

Emulators for complex models using Gaussian Processes in Python: gp_emulator

The gp_emulator library provides a simple pure Python implementations of Gaussian Processes (GPs), with a view of using them as emulators of complex computers code. In particular, the library is focused on radiative transfer models for remote sensing, although the use is general. The GPs can also be used as a way of regressing or interpolating datasets.

If you use this code, please cite both the code and the paper that describes it.

	JL Gómez-Dans, Lewis PE, Disney M. Efficient Emulation of Radiative Transfer Codes Using Gaussian Processes and Application to Land Surface Parameter Inferences. Remote Sensing. 2016; 8(2):119. DOI:10.3390/rs8020119 [https://doi.org/10.3390/rs8020119]

	José Gómez-Dans & Professor Philip Lewis. (2018, October 12). jgomezdans/gp_emulator (Version 1.6.5). Zenodo. DOI:10.5281/zenodo.1460970 [http://doi.org/10.5281/zenodo.1460970]

Development of this code has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 687320, under project H2020 MULTIPLY [http://www.multiply-h2020.eu/].

Contents:

	Gaussian Process Emulators
	Introduction

	Installing the package

	Quickstart
	Single output model emulation

	Multiple output emulators

	Emulating a typical radiative transfer model
	Setting the input parameter ranges

	An spectral emulator of PROSAIL

	GPs as regressors for biophyiscal parameter inversion
	Retrieving bionpysical parameters for Sentinel-2

	User Reference
	The GaussianProcess class

	The MultivariateEmulator class

Indices and tables

	Index

	Module Index

	Search Page

Gaussian Process Emulators

Introduction

Often, complex and numerically demanding computer codes are required in inverse modelling tasks. Such models might need to be invoked repeatedly as part of a minimisition task, or in order to provide some numerically-integrated quantity. This results in many applications being rendered impractical as the codes are too slow.

The concept of an emulator is simple: for a given model, let’s provide a function that given the same inputs are the original model, gives the same output. Clearly, we need to qualify “the same”, and maybe downgrade the expectations to “a very similar output”. Ideally, with some metric of uncertainty on the prediction. So an emulator is just a fast, surrogate to a more established code.

Gaussian processes (GPs) have been used for this task for years, as they’re very flexible throught he choice of covariance function that can be used, but also work remarkably well with models that are nonlinear and that have a reasonable number of inputs (10s).

We have used these techniques for emulation radiative transfer models used in Earth Observation, and we even wrote a nice paper about it: Gomez-Dans et al (2016) [http://dx.doi.org/10.3390/rs8020119]. Read it, it’s pure gold.

Installing the package

The package works on Python 3. With a bit of effort it’ll probably work on Python 2.7. The only dependencies are scipy [http://www.scipy.org/] and numpy [http://www.numpy.org/] To install, use either conda:

conda install -c jgomezdans gp_emulator

or pip:

pip install gp_emulator

or just clone or download the source repository and invoke setup.py script:

python setup.py install

Quickstart

Single output model emulation

Assume that we have two arrays, X and y. y is of size N, and it stores the N expensive model outputs that have been produced by running the model on the N input sets of M input parameters in X. We will try to emulate the model by learning from these two training sets:

gp = gp_emulator.GaussianProcess(inputs=X, targets=y)

Now, we need to actually do the training…

gp.learn_hyperparameters()

Once this process has been done, you’re free to use the emulator to predict the model output for an arbitrary test vector x_test (size M):

y_pred, y_sigma, y_grad = gp.predict (x_test, do_unc=True,
 do_grad=True)

In this case, y_pred is the model prediction, y_sigma is the variance associated with the prediction (the uncertainty) and y_grad is an approximation to the Jacobian of the model around x_test.

