identification of ligand binding pathways by a multi-
→˓objective genetic algorithm},

journal = {International Journal of Molecular Sciences},
volume = {20},
number = {13},
issn = {1422-0067},
url = {https://www.mdpi.com/1422-0067/20/13/3155},
doi = {https://doi.org/10.3390/ijms20133155 },
pages = {3155},
keywords = {multi-objective genetic algorithm, molecular modeling, ligand

→˓diffusion, computational chemistry, molecular docking, drug design},
year = {2019},

}

@article {JCC:JCC24847,
author = {Rodríguez-Guerra Pedregal, Jaime and Sciortino, Giuseppe and Guasp,

→˓Jordi and Municoy, Martí and Maréchal, Jean-Didier},
title = {GaudiMM: A modular multi-objective platform for molecular modeling},
journal = {Journal of Computational Chemistry},
volume = {38},

(continues on next page)

23

https://www.mdpi.com/1422-0067/20/13/3155
http://onlinelibrary.wiley.com/doi/10.1002/jcc.24847/full
http://onlinelibrary.wiley.com/doi/10.1002/jcc.24847/full

GPathFinder Documentation, Release 1.2.0

(continued from previous page)

number = {24},
issn = {1096-987X},
url = {http://dx.doi.org/10.1002/jcc.24847},
doi = {10.1002/jcc.24847},
pages = {2118--2126},
keywords = {molecular modeling, protein-ligand docking, multi-objective

→˓optimization, genetic algorithms, metallopeptides},
year = {2017},

}

24 Chapter 8. How to cite this software

CHAPTER 9

Your first GPathFinder calculation

9.1 Objectives

This tutorial aims at providing an overview of a typical workflow when carrying out a GPathFinder calculation. It
is divided in four sections. As all the input/output files for each section are available here, you can follow the entire
tutorial sequentially or you can choose one of the sections individually.

We propose the example of Acetylcholine bound to Acetylcholinesterase to study the possible unbinding routes of the
ligand. The structure that is going to be used corresponds to the PDB code 2ace.

9.2 1. Preparing ligand and receptor .mol2 files

• Necessary files for this section: None

• Output files from this section: ligand.mol2, ligand_with_H.mol2, protein.mol2, protein_with_H.mol2

The first step is to obtain the complete structure of the system. It can be done by several manners, but we propose the
following two options:

• Download the .pdb file from the Protein Data Bank. Option Download Files -> PDB Format. Open
the downloaded file (2ace.pdb) with UCSF Chimera (you can use other visualization tool, of course).

• Directly use UCSF Chimera and open the structure in the viewer with the command open 2ace. You can
open the command terminal of Chimera with Favorites -> Command Line.

Regardless of the option you choose, you will end up with the structure of 2ace in the viewer:

25

https://raw.githubusercontent.com/insilichem/gpathfinder/master/docs/data/tutorial_first/first_calculation.zip
https://www.rcsb.org/structure/2ace

GPathFinder Documentation, Release 1.2.0

The next step is to clean up the system:

• Remove non essential small molecules. In this case, we remove all water molecules by the following Chimera
command: del :HOH

• Remove alternative locations for residues (i.e. rotamers), if existing. In this case there are not such alternative
locations, but it would be removed by the Chimera commands: del @/altLoc=B, del @/altLoc=C, . . .

Then, you have to split the system into two different models. In Chimera, it can be done by the following steps:

• In the model panel (Favorites -> Model Panel), copy/combine the whole system to have two iden-
tical replicas.

• Remove the receptor from the first model with command del #0 & protein

• Remove the ligand from the second model with command del #1 & ligand

Save the ligand.mol2 and protein.mol2 files with File -> Save Mol2. You have to select model (#0) when saving
the ligand and model (#1) for the protein. Make sure that Save relative to model: (#0) is marked to preserve coherent
relative coordinates in both files. Save the files in a folder called mol_files inside a first_calculation folder:

26 Chapter 9. Your first GPathFinder calculation

GPathFinder Documentation, Release 1.2.0

If you want to optimize the solutions using only clashes, that would be enough. But if you want to add a Vina scoring
criterium, files with explicit hydrogens are needed. To do so, you can add hydrogens in Chimera with Tools ->
Structure Editing -> AddH. Once you have both models (ligand and protein) with hydrogens, you can save
them as before using different names, for example ligand_with_H.mol2 and protein_with_H.mol2.

