govready-q Documentation
Release 0.8.6

Josh Tauberer, Greg Elin

Oct 10, 2019

Contents:

1 What You Most Need to Know About GovReady-Q

1.1 Why GovReady-Q?
1.2 How GovReady-Q Accelerates Compliance
1.3 GovReady-Q Philosophy
1.4 GovReady-Q Features
1.5 Using Hosted GovReady-Q
1.6 Downloading GovReady-Q
1.7 Installing GovReady-Q
1.8 Finding Compliance Apps
1.9 Documentation
1.10 Support
1.11 Reporting Bugs & Issues
1.12 License/Credits
1.13 About GovReady PBC
2 Deploying GovReady-Q
2.1 System Requirements for GovReady-Q
2.2 Deploying GovReady-Q with Docker
2.3 Installing GovReady-Q on the Host OS
2.4 Deploying GovReady-Q in Production environments
2.5
2.6 Setting up a Database for Production Workloads
2.7 Configuring a Reverse Proxy Webserver for Production Use
2.8 Environment Settings
2.9 Enterprise Single-Sign On/Login
2.10 Applying Custom Organization Branding
3 Permissions
3.1 WhatQtracks
32 USsers o
3.3 Organizations v vt e
34 Folders
35 Projects
36 Tasks

Installing GovReady-Q for Development or Contributing

4 Authoring Compliance Apps

4.1

Understanding Compliance Apps

[e e clNe LN BEN B e e RV, B S

11
17
21
23
25
26
28
29
30

35
35
35
36
37
37
38

39
39

4.2 Compliance App Authoring Tutorial

43 APP SOUICES & v v v v v o e
4.4 Modules, Questions, and Documents YAML Reference
Automation API

5.1 Overview of the GovReady Q APL e
5.2 Usingthe Compliance APT e
5.3 APIDataSchema e e e e
Data Design Guide

6.1 Users, Organizations, Projects, Folders, and Invitations
6.2 Compliance Apps, Modules, Questions, Tasks, and Answers
6.3 DISCUSSIONS v ot e e e e e
6.4 Generating Detailed Data Models e
Testing

7.1 Running TeStS o o o e e e e
7.2 TestCoverage Report e e
7.3 Code Scanning and AnalySis oo e e e e e e e e e e e
7.4 Dependency Management and Vulnerability Testing

Indices and tables

83
83
85
87

89
&9
90
99
100

101
101
102
102
103

105

govready-q Documentation, Release 0.8.6

The GovReady-Q Compliance Server is an open source GRC platform for highly automated, user-friendly, self-service
compliance assessments and documentation. It’s perfect for DevSecOps.

GovReady-Q solves the painful compliance bottleneck of needing months to authorize applications that deploy and
redeploy in minutes.

The code is open source, and available on GitHub.

Attention: GovReady-Q is in Beta. Suggested for DevSecOps early adopters needing Compliance-as-Code.

Contents: 1

https://github.com/GovReady/govready-q

govready-q Documentation, Release 0.8.6

2 Contents:

CHAPTER 1

What You Most Need to Know About GovReady-Q

1.1 Why GovReady-Q?

Everything about developing and deploying software is accelerating. . . except for compliance. Why? Because:
* maintaining written documentation is too slow,
» pondering how jargon-laden control guidance applies is too hard,
* there’s little reuse, and no compliance documentation supply chain.

To stop needing months to authorize systems that deploy in minutes, assessments and authorizations need to be assem-
bled from vetted, pre-fabricated components sourced from the same software supply chain with which we assemble
applications.

1.2 How GovReady-Q Accelerates Compliance

GovReady accelerates compliance through component-centric guidance, pre-written documentation, and collabora-
tion.

When you use or install GovReady-Q, you gain access to a marketplace of small, self-service compliance apps
written by peers and vendors that map system components to security controls and guide you step-by-step
through assessments and documentation.

govready-q Documentation, Release 0.8.6

s
OVREADT Complianc® App
G

As you and your teammates collaboratively answer questions, the compliance apps work with GovReady-Q to store
your data in a relational database and automagically generate and maintain your compliance artifacts for auditors.

GovReady-Q’s contribution to Compliance-as-Code is the data abstractions for shareable, reusable, and customiz-
able packages—Compliance Apps—to map the relationship between a system component and a set of controls. The
approach is innovative, yet familiar. Compliance Apps:

* enable a hub/marketplace for community contributions;
* extend inherited controls model to each system component;
* enable modern, user-friendly experiences;

* support agile, iterative workflows.

Attention: GovReady-Q software is “Beta” software best suited for early adopters needing faster compliance for
DevSecOps.

1.3 GovReady-Q Philosophy

Compliance is not security. Compliance scales security.

Compliance is a technique humans have developed for enabling trust in systems that are too large and complex for
individuals to assess trustworthiness. Compliance scales participation, attestation and verification of recommended
practices.

* We love security and innovation and believe they enable each other.

* We believe security and compliance are standard, not premium add-ons.
* We view compliance as a by-product of a well-instrumented process.

* We value ease-of-use to increase adoption.

¢ We value automation to increase consistency.

* We see virtualization and DevOps enabling massive gains in security and compliance.

4 Chapter 1. What You Most Need to Know About GovReady-Q

assets/app_diagram.png

govready-q Documentation, Release 0.8.6

1.4 GovReady-Q Features

» Easy-to-use, beautiful questionnaires

* Jargon-free approach to security controls and compliance

* Step-by-step guidance through assessments

* Compliance-as-Code approach to documentation

* Discuss questions and answers in the tool instead of in email

* Support for rich, clear multi-media communication

* RESTful Automation API to integrate with DevOps pipeline and existing agents
* Innovative, reusable “Compliance Apps’” model

¢ Friendly Open Source license so you can start now

1.5 Using Hosted GovReady-Q

There’s nothing to install. Q.GovReady.com is the hosted, multi-tenant version of GovReady-Q.
1. Visit Q.GovReady.com
2. Fill out the form “About your organization” and “About you” to create your account
3. Don’t worry about the Service Levels — everything’s available to everyone during the Beta phase

4. We’ll contact you to help you get started

Attention: We will help you get up and running during the current Beta phase of the project while we make
getting started easier.

The hosted version is an excellent solution if have one project/system you are trying to get through NIST SP 800-53
or NIST SP 800-171 compliance, or you are have just trying to pull together a few specific compliance documents
like your Privacy Policy or Rules of Behavior. The hosted service is operated by GovReady PBC, the company behind
GovReady-Q Compliance Server.

If you have questions about the hosted version, email .

1.5.1 System Architecture

The following diagram depicts a generic, high-level system architecture GovReady-Q deployment including external
ports and protocols. Architectures vary depending on redundancy requirements, use of containers, etc.

1.4. GovReady-Q Features 5

https://q.govready.com
https://q.govready.com

govready-q Documentation, Release 0.8.6

GovReady-Q System Architecture

v2019-04-05-001

Inbound TCP Ports Outbound TCP Ports
443 HTTPS/TLS Termination 587 SMTP TLS
993 IMAPS

22 or 443 git private repos

------------------------------------- Enterprise Services
HTTPS/TLS GovReady-Q Server Email Se
Termination Django/Python 3 mall senver
User
Enterprise Single Sign-On
Relational
Database
[Data]
System Element
Commaon Caontrol Library
(git repo)
GovReady-Q
"""" System Boundary --------
Security & Scanning Tools
Hosting Environment Enterptise GRC Tools
e, A P| -futur.a USE - =seccc e s smsss e oo
Other Enterprise Tools

1.6 Downloading GovReady-Q

Downloading Where

Current Release on Docker | https://hub.docker.com/r/govready/govready-q/

Nightly Build on Docker https://hub.docker.com/r/govready/govready-q-nightly/

Clone the GitHub repo https://github.com/govready/govready-q

Chapter 1. What You Most Need to Know About GovReady-Q

assets/govready-q_system_architecture.png
https://hub.docker.com/r/govready/govready-q/
https://hub.docker.com/r/govready/govready-q-nightly/
https://github.com/govready/govready-q

govready-q Documentation, Release 0.8.6

1.7 Installing GovReady-Q

Deployment Guide

Installing on Workstations for Development
Deploying with Docker

Deploying on RHEL 7 / CentOS 7
Deploying on Ubuntu

1.8 Finding Compliance Apps

Compliance Apps are GovReady-Q modular, shareable, reusable, data packages mapping the relationship between
system components and security controls. See Understanding Compliance Apps for a more detailed description.

1.8.1 For Hosted Version

When using the Hosted Version of GovReady-Q, GovReady PBC manages the Compliance Apps available to your
organization. Send email to to request changes.

1.8.2 For Local Installs

The docker and downloaded version of GovReady-Q automatically loads a small set of example Compliance Apps.
Compliance Apps are published in collections known as “AppSources” (e.g., repos). Here are a few:

* https://github.com/GovReady/govready-apps-dev

You can can show and hide compliance apps from the Django administration page at main.localhost:8000/
admin/guidedmodules/appsource/.

1.8.3 Creating Your Own Compliance Apps

To get started writing your own Compliance Apps see: Creating Compliance Apps.

1.9 Documentation

The official GovReady-Q documentation is maintained at govready-q.readthedocs.io.

1.10 Support

Commercial support for GovReady-Q is provided by GovReady PBC. Email .

Sign up for Security Notifications email list at GovReady Security Alerts.

1.7. Installing GovReady-Q 7

https://govready-q.readthedocs.io/en/latest/deploy_local_dev.html
https://govready-q.readthedocs.io/en/latest/deploy_docker.html
https://govready-q.readthedocs.io/en/latest/deploy_rhel7_centos7.html
https://govready-q.readthedocs.io/en/latest/deploy_ubuntu.html
Apps.html
https://github.com/GovReady/govready-apps-dev
Authoring.html
https://govready-q.readthedocs.io/
http://eepurl.com/dsi9YL

govready-q Documentation, Release 0.8.6

1.11 Reporting Bugs & Issues

Please file bug reports on our GitHub issue. When reporting a bug, please include as much information as possible.
This includes:

* Install type: Hosted, Local, Docker, etc
* URL

* Action taken

* Expected result

e Actual result

¢ Screenshot (if relevant)

1.12 License / Credits

This repository is licensed under the GNU GPL v3.
* Emoji icons by http://emojione.com/developers/.

* Generic server icon by Stock Image Folio from Noun Project.

1.13 About GovReady PBC

GovReady PBC is a Public Benefit Corporation whose mission is to lower the cost of innovation in digital services
to citizens. GovReady’s innovative self-service IT compliance tool GovReady-Q was developed as part of an R&D
contract to automate and lower the cost of cyber security compliance from the Department of Homeland Security,
Science and Technology Directorate, Cyber Security Division. GovReady PBC is based in the greater Washington,
DC metro area.

8 Chapter 1. What You Most Need to Know About GovReady-Q

https://github.com/GovReady/govready-q/issues
https://github.com/GovReady/govready-q/blob/master/LICENSE.md
http://emojione.com/developers/
https://thenounproject.com/search/?q=computer&i=870428

CHAPTER 2

Deploying GovReady-Q

2.1 System Requirements for GovReady-Q

GovReady-Q is a Python 3.6, Django 2.0 application with a relational database back-end. GovReady-Q is compatible
with operating systems and components generally supported by Django 2.0 and Python 3.6.

GovReady-Q has been successfully deployed on multiple Linux distros (RHEL 7, CentOS 7, Ubuntu 14 & 16), as a
Docker container, as Docker container in AWS Elastic Container Service, as a Docker container on OpenShift, and as
a Vagrant virtual machine.

We’ve tried to make GovReady-Q installation straightforward and complete. Our documentation includes configuring
the Python uWSGI environment, installing and running testing tools, adding sources for compliance security plan
apps, and setting up your admin account and initial organization.

2.1.1 Development Deployments

GovReady-Q can be deployed on a modern, single Linux/Unix/MacOS workstation (or laptop) for development and
exploration.

GovReady-Q can be deployed on a Windows platform through the use of our Docker container.

2.1.2 Production Deployments

Hardware Requirements

Minimum Hardware

Single server to host both multi-tenant GovReady-Q application and Database
Linux-compatible hardware

2GB RAM

10 GB storage (for database)

govready-q Documentation, Release 0.8.6

Recommended Hardware

2 servers: 1 for multi-tenant GovReady-Q application; 1 for Database Server

Linux-compatible hardware (64 bit architecture; FIPS-140-2 validated cryptographic module)

8GB RAM for each server

100 GB storage (for database server)

Software Requirements

Required Software Packages (partial list)

(GovReady-Q application)

Python 3.6

Django 2.x

Jinja 2.x

uwsgi 2.x

unzip

graphviz

pandoc

Wkhtmltopdf

Git 2.x

supervisor

Supported Databases

Postgres 9.4 (psycopg? 2.7.5 adapter)

Mysql 7.6 and higher (mysqlclient 1.3.12 adapter)

SQLite 3.x

Recommended Database
Postgres 9.4 (psycopg? 2.7.5 adapter)

SMTP Mail Server (for sending email notifications and receiving comments via email)

Any SMTP mail server (MTA) supporting STARTTLS connections.

For a more detailed list of software dependencies and requirements see:

* https://github.com/GovReady/govready-q/blob/master/requirements.in

https://github.com/GovReady/govready-q/blob/master/requirements.txt
https://github.com/GovReady/govready-q/blob/master/requirements_mysql.in

https://github.com/GovReady/govready-qg/blob/master/requirements_mysql.txt

* https://github.com/GovReady/govready-q/blob/master/Vagrantfile

10

Chapter 2.

Deploying GovReady-Q

https://github.com/GovReady/govready-q/blob/master/requirements.in
https://github.com/GovReady/govready-q/blob/master/requirements.txt
https://github.com/GovReady/govready-q/blob/master/requirements_mysql.in
https://github.com/GovReady/govready-q/blob/master/requirements_mysql.txt
https://github.com/GovReady/govready-q/blob/master/Vagrantfile

govready-q Documentation, Release 0.8.6

2.2 Deploying GovReady-Q with Docker

2.2.1 GovReady-Q on Docker Hub

Container Where
Current Release on Docker | https://hub.docker.com/r/govready/govready-q/
Nightly Build on Docker https://hub.docker.com/r/govready/govready-q-nightly/

2.2.2 Quickstart for GovReady-Q on Docker

Make sure you first install Docker and, if appropriate, grant non-root users access to run Docker containers (or else
use sudo when invoking Docker below).

Start and run the container in the background (e.g. detached):

Run the docker container in detached mode
docker container run —--name govready-q —-detach -p 8000:8000 govready/govready—-q

Create admin account and organization data
docker container exec -it govready-g first_run

Stop, start container
docker container stop govready-qg
docker container start govready-gq

View logs — useful if site does not appear
docker container logs govready—-gq

To destroy the container and all user data entered into Q
docker container rm -f govready-gq

Visit your GovReady-Q site in your web browser at:

http://localhost:8000/

Quickstart Notes and Common Issues
Your GovReady-Q site will not load immediately, as GovReady-Q initializes your database for the first time. Wait for
the site to become available.