Let’s see a more concrete example. We create a damped sine, add a bit of Gaussian noise, and then subsample a few points (10 in this case), fit the GP, and predict the function over the entire range. We also plot the uncertainty from this prediction.

import numpy as np
import matplotlib.pyplot as plt

import gp_emulator

np.random.seed(42)
n_samples = 2000
x = np.linspace(0, 2, n_samples)
y = np.exp(-0.7*x)*np.sin(2*np.pi*x/0.9)
y += np.random.randn(n_samples)*0.02

Select a few random samples from x and y
isel = np.random.choice(n_samples, 10)
x_train = np.atleast_2d(x[isel]).T
y_train = y[isel]
fig = plt.figure(figsize=(12,4))

gp = gp_emulator.GaussianProcess(x_train, y_train)
gp.learn_hyperparameters(n_tries=25)

y_pred, y_unc, _ = gp.predict(np.atleast_2d(x).T,
 do_unc=True, do_deriv=False)
plt.plot(x, y_pred, '-', lw=2., label="Predicted")
plt.plot(x, np.exp(-0.7*x)*np.sin(2*np.pi*x/0.9), '-', label="True")
plt.fill_between(x, y_pred-1.96*y_unc,
 y_pred+1.96*y_unc, color="0.8")
plt.legend(loc="best")

(Source code)

[image: _images/quickstart-1.png]

We can see that the GP is doing an excellent job in predicting the function, even in the presence of noise, and with a handful of sample points. In situations where there is extrapolation, this is indicated by an increase in the predictive uncertainty.

Multiple output emulators

In some cases, we can emulate multiple outputs from a model. For example, hyperspectral data used in EO can be emulated by employing the SVD trick and emulating the individual principal component weights. Again, we use X and y. y is now of size N, P, and it stores the N expensive model outputs (size P) that have been produced by running the model on the N input sets of M input parameters in X. We will try to emulate the model by learning from these two training sets, but we need to select a variance level for the initial PCA (in this case, 99%)

gp = gp_emulator.MultivariateEmulator (X=y, y=X, thresh=0.99)

Now, we’re ready to use on a new point x_test as above:

y_pred, y_sigma, y_grad = gp.predict (x_test, do_unc=True,
 do_grad=True)

A more concrete example: let’s produce a signal that can be decomposed as a sum of scaled orthogonal basis functions…

import numpy as np

from scipy.fftpack import dct

import matplotlib.pyplot as plt
import gp_emulator

np.random.seed(1)

n_validate = 250
n_train = 100
basis_functions = dct(np.eye(128), norm="ortho")[:, 1:4]

params=["w1", "w2", "w3"]
mins = [-1, -1, -1]
maxs = [1, 1, 1]

train_weights, dists = gp_emulator.create_training_set(params, mins, maxs,
 n_train=n_train)
validation_weights = gp_emulator.create_validation_set(dists,
 n_validate=n_validate)

training_set = (train_weights@basis_functions.T).T

training_set += np.random.randn(*training_set.shape)*0.0005
validation_set = (validation_weights@basis_functions.T).T

gp = gp_emulator.MultivariateEmulator (y=train_weights, X=training_set.T,
 thresh=0.973, n_tries=25)
y_pred = np.array([gp.predict(validation_weights[i])[0]
 for i in range(n_validate)])

fig, axs = plt.subplots(nrows=1, ncols=2,sharey=True,figsize=(12, 4))
axs[0].plot(validation_set[:, ::25])
axs[1].plot(10.*(y_pred.T - validation_set))
axs[0].set_title("Samples from validation dataset")
axs[1].set_title("10*Mismatch between validation simulator and emulator")

(Source code)

[image: _images/quickstart-2.png]

Emulating a typical radiative transfer model

This package was designed to emulate radiatie transfer models. The process entails the following steps:

	Decide on what input parameters are required

	Decide their ranges

	Generate a training input parameter set

	Run the model for each element of the input training set and store the outputs

	Pass the input and output training pairs to the library, and let it fit the hyperparameters

We can show how this works with an example of the PROSPECT+SAIL model.

Setting the input parameter ranges

We can set the parameter names and their ranges simply by having lists with minimum and maximum values. This assumes a uniformly-distributed parameter distribution between those two boundaries, but other distributions are possible (we never had any reason to try them though!). We additionally set up the SRFs and other variables that need to be defined here… We train the model on 250 samples and test on (say) 100. 100 validation samples is probably too few, but for the sake of not waiting too much… ;-)

from functools import partial

import numpy as np

import gp_emulator

import prosail

Spectral band definition. Just a top hat, with start and
end wavlengths as an example
b_min = np.array([620., 841, 459, 545, 1230, 1628, 2105])
b_max = np.array([670., 876, 479, 565, 1250, 1652, 2155])
wv = np.arange (400, 2501)
passband = []

Number of training and validation samples
n_train = 250
n_validate = 100
Validation number is small, increase to a more realistic value
if you want

Define the parameter names and their ranges
Note that we are working here in transformed coordinates...