9.3 2. Preparing input.yaml file

• Necessary files for this section: ligand.mol2/ligand_with_H.mol2, protein.mol2/protein_with_H.mol2

• Output files from this section: input_clashes.yaml/input_clashes_vina.yaml

To prepare the configuration .yaml file, you have several templates available at Input files. Here, we are going to
use either discover unbinding pathways with clashes evaluation or discover unbinding pathways with clashes+vina
evaluation as base for our input configuration file.

Warning: Remember: if you are going to evaluate clashes+vina, the .mol2 files prepared in step 1 have to include
explicit hydrogen atoms. For only clashes, without hydrogens would be enough.

You have to make the following changes/adjustements in your template file:

• _path: input.yaml (or the name you choose for your configuration file)

ga section

• generations: XXX (the values provided in the templates ensure good results for a general case, but you
can adjust it to reduce the computation time)

genes section

• path: ./mol_files/ligand.mol2 (path of your ligand .mol2 file)

• path: ./mol_files/protein.mol2 (path of your protein .mol2 file)

• anchor: Ligand/3

9.3. 2. Preparing input.yaml file 27

https://raw.githubusercontent.com/insilichem/gpathfinder/master/examples/input_files/unbinding_clashes.yaml
https://raw.githubusercontent.com/insilichem/gpathfinder/master/examples/input_files/unbinding_clashes_vina.yaml
https://raw.githubusercontent.com/insilichem/gpathfinder/master/examples/input_files/unbinding_clashes_vina.yaml

GPathFinder Documentation, Release 1.2.0

Tip: To ensure that torsions of the dihedral angles in the ligand molecule are modified in a proper manner, we
recommend to choose an anchor atom near the geometric center of the ligand. You have to indicate the name of the
ligand gene and the Chimera serial number of the atom, in this case Ligand/3. To know the serial number, you can
open in text mode the .mol2 file, or, visualize the property inside Chimera: select the atom and, then, show its serial
number with Actions -> Label -> Other -> Label with attribute: serialNumber.

output section

• name: 2ace (choose a name for your calculation)

• path: ./results_2ace (folder where the results of the calculation will be saved)

Finally, you have to save your .yaml inside your calculation folder, for example first_calculation.

9.4 3. Running the calculation

• Necessary files for this section: ligand.mol2/ligand_with_H.mol2, receptor.mol2/receptor_with_H.mol2, in-
put_clashes.yaml/input_clashes_vina.yaml

• Output files from this section: folder with GPathFinder results

Running your calculation is as easy as open a terminal, activate your conda environment with:

conda activate name_of_the_environment

or

source activate name_of_the_environment

Go to your calculation folder, where input_clashes.yaml or input_clashes_vina.yaml is located, and run it with:

gpath run input_clashes.yaml

or

gpath run input_clashes_vina.yaml

28 Chapter 9. Your first GPathFinder calculation

GPathFinder Documentation, Release 1.2.0

9.5 4. Visualizing results

• Necessary files for this section: folder with GPathFinder results

• Output files from this section: None

Inside the results folder you can find, among other files, a summary.csv file with an overview of the solutions that
GPathFinder has obtained from your calculation. As any standard .csv file, you can open it with LibreOffice Calc,
Microsoft Excel or any other editor you want.

For each solution, you will find the scoring (clashes, vina, etc.) and the coordinates of the ligand at every frame
forming the (un)binding pathway. Moreover, the last line of every solution will be the average score for all the frames
of the pathway. For example, the solution called “2ace_clashes_000” has 23 frames with a clashes average of 18.2 Å3:

The corresponding .zip file (in this case, 2ace_clashes_000.zip) contains the actual information about the solution. For
a complete description of all the files, you can refer to the section Output files. Here we are centering on visualize the
structures that form the (un)binding pathway. To do so, you have two possibilities:

• Open the 2ace_clashes_000.zip -> Pathway_000_Pathway.zip -> frame_XXX.pdb files
directly with your favourite visualization tool (e.g. UCSF Chimera). They contain the structure of the receptor
+ ligand complex at every position (frame) of the (un)binding process, so you can choose the frames that you
want and examine them individually.