Because of HTTP Host header checking, you must use 1localhost to access the site, or another hostname if config-
ured using the ——address option documented below.

If the site does not come up, check the container logs for an error message:

docker container logs govready-—-gq

By default, the Q database is only persisted within the container. The database will persist between docker
container stop/docker container start commands, but when the container is removed from Docker
(i.e. using docker container rm)the Q data will be destroyed. See the Persistent database section below for
connecting to a persistent database outside of the container.

The default Govready-Q instance cannot send email or receive comment replies until it is configured to use a transac-
tional mail provider like Mailgun — see below.

2.2. Deploying GovReady-Q with Docker 11

https://hub.docker.com/r/govready/govready-q/
https://hub.docker.com/r/govready/govready-q-nightly/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/linux/linux-postinstall/#manage-docker-as-a-non-root-user

govready-q Documentation, Release 0.8.6

The default Govready-Q instance is configured to non-debug mode (Django DERUG=false), which is the recom-
mended setting for a public website. The instance can be set to debug mode at runtime — see below.

2.2.3 Advanced configuration of GovReady-Q inside Docker

For more complex setups, using our run script instead will be easier:

wget https://raw.githubusercontent.com/GovReady/govready—g/master/deployment/docker/
—docker_container_run.sh

chmod +x docker_container_run.sh

./docker_container_run.sh

Advanced container options can be set with command-line arguments to our container run script:

./docker_container_run.sh ...GovReady-Q arguments... —-- ...Docker arguments...

Changing the hostname and port

The public address (as users see it)

The container will run at Localhost : 8000 by default, it will only be accessible from the host machine, and because
of HTTP Host header checking you must visit GovReady-Q using the same hostname it is configured to run at (so,
with default settings, visiting 127.0.0. 1 instead of 1localhost will result in an error).

You may change the hostname and port of the GovReady-Q server using:

./docker_container_run.sh --address g.mydomain.com:80

If the Docker container is behind a proxy, then ——address specifies the public address that end-users will use to
access GovReady-Q. This may differ from the address and port that the container is accessed at on your organization’s
network, which is set using ——bind.

Add --https if end users will access GovReady-Q with https: URLs. This must be done through a proxy that
accepts HTTPS connections and passes the requests using HTTP to the Docker container. See the HTTP S environment
variable, below.

The address that the container is bound to

Use ——bind IP:PORT to control how the listening socket is created on the host machine. The default value of
—-bindis 127.0.0.1 and the port from ——address,or 127.0.0.1:8000 if ~——address isn’t given. If the
host machine is behind a proxy, use ——bind to control the network interface and port that Docker will forward to the
GovReady-Q container.

./docker_container_run.sh ——bind 10.0.0.5:6543

Persistent database

In a production environment it is important to have GovReady-Q connect to a persistent database instead of the
database stored inside the container, which will be destroyed when the container is destroyed. There are two methods
for connecting to a persistent database.

12 Chapter 2. Deploying GovReady-Q

govready-q Documentation, Release 0.8.6

Sqlite file

You can use a Sqlite file stored on the host machine:

./docker_container_run.sh --sglitedb /path/to/govready-g-database.sqglite

You must specify an absolute path. The path is mounted using a Docker bind mount into the container filesystem.

The file must be readable and writable by the container process, which is running as user 1000/group 1000. Although
the container is running as a user isolated from the host environment, filesystem permissions for mounted files are
based on comparing the raw user/group IDs of the file’s owner/group on the host to the raw user/group ID of the
process running in the container. Consider granting user 1000 read/write permission to the database using ACLs:

setfacl -m u:1000:rw /path/to/govready—g-database.sqglite

Of course, do not do this if the host machine has a user 1000 that you do not trust.

Remote database

You can also connect to a database running on a remote system accessible to the Docker container.

For instance, you might run a second Docker container holding a Postgres server.

DBPASSWORD=mysecretpassword

docker container run —--name govready-gq-db —-e POSTGRES_PASSWORD=$DBPASSWORD -d postgres
DBHOST=$ (docker container inspect govready-g-db | jgq -r .[0].NetworkSettings.
—IPAddress)

DBUSER=postgres

DBDATABASE=postgres

(This example uses jq, a JSON parsing tool, to extract the IP address of the database container. You can install jq or
just set DBHOST manually by looking for the IP address in docker container inspect govready-g-db.)

Start the GovReady-Q container with the argument:

./docker_container_run.sh —--dburl postgres://$DBUSER:S$DBPASSWORDE@SDBHOST/SDBDATABASE

where SDBHOST is the hostname of the database server, SDBDATABASE is the name of the database, and SDBUSER
and SDBPASSWORD are the credentials for the database.

You can also use a MySQL or MariaDB server using the syntax mysgl: //USER: PASSWORD@HOST : PORT /NAME.

Configuring email

GovReady-Q sends outbound emails for notifications about invitations and discussions. It also receives inbound emails
— replies to discussion notifications can be used to post discussion comments by email.

To configure outbound email, use:

./docker_container_run.sh -—-email-host smtp.company.org -—-email-port 587 —-email-user
... ——email-pw ... ——email-domain g.company.org

-—email-domain sets the hostname used in the email address of outbound email. The other arguments set the
SMTP relay server details.

2.2. Deploying GovReady-Q with Docker 13

govready-q Documentation, Release 0.8.6

Some of GovReady-Q’s outbound emails can be replied to. When a user replies to a notification of a discussion
comment, the reply’s body is post as a new comment on the discussion. Currently we only support an incoming
notification hook from Mailgun, and it is not yet configurable for the docker deployment. TODO

Container management and other options

Other options that can be passed on the command-line are:
Use ——name NAME to specify an alternate name for the container. The default is govready-aq.

Use ——relaunch to remove an existing container of the same name before launching the new one, if an existing
container of the same name exists. This simply runs docker container rm —-f NAME.

Add —-debug to start GovReady-Q in DEBUG mode, which enables nicer error messages. Do not use in production.

You can additionally pass parameters to the docker container runcommand by separating the Docker param-
eters from the GovReady-Q parameters with ——, such as:

./docker_container_run.sh --address g.mydomain.com:80 —-- —-e VAR=VALUE

Developing compliance apps

If you are using the Docker image to develop your own compliance apps, then you will need to bind-mount a directory
on your (host) system as a directory within the container so that the container can see your app YAML files. To do so,
start the container with the additional command-line argument:

—-—appsdevdir /path/to/apps

The directory may be empty but it must exist, and you must specify it as an absolute path (due to a Docker limitation).

The directory and its contents must also be readable — and writable, if you intend to use GovReady-Q’s authoring
tools — by the container process. The container process is running as user 1000/group 1000. Although the container is
running as a user isolated from the host environment, filesystem permissions for mounted files are based on comparing
the raw user/group IDs of the file’s owner/group on the host to the raw user/group ID of the process running in the
container. Consider granting user 1000 read/write permission to the files, plus execute (i.e. browse) permission to the
directories, in the mounted path using ACLs:

setfacl -R -m u:1000:rwX /path/to/apps

Of course, do not do this if the host machine has a user 1000 that you do not trust.

If the directory is not empty, it should have subdirectories for each of your apps. For instance, you would have a
YAML file at /path/to/apps/my_app/app.yaml.

To create your first app, you can run

docker container exec -it govready-g python3.6 manage.py compliance_app host your_new_
—app_name

Replace your_new_app_name with an app identifier, which may contain letters, numbers, dashes, and underscores.
host is always just host — don’t change that.

If your new app does not appear in the compliance apps catalog, you may need to force the app catalog cache to be
cleared by restarting the container:

docker container restart govready-g

14 Chapter 2. Deploying GovReady-Q

https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/

govready-q Documentation, Release 0.8.6

2.2.4 Production deployment of the Docker container

The GovReady-Q container runs several processes, including an HTTP/application server and a background process
for sending notification emails.

Console and logs

The container’s console, which can be accessed with

docker container logs govready-g

shows the output of container’s start-up commands including database migrations and process startup.

Additional log files are stored in /var/log within the container. These files contain access logs and other program
output, including logs for unhandled error messages that appear as 500 Internal Server Error pages to end users. A
special management command can be used to see the log files:

docker container exec govready-g tail_logs

tail_logs takes the same arguments as Unix tail. For instance, add -n 1000 to see the most recent 1,000 log
lines, or add — £ to continue to output the logs as the log files grow.

The log files can also be accessed by mounting /var/1log with a Docker bind-mount or as a volume (and that’s the
only way to see the logs if docker container exec cannot be used in your environment).

Secure deployments

The container’s processes run exclusively as a non-root user with UID 1000 and GID 1000.

The container may be run with a read-only root filesystem (Docker’s ——read-only argument) so long as /run,
/tmp, and /var/log are writable. When the ——dburl argument is given to our docker_container_run.sh
script, a read-only filesystem is activated using:

--read-only --tmpfs /run —--tmpfs /tmp --tmpfs /var/log

The three directories can be made writable either by being mounted as tmpfs temporary filesystems, as above, or using
a bind mount or a Docker volume. In production environments where the container is launched without our script, it
is recommended to use tempfs for /run and /tmp and to mount /var/log to a volume.

Other management commands

See the uWSGI application server JSON process stats:

docker container exec govready—-g uwsgi_stats

2.2.5 Updating to a new release of GovReady-Q
Periodically there will be a new release of GovReady-Q as an new image on the Docker Hub. Updating is easy by
re-running the same commands again.

1) There may be an update to docker_container_run. sh. Since this script is not a part of the Docker image,
you will need to get it again from this GitHub repository.

2.2. Deploying GovReady-Q with Docker 15

http://uwsgi-docs.readthedocs.io/

govready-q Documentation, Release 0.8.6

2) You should be using a persistent database as described above. When using a persistent database, it is safe to
destroy the govready—qg Docker container and start a new one to deploy an update.

3) Use the same arguments to docker_container_run.sh as when you started the container the last time,
but add ——relaunch to kill the previous container — you cannot have two containers with the same name or
two containers listening on the same port. (You can change the name and port, as described above, if you would
like to keep the old container running.)

4) When the new container starts, database migrations will be applied, if applicable.

For example:

Update docker_container_run.sh, replacing the old script (with -0).

wget —-O docker_container_run.sh \
https://raw.githubusercontent.com/GovReady/govready—qg/master/deployment/docker/

—docker_container_run.sh

chmod +x docker_container_run.sh

Remove old container and launch updated container.
./docker_container_run.sh —--relaunch [your same command-line arguments]

2.2.6 Environment variables for launching the container without our run script

The following environment variables are used to configure the container when launching GovReady-Q using docker
run or a container service (i.e., not when using our docker_container_run. sh helper script).

HOST - The domain name that GovReady-Q will be accessible at by end users. (Default: 1ocalhost)

PORT - The port that GovReady-Q will be accessed at by end users, typically either 80 (no HTTPS) or 443 (HTTPS).
(Default: 8080)

HTTPS - Set to t rue if GovReady-Q will be accessed by end users at an https: address. This must be done through a
proxy that accepts HTTPS connections and passes the requests using HTTP to the Docker container. The proxy must
set the X-Forwarded-Proto: https header. It is also permissible for the proxy to forward HTTP requests,
and those requests will be automatically redirected to the https: URL. (Default: false)

DEBUG - Set to t rue to run in Django debug mode. (Default: false)

DBURL - Set to a database connection string as described in https://github.com/kennethreitz/dj-database-url. We rec-
ommend using PostgreSQL using a TLS server certificate, e.g. postgresqgl://user:password@dbhost/
govready_g?sslmode=verify-fulls&sslrootcert=/path/to/pgsqgl.crt (although you’ll have to
figure out how to get the server certificate accessible via the container filesystem). (Default: Not set, which means
using a Sqlite database stored in the container at /usr/src/app/local/database.sqglite, which will be
ephemeral if the path is not mounted to the host or a Docker volume.)

ORGANIZATION_PARENT_DOMAIN - If not set, GovReady-Q will be single-tenant and the database must be config-
ured with a single organization whose subdomain is ma in. If set, GovReady-Q will be multi-tenant, serving a landing
page and organization-specific sites on different domain names. A landing/signup page and the Django /admin site
will be available at the domain name given in the HOST environment variable and organization sites will be served at
subdomains of the ORGANIZATION_PARENT_DOMAIN domain name value. (Default: Not set).

EMAIL_HOST, EMAIL_PORT, EMAIL_USER, EMAIL_PW, and EMAIL_DOMAIN - For enabling outbound email.
The host, port, username, and password settings specify a TLS-enabled SMTP server. EMATIIL_DOMAIN is the domain
name to use in outbound mail. (Default: Not set and outbound emails are dumped to logs for debugging.) To test
the email configuration from the command-line, you can run docker container exec —-it govready-g
python3.6 manage.py sendtestemail you@example.com. If email is configured, you should not see
any output and you should get a test email.

16 Chapter 2. Deploying GovReady-Q

https://github.com/kennethreitz/dj-database-url
https://www.postgresql.org/docs/9.1/static/libpq-ssl.html

govready-q Documentation, Release 0.8.6

FIRST_RUN - If set to 1, an administrator user will be created when the container launches and a randomly generated
password will be given to the user and printed on the console, which will be visible in the container’s logs. An
organization with subdomain main will also be created.

PROCESSES - The number of concurrent requests that can be handled by the container. (Default: 4)

SECRET_KEY - The Django SECRET_KEY for session management. (Try this tool to generate one.)

ADMINS - The Django ADMINS setting, passed as raw JSON. Example: [["Admin Name 1",
"adminl@example.com"], ["Admin Name 2", "admin2@example.com"]]. (Default: Empty list,
ie. [1.)

SYSLOG - The host and port of a syslog-compatible log message sink. (Default: None.)

MAILGUN_API_KEY - An API key for Mailgun which is used to validate incoming webhook requests from Mailgun
when an incoming email is received, when Mailgun is configured to handle incoming mail. (Default: None)

BRANDING (downstream packaging only): You may override the templates and stylesheets that are used for
GovReady-Q’s branding by setting this environment variable to the name of an installed Django app Python mod-
ule (i.e. created using manage.py startapp) that holds templates and static files. No such app is provided in
the GovReady-Q published Docker image, so this variable can only be used by downstream image maintainers. See
Applying Custom Organization Branding.

PROXY_AUTHENTICATION_USER_HEADER and PROXY_AUTHENTICATION_EMAIL_HEADER: GovReady-Q
can be deployed behind a reverse proxy that authenticates users and passes the authenticated user’s username and email
address in HTTP headers. These environment variables correspond to the settings documented in Enterprise Login.