Define geometry. Each emulator is for one geometry
sza = 30.
vza = 0.
raa = 0. # in degrees

parameters = ['n', 'cab', 'car', 'cbrown', 'cw', 'cm', 'lai', 'ala', 'bsoil', 'psoil']
min_vals = [0.8 , 0.46301307, 0.95122942, 0. , 0.02829699,
 0.03651617, 0.04978707, 0.44444444, 0. , 0.]
max_vals = [2.5 , 0.998002 , 1. , 1. , 0.80654144,
 0.84366482, 0.99501248, 0.55555556, 2. , 1]

We then require a function for calling the RT model. In the case of PROSAIL, we can do that easily from Python, in other models available in e.g. Fortran, you could have a function that calls the external model

def inverse_transform (x):
 """Inverse transform the PROSAIL parameters"""
 x_out = x*1.
 # Cab, posn 1
 x_out[1] = -100.*np.log (x[1])
 # Cab, posn 2
 x_out[2] = -100.*np.log (x[2])
 # Cw, posn 4
 x_out[4] = (-1./50.)*np.log (x[4])
 #Cm, posn 5
 x_out[5] = (-1./100.)*np.log (x[5])
 # LAI, posn 6
 x_out[6] = -2.*np.log (x[6])
 # ALA, posn 7
 x_out[7] = 90.*x[7]
 return x_out

def rt_model (x, passband=None, do_trans=True):
 """A coupled land surface/atmospheric model, predicting refl from
 land surface parameters. Thisfunction provides estimates of refl for
 a particular illumination geometry.

 The underlying land surface reflectance spectra is simulated using
 PROSAIL. The input parameter ``x`` is a vector with the following components:

 * ``n``
 * ``cab``
 * ``car``
 * ``cbrown``
 * ``cw``
 * ``cm``
 * ``lai``
 * ``ala``
 * ``bsoil``
 * ``psoil``

 """
 x, sza, vza, raa = x

 # Invert parameter LAI
 if do_trans:
 x = inverse_transform (x)
 ################# surface refl with prosail #####################

 surf_refl = prosail.run_prosail(x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7], 0.01, sza, vza, raa,
 rsoil=x[8], psoil=x[9])
 if passband is None:
 return surf_refl
 else:
 return surf_refl[passband].mean()

Now we loop over all the bands, and prepare the emulators. we do this by using the create_emulator_validation function, that does everything you’d want to do… We just stuff the emulator, training and validation sets in one list for convenience.

retval = []
for iband,bmin in enumerate (b_min):
 # Looping over the bands....
 print("Doing band %d" % (iband+1))
 passband = np.nonzero(np.logical_and (wv >= bmin, wv <= b_max[iband]))
 # Define the SRF for the current band
 # Define the simulator for convenience
 simulator = partial (rt_model, passband=passband)
 # Actually create the training and validation parameter sets, train the emulators
 # and return all that
 x = gp_emulator.create_emulator_validation (simulator, parameters, min_vals, max_vals,
 n_train, n_validate, do_gradient=True,
 n_tries=15, args=(30, 0, 0))
 retval.append (x)

A simple validation visualisation looks like this

[image: _images/prosail_emulator_new_300.png]
Comparison between the simulated output and the corresponding emulator output for the validation dataset. Correlations (R2) are in all cases better than 0.99. Slope was between 0.97 and 1., whereas the bias term was smaller than 0.002.

An spectral emulator of PROSAIL

For the case of a spectral emulator, the approach is the same, only that we just use the spectral emulator, which is a bit simpler.

n_train = 350
n_validate = 100
x = gp_emulator.create_emulator_validation (rt_model, parameters, min_vals, max_vals,
 n_train, n_validate, do_gradient=True,
 n_tries=10, args=(30, 0, 0))

The validation results looks like this:

[image: _images/prosail_spectral_emulator.png]
Distribution of residuals derived from the difference of the emulator and simulator for PROSAIL.

We can also check that the gradient of the model is sensible, by comparing it with finite difference approximations from the original model, which is already carried out by create_emulator_validation if we set the do_gradient option.

[image: _images/spectral_gradient_prosail.png]
Comparison of the emulated model gradient versus finite difference approximation for LAI and chlorophyll at different spectral regions.