• Use the Tools -> MD/Ensemble Analysis -> MD Movie in UCSF Chimera (select the PDB frames
contained in multiple files option). It will open the frames that you select as a movie, so you can analyze the
(un)binding process:

9.5. 4. Visualizing results 29

GPathFinder Documentation, Release 1.2.0

Whatever option you choose, you will end with the desired structure/s in your visualization tool, so you can use it for
further analysis. If you want to deepen the analysis of GPathFinder solutions, you can follow the tutorial Analyzing
GPathFinder results.

30 Chapter 9. Your first GPathFinder calculation

CHAPTER 10

Understanding the different sections of the input file

Warning: This tutorial is work in progress.

31

GPathFinder Documentation, Release 1.2.0

32 Chapter 10. Understanding the different sections of the input file

CHAPTER 11

Preparing ligand and protein files

Warning: This tutorial is work in progress.

33

GPathFinder Documentation, Release 1.2.0

34 Chapter 11. Preparing ligand and protein files

CHAPTER 12

Analyzing GPathFinder results

Warning: This tutorial is work in progress.

35

GPathFinder Documentation, Release 1.2.0

36 Chapter 12. Analyzing GPathFinder results

CHAPTER 13

Developers guide

13.1 Introduction to Genetic Algorithms

The GA in GaudiMM stands for Genetic Algorithm, a search heuristic inspired by natural selection that is used for
optimization processes.

Genetic Algorithms use a biologicist terminology. Each candidate solution to the problem is considered an individual,
which is part of the so-called population (the set of all candidate solutions).

The initial population is generated from scratch, almost always randomly. These individuals also comprise the first
generation of the evolution process. As in nature, only the fittest survive. The survival process is simulated with an
evaluation function, that tests them against the optimization variable(s). This is called selection.

• How do we create an individual? With one or more genes, naturally. Genes describe how an individual should
look like, of course!

• How do we evaluate that individual? With one or more objectives.

Also, as in nature, the fittest individuals are allowed to mate (exchange their defining values), and mutate (sponta-
neously modify their own defining values). This adds some more variability to the process, and that is key to survival.

After a number of generations repeating the process of selection, choosing the fittest over the weakest, we will obtain
better and better solutions to our problem. Since it’s all heuristics, it’s up to us to stop at some point. We won’t
probably get the solution, but we can live with pretty good ones, right?

13.1.1 The One Max Problem

Ok, that was a lot of biology and we are trying to code, I get it. Let’s explain a classical GA example, the trivial One
Max Problem, adapted from the original deap documentation.

In this problem, we have a list of integers that can be either 0 or 1, and we want to obtain a list full of 1s. So, in this
example, we have individuals defined by a single gene and evaluated with a single objective.

We build individuals with the gene onemax:

37

https://deap.readthedocs.org/en/master/examples/ga_onemax.html

GPathFinder Documentation, Release 1.2.0

import random.randint
def onemax(size=5):

return [random.randint(0, 1) for i in range(size)]

adam = onemax(5) # returns [0, 0, 0, 1, 0]
eve = onemax(5) # returns [0, 1, 1, 0, 0]

The objective is also trivial. We have to maximize the sum of the numbers inside a given individual:

def evaluate(individual):
return sum(individual)

So. . . which is one is fittest, adam or eve? Obviously, eve:

evaluate(adam) # returns 1
evaluate(eve) # returns 2

Of course, an initial population is usually larger! At least, a hundred individuals. With such a trivial case, given a big
enough population, we may obtain the solution in the first generation by pure change. However, we must not rely on
the initial population as the only diversity source.

Additional diversity is achieved with the mutation and mating operations, implemented as additional functions:

def mate(a, b):
""" Let a and b mate, in hope of fitter children """
i = crossover_point = random.random() * min(len(a), len(b))
c, d = a[:], b[:]
c[:i], d[i:] = d[:i], c[i:]
return c, d

def mutate(individual, probability):
""" Spontaneous mutation at random places can result in a fitter individual """
return [random.randint(0, 1) for i in individual if random.random() < probability]

Let’s see how this is useful:

cain, abel = mate(adam, eve)
cain = [0, 1, 1, 1, 0]
abel = [0, 0, 0, 0, 0]
evaluate(cain) # returns 3
evaluate(abel) # returns 0

See? adam and eve gave birth to cain and abel. cain had luck and inherited the good parts, while abel. . .
Well, he was not that lucky. In the next selection process, cain will be selected over abel, and probably over its
own father adam. Now, the population (cain and eve) as a whole is fitter, with an average fitness of 2.5. That’s
higher than the average in the previous generation (1.5). Evolution!