2.2.7 Running tests

GovReady-Q’s unit tests can be run within the Docker container. After building the image:

docker container run --rm -it govready/govready-qg:latest python3.6 manage.py test

Or once a Docker container running GovReady-Q is started (and named govready—q), use exec to begin a shell
within the container, and then launch the unit tests:

docker container exec -it govready-g bash
python3.6 manage.py test guidedmodules

The functional tests run a headless Chromium web browser session and we have not yet figured out how to get
this to work in our Docker container. Chromium’s process isolation capabilities seem to require special system
privileges (i.e. docker run —-privileged --cap-add SYS_ADMIN) or Chromium command-line flags
(-—no-sandbox —--disable-gpu).

yum install -y chromium chromedriver
python3.6 manage.py test

selenium.common.exceptions.WebDriverException: Message: unknown error: Chrome failed
—to start: exited abnormally

2.3 Installing GovReady-Q on the Host OS

2.3.1 Deploying Q to Red Hat Enterprise Linux 7 / CentOS 7 / Amazon Linux 2

These instructions can be used to configure a Red Hat Enterprise Linux 7, CentOS 7, or Amazon Linux 2 system to run
GovReady-Q. A Vagrantfile based on CentOS 7 and these instructions is also provided at the root of the GovReady-Q

2.3. Installing GovReady-Q on the Host OS 17

https://docs.djangoproject.com/en/2.0/ref/settings/#secret-key
https://www.miniwebtool.com/django-secret-key-generator/
https://docs.djangoproject.com/en/2.0/ref/settings/#admins
CustomBranding.html
Environment.html#proxy-authentication-sever

govready-q Documentation, Release 0.8.6

source code.

Preparing System Packages

GovReady-Q calls out to git to fetch apps from git repositories, but that requires git version 2 or later because of
the use of the GIT_SSH_COMMAND environment variable. RHEL stock git is version 1. Switch it to version 2+ by
using the IUS package:

if necessary, enable EPEL and IUS repositories
rpm -i https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm https://
—rhel7.iuscommunity.org/ius-release.rpm

if necessary, remove any git currently installed
yum remove git

yum install git2u

Preparing Q Source Code

Create a UNIX user named govready—q:

Create user.
useradd govready—-gq —-c¢ "govready-g"

Change permissions so that Apache can read static files.
chmod a+rx /home/govready-q

Deploy GovReady-Q source code:

Install required software.

#

Note that python36-devel and mysgl-devel are needed to compile & install

the mysglclient Python package. But mysgl-devl has an installation conflict
with IUS. Adding --disablerepo=ius fixes it.

#

#

gcc is needed to build the uWSGI Python package.

sudo yum install --disablerepo=ius \
unzip gcc python36-pip python36-devel \
graphviz \

pandoc xorg-xll-server—-Xvfb wkhtmltopdf \
postgresgl mysqgl-devel

Upgrade pip because the RHEL package version is out of date (we need >=9.1 to properly process hashes in
requirements.txt):

pip3 install —--upgrade pip

Then switch to the govready-q user and install Q:

sudo su govready—-qg

cd

git clone https://github.com/govready/govready—-q

cd govready—-qg

git checkout {choose the tag for the current released version}
pip3 install --user -r requirements.txt

(continues on next page)

18 Chapter 2. Deploying GovReady-Q

govready-q Documentation, Release 0.8.6

(continued from previous page)

./fetch-vendor-resources.sh

if you intend to use optional configurations, such as the MySQL adapter, you
may need to run additional "pip3 install® commands, such as:
pip3 install —--user -r requirements_mysqgl.txt

Test Q with a Local Database

Run the final setup commands to initialize a local Sqlite3 database in 1ocal/db.sglite to make sure everything
is OK so far:

python3 manage.py migrate
python3 manage.py load_modules
python3 manage.py createsuperuser

And test that the site starts in debug mode at localhost:8000:

python3 manage.py runserver

Next steps (Production or Development configuration)

If you’re deploying GovReady-Q to a production environment, see the Production deployment steps.

If you’re deploying GovReady-Q for development or evaluation purposes, Development deployment steps may be
useful for you.

2.3.2 Deploying GovReady-Q to Ubuntu Linux

This document provides some basic guidance on setting up GovReady-Q on an Ubuntu 16.04 server with Nginx. These
commands should be run from the root directory of the GovReady-Q code repository.

Update system packages and install packages helpful for GovReady-Q:

apt—-get update && apt—-get upgrade -y

apt—-get install -y \
unzip \
python3 python-virtualenv python3-pip \
python3-yaml \
nginx uwsgi-plugin-python3 supervisor \
memcached \
graphviz

Install dependencies:

pip3 install —--user -r requirements.txt
./fetch-vendor-resources.sh

Configure GovReady-Q by creating a file in local/environment . json with the following content:

2.3. Installing GovReady-Q on the Host OS 19

deploy_prod.html
deploy_local_dev.html

govready-q Documentation, Release 0.8.6

"debug": false,

"admins": [["Name", "email@domain.com"], ...1,
"host": "qg.<yourdomain>.com",
"organization-parent-domain": "<yourdomain>.com",
"organization-seen—-anonymously": false,

"https": true,

"secret-key": "something random here",

"static": "/home/user/public_html"

You can use Django Secret Key Generator to make a secret-key value.

Prepare the database:

python3 manage.py migrate
python3 manage.py createsuperuser

Prepare static files:

mkdir -p /home/user/public_html/static
python3 manage.py collectstatic —--noinput

Set up supervisor to run the uwsgi daemon:

In -sf “pwd /deployment/ubuntu/supervisor.conf /etc/supervisor/conf.d/q.govready.com.
—conf
service supervisor restart

Next steps (Production or Development configuration)

If you’re deploying GovReady-Q to a production environment, see the Production deployment steps.

If you’re deploying GovReady-Q for development or evaluation purposes, Development deployment steps may be
useful for you.

2.3.3 Deploying to a generic Unix-based OS

If you are using a Unix-based OS (or POSIX-compliant OS) which is not specifically listed, here are the generic steps
to take when installing GovReady-Q.

System Requirements

First, install sufficient system requirements.
Typically, this will include:

* python3

* pip3

* unzip

* pandoc

wkhtmltopdf and xvtb

20 Chapter 2. Deploying GovReady-Q

https://www.miniwebtool.com/django-secret-key-generator/
deploy_prod.html
deploy_local_dev.html
requirements.html#software-requirements

govready-q Documentation, Release 0.8.6

* gce
o git

* bash 4.0+ (note: macOS may have an older version)

Download and Install GovReady-Q

Run the following commands to download the GovReady-Q source code, install necessary Python modules, and

perform app-specific installation steps.

Clone this repository.
git clone https://github.com/GovReady/govready—q
cd govready—gq

Install dependencies.
pip3 install —--user -r requirements.txt
./fetch-vendor-resources.sh

if you intend to use optional configurations, such as the MySQL adapter, you
may need to run additional “pip3 install® commands, such as:
pip3 install —--user -r requirements_mysqgl.txt

Set up the database (sglite3 will be used until you configure another database).
python3 manage.py migrate
python3 manage.py load_modules

Next steps (Production or Development configuration)

If you’re deploying GovReady-Q to a production environment, see the Production deployment steps.

If you’re deploying GovReady-Q for development or evaluation purposes, Development deployment steps may be

useful for you.

2.4 Deploying GovReady-Q in Production environments

These instructions assume that GovReady-Q is installed by the user govready—-qg, in the directory /home/

govready-qg/govready-q/.

To verify that this is the case, run the following command, and check whether GovReady-Q responds to HTTP requests

(on localhost : 8000 by default).

cd /home/govready—-g/govready—-q/ && python3 manage.py runserver

If GovReady-Q is installed successfully, proceed with the rest of these configuration instructions. If it doesn’t, see

OS-specific install instructions.

2.4.1 Set basic configuration variables

Create a file named 1local/environment . json (ensure it is not world-readable) that contains site configuration

in JSON, with some recommended settings:

2.4. Deploying GovReady-Q in Production environments

21

deploy_prod.html
deploy_local_dev.html
deploy_host_os.html

govready-q Documentation, Release 0.8.6

"debug": false,

"host": "webserver.hostname.com",

"organization-parent-domain": "webserver.hostname.com",

"https": true,

"secret—-key": "generate random string using e.g. https://www.miniwebtool.com/django—
—secret-key—-generator/",

"static": "/home/govready-qg/public_html/static"
}

Because of host header checking, to test the site again using python3 manage.py runserver you will need to
visit it using webserver.hostname.comand not localhost. (Be sure to replace webserver.hostname.
com with your hostname.)

Remember to Define Your host1 and organization-parent-domain

The DisallowedHost...Invalid HTTP_HOST header... You may need to add ‘:raw-html-m2r:‘<your domain
name>‘’ to ALLOWED_HOSTS is a common error received when first trying to get GovReady-Q running on a
server at a specific domain. The error indicates the domain you are trying to visit is not white listed in Django’s
special ALLOWED_HOST variable.

For security, Django requires white listing your server’s domain(s) in the ALLOWED_HOST variable. Ordinarily this
is hardcoded into the settings.py file. GovReady-Q allows the ALLOWED_HOST to be set by a combination of
the host and organization-parent-domain environment settings so the values can be passed at runtime.

* host must be defined, or GovReady-Q will default value to localhost
* organization-parent-domain should be defined, or GovReady-Q will default value to same as host

e Beginning organization—-parent—-domain value with a . tells Django to respond to any subdomain (e.g.,
.mydomain.com will respond to info.mydomain.com and www.mydomain.com)

2.4.2 Setting up the Database Server

For production deployment, it is recommended to use dedicated database software, rather than SQLite.

The recommended database is PostgreSQL - see instructions on setting up Q with PostgreSQL

2.4.3 Setting up a Webserver
It’s recommended to run a dedicated webserver software, such as Apache or Nginx, as a reverse proxy in front of the

Q application (running through uWSGI). To read how to do this, see instructions on setting up Q with a reverse proxy
webserver.

2.4.4 Creating the First User

If you are setting up a multi-tenant instance of Q where different organizations will use the site on different subdo-
mains, create the administrative user using:

python3 manage.py createsuperuser

and then log into the admin to create initial organizations.

Otherwise, for a single-tenant setup, add to 1local/environment . json:

22 Chapter 2. Deploying GovReady-Q

configure_db.html
configure_webserver.html
configure_webserver.html

govready-q Documentation, Release 0.8.6

9,

“single-organization”: “main”,

which will serve just the Organization instance whose subdomain field is “main”, and then create the initial user and
the “main” organization using:

python3 manage.py first_run

You should now be able to log into GovReady-Q using the user created in this section.

2.4.5 Other Configuration Settings

Set up email by adding to Llocal/environment . json:

"admins": [["Your Name", "you@company.com"]],

"email": {
"host": "smtp.server.com", "port": "587", "user": "...", "pw": "....",
"domain": "webserver.hostname.com"

}I

"mailgun_api_key": "...",

2.4.6 Updating Deployment

When there are changes to the GovReady-Q software, pull new sources and restart processes with:

replace $DISTRO with an appropriate value.
Currently-supported options include "rhel" and "ubuntu"
sudo —iu govready-g /home/govready—-q/govready—q/deployment/$DISTRO/update.sh

As root, you can also restart just the Python/Django process:

sudo supervisorctl restart all

But this won’t do a full update so don’t normally do that (it won’t restart the separate notifications process or generate
static assets, etc.).

2.5 Installing GovReady-Q for Development or Contributing

This page provides instructions on how to install and run GovReady-Q in a mode suitable for making and testing
changes to the software (i.e., in a Dev environment).

2.5.1 Initial Prep & Installation

Begin by installing Q and its dependencies. This can be done either on the host OS, or as a Docker container. For
development purposes, installing on the host OS is currently the recommended approach.

When installing to the host OS, there are instructions for several operating systems, such as yum-based Linux distribu-
tions and apt-based Linux distributions. On other Unix-based operating systems (including macOS), GovReady-Q can
generally be installed successfully, although some troubleshooting may be neccessary if we do not have instructions
for your OS/distro. On Windows, only Docker containers are currently supported.

2.5. Installing GovReady-Q for Development or Contributing 23

deploy_host_os.html
deploy_docker.html
deploy_rhel7_centos7.html
deploy_rhel7_centos7.html
deploy_ubuntu.html
deploy_generic_unix.html

govready-q Documentation, Release 0.8.6

2.5.2 Check Installation

Once GovReady-Q is installed, create your admin account and an initial organization, if you have not already done so:

python3 manage.py first_run

Let's create your first Q user. This user will have superuser privileges in the Q,
—administrative interface.

Username: admin

Email address: you@example.com

Password: *x*x*x***xx*

Password (again): #*xxxxxxx%

Superuser created successfully.

Let's create your Q organization.

Organization Name: The Secure Company

And start the debug server:

python3 manage.py runserver

On your first run, you’ll be prompted to copy some JSON data into a file at local/environment . json like this:

{

"debug": true,

"host": "localhost:8000",
"https": false,
"secret-key": "...something here..."

This file is important for persisting login sessions, and you can provide other Q settings in this file.

2.5.3 Create an organization

Q is designed for the enterprise, so all end-user interactions with Q are on segregated subdomains called “organiza-
tions”. You must set up the first organization.

Visit http://localhost:8000/admin and sign in with the administrative account that you created above. Then on the left
side of the page, click Organizations. An organization named ma in will be shown (it was created by the first_run
script above).

Each organization is accessed on its own subdomain. The main organization will be at http://main.
localhost:8000. We recommend using Google Chrome at this point. Other browsers will not be able to resolve
organization subdomains on localhost unless you add a hostname record to your hosts file, e.g. 127.0.0.1
main.localhost. If you want to change the subdomain, do so now. Then click Save and Continue Editing at the
bottom of the page.

Click View On Site at the top of the page to go to the organization’s landing page at http://main.localhost:8000. Then
log in with your credentials again.

2.5.4 Invitations on local systems

You will probably want to try the invite feature at some point. The debug server is configured to dump all outbound
emails to the console. So if you “invite” others to join you within the application, you’ll need to go to the console to
get the invitation acceptance link.

24 Chapter 2. Deploying GovReady-Q

http://localhost:8000/admin
https://support.rackspace.com/how-to/modify-your-hosts-file/
http://main.localhost:8000

govready-q Documentation, Release 0.8.6

2.5.5 Updating the source code

To update the source code from this repository you can git pull. You then may need to re-run some of the setup
commands:

git pull

pip3 install —--user -r requirements.txt
./fetch-vendor-resources.sh

python3 manage.py migrate

python3 manage.py load_modules

2.6 Setting up a Database for Production Workloads

The preferred production database for Q is PostgreSQL, but MySQL/MariaDB is also supported.

SQLite is supported in development environments, but not recommended for production use.

2.6.1 Setting Up Postgres

These instructions assume a separate database server and webapp server.