GPs as regressors for biophyiscal parameter inversion

GPs are a general regression technique, and can be used to regress some wanted magnitude from a set of inputs. This isn’t as cool as other things you can do with them, but it’s feasible to do… GPs are flexible for regression and interpolation, but given that this library has a strong remote sensing orientation, we’ll consider their use for bionpysical parameter extraction from Sentinel-2 data (for example).

Retrieving bionpysical parameters for Sentinel-2

Let’s assume that we want to retrieve leaf area index (LAI) from Sentinel-2 surface reflectance data. The regression problem can be stated as one where the inputs to the regressor are the spectral measurements of a pixel, and the output is the retrieved LAI. We can do this mapping by pairing in situ measurements, or we can just use a standard RT model to provide the direct mapping, and then learn the inverse mapping using the GP.

Although the problem is easy, we know that other parameters will have an effect in the measuremed reflectance, so we can only expect this to work over a limited spread of parameters other than LAI. Here, we show how to use the gp_emulator helper functions to create a suitable training set, and perform this.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

	import numpy as np

import scipy.stats

import gp_emulator
import prosail

import matplotlib.pyplot as plt

np.random.seed(42)
Define number of training and validation samples
n_train = 200
n_validate = 500
Define the parameters and their spread
parameters = ["n", "cab", "car", "cbrown", "cw", "cm", "lai", "ala"]
p_mins = [1.6, 25, 5, 0.0, 0.01, 0.01, 0., 32.]
p_maxs = [2.1, 90, 20, 0.4, 0.014, 0.016, 7., 57.]

Create the training samples
training_samples, distributions = gp_emulator.create_training_set(parameters, p_mins, p_maxs,
 n_train=n_train)
Create the validation samples
validation_samples = gp_emulator.create_validation_set(distributions, n_validate=n_validate)

Load up the spectral response functions for S2
srf = np.loadtxt("S2A_SRS.csv", skiprows=1,
 delimiter=",")[100:, :]
srf[:, 1:] = srf[:, 1:]/np.sum(srf[:, 1:], axis=0)
srf_land = srf[:, [2, 3, 4, 5, 6, 7, 8, 9, 12, 13]].T

Generate the reflectance training set by running the RT model
for each entry in the training set, and then applying the
spectral basis functions.
training_s2 = np.zeros((n_train, 10))
for i, p in enumerate(training_samples):
 refl = prosail.run_prosail (p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
 0.001, 30., 0, 0, prospect_version="D",
 rsoil=0., psoil=0, rsoil0=np.zeros(2101))
 training_s2[i, :] = np.sum(refl*srf_land, axis=-1)

Generate the reflectance validation set by running the RT model
for each entry in the validation set, and then applying the
spectral basis functions.
validation_s2 = np.zeros((n_validate, 10))
for i, p in enumerate(validation_samples):
 refl = prosail.run_prosail (p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
 0.001, 30., 0, 0, prospect_version="D",
 rsoil=0., psoil=0, rsoil0=np.zeros(2101))
 validation_s2[i, :] = np.sum(refl*srf_land, axis=-1)

Define and train the emulator from reflectance to LAI
gp = gp_emulator.GaussianProcess(inputs=training_s2, targets=training_samples[:, 6])
gp.learn_hyperparameters(n_tries=15, verbose=False)

Predict the LAI from the reflectance
ypred, _, _ = gp.predict(validation_s2)

Plot
fig = plt.figure(figsize=(7,7))
plt.plot(validation_samples[:, 6], ypred, 'o', mfc="none")
plt.plot([p_mins[6], p_maxs[6]], [p_mins[6], p_maxs[6]],
 '--', lw=3)
x = np.linspace(p_mins[6], p_maxs[6], 100)

regress = scipy.stats.linregress(validation_samples[:, 6], ypred)
plt.plot(x, regress.slope*x + regress.intercept, '-')
plt.xlabel(r"Validation LAI $[m^{2}m^{-2}]$")
plt.ylabel(r"Retrieved LAI $[m^{2}m^{-2}]$")
plt.title("Slope=%8.4f, "%(regress.slope) +
 "Intercept=%8.4f, "%(regress.intercept) +
 "R^2=%8.3f" % (regress.rvalue**2))

[image: _images/gps_as_regressors.png]
Using Gaussian Processes to regress leaf area index (LAI) from Sentinel-2 data using the PROSAIL RT model. Comparison between the true LAI and retrieved LAI using the GPs.