Mutation works similarly:

enoch = mutate(cain)
enoch = [1, 1, 1, 1, 0]
seth = mutate(eve)
seth = [0, 0, 1, 0, 0]

Take into account that mutations can be beneficial, like in the case of enoch, but also detrimental, as in the case of
seth. Some of them will contribute to evolution, and some of them not. Lucky ones will be selected, the others,
discarded.

38 Chapter 13. Developers guide

GPathFinder Documentation, Release 1.2.0

By the way, deap already defines some mutation and mating operators for you that will work in most cases. So,
hopefully, this part will be trivial.

And that’s it! Deap does the rest! So, to sum up, you only need to worry about:

• How to define your individuals.

• How to evaluate them.

• How to implement mutation and mating (normally, with deap built-in operators).

If you want to know more about Deap and Genetic Algorithms, go check their documentation. It’s great!

13.2 Our implementation

GaudiMM is built as an extensible and highly modular Python platform. Although the main focus is Chemistry and
molecular design, you can use your own genes and objectives. You can think of GaudiMM as a new API for deap that
provides an object-oriented interface to easily create new individuals and objectives.

In deap an individual can be any Python object (check their overview and GA examples), which is a very versatile
approach, but it tends to be very limited when your individual gets complex. For example, if an individual needs to be
defined by several genes with different mutation strategies.

In GaudiMM, each individual is a gaudi.base.Individual, which is a very (bio)fancy name for a list of
genes. To create a gene, you just subclass gaudi.genes.GeneProvider and define the needed methods:
express, unexpress, mutate, and mate. The gaudi.base.Individual class then provides some wrapper
methods that call the respective counterparts in each gene.

To evaluate the fitness of an individual, you must first define the set of evaluation functions. Each function is called
objective, and you keep them inside a gaudi.base.Environment.

To create a new objective, you have to subclass gaudi.objectives.ObjectiveProvider, which pro-
vides a very simple interface: evaluate. Define your function there, and that’s it!

Todo:

• Tutorial: How to create your own gene

• Tutorial: How to create your own objective

13.2. Our implementation 39

https://deap.readthedocs.org/en/master/api/tools.html#operators
https://deap.readthedocs.org/en/master/index.html
https://github.com/deap/deap
https://deap.readthedocs.org/en/master/overview.html
https://deap.readthedocs.org/en/master/examples/ga_onemax.html

GPathFinder Documentation, Release 1.2.0

40 Chapter 13. Developers guide

CHAPTER 14

API documentation

14.1 gaudi.cli

14.1.1 gaudi.cli.gaudi_cli

14.1.2 gaudi.cli.gaudi_run

14.2 gaudi.genes

These are the built-in genes in GPathFinder. You can also build your own, but these are ready to use.

14.2.1 GaudiMM standard Molecule gene

14.2.2 GPathFinder Path gene

14.2.3 GPathFinder Path_torsion gene

14.2.4 GPathFinder Path_rotamers gene

14.2.5 GPathFinder Path_normalmodes gene

14.2.6 Base class for all genes

14.3 gaudi.objectives

These are the built-in objectives in GPathFinder. You can also build your own, but these are ready to use.

41

GPathFinder Documentation, Release 1.2.0

14.3.1 Path scoring objective

14.3.2 Base class for all objectives

14.4 gaudi.algorithms

14.5 gaudi.base

14.6 gaudi.box

14.7 gaudi.exceptions

14.8 gaudi.parallel

14.9 gaudi.parse

14.10 gaudi.plugin

14.11 gaudi.similarity

14.12 gaudi.path_similarity

14.13 gaudi._cpdrift

42 Chapter 14. API documentation

	How to install
	Quick usage
	Input files
	Output files
	Reproducibility
	List of parameters
	Refinement
	How to cite this software
	Your first GPathFinder calculation
	Understanding the different sections of the input file
	Preparing ligand and protein files
	Analyzing GPathFinder results
	Developers guide
	API documentation