On the database server

On the database server, install Postgres. If using RHEL, CentOS, or similar:

yum install postgresgl-server postgresgl-contrib
postgresgl-setup initdb

In /var/lib/pgsgl/data/postgresqgl.conf, enable TLS connections by changing the ss1 option to

’ssl = on

and enable remote connections by binding to all interfaces:

’listen_addresses = "x!

Enable remote connections to the database only from the webapp server and only encrypted with TLS by editing /
var/lib/pgsgl/data/pg_hba.conf and adding the line (replacing the hostname with the hostname of the Q
webapp server):

hostssl all all webserver.hostname.com md5

Generate a self-signed certificate (replace db.govready—qg.internal with the database server’s hostname if
possible):

openssl req -new —newkey rsa:2048 -days 365 -nodes -x509 -keyout /var/lib/pgsgl/data/
—.server.key -out /var/lib/pgsql/data/server.crt -subj '/CN=db.govready—-qg.internal'
chmod 600 /var/lib/pgsql/data/server. {key,crt}

chown postgres.postgres /var/lib/pgsqgl/data/server.{key,crt}

Copy the certificate to the webapp server so that the webapp server can make trusted connections to the database
server:

2.6. Setting up a Database for Production Workloads 25

govready-q Documentation, Release 0.8.6

cat /var/lib/pgsgl/data/server.crt
place on webapp server at /home/govready-gq/pgsgl.crt

Then restart the database:

service postgresqgl restart

Then set up the user and database (both named govready_q):

sudo —-iu postgres createuser -P govready_g
paste a long random password

sudo —-iu postgres createdb govready_g

Postgres’s default permissions automatically grant users access to a database of the same name.

And if necessary, open the Postgres port:

firewall-cmd —--zone=public —--add-port=5432/tcp —-—-permanent
firewall-cmd —--reload

On the webapp server

On the webapp server, now check that secure connections can be made:

psql "postgresgl://govready_g@dbserver.hostname.com/govready_g?sslmode=verify—-fullé&
—sslrootcert=/home/govready-q/pgsgl.crt"

(It should fail if the TLS certificate file is not provided, if sslmode is set to disable, if a different user or database is
given, or if the wrong password is given.)

Then in our GovReady-Q local/environment.json file, configure the database (replace
THEPASSWORDHERE) by setting the following key:

"db": "postgresql://govready_q:THEPASSWORDHERE@dbserver.hostname.com/govready_qg?
—sslmode=verify-full&sslrootcert=/home/govready—-q/pgsqgl.crt",

Then initialize the database content:

python3 manage.py migrate
python3 manage.py load_modules

And generate static files:

’python3 manage.py collectstatic

2.7 Configuring a Reverse Proxy Webserver for Production Use

2.7.1 Setting Up Apache & uWSGI

Install Apache 2.x with SSL (back to being root):

26 Chapter 2. Deploying GovReady-Q

govready-q Documentation, Release 0.8.6

yum install httpd mod_ssl

Copy the Apache config into place:

cp /home/govready—q/govready—q/deployment/rhel/apache.conf /etc/httpd/conf.d/govready—
—qg.conf

And then edit the file replacing g .govready.com and * .govready . com with your hostnames.

If you don’t have a TLS certificate ready to use, create a self-signed certificate (replacing webserver.hostname.
com with your hostname):

openssl req -new —newkey rsa:2048 -days 365 -nodes -x509 -keyout /home/govready-q/ssl_
—certificate.key -out /home/govready-q/ssl_certificate.crt -subj '/CN=webserver.
—hostname.com'

chmod 600 /home/govready—-q/ssl_certificate.{key,crt}

chown apache.apache /home/govready—-q/ssl_certificate.{key,crt}

If SELinux is enabled (sestatus shows SELinux status: enabled), grant the Apache process access to
these files as well as the site’s static files:

chcon -v -R —-—type=httpd_sys_content_t /home/govready-q/govready—-q/deployment/rhel/
—apache.conf /home/govready-q/ssl_certificate.{key,crt} /home/govready-qg/public_html

and grant Apache permission to make network connections so that it can connect to the Python/uwsgi backend running
GovReady-Q:

setsebool httpd_can_network_connect true

Install supervisor which will keep the Python/Django process running and symlink our supervisor config into
place:

yum install supervisor
1In -s /home/govready—-q/govready—q/deployment/rhel/supervisor.ini /etc/supervisord.d/
—govready—g.ini

Restart services:

service supervisord restart
service httpd restart

And if necessary open the web ports:

firewall-cmd —--zone=public --add-port=80/tcp —--permanent
firewall-cmd —--zone=public —--add-port=443/tcp —-—-permanent
firewall-cmd --reload

GovReady-Q should now be running and accessible at your domain name. Follow the instructions in the main
README.md for creating your first organization.

Setting up an HTTPS Certificate

The instructions above created a self-signed certificate to get the website up and running. To use Let’s Encrypt to
automatically provision a real certificate, install and run certbot:

2.7. Configuring a Reverse Proxy Webserver for Production Use 27

https://github.com/GovReady/govready-q/blob/master/README.md
https://github.com/GovReady/govready-q/blob/master/README.md

govready-q Documentation, Release 0.8.6

yum install -y python-certbot-apache
certbot —--apache -d webserver.hostname.com
and follow the prompts

Then set it to automatically renew certificates as needed:

edit root's crontab
crontab -e

insert at end:
30 2 x * x /usr/bin/certbot renew >> /var/log/le-renew.log

2.7.2 Setting up Nginx

Configure nginx to use nginx.conf in the govready-q directory:

Turn off nginx's default website.
rm —-f /etc/nginx/sites—enabled/default

Put in our nginx site config.
In -sf /home/govready—-q/govready—-gq/deployment/ubuntu/nginx.conf /etc/nginx/sites-

—enabled/yourdomain.com

service nginx restart

The nginx conf file assumes a certificate chain and private key are present at /etc/ssl/local/
ssl_certificate.crt/key

2.8 Environment Settings

2.8.1 Production Deployment Environment Settings

A production system deployment may need to set more options in local/environment. json. Here are recom-
mended settings:

{
"debug": false,

"admins": [["Name", "email@domain.com"], ...1,
"host": "qg.<yourdomain>.com",

"https": true,

"organization-parent-domain": "<yourdomain>.com",
"organization-seen-anonymously": false,
"secret-key": "something random here",

"static": "/root/public_html"

2.8.2 Enterprise Single-Sign On Environment Settings

GovReady-Q supports Enterprise Login via IAM (Identity and Access Management). In this configuration, GovReady-
Q is deployed behind a reverse proxy that authenticates users and passes the authenticated user’s username and email
address in HTTP headers.

28 Chapter 2. Deploying GovReady-Q

govready-q Documentation, Release 0.8.6

To activate reverse proxy authentication, add the header names used by the proxy to your local/environment.
json,e.g.:

{

“trust-user-authentication-headers”: { “username”: “X-Authenticated-User-Username”,
“email”: “X-Authenticated-User-Email”

}

GovReady-Q must be run at a private address that cannot be accessed except through the proxy server. The proxy
server must be configured to proxy to GovReady-Q’s private address. See Enterprise Single-Sign On / Login for
additional details.

2.8.3 Custom Branding Environment Settings

You may override the templates and stylesheets that are used for GovReady-Q’s branding by adding a new key named
branding that is the name of an installed Django app Python module (i.e. created using manage .py startapp)
that holds templates and static files. See Applying Custom Organization Branding.

2.9 Enterprise Single-Sign On / Login

2.9.1 Proxy Authentication Sever

GovReady-Q can be deployed behind a reverse proxy that authenticates users and passes the authenticated user’s
username and email address in HTTP headers. In this configuration:

» The user points their browser to the reverse proxy authentication server.

* The proxy authenticates users and proxies the request to GovReady-Q if and only if the user is authenticated and
authorized to access GovReady-Q. The proxy passes the user’s username and email address in HTTP headers of
the proxy’s choosing.

* GovReady-Q will create a user account for a new user or treat the user as logged in as soon as the user requests
a page. Therefore, there is no sign-up or log-in process within GovReady-Q when a proxy authentication server
is used.

 All other authentication methods to GovReady-Q are disabled when proxy authentication is enabled. Therefore
you should ensure that the Django admin’s username matches the admin’s username as provided by the proxy
server. Otherwise, you will lose access to the admin page. However, if there is a mismatch, you may disable
proxy authentication, log in to the Django admin with your admin username and password, and change your
admin username to match the username sent by the proxy server.

* GovReady-Q must be run at a private address that cannot be accessed except through the proxy server.

To activate reverse proxy authentication, add the header names used by the proxy to your local/environment.
json,e.g.:

{

‘“trust-user-authentication-headers’: { “username”: “X-Authenticated-User-Username”,
“email”: “X-Authenticated-User-Email”

2.9. Enterprise Single-Sign On / Login 29

enterprise_sso.html
CustomBranding.html

govready-q Documentation, Release 0.8.6

The proxy server must be configured to proxy to GovReady-Q’s private address. But the host and ht tps settings in
GovReady-Q’s local/environment . json file must reflect the host and protocol used in the URL the end user
uses to access GovReady-Q. They do not need to match the address that the proxy server uses to reach the GovReady-Q
server.

Per the Django Documentation on authentication using REMOTE_USER, you must be sure that your proxy server
always sets or strips the special username and email headers, including headers that normalize to the same Django key
(in particular headers with underscores), from the client request and does not permit an end-user to submit a fake
(or “spoofed”) header value.

We have an example reverse proxy authentication server at https://github.com/GovReady/govready-q/tree/master/
tools/simple_iam_proxy_server which can be used for debugging purposes.

2.10 Applying Custom Organization Branding

The look and feel of GovReady-Q can be customized a bit by overriding the Django templates that are used to construct
the site’s pages and by serving additional static assets.

Custom branding can contain static assets (such as a logo image) and HTML template overrides. Branding is packaged
into a directory with a particular directory layout and some Python boilerplate code that allows GovReady-Q to find
the branding files. The directory is placed inside the main GovReady-Q directory, and an application setting is used to
activate it.

Before setting out to create custom branding, make sure you have GovReady-Q set up for development on your
workstation. You’ll need a working setup of GovReady-Q to create the branding directory and to test your changes.

2.10.1 Creating the branding directory

Custom branding is packaged inside what Django confusingly calls an application, but it is just a packaged sub-
component of a website. To create a new branding package directory, change to the directory where you have
GovReady-Q set up. Then run:

python3 manage.py startapp sample_branding

This command creates a new directory called sample_branding with Python boilerplate code to make it a valid
Django “application.”

Make directories for storing the custom static assets and templates:

mkdir sample_branding/static
mkdir sample_branding/templates

2.10.2 Activate the branding package

Next, let your development installation of GovReady-Q know that you want to use the custom branding package.
In your local/environment. json file, add a setting named branding and set it to the name of the custom
branding package directory.

"branding": "sample_branding",

See Environment Settings for more information about the local/environment . json file. Note that for the file
to be valid JSON the last setting cannot have a trailing comma.

30 Chapter 2. Deploying GovReady-Q

https://docs.djangoproject.com/en/dev/howto/auth-remote-user/
https://github.com/GovReady/govready-q/tree/master/tools/simple_iam_proxy_server
https://github.com/GovReady/govready-q/tree/master/tools/simple_iam_proxy_server
deploy_local_dev.html
deploy_local_dev.html
https://docs.djangoproject.com/en/2.1/ref/applications/
Environment.html

govready-q Documentation, Release 0.8.6

2.10.3 Overriding templates

Any of the templates that make up GovReady-Q’s frontend can be overridden. The full list of templates can be browsed
in GovReady-Q’s GitHub repository at

https://github.com/GovReady/govready-g/tree/master/templates

Start by trying to override the navbar .html template, which is inserted at the top of every page. Use your favorite
text editor to create a file at sample_branding/templates/navbar.html. Copy the content of GovReady-
Q’s stock navbar.html from https://github.com/GovReady/govready-q/blob/master/templates/navbar.html into it.
(GitHub’s “Raw” button is handy for getting a clean version to save or copy/paste.)

At the bottom of the file, add some custom HTML, such as:

<div>
Welcome to my organization’s custom site!
</div>

Start GovReady-Q on your workstation (see the development docs) and visit a page. You should see your new content
below the navbar at the top of every page.

2.10.4 Adding custom CSS

You can also add a custom CSS stylesheet to your branded GovReady-Q by taking the following steps:
a) Add the CSS file as a static asset.

b) Inserta <link rel="stylesheet" href="..."> taginto the <head> section of each page’s HTML
by overriding the head.html template.

To create the static asset, make a new file named sample_branding/static/custom.css. Let’s say you want
to make the background color of each page red. The file should contain:

body {
background: red !important;
}

Then override the head.html template. GovReady-Q’s base for head.html is empty — its purpose is only to
allow you to add to the <head> element. So create a new file at sample_branding/templates/head.html
and put in it:

% load static %}
<link rel="stylesheet" href="{% static "custom.css" %} ">

See the Django documentation for static files for more information about the stat ic template tag.

Open any page in your locally running GovReady-Q and you should see that the background color of every page has
changed.

2.10.5 Keeping your templates up to date

With each new released version of GovReady-Q, there is the possibility that the stock templates have changed. Some
changes may require you to re-engineer your template overrides to preserve functionality.

2.10. Applying Custom Organization Branding 31

https://github.com/GovReady/govready-q/tree/master/templates
https://github.com/GovReady/govready-q/blob/master/templates/navbar.html
deploy_local_dev.html
https://docs.djangoproject.com/en/2.1/howto/static-files/

govready-q Documentation, Release 0.8.6

2.10.6 Creating a custom Docker image

If your organization is deploying GovReady-Q using Docker, you will need to embed your custom branding package
within a Docker image. You have two options:

1. Modify GovReady-Q’s stock Dockerfile, i.e. the one in GovReady-Q’s source code, to add and activate your
branding package and then build your own GovReady-Q Docker image from the GovReady-Q source files that
you cloned from GitHub.

2. Make your own Dockerfile that uses a released GovReady-Q image as its parent image and adds to it just the
steps needed to add and activate your branding package.

Creating your own Dockerfile that uses a released GovReady-Q image as its parent image

We recommend method 2. To create your own Dockerfile that uses a released GovReady-Q image as its parent
image, create a new Dockerfile in your branding package directory, e.g. a new file named Dockerfile in the
sample_branding directory you created earlier.

Then choose which parent image you will use from the available GovReady-Q tags. Each tag corresponds to a release
version. Your Dockerfile begins with a FROM line that combines govready/govready—q: with the tag name you
choose. In this example we use the latest tag which is an alias for the most recent version of GovReady-Q:

FROM govready/govready—-qg:latest

The subsequent commands in your Dockerfile configures the container, picking up where the parent image’s Dockerfile
leaves off. For more information about the parent image, refer to GovReady-Q’s Dockerfile on GitHub.