The results are quite satisfactory. Another issue is whether these results will work as well on real Sentinel-2 data of random vegetation classes!!! One reason why they won’t is because above I have assumed the soil to be black. While this won’t matter for situations with large canopy cover, it will for low LAI.

User Reference

The GaussianProcess class

	
class gp_emulator.GaussianProcess(inputs=None, targets=None, emulator_file=None)

	Bases: object

A simple class for Gaussian Process emulation. Currently, it assumes
a squared exponential covariance function, but other covariance
functions ought to be possible and easy to implement.

	
hessian(testing)

	Calculates the hessian of the GP for the testing sample.
hessian returns a (nn by d by d) array.

	
learn_hyperparameters(n_tries=15, verbose=False, x0=None)

	User method to fit the hyperparameters of the model, using
random initialisations of parameters. The user should provide
a number of tries (e.g. how many random starting points to
avoid local minima), and whether it wants lots of information
to be reported back.

	n_tries: int, optional

	Number of random starting points

	verbose: flag, optional

	How much information to parrot (e.g. convergence of
the minimisation algorithm)

	x0: array, optional

	If you want to start the learning process with a
particular vector, set it up here.

	
loglikelihood(theta)

	Calculates the loglikelihood for a set of hyperparameters
theta. The size of theta is given by the dimensions of
the input vector to the model to be emulated.

	theta: array

	Hyperparameters

	
partial_devs(theta)

	This function calculates the partial derivatives of the
cost function as a function of the hyperameters, and is only
needed during GP training.

	theta: array

	Hyperparameter set

	
predict(testing, do_deriv=True, do_unc=True)

	Make a prediction for a set of input vectors, as well as
calculate the partial derivatives of the emulated model,
and optionally, the “emulation uncertainty”.

	testing: array, size Npred * Ninputs

	The size of this array (and it must always be a 2D array!)
is given by the number of input vectors that will be run
through the emulator times the input vector size.

	do_unc: flag, optional

	Calculate the uncertainty (if you don’t set this flag, it
can shave a few us.

	do_deriv: flag, optional

	Whether to calculate the partial derivatives of the emulated
model.

Three parameters (the mean, the variance and the partial derivatives)
If some of those outputs have been left out, they are returned as
None elements.

	
save_emulator(emulator_file)

	Save emulator to disk as npz FileExistsError
Saves an emulator to disk using an npz file.

The MultivariateEmulator class

	
class gp_emulator.MultivariateEmulator(dump=None, X=None, y=None, hyperparams=None, model='', sza=0, vza=0, raa=0, thresh=0.98, n_tries=5)

	Bases: object

	
calculate_decomposition(X, thresh)

	Does PCA decomposition

This simply does a PCA decomposition using the SVD. Note that
if X is very large, more efficient methods of doing this
might be required. The number of PCs to retain is selected
as those required to estimate thresh of the total variance.

	X: array (N_train, N_full)

	The modelled output array for training

	thresh: float

	The threshold at where to cutoff the percentage of
variance explained.

	
compress(X)

	Project full-rank vector into PC basis

	
dump_emulator(fname, model_name, sza, vza, raa)

	Save emulator to file for reuse

Saves the emulator to a file (.npz format) for reuse.

	fname: str

	The output filename

	
hessian(x)

	A method to approximate the Hessian. This method builds on the fact
that the spectral emulators are a linear combination of individual
emulators. Therefore, we can calculate the Hessian of the spectral
emulator as the sum of the individual products of individual Hessians
times the spectral basis functions.

	
predict(y, do_unc=True, do_deriv=True)

	Prediction of input vector

The individual GPs predict the PC weights, and these are used to
reconstruct the value of the function at a point y. Additionally,
the derivative of the function is also calculated. This is returned
as a (N_params, N_full) vector (i.e., it needs to be reduced
along axis 1)

Parameters:
y: array

The value of the prediction point

	do_deriv: bool

	Whether derivatives are required or not

	do_unc: bool

	Whether to calculate the uncertainty or not

Returns:
A tuple with the predicted mean, predicted variance and
patial derivatives. If any of the latter two elements have
been switched off by do_deriv or do_unc, they’ll be returned
as None.

	
train_emulators(X, y, hyperparams, n_tries=2)

	Train the emulators

This sets up the required emulators. If necessary (hypeparams
is set to None), it will train the emulators.