Your Dockerfile’s next step is to add your branding package into the image in a directory named branding:

RUN mkdir branding
COPY . branding

Finally, you’ll need some commands to adjust permissions, to activate the branding package when GovReady-Q starts,
and to prepare the static assets to be served. The complete Dockerfile should look like this:

Build an image on top of the stock GovReady-Q image.
FROM govready/govready-qg:latest

The parent Dockerfile ends with 'USER application' to run the
container as a non-privileged user. But we need to go back to
root to add additional files and then switch back to the non-
root user at the end.

USER root

Copy our public app files into place.
RUN mkdir branding
COPY . branding

Activate the branding package. The environment variable is read

by dockerfile exec.sh in the GovReady-Q parent image. And modifying

/tmp/environment. json 1s necessary at this step so that collectstatic
picks it up below.

ENV BRANDING branding

RUN sed -i "s/}/,\"branding\": \"branding\" }/" /tmp/environment.json

Flatten static files. The base image did it once, but we may have
added new static files so we must do it again.

(continues on next page)

32 Chapter 2. Deploying GovReady-Q

https://hub.docker.com/r/govready/govready-q/tags
https://github.com/GovReady/govready-q/blob/master/Dockerfile

govready-q Documentation, Release 0.8.6

(continued from previous page)

RUN python3.6 manage.py collectstatic --noinput

Run the container's process zero as this user --— see above.
USER application

Check that everything looks good.
RUN python3.6 manage.py check

Finally you can build and test your custom image.

Building your docker image

If you were in the GovReady-Q sources directory, move into your branding package directory:

cd sample_branding

Then fetch the parent image and build your image:

docker image pull govready/govready-g:latest
docker image build --tag myorg/govready-g-branded:latest

(Substitute the right tag depending on the tag you chose for the FROM line in your Dockerfile.)

Test that your image works by launching a new container based on your image:

docker container run —--rm —-it -p 127.0.0.1:8000:8000 myorg/govready—-g-branded:latest

Once GovReady-Q is running in the container, visititat http://localhost :8000. Use CTRL+C in the console
to terminate and destroy the test container running your image.

For more about running GovReady-Q with Docker, see Deploying with Docker.

2.10. Applying Custom Organization Branding 33

deploy_docker.html

govready-q Documentation, Release 0.8.6

34 Chapter 2. Deploying GovReady-Q

CHAPTER 3

Permissions

This document describes the user permissions model in Q.

3.1 What Q tracks

GovReady-Q tracks the following major entities
 Users - individuals with logins to an installed instance of Q
 Organizations - entities, e.g., companies, around with data in Q is segmented
¢ Folders - collections of Projects
* Projects - instantiations of Compliance Apps
e Membership - associating individual users with organizations and systems
» Tasks/Modules - coherent grouping of questions and educational content
* Questions/Answers - specific snippet of content within a Task

* Templates - drives automatic generation of artifacts, supporting variable substitution

3.2 Users

3.2.1 Global user data

A User is authenticated by a unique username and a hashed password.
Each User has one or more email addresses associated with their account and notification email settings.

User accounts — i.e. the fields above — are global to a Q deployment. They are not segmented by Organization. For
instance, if a User has been created for one Organization, they sign in — and not sign up — into other Organizations.
Changing a User’s password changes it for all Organizations. (Of course, a User will not be authorized to access all
Organizations. See the next section on Organizations.)

35

govready-q Documentation, Release 0.8.6

3.2.2 Segmented user data

Each User additionally has a unique “organization user profile” associated with each organization to support the same
User having different roles at different organizations. (This user profile is an “account project” that holds additional
User information including a User’s full name, profile photo, etc. In short, each User has a different profile in each
Organization.

The profile information can be seen by all other members of the Organization because it is used in the history of
question answers, notifications, discussions, and many other places.

(The User is the only “member” of their account projects (see Project membership below), which means they are the
only User who can edit the information.)

3.2.3 System staff

Users marked as staff in the Django admin can see Q Analytics.

3.3 Organizations

Each deployment of Q serves one or more Organizations. Each Organization is served off of a unique subdomain.

Organizations are used to segment Projects and the data contained within them to create data isolation both at a logical
level and because of the use of subdomains at the HTTP level. (Organizations hosted by the same Q deployment use
a single database backend, however.)

All pages on an Organization subdomain require membership in the Organization to be accessed. A User has member-
ship in an Organization if they are authenticated and any of the following are true:

* They are a member of a Project within the Organization (see Project membership below).

* They are the editor of a Task within the Organization (i.e. guest-style membership if they are not otherwise
authorized).

» They are a guest participant in a Discussion within the Organization.
* They clicked an invitation URL, which gives them access to the invitation landing page only.

An unauthorized user is always redirected to a login page. GovReady-Q can be configured with the
organization-seen-anonymously setting to not reveal any Organization data (not even the Organization’s
display name) on the login page, and if that setting is turned on, and if a DNS wildcard enables resolution of all pos-
sible Organization subdomains, an unauthorized user cannot tell whether or not an Organization actually exists on the
Q deployment.

(Note that membership in an Organization is different from membership in a Project.)

3.3.1 Membership in the Organization Project

Each Organization has a single “organization project” which stores additional metadata about the Organization, akin
to a User’s profile. This metadata can be seen by all members of the Organization because the values, e.g. an
organization avatar, may be rendered on Organization pages that any such User may see. Members of the organization
project (which is different from members of the organization itself) may additionally edit the metadata (see Project
membership below).

36 Chapter 3. Permissions

govready-q Documentation, Release 0.8.6

3.4 Folders

A Folder is a collection of one or more Projects (see below) within the same Organization.
Folder permissions are based in part on Project permissions:
* A user can see that a Project is a part of a Folder if the user has read access on the Project.

* A user can add Projects to a Folder or rename a Folder if the user is an administrator of any Project within the
Folder or is an administrator of the Folder itself. These users may not be able to see all Projects within the
folder if they do not have read access to those Projects, but they will be told how many Projects they can’t see
in the Folder.

There is no separate “read” permission on a Folder. A Folder can be seen just when a user has read access on a Project
within it or is an administrator of the Folder itself.

3.5 Projects

Each time an app is started from the Compliance Store, a new Project is created. A Project represents the instantiated
app and is comprised of a collection of Tasks. Every Project belongs to exactly one Organization.

3.5.1 Membership

Projects have zero or more Users who are members and zero or more Users who are administrators.

3.5.2 Read Access

Any access to a Project requires read access, which is granted if any of the following are true:
* They are a member or administrator of the Project.
* They have read access to any Task in the project.
» They are a guest participant in a Discussion within the Project.

(This is a subset of the requirements for membership in an Organization, therefore read access to a Project guarantees
membership in the Organization it belongs to.)

3.5.3 Operations
Project members can begin Tasks listed on Project pages, either by adding apps from the Compliance Store or starting
Tasks for modules contained in the Project’s app. Project members can also invite guests to discussions.

Only administrators can send invitations to add new project members, import and export Project data, and delete
Projects.

The Tasks (the questions and answers) within a Project are further restricted (see Tasks below).

3.5.4 New Projects

Any member of an Organization can create a new Project within that Organization by starting a new Compliance App
and becomes the Project’s first administrator.

3.4. Folders 37

govready-q Documentation, Release 0.8.6

When a User creates a new Project, they are offered Compliance Apps from AppSources whose Available to
all option is checked and from AppSources that don’t have ‘Available to all’ checked but explicitly list the Organi-
zation in its ‘Available to orgs’ list.

New Projects are added into a new or existing Folder (for existing folders, see Folder permissions above).

3.6 Tasks

A Task is a set of questions and answers. Tasks represent the state of a Project — each Project has a root Task — as
well as the state of all the modules started within the Project.

Each Task belongs to exactly one Project. Each Project has exactly one root Task.
A Task has an editor, which is the User who has primary responsibility for completing the Task.
A User has both read and write access to a Task if any of the following are true:

* They are the editor of the Task.

* They are a member or administrator of the Project that the Task belongs to.

A User with read access can see the Task on the page for the Project that it belongs to and can see all of its questions,
answers, and outputs and can start a Discussion on questions.

A user can also see a particular question within a Task (and its answers and some Task metadata, but not other questions
or Task outputs) if they are a guest in a Discussion on that question.

A User with write access to a Task can answer questions within the Task (which sometimes involves starting new
Tasks which they become the editor of), invite other users to become the Task’s new editor, and delete/undelete the
Task (although there is no UI for that currently).

38 Chapter 3. Permissions

CHAPTER 4

Authoring Compliance Apps

4.1 Understanding Compliance Apps

Compliance apps map IT System components to compliance controls. A “component” can be any part of a system
that contributes to its operation including organizational processes.

Compliance apps collect and assess information about one or more system components and translate that information
to compliance documentation.

COVREADY compli

Compliance apps can collect information about a system component from people (via web-based questionnaires) and
from system components (via an Automation API).

39

assets/app_diagram.png
Automation.html

govready-q Documentation, Release 0.8.6

4.1.1 Compliance Apps are Collections of Modules

A Compliance app is a collection of “modules” for gathering information. A module is a collection of questions and
output documents. A module can have just questions and output documents, just output documents and no questions,
or both questions and output documents.

An “app” is a collection of “modules,” one of which must be named “app.” Modules are linear sequence of questions
presented to users that produces zero or more output documents. Modules are stored in YAML files. Output documents
of various types are supported such as markdown, HTML, and YAML. (See Modules, Questions, and Documents for
documentation on writing modules.)

The typical user experience will be to first pick a “top level” app from the compliance catalog representative of IT
System, then pick the “component” apps that represent the specific components of the IT System, and then iteratively
complete the questions within the component apps modules.

Technically speaking, a top level app is a module containing questions whose answers are other apps.

The below diagram depicts an exploded view of the relationships between a top level app to a component app to
modules and questions.

Top Level
Compliance App

Module
and Question

 Privacy P

GOVREADT

4.1.2 App Structure

Each app is defined by a set of YAML files and asset files stored in the following directory structure:

app_name

—— README .md

— app.yaml

—— assets
app.png
image_one.yaml
image_two.yaml

— module_one.yaml
— module_two.yaml

40 Chapter 4. Authoring Compliance Apps

Schema.html
assets/app_exploded.png

govready-q Documentation, Release 0.8.6

By convention, each app is required to have app.yaml file which holds metadata for displaying the app in the
compliance apps catalog, such as its title and description, and an assets/app .png graphic which displays as the
app’s icon. app.yaml also holds the top-level module questions which define the layout of the app’s main screen
once it is started by the user. The contents of README . md are also displayed in the apps catalog.

Other module YAML file may be includes in the app as well, as needed.

The assets subdirectory can contain any static assets that will be served when showing the app’s modules for the
user, such as images included in document templates. A file typically named app . png in the assets directory is the
app’s icon, which is displayed when browsing the app catalog as well as when the app is used within another app, if
icon: app.png is specified in app . yaml.

4.1.3 App YAML

The app . yaml file that exists in every app serves two purposes:

1. Itincludes app catalog information, i.e. metadata, that will be shown in the app directory, such as the app’s short
and long description, version number, vendor, etc.

2. It also defines a module (see Modules, Questions, and Documents) which defines the top-level layout of the app.
The module may only contain questions whose type are module or module-set.

The app . yaml file looks like this:

4.1. Understanding Compliance Apps 41

Schema.html

govready-q Documentation, Release 0.8.6

Header

Catalog details

Questions

Output

id: app

title: My App

type: project

icon: app.png H refers to file in appms assets directory
protocol: E for inner apps only

- globally_unique_protocol_name

catalog:
categories:
— Category Name
- Another category name
vendor: GovReady PBC
vendor_url: https://www.govready.com
status: Operational
version: 0.6
version-name: First Release
source_url: https://github.com/GovReady/govready-app-example
description:
short: |

(continues on next page)

42 Chapter 4. Authoring Compliance Apps

assets/app_structure_sm.png

govready-q Documentation, Release 0.8.6

(continued from previous page)

One-line description of the app here, using Markdown.
long: |

Long description of the app here only if README.md is

not present.

It can be multiple paragraphs and is Markdown.
recommended_for:
- key_short: Org
value: Medium
— key_short: Tech
value: Drupal
— key_short: Role
value: Dev

questions:
- id: iteml
title: Do A Thing
type: module
module—-id: modulel E refers to modulel.yaml within this app
tab: TabName
group: GroupName
more questions here

output:
- tab: TabName
format: markdown
template: |
This (optional) content will appear at the top of the TabName tab.

The questions in the app YAML file can only be of type module and module-set. The questions can specify a
module-id to refer to another module within the same app or a protocol to allow the user to choose any app that
has a matching protocol value set at the top level of the YAML file. See Modules, Questions, and Documents for
details on these question types.

A module YAML structure is identical to app . yaml structure but without the catalog details section.

Hide “Question Skip” Buttons

As of version 0.8.6, the “I don’t know” and “It doesn’t apply” buttons to skip questions can be hidden from users.
We recommend you never use this feature.

This feature was added to support the use case of complex, legacy questionnaire assessments that (1) cannot be changed
easily and (2) provide a better user experience when users get stuck and start a discussion instead of later learning that
skipping a question caused them to miss many other questions.

Some background is useful. GovReady-Q was designed for users to love easily and quickly answering as few questions
as possible to generate the information that organizational processes need. Users love the option to skip questions.
Skipped questions empower users to move fast, answer what they can, and iteratively complete work. That gets
information to you quickly and reduces cycle time. Skipped questions also provide instant feedback that a user doesn’t
have information readily available. Frequently skipped questions indicate stumped users, and the need to rethink the
question or use multiple questions and interstitials to better guide users.

We’ve all experienced the frustration of not understanding what is being asked of us, not knowing whom to ask for
help, or knowing the question asked does not apply. This frustration turns galling and Kafkaesque when the party
demanding compliance confounds our ability to comply.

4.1. Understanding Compliance Apps 43

Schema.html

govready-q Documentation, Release 0.8.6

Fight-or-flight response kicks in when users feel trapped. Users start to avoid your process or combat it. They can
(unfairly) transfer their frustration onto your role, or worse, onto you. Instead of helping to pull your colleagues into
your process, they feel you are pushing them away.

So if you really, really need to hide the skip buttons to make the experience easier for your users, add a
hidden-buttons array key to the app.yaml file and list the skip buttons to hide. The example snippet below
hides just the “I don’t know button”.

id: app

title: My App

type: project

icon: app.png E refers to file in appms assets directory
protocol: E for inner apps only

- globally_unique_protocol_name

hidden-buttons:

- no-idea

The possible YAML array values for the buttons are no—idea (“I have no idea”), not—applicable (“It doesn’t
apply”), not—now-button (“I'll come back”), and not-sure-button (“Unsure”).

NOTE: As of version 0.8.6, the “I’ll come back” and “Unsure” functionality been removed from the UI for all cases
because of poor user experience but are preserved for legacy data and potential future use with a better UL

4.1.4 Top Level Apps

Apps that describe the required components of a compliant IT system are considered “Top Level” apps. Each question
in a Top Level app specifies a type of compliance app (e.g., a compliance app “protocol”) that is needed to represent
that component.

4.1.5 Adding Apps to GovReady-Q Deployments

Separating compliance apps from the compliance server enables a much richer ecosystem and virtuous cycle of inno-
vation than having everything embedded exclusively within the compliance server. A GovReady-Q deployment can
pull app and module content from local directories and git repositories. An organization using GovReady-Q can freely
mix compliance apps from third parties with private compliance apps located only on their network.

Compliance apps are very much like modular plugins that customize the compliance server to the unique system and
components of the organization.

This leaves the need to specify which compliance apps are available to a compliance server deployment. This specifi-
cation of available apps is known as an “app source” and is done with a JSON “spec” file entered in the AppSource
model via the Django admin interface.

The process is currently a bit clumsy with terminology that reflects the software’s evolution toward the app concept.
Nevertheless, the approach provides flexibility of sourcing apps from local file systems and public and private git
repositories. And each source specifies a virtual filesystem from which one or more top level apps and compliance
apps can be found located.

The below screenshot of the AppSource module in the Django admin interfaces shows the JSON “spec” file.

44 Chapter 4. Authoring Compliance Apps

govready-q Documentation, Release 0.8.6

1go administration

Home » Guidedmodules » App sources » apps-dev

Change app source

Slug: apps-dev

A unigue URL-safe string that names this AppSource

How is this AppSource

accessed?
Source Type: Git Repository over HTTPS (Public Repository) :I
What kind of app source is it?
URL: https://github.com/GovReady/govready-apps-dev
The https: URL to a public git repository, e.g. https://github.com/GovReady/govready-g.
Branch: published
The name of the branch in the repository to read apps from. Leave blank to read from the default branch, which is usually ‘master’.
Path: apps

The path to the apps. For local directory AppScurces, the local directory path. Otherwise the path within the repository, or blank if the apps are at the repository roct.

Other Parameters

Other parameters specified in YAML.

m Trust assets

Are assets trusted? Assets include Javascript that will be served on our demain, Python code included with Medules, and Jinja2 templates in Moedules.

Apps from this source are available to all organizations

Turn off to restrict the Modules loaded from this source to particular organizations

Available to orgs: Available available to orgs @ Chosen available to orgs @ *

Q, | Filter

The Secure Company

The AppSource module also contains fields to indicate to which subdomains of the deployment the source’s apps
are available.

App Source virtual filesystem layout

Whether the source is a local directory or a git repository, the source must have a directory layout in which each app
is stored in its own directory. (The directory name becomes an internal name for the app.) For instance:

appl/app.yaml
appl/...other_appl_files
app2/app.yaml
app2/...other_app2_files

Updating modules

After making changes to modules or AppSources for system modules (like account settings), run python3
manage.py load_modules to pull the modules from the sources into the database. This only updates system
modules.

4.1. Understanding Compliance Apps 45

assets/appsources.png

govready-q Documentation, Release 0.8.6

Other modules that have already been started as apps will not be updated. Each time you make a change to an app,
you can reload changes using the app authoring tool in GovReady-Q.

4.2 Compliance App Authoring Tutorial

This is a step-by-step guide to creating compliance apps using the Docker version of the GovReady-Q Compliance
Server.

In this guide you will learn how to:
* Start and configure the Docker version of GovReady-Q
* Create a compliance app
» Edit a compliance app’s YAML files
 Edit a compliance app using GovReady-Q’s authoring tools

* Deploy the app to a production instance of GovReady-Q and storing apps in a source code version control
repository

4.2.1 Step 1: Prepare your local environment

Create a folder on your workstation

GovReady-Q compliance apps are generally developed in an off-line development environment, usually on the app
developer’s macOS or Linux workstation — any environment that can run Docker. In this environment, the compliance
app data files will be stored in a local directory. This guide assumes the use of a local workstation for development
and discusses production deployment at the end.

(Once the apps are ready to be published to the rest of the organization, the apps can be uploaded to a git repository,
such as GitHub or an on-premise equivalent. The production instance of GovReady-Q will typically read compliance
apps from the git repository directly and not from a local disk.)

On the development workstation, create a folder to hold GovReady’s install script, the GovReady-Q database (in
development, Sqlite is used), and the compliance apps that you will be authoring. The folder can be anywhere:

mkdir /path/to/dev_directory
cd /path/to/dev_directory

Install Docker

If you haven’t already done so install Docker on the workstation and, if appropriate, grant non-root users access to run
Docker containers (or else use sudo when invoking Docker below).

4.2.2 Step 2: Install the GovReady-Q Compliance Server, Docker version
Starting the Docker container

Next download GovReady’s docker_container_run.sh script. This script simplifies passing various settings to create
and configure the govready—q docker container that we will use for local development.

46 Chapter 4. Authoring Compliance Apps

https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/linux/linux-postinstall/#manage-docker-as-a-non-root-user
https://docs.docker.com/engine/installation/linux/linux-postinstall/#manage-docker-as-a-non-root-user
docker_container_run.sh

govready-q Documentation, Release 0.8.6

wget https://raw.githubusercontent.com/GovReady/govready—-g/master/deployment/docker/
—docker_container_run.sh
chmod +x docker_container_run.sh

docker_container_run.sh supports a variety of advanced configuration settings via command line parameters.
The ones we care about for developing compliance apps are:

e ——sglitedb /path/to/govready-g-database.sglite, which sets an absolute path to a Sqlite
database that holds all persistent information across container runs

e ——appsdevdir /path/to/apps, which sets an absolute path to the directory in which app YAML files
will be developed

e ——relaunch, which removes any existing govready—q Docker container if one is running

Download and start GovReady-Q:

./docker_container_run.sh --sqglitedb ‘pwd' /database.sglite —--appsdevdir “pwd' /apps ——
—relaunch

Note that pwd is used to ensure the paths are absolute.

The script will download the govready/govready-q image from the Docker Hub, which could take a few minutes. It
will then start a new Docker container named govready—qg and will launch the Q source code within it.

When the container is launched it will let you know the URL to visit:

GovReady-Q has been started!

Container Name: govready-g

Container ID: d99e8ac2d6a76lcfd7be7£94bd01d5£7115efd66714064f7b1£f0£6c090b74c269
URL: http://localhost:8000

(You can change the hostname and port by adding e.g. ——address g.company.com:8010.)

It takes about 15 seconds for the GovReady-Q server to be ready. Open the URL (e.g. http://localhost:8000) and
reload a few times until the GovReady-Q Compliance Server becomes available:

4.2. Compliance App Authoring Tutorial 47

README.md#advanced-configuration
https://hub.docker.com/r/govready/govready-q/
http://localhost:8000

govready-q Documentation, Release 0.8.6

localhost:8000 Log In

powered by GovReady Q

Open source compliance software for everyone to innovate securely

Stop suffering and start answering simple

Sign In
‘questllons Wlth yqur teammates. WE Il help you Username
identify security risks, learn compliance controls,
and prepare required documents.

Password

Remember Me

Forgot Password?

Setting up your organization and administrative user

Now that the GovReady-Q Compliance Server is running, create an administrative account and an organization. Run
the following command and answer the prompts:

docker container exec -it govready-g first_run

Your prompt and reply will look something like this:

Installed 2 object(s) from 1 fixture(s)

Let's create your first Q user. This user will have superuser privileges in the Q,
—administrative interface.

Username: admin

Email address: admin@mycompany.com

Password:

Password (again):

Superuser created successfully.

Let's create your Q organization.

Organization Name: The Company, Inc.

Now return to your browser, reload the page, and notice the company name has updated:

48 Chapter 4. Authoring Compliance Apps

assets/firststart.png

govready-q Documentation, Release 0.8.6

The Company, Inc. Log In

The Company, Inc.

powered by GovReady Q

Open source compliance software for everyone to innovate securely

Stop suffering and start answering simple

]) Sign In
questions with your teammates. We'll help you
)) .)) Username
identify security risks, learn compliance controls,
and prepare required documents.
Password

Remember Me

Forgot Password?

You can now sign in with the administrative username and password you created.

4.2. Compliance App Authoring Tutorial

49

assets/firststart2.png

govready-q Documentation, Release 0.8.6

GOVREADYQ The Company, Inc.

A Assessments =+ Add system + Ad('k()ther app A Invite colleague

Congratulations! You’ve installed GovReady-Q Compliance Server configured for local development of compliance
apps!

4.2.3 Step 3: Creating a compliance app

Creating the app

In this section we’ll create our first compliance app. The app will appear in the compliance apps catalog in GovReady-
Q. Click Add other app in your browser to go to the compliance apps catalog.

50 Chapter 4. Authoring Compliance Apps

assets/firststart3.png

govready-q Documentation, Release 0.8.6

GOVREADYQ The Company, Inc.

A& / Compliance Apps search

IT System Templates ~ People and Roles People, Places, and Things ~ Processes Technology Components Uncategorized ~ Web Frameworks

IT SYsTEM TEMPLATES

Docker

Compliance under NIST RMF for a
Django application deployed using
Dacker.

o=

Django App Deployed with }_F

PEOPLE AND ROLES

Drupal Fed Authorizing 0 gm Drupal Fed Chief Drupal Fed Chief o]
Official (AQ) = Information Officer (ClO) Information Security Officer
Authorizing Official Chief Information Officer (CIso)

— — Chief Information Security Officer
cacn O

Drupal Fed Developer (Dev) ¢ oo Drupal Fed Information Drupal Fed Information

Developer = System Security Manager ' System Security Officer
(I1SsM) (1550)

e

Oinio | Adde

Information System Security Manager Information System Security Officer hd

Let’s create our first compliance app! Use the command below:

’docker container exec -it govready—-gq ./manage.py compliance_app host myfirstapp

The output will be:

’Created new app in AppSource host at /mnt/apps/myfirstapp

The path shown in the output is a path within the container’s filesystem, which is inaccessible from the workstation.
The actual path is inside the path given to the ——appsdevdir command line argument previously. If you followed
our steps above exactly, you can see the app’s files in your apps folder:

$ 1s -1 apps/myfirstapp

-rw-r——r—-— 1 root root 664 Oct 25 11:43 app.yaml
drwxr-xr—-x 2 root root 4096 Oct 25 11:43 assets
-rw-r——r—— 1 root root 449 Oct 25 11:43 example.yaml

Head back to your browser and reload the compliance apps catalog page.

Your new app may not appear because the catalog is cached. To clear the cache, restart the container:

docker container restart govready-—-gq

After a few moments the container will be back up. Reload the compliance app catalog page. You should now see
your app if you scroll to the end:

4.2. Compliance App Authoring Tutorial 51

assets/appcatalog.png

govready-q Documentation, Release 0.8.6

GOVREADYQ

Unclassified Information present in
your system.

Point of Contact “j/,

Enter name and contact details for a
point of contact.

PROCESSES

FISMA System Security Plan (S5P)

Prepare a System Security Plan for by the NIST
Risk Management Framework

The Company, Inc.

& into Agd »

System Name and Details [2

Enter name, description, technical
overview, and status for a system.

Privacy Policy for Web Site
Create and publish Privacy Policy for =0
web site transparency for a small web

System FISMA Level

Determine system's FISMA security
categorization level (Low, Medium,

team High)

TECHNOLOGY

myfirstapp
Short description. k

The development directory on the workstation now holds:

— apps

L myfirstapp
app.yaml
assets
L— app.png

example.yaml
— database.sqglite
L— docker_container_run.sh

(More information about the structure of the app directory can be found in Understanding Compliance Apps.)

Editing app catalog metadata

Open apps/myfirstapp/app.yaml in a text editor. Edit the short description and add some text describing the
app you are building:

description:
short: |
Achieve compliance for our organizationﬂs systems.

Since this file was created by Docker, which is running as root, the file will be owned by root. You may need to use
sudo to edit this file.

Reload the container to clear the app catalog cache:

52 Chapter 4. Authoring Compliance Apps

assets/appcatalog2.png
Apps.html

govready-q Documentation, Release 0.8.6

docker container restart govready-g

And then reload the catalog page in your browser to see your description beneath myfirstapp. You can also edit
the app’s title and other catalog metadata, including the app’s icon in apps/myfirstapp/assets/app.png.

Point of Contact “jf:/: System Name and Details [2

Enter name and contact details fora Enter name, description, technical
point of contact. overview, and status for a system.

PROCESSES
FISMA System Security Plan (SSP) Privacy Policy for Web Site System FISMA Level
Prepare a System Security Plan for by the NIST Create and publish Privacy Policy for 0 Determine system's FISMA security ‘
Risk Management Framewaork web site transparency for a small web categorization level (Low, Medium,

High)

— team
- o

TECHNOLOGY

myfirstapp
Achieve compliance for our

organization's systems.

@ inio | Aﬂb

4.2.4 Step 4: Edit the compliance app’s YAML files

Start the app

In your browser, click on the my firstapp entry’s Add button in the app catalog.

4.2. Compliance App Authoring Tutorial 53

assets/appcatalogafterchange.png

govready-q Documentation, Release 0.8.6

GOVREADYQ The Company, Inc.

ﬁ my‘ﬁrstapp Components

£¥ Settings

2+ invite
= Myfirstapp

11 ap1 Docs
Use this app to achieve compliance. 7 ;_,:%w Tool

! Example Module

About editing the app

We can edit our new compliance app by editing its app . yaml and example . yamnl files on disk in our favorite text
editor (described in this section) or with GovReady-Q’s built-in authoring tools (described in the next section).

After each edit to the compliance apps files on disk, it may be necessary to restart the Docker container if you modified
app catalog metadata (as you did above with docker container restart) or start a new instance of the com-
pliance app from the compliance apps catalog page in your browser, if you modified the app’s questions and output
templates.

GovReady-Q purposely does not automatically recognize changes to compliance apps on disk until a new instance of
the app is selected or a reload command (described below) is issued. This ensures previously loaded versions of the
compliance app correctly maintain data entered by end-users.

Editing the app’s main page

The opening screen of the app is determined by the questions section of the app . yaml file:

questions:

- id: ql
title: Example Module
type: module
module—-id: example

The new app has a single question labeled by the title Example Module, as you see in the YAML and in your
browser. When the user clicks Example Module in the browser, they will start a new module defined by the YAML

54 Chapter 4. Authoring Compliance Apps

assets/startedapp.png

govready-q Documentation, Release 0.8.6

file referenced in the module—id data, in this case example.yaml.

Edit the title to:

title: Start Compliance

As described above, reloading the page in the browser will not show the change. This is by design. Since you are
developing an app on your local filesystem, the GovReady-Q authoring tools are available.