	X: array (N_train, N_full)

	The modelled output array for training

	y: array (N_train, N_param)

	The corresponding training parameters for X

	hyperparams: array (N_params + 2, N_PCs)

	The hyperparameters for the relevant GPs

Index

 C
 | D
 | G
 | H
 | L
 | M
 | P
 | S
 | T

C

 	
 	calculate_decomposition() (gp_emulator.MultivariateEmulator method)

 	
 	compress() (gp_emulator.MultivariateEmulator method)

D

 	
 	dump_emulator() (gp_emulator.MultivariateEmulator method)

G

 	
 	GaussianProcess (class in gp_emulator)

H

 	
 	hessian() (gp_emulator.GaussianProcess method)

 	(gp_emulator.MultivariateEmulator method)

L

 	
 	learn_hyperparameters() (gp_emulator.GaussianProcess method)

 	
 	loglikelihood() (gp_emulator.GaussianProcess method)

M

 	
 	MultivariateEmulator (class in gp_emulator)

P

 	
 	partial_devs() (gp_emulator.GaussianProcess method)

 	
 	predict() (gp_emulator.GaussianProcess method)

 	(gp_emulator.MultivariateEmulator method)

S

 	
 	save_emulator() (gp_emulator.GaussianProcess method)

T

 	
 	train_emulators() (gp_emulator.MultivariateEmulator method)

	Jose L Gómez-Dans <j.gomez-dans@ucl.ac.uk>

 _images/quickstart-2.png
Samples from validation datase@*Mismatch between validation simulator and emulato
020

015
010
005
000

~0.05

-0.10

-0.15

T T T T T T T T T T T T T T
0 20 4 60 80 100 120 0 20 4 60 80 100 120

_images/spectral_gradient_prosail.png
Emulated gradient

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

v
v &
aC,, | » =650 nm i,v
A
OLAI | A =850 nm
”
N
.
’
4
4
4
4
T T I I T !
-1.5 -1.0 -0.5 0.0 0.5 1.0

Finite differences gradient (PROSAIL)

1.5

_images/prosail_spectral_emulator.png
0.010

0.005

0.000

~0.005

~0.010

500

750

1000

1250

1500

1750

2000

2250

2500

_images/quickstart-1.png
08

06

04

02

0.0

—— Predicted
—— True

0.00

025

050

075

100

125

150

175

2.00

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_images/gps_as_regressors.png
Retrieved LAl [m?m~—2]

Slope= 0.9722, Intercept= 0.0866, R?’=

7 -

]
|

IS
|

w
|

N
|

0.979

I I I I I I I
0 1 2 3 4 5 6

Validation LAl [m2m~2]

_images/prosail_emulator_new_300.png
MODIS Band 1

0.30 -

0.25 -

0.20 -

0.15 -

0.10 -

0.05 -

0.00

0.0

Ofl Oj2 0.3
MODIS Band 5

© o o o o
N W NAN U (@)
| | | | |

Emulated reflectance [-]

Q
|

©

o
©
o

0.2 0.4 0.6
PROSAIL reflectance [-]

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.6

0.5

0.4

0.3

0.2

0.1

0.0

MODIS Band 2
0.0 Of2 Oi4 Oj6
MODIS Band 6
T g
0.0 Of2 Oi4 Oj6

MODIS Band 3

0.0 0.1 Of2 Oj3 0.4
MODIS Band 7

MODIS Band 4

0.25 S

0.20 -

0.15 -

0.10 -

0.05 -

0.00

0.00

0.05 0.10 0.15 0.20

0.25

_static/down.png

nav.xhtml

 Table of Contents

 		
 Emulators for complex models using Gaussian Processes in Python: gp_emulator

 		
 Gaussian Process Emulators

 		
 Introduction

 		
 Installing the package

 		
 Quickstart

 		
 Single output model emulation

 		
 Multiple output emulators

 		
 Emulating a typical radiative transfer model

 		
 Setting the input parameter ranges

 		
 An spectral emulator of PROSAIL

 		
 GPs as regressors for biophyiscal parameter inversion

 		
 Retrieving bionpysical parameters for Sentinel-2

 		
 User Reference

 		
 The GaussianProcess class

 		
 The MultivariateEmulator class

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