Click Authoring Tool in the right column, and then click Reload App from local filesystem. (Al-
ternatively, you could return to the compliance app catalog page and add the app again.)

GO\/READYQ The Company, Inc.

myfirstapp Components

£ Settings

You are in author mede. Authoring tools have been enabled for this module. 24 invite

Edit App = Add Question > Reload App from local filesystem at /tmp/tmptw8qebk? = Review
b 11 aP1 Docs

= Myfirstapp

Use this app to achieve compliance.

.

! s Example Module

Note how Start Compliance now appears in the browser.

4.2. Compliance App Authoring Tutorial 55

assets/authoringtools.png

govready-q Documentation, Release 0.8.6

GOVREADYQ The Company, Inc.

myfirstapp Components
& Settings
24 invite

= Mmyfirstapp

|

Use this app to achieve compliance. # Authoring Tool

Start Compliance

g >

Editing the app’s first module

Click Start Compliance. This begins the app’s module defined in example.yaml. The example module

contains a single sample question:

56 Chapter 4. Authoring Compliance Apps

assets/reloadedapp.png

govready-q Documentation, Release 0.8.6

GOVREADYQ The Company, Inc.

A myfirstapp Example Module

Progress:

i i i i tea? 4 ® What is your favorite science
What is your favorite science fiction franchise? et
Star Trek
Star Wars .and we're done

Lord of the Rings

Other

Skip » # Discuss A Assign

-

Open example.yaml and see that the question’s type, prompt, and choices are defined in the YAML file’s
question’s section:

questions:
- id: gl
title: What is your favorite science fiction franchise?
prompt: What is your favorite science fiction franchise?
type: choice
choices:
- key: startrek
text: Star Trek
- key: starwars
text: Star Wars
- key: lordoftherings
text: Lord of the Rings
- key: other
text: Other

Change the prompt or choices.

(As with app . yaml, since this file was created by Docker the file will be owned by root. You may need to use sudo
to edit this file.)

As described above, reloading the page in the browser will not show the change. This is by design. Go back to the
main app page, click Authoring Tool andthenReload App from local filesystem, and then go back
to the Start Compliance page.

Your changes are now seen in your browser.

4.2. Compliance App Authoring Tutorial 57

assets/samplequestion.png

govready-q Documentation, Release 0.8.6

GOVREADYQ The Company, Inc.

A myfirstapp Example Module

Progress:

e ® what is your favorite science
fiction franchise?

What is your /east favorite science fiction franchise?
Star Trek
Star Wars .and we're done
Lord of the Rings

Other

Skip » # Discuss A Assign

More information about the file format of modules can be found in Modules, Questions, and Documents.

4.2.5 Step 5: Edit a compliance app using GovReady-Q’s authoring tools
About the authoring tools

It is also possible to edit a compliance app’s questions without leaving your browser. When editing the compliance
app via GovReady-Q’s built-in authoring tools, you will immediately see the changes in the instance of the compliance
app you are editing without having to reload it. The changes are also immediately written to the files on disk.

GovReady-Q’s built-in authoring tools will let you edit and add questions, but currently won’t let you change the name
of the description of the app in catalog. You will still need to edit those details in the compliance app YAML files
stored on disk, as described above.

Editing a question

A blue pencil icon will appear at the top right of module questions when the authoring tools are available. Click the
pencil icon for the sample question. The question editor will pop up:

58 Chapter 4. Authoring Compliance Apps

assets/revisedquestion.png
Schema.html

govready-q Documentation, Release 0.8.6

Edit Question

Question ID gl
The identifier for the question, which is used in templates and the API %
Title What is your favorite science fiction franchise?

A title for the question.

Prompt What is your *least* favorite science fiction franchise?

A template rendered as the prompt for the question. The first line will be shown in a larger font.

Answer Type Single Choice T

Choices startrek|Star Trek|
starwars|Star Wars|
lordoftherings|Lord of the Rings|
other|Other|

Put each choice on a separate line and provide as KEY|LABEL|HELP.

Impute mpute conditions are run in order. The first condition to match determines the answer for this question. Each
condition is a Jinja2 expression. If the condition evaluates to true, the condition matches. -

Conditions

This is a much easier way of editing questions! Try editing this question. After clicking Save Changes, look in
your text editor to see that the changes have been immediately saved to example.yaml.

Adding questions

It is also possible to add questions. In order to add a question, all of the existing questions must be answered. Answer
the sample question, or click Skip.

You’ll see an Add Question button on the module review page:

4.2. Compliance App Authoring Tutorial 59

assets/authoringtoolquestion.png

govready-q Documentation, Release 0.8.6

GOVREADYQ The Company, Inc.

A myfirstapp Example Module

You have completed the module.

Your Answers

Question Answer
What is your favorite science fiction franchise? Star Trek

== Add Question

What You Chose

startrek

-

Try out the Add Question button now. It will create a new text question. Use the blue pencil icon to change the
question’s prompt and choices.

You have now seen how to create and edit an app!

4.2.6 Step 6: Deploy the app to a production instance of GovReady-Q
Adding apps to a git repository

Your workstation’s instance of GovReady-Q has been configured to load apps from the local filesystem. Your organi-
zation’s production instance of GovReady-Q can be configured similarly, but more likely it will be configured to load
apps from a remote git repository.

Create a new git repository in your source code control system and push your apps directory to the repository. The
repository’s root directory should contain a directory named my firstapp:

repository root
L mnyfirstapp
app.yaml
assets
L— app.png
example.yaml

If you have an existing source code control system containing apps in this layout, consider checking out the repository
locally so that it is in the same path provided to the ——appsdevdir argument to docker_container_run.sh.
If your repository is in a different layout or if you are using multiple repositories to store compliance apps, see below.

60 Chapter 4. Authoring Compliance Apps

assets/addquestion.png

govready-q Documentation, Release 0.8.6

Configuring a production system to load apps from the git repository

On the production GovReady-Q instance, log into the Django admin at https://production—g/admin. Add
a new App Source.

Set its S1ug to a short name for the repository, composed of letters, numbers, and underscores, such as mygitrepo.

If your git repository is public or accessible over an https: URL

If your git repository is accessible over an https: URL (such as a public GitHub repository), change the Source Type
to Git Repository over HTTPS and paste the URL into the URL field. The other fields can be left blank. Here’s what
that looks like:

Django administration

Home > Guidedmodules » App sources » Add app source

Add app source

Slug: mygitrepo

A unique URL-safe string that names this AppSource.

How is this AppSource

accessed?

Source Type: Git Repository over HTTPS (Public Repository) J
What kind of app source is it?

URL: https://github.com/GovReady/govready-apps-dev

The https: URL to a public git repository, e.g. https://github.com/GovReady/govready-q

If your git repository is private

If your git repository is private and accessible instead wusing an SSH URL (typically
git@github.com:organization/repository.git) and an SSH public/private keypair, such as with GitHub or GitLab
deploy keys, then first create a new SSH key for your GovReady-Q instance:

ssh-keygen -g -t rsa -b 2048 -N "" -C "_your-repo-name_-deployment—key" -f ./repo_
—deploy_key

Your GovReady-Q instance will hold the private key half of the newly generated keypair, and your source code control
system will hold the public key. Back in the Django admin, set the Source Type to Git Repository over SSH. Paste the
SSH URL into the URL field. Then open the newly generated file repo_deploy_key and paste its contents into
the SSH Key field. The other fields can be left blank. Here’s what that looks like:

4.2. Compliance App Authoring Tutorial 61

assets/appsource_git_https.png
mailto:git@github.com

govready-q Documentation, Release 0.8.6

Add app source

Slug:

How is this AppSource
accessed?

Source Type:

SSH URL:

Branch:

Path:

SSH Key:

mygitrepo

A unique URL-safe string that names this AppSource.

Git Repository over SSH (Private Repository) :I

What kind of app source is it?

git@github.com:GovReady/govready-apps-dev.git

The SSH URL to a private git repository, e.g. git@github.com:GovReady/govready-q.git.
The name of the branch in the repository to read apps from. Leave blank to read from the «

The path to the apps. For local directory AppSources, the local directory path. Otherwise tt

----- BEGIN RSA PRIVATE KEY-----
MIIEpAIBAAKCAQEAs2r6cysJild515LJFyzwcFD/nuYjKO
zMhpjfOpuSJ7AnvKRi

Paste an SSH private key here and send the public key to the repository owner. For GitHub

Copy the public key in the newly generated file repo_deploy_key.pub into the deploy keys section of your
source code repository. Here is what that looks like on GitHub:

62

Chapter 4. Authoring Compliance Apps

assets/appsource_git_ssh.png

govready-q Documentation, Release 0.8.6

GovReady / govready-q ®uUnwatch~ 8 | kStar 8 ¥Fork 4
Code Issues 74 Pull requests 0 Projects 0 Wiki Insights L3 Settings
Options Deploy keys / Add new
Collaborators & teams
Title
Branches
Webhooks
Key
Integrations & services
sshorsa

AAAAB3NzaC1yc2EAAAADAQABAAABAQCzavpzKwmKV3kjkskXLPBwUP+e5iMo7MyGmN/Sm5InsCe8pGJX
yywPla15NccAjwLVi3sDI3yJDbYurElpXGR3T1Wn2lcmREMIBPUzUgNTzI3AjIVNWSDyF9Gn1hugMBU2Nh
Alerts /YVthEzOUA9+F10wDJdBcwPMHrfiz+¢5jMQri/0i07/P
/2K/ZeAbL44ivCB41CHZs5ebBQrMgUqOgQaqazNNXDykBFNSvU1

IXYZyTGVGP 1wRpkvzQvIviwnKNzhuW4QxH1wzr7cDMSNYyU1w
/GKKao+gMu1gr7TQdAKS5PUkupeE7PxVFc5ss18PvLDPFI87BE1pkgHh8x/kfq1mSGT _your-repo-name_-
deployment-key

Deploy keys

") Allow write access
Can this key be used to push to this repository? Deploy keys always have pull access.

Add key

Other information about App Sources

As with local development, the production system’s compliance app catalog may be cached. To see new apps, restart
the production instance of GovReady-Q.

See App Sources for more information about how to configure your production instance of GovReady-Q to load apps
from local filesystem directories, git repositories (including on-prem git repositories), or GitHub.

Advanced setups for development with a repository of apps

In this guide we have used the ——appsdevdir command to specify a location in which app YAML files and assets
are stored. In a small setup, all apps could be stored in a subdirectory of the location given to ——appsdevdir.
But you may want to separate apps into different folders, such as if they are divided between folders in a single git
repository or across multiple git repositories, then a more advanced configuration of GovReady-Q is necessary.

Imagine the following directory structure where two GitHub repositories are cloned into two separate local directories
within apps, and each has a compliance_apps directory holding its apps:

— apps (" —-—appsdevdir® directory)
repol
L compliance_apps
|: myfirstapp
mysecondapp
repo2
L compliance_apps
|: mythirdapp
myfourthapp
— database.sqglite
L— docker_container_run.sh

4.2. Compliance App Authoring Tutorial 63

assets/github_deploy_key_add.png
AppSources.html

govready-q Documentation, Release 0.8.6

The default setup from GovReady-Q docker installation only show apps in the compliance app catalog if the app files
are located in the immediate subdirectory of path configured to load apps. But we can also tell GovReady-Q to load
apps from multiple locations. In this case we will configure GovReady-Q to load apps from two locations:

apps/repol/compliance_apps
apps/repo2/compliance_apps

Recall that the path given to ——appsdevdir is mapped to a path within the Docker container so that the container
can see the YAML files on the (host) local filesystem. The container sees these directories as

/mnt/apps/repol/compliance_apps
/mnt/apps/repo2/compliance_apps

Log into the Django admin at http://localhost :8000/admin. Add two new AppSource entries:

For the first, set the S1ug to repol (or any other label that will help you distinguish the two repositories), the
Source Type to Local Directory, and the Path to /mnt/apps/repol/compliance_apps. For the
second, set the S1ug to repo2, the Source Type to Local Directory, and the Path to /mnt/apps/
repo2/compliance_apps.

Then restart the container:

’docker container restart govready-g

and the apps defined in all of the repositories should be visible in the compliance app catalog.

4.3 App Sources

GovReady-Q can be configured by an administrator to load compliance apps from one or more sources, which can be
local directories or remote git repositories.

When using the Hosted Version of GovReady-Q, GovReady PBC is the administrator. If you are the administrator of
an installation of GovReady-Q at your organization, the information below will help you configure the App Sources
available to your users.

App Sources are configured in the Django admin at the URL /admin on your GovReady-Q domain under App
Sources:

64 Chapter 4. Authoring Compliance Apps

govready-q Documentation, Release 0.8.6

Django administration

Home » Guidedmodules » App sources

Select app source to change

Action: | ==m=mmman j Go | 0of4selected
0 swue SOURCE FLAGS
O myorg local filesystem at ../continuous-ato-kit
O apps-dev https://github.com/GovReady/govready-apps-dev
O system local filesystem at modules/system SYSTEM
0 null source

4 app sources

Each App Source points GovReady-Q to a directory or repository of compliance apps.

Django administration

Home > Guidedmodules > App sources » Add app source

Add app source

Slug: mygitrepo

A unigue URL-safe string that names this AppSource.

How is this AppSource

accessed?

Source Type: Git Repository over HTTPS (Public Repository) J
What kind of app source is it?

URL: https://github.com/GovReady/govready-apps-dev

The https: URL to a public git repository, e.g. https://github.com/GovReady/govready-q.

4.3.1 App Source Slug

The first App Source field is the Slug. The Slug is a short name you assign to the App Source to distinguish it from
other App Sources. The Slug is used to form URLs in GovReady-Q’s compliance apps catalog, so it may only contain
letters, numbers, dashes, underscores, and other URL path-safe characters.

4.3. App Sources 65

assets/appsources_list.png
assets/appsource_git_https.png

govready-q Documentation, Release 0.8.6

4.3.2 App Source Type

There are four types of App Sources: local directories, remote git repositories using HTTP which are typically public
repositories, remote git repositories using SSH which typically use SSH deploy keys for access, and remote GitHub
repositories using a GitHub username and password for access.

Local Directory

The Local Directory source type directs GovReady-Q to load compliance apps from a directory on the same machine
GovReady-Q is running on. (When deploying with Docker, that’s on the container filesystem unless a path has been
mounted to a volume or to the host machine.)

In the Path field, enter the path to a local directory containing compliance apps. This path is expected to contain a
sub-directory for each compliance app contained in this source. For instance, if you have this directory layout:

L— home
L— user

L compliance_apps

myfirstapp
L app.yaml
mysecondapp

L app.yaml

then your Path would be /home /user/compliance_apps.

The path can be absolute or relative to the path in which GovReady-Q is installed.

Git Repository over HTTPS

The Git Repository over HTTPS source type is for git repositories, such as on GitHub or GitLab, that can be cloned
using an HTTPS URL. These repositories are typically public, or in an enterprise environment public within your
organization’s network.

Paste the HTTPS git clone URL — such as https://github.com/GovReady/govready-apps-dev — into the URL field.
Here’s what that looks like:

66 Chapter 4. Authoring Compliance Apps

https://github.com/GovReady/govready-apps-dev

govready-q Documentation, Release 0.8.6

Django administration

Home » Guidedmodules » App sources » Add app source

Add app source

Slug: mygitrepo

A unique URL-safe string that names this AppSource.

How is this AppSource

accessed?

Source Type: Git Repository over HTTPS (Public Repository) J
What kind of app source is it?

URL: https://github.com/GovReady/govready-apps-dev

The https: URL to a public git repository, e.g. https://github.com/GovReady/govready-q.

The other fields can be left blank.

The Path field optionally specifies a sub-directory within the repository in which the compliance apps are stored if
they are not stored in the root of the repository. For instance if the repository has a directory layout similar to:

L github.com/organization/repository
L apps
myfirstapp
I: — app.yaml
mysecondapp
L app.yaml

then set the Path field to apps.

If the compliance apps are not in the repository’s default branch (i.e. something other than the typical master default
branch), then set the Branch field to the name of the branch to read the compliance apps from.

You can use HTTPS to access private repositories by placing your username and password or personal access token
into the URL, such as:

https://username:password@github.com/GovReady/govready—apps—dev

Since this requires user credentials, it should be avoided for production deployments in favor of using Git Repository
over SSH (see below).

Git Repository over SSH

If your git repository is private and accessible using an SSH URL (which typically looks like
git@github.com:organization/repository.git) and an SSH public/private keypair, such as with GitHub or GitLab
deploy keys, then use the Git Repository over SSH source type.

Create a new SSH key for your GovReady-Q instance to be used as a deploy key:

4.3. App Sources 67

assets/appsource_git_https.png
https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/
mailto:git@github.com

govready-q Documentation, Release 0.8.6

ssh-keygen -g -t rsa -b 2048 -N "" -C "_your-repo-name_-deployment-key" -f ./repo_
—deploy_key

Your GovReady-Q instance will hold the private key half of the newly generated keypair, and your source code control
system will hold the public key.

Back in the Django admin, set the Source Type to Git Repository over SSH. Paste the git clone SSH URL into the
URL field. Then open the newly generated file repo_deploy_key and paste its contents into the SSH Key field.
Here’s what that looks like:

Add app source

Slug: mygitrepo

How is this AppSource

accessed?

Source Type: Git Repository over SSH (Private Repository) J
SSH URL: git@github.com:GovReady/govready-apps-dev.git
Branch:

Path:

SSHKey: | -=--- BEGIN RSA PRIVATE KEY -----

MIIEpAIBAAKCAQEAs2r6cysJild515LJFyzwcFD/nuYjKO
zMhpjfOpuSJ7AnvKRi

~ TAalAmal 1=7a wiAtssAsr LN N P A

The other fields can be left blank. Path and Branch can be set the same as with the Git Repository over HTTPS
source type (see above).

Copy the public key in the newly generated file repo_deploy_key.pub into the deploy keys section of your
source code repository. Here is what that looks like on GitHub:

68 Chapter 4. Authoring Compliance Apps

assets/appsource_git_ssh.png

govready-q Documentation, Release 0.8.6

GovReady / govready-q ®uUnwatch~ 8 | kStar 8 ¥Fork 4
Code Issues 74 Pull requests 0 Projects 0 Wiki Insights L3 Settings
Options Deploy keys / Add new
Collaborators & teams
Title
Branches
Webhooks
Key
Integrations & services
sshorsa

AAAAB3NzaC1yc2EAAAADAQABAAABAQCzavpzKwmKV3kjkskXLPBwUP+e5iMo7MyGmN/Sm5InsCe8pGJX
yywPla15NccAjwLVi3sDI3yJDbYurElpXGR3T1Wn2lcmREMIBPUzUgNTzI3AjIVNWSDyF9Gn1hugMBU2Nh
Alerts /YVthEzOUA9+F10wDJdBcwPMHrfiz+¢5jMQri/0i07/P
/2K/ZeAbL44ivCB41CHZs5ebBQrMgUqOgQaqazNNXDykBFNSvU1

IXYZyTGVGP 1wRpkvzQvIviwnKNzhuW4QxH1wzr7cDMSNYyU1w
/GKKao+gMu1gr7TQdAKS5PUkupeE7PxVFc5ss18PvLDPFI87BE1pkgHh8x/kfq1mSGT _your-repo-name_-
deployment-key

Deploy keys

") Allow write access
Can this key be used to push to this repository? Deploy keys always have pull access.

Add key

Make the key read only by leaving “Allow write access” field unchecked and click Add the key to save the key.

GitHub Repository using the GitHub API

This source type can be used to access private GitHub repositories using a GitHub username and password or a
username and personal access token.

Set the Repository field to the organization name and repository name, separated by a slash, as in the repository’s
URL following github.com/. In Other Parameters, paste a small YAML-formatted document holding a
GitHub username and password or username and personal access token, formatted as follows:

auth:
user: 'myusername'
pw: 'mypassword'

The other fields can be left blank. Branch can be set the same as with the Git Repository over HTTPS source type
(see above).

Since this source type requires user credentials, it should be avoided for production deployments in favor of using Git
Repository over SSH.

4.3.3 Controlling access to apps

Controlling which organizations in a Q deployment can access which apps is done via the App Sources table.

The “Available to all” field of App Source, which is on by default, gives all users of all organizations the ability to start
an app provided by the App Source.

If the “Available to all” field is unchecked, then only users within white-listed organizations can start apps provided
by the App Source. The white-list is a multi-select box on the App Source page.

Removing access to a App Source does not affect any apps that have already been started by a user.

4.3. App Sources 69

assets/github_deploy_key_add.png
https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/

govready-q Documentation, Release 0.8.6

App executable content

Apps can contain executable content (some of which is disabled by default):
« JavaScript executed by the client browser contained within page HTML, via module template content.
* JavaScript executed by the client browser served as a static asset and referenced by a <script> tag.

Both sources of Javascript execute within the context of pages on the domain that the Q site itself runs on, which
means the scripts have access to the page DOM, cookies, localStorage, etc. These scripts must only be enabled if they
are trusted for these environments.

Javascript static assets (but not Javascript in module templates - this is a TODO) are therefore disabled by default.
(Javascript static assets are disabled by serving them with an incorrect MIME type.)

To enable these scripts, the Trust assets flag must be true on the App Source that provides the app. This flag
must only be true if any Apps provided by the App Source, including Apps already loaded into Q, are trusted to have
executable content that may have as much client or server-side access as the Q instance does itself.

4.4 Modules, Questions, and Documents YAML Reference

A module and its questions are defined in YAML specification files. The schema for the specification files is as follows:

4.4.1 Module

Each file is a Module. A Module has the following required fields:

id: module_id
title: Your Title Here

The module_id must match the file name that the YAML is saved into, without the path or file extension.

Several optional fields can be specified:

type: project

version: 1

instance-name: "Module for {{gl}}"

invitation-message: "Can you tell me about {{question.text}} and let me know when you,
—are done?"

icon: app.png

The type field is set to project just when the Module is to be offered to users when they start a new Project.
(system-project is used for project-like modules that are system controlled and not offered to the user.)

The version field is used only to force changes in the specification to be considered incompatible with any existing
user answers (see Updating Modules).

The instance-name is a template to generate a dynamic title for in-progress and completed modules. The
instance-name is rendered like other Module documents but it is always specified in text format (see Docu-
ments).

For modules that define the root of an application, icon specifies a static asset (in the assets directory) to use as
an application icon.

In addition, a Module may have an introduction document (for projects, the introduction appears at the top of
the project page; for other module types, it appears as an implicit initial interstitial) and a list of one or more output
documents. For example:

70 Chapter 4. Authoring Compliance Apps

govready-q Documentation, Release 0.8.6

introduction:
format: markdown
template: |
Welcome to the module.

This module should take you two minutes.

output:
- title: Document 1
format: markdown
template: |
Document for {{project}}

Hello! This is the output of the module. You answered {{gl}}.

- title: Document 2
glyphicon: dashboard
format: html
template: |
<hl># Document for {{project}j}</hl>

<p>Hello! This is the output of the module. You answered {{gl}}.</p>

The format of documents are described in a later section.

Finally, a Module contains a list of one or more Questions:

questions:
- id: ql
title: Your Favorite Animal
prompt: What's your favorite animal?
type: text

- id: g2
title: What Kind of Animal Is It
prompt: How would you classify this animal?
type: choice
choices:
- key: pet
text: common pet
help: Is this animal a common pet?
- key: wild
text: wild animal
help: Is this animal an undomesticated wild animal?

The schema for questions is documented in a later section.

Additional fields for projects

Question Fields

The questions of projects are displayed in a layout of tabs and groups within each tab pane. Each question that shows

up on a project page should specify its tab and group name (which are also the display strings):

questions:
- id: howto_ssp

(continues on next page)

4.4. Modules, Questions, and Documents YAML Reference 71

govready-q Documentation, Release 0.8.6

(continued from previous page)

title: "SSP 101: What's a System Security Plan"
type: module

module-id: howto_ssp

tab: How To

group: Start Here

icon: ssp.png

icon specifies a static asset (in the assets directory) to use as an icon for the question. If the question’s type is
module and it is answered and the answer is a Task that has a top-level icon field, then the answer’s icon is used
instead.

Instead of tab and group, placement: action-buttons can be used instead to show the question in an
action bar above the tabs, rather than in tabs.

Output Document Fields

Output documents of a project module that have an id field are used in the following ways:

* They are displayed in the Related Controls page for the project. Add a t it le attribute to set the heading text
above the document’s content.

¢ They can be accessed from higher-level apps into which this app has been added. In a higher-level app, access the
rendered HTML value of the output document as { { question.output_documents.document_id}}.

When display: top isseton an output document, it is rendered above the Your Answers section.

Test Answers

Projects can provide sets of exemplar answers for use in test scripts. e.g.:

tests:
testl: E <-— test suite ID
description: "Sample data."
answers:
ql:

answers: H <-— answers to subftaskms questions
gl: desktop
g2: My Secure Tool

4.4.2 Documents

Documents occur as int roduction and output documents of Modules, and a restricted form of documents also
occurs in Question prompts (see Questions below). A document appearing in the output documents list is given as:

output:
- id: mydoc
title: Document 1
format: markdown
template: |
Hello!

The id and title fields are generally optional and are used for output documents only. An id is required to make
the document downloadable. The fields also have special uses in projects (see above). The format field is described
below.

72 Chapter 4. Authoring Compliance Apps

govready-q Documentation, Release 0.8.6

The document can also be stored in a separate file by replacing the document data in the module YAML file with a
filename and placing the document properties and template in the named file, as in:

module.yaml
output:
- mydoc.md

mydoc.md

id: mydoc

title: Document 1
format: markdown

Hello!

When using a separate file, the document properties (id, title, and format) are given in a YAML block at the
top of the file. A line containing just three dots signifies the end of the YAML block, separating it from the document
template. The document template follows.

Document Format

The introduction and output documents of Modules allow a format to be specified. The document formats are:

* markdown — The document is entered in CommonMark (quick guide) in the specification file, but it will be
rendered into a richly formatted presentation on screen.

e html — The document is given in raw HTML, but it will be rendered on screen.
* text — The document is given in plain text, and it will display as preformatted (fixed-width) text on screen.

* json, yaml — Experimental.

Additional Markdown Notes

Documents specified in markdown format are rendered according to the CommonMark 0.25 specification.

Note that for some things like tables, it is necessary to insert raw HTML right into the document, which is acceptable
CommonMark. To create a table:

<table><thead><th>
Col 1

</th>
<th>

Col 2

</th>

</thead>
<tbody><tr><td>

Some [commonmark] (http://www.google.com) within the cell.

</td>
<td>

More xcontent.x

(continues on next page)

4.4. Modules, Questions, and Documents YAML Reference 73

http://commonmark.org/
http://commonmark.org/help/
http://commonmark.org/

govready-q Documentation, Release 0.8.6

(continued from previous page)

</td></tr></tbody></table>

Some of the newlines are necessary to get CommonMark to go out of raw HTML mode and back into parsing Com-
monMark.

Document Templating

All document formats are evaluated as Jinja2 templates. That means within your document you can embed special
tags that are replaced prior to the document being displayed to the user:

* {{ question_id }} will be replaced with the user’s answer to the question whose id is question_id.
For choice-type questions, the value is replaced by the choice key. Use { { question_id.text }} toget
display text. See the question types documentation below for details.

e {$ if question_id == 'value' %}....{% endif %} isaconditional block. The contents inside
the block (. . . .) will be included in the output if the condition is true. In this example, the contents inside the

block will be included in the output if the user’s answer to question_idis value.

Output documents and question prompts have access to the user’s answers to questions in question variables. (The
introduction document does not have access to the user’s answers because questions have not yet been answered.)

The following information is also available within the output template for each question as of version v0. 8. 6:
e {{ question_id.not_yet_answered }} Question has not yet been answered.

* {{ question_id.answered }}Question has an answer either by user or was imputed, but not imputed
null or answered null.

* {{ question_id.imputed }} Question considered “answered” but no TaskAnswerHistory record exists
in the database for question meaning a user didn’t provide the answer.

* {{ question_id.skipped }} Question has a null answer either because imputed null or the user
skipped it.

* {{ question_id.skipped_by_user }} Questionhasanull answer because used a skip button (e.g.,
question wasn’t imputed null).

e {{ question_id.skipped_reason }} Question’s indicated reason for skipping (e.g. “I don’t know”
or “It doesn’t apply”)

* {{ question_id.unsure }} If question was answered by a user, its unsure flag. (NOTE: Purpose of this
flag was to allow users to indicate uncertainty in the answer. Due to usability issues however, this feature is
currently hidden.)

e {{ question_id.date_answered }} Question answered date.
e {{ question_id.reviewed_state }} Question reviewed value.

All documents also have access to the project title as { {project}}.

Project Documents

In addition to the output documents described above, a project module may also have a snippet that defines how
a project appears in the project listing page:

74 Chapter 4. Authoring Compliance Apps

http://jinja.pocoo.org/docs/dev/templates/

govready-q Documentation, Release 0.8.6

snippet:
format: markdown
template: |
Project {{name}}

4.4.3 Module Assets

Modules often make use of assets outside of the YAML file.

Static Assets

Static assets such as images can be referenced in module content (introductions, question prompts, and output docu-
ments). These assets are exposed by the Q web server in its static path. Place static assets in an asset s subdirectory
where the module is. When the asset is referenced in a Markdown document template, its path will be rewritten to be
its public (virtual) path on the web server.

For example, to include an image in a module introduction add the image in the Markdown template:

module.yaml

format: markdown
template: |
'[] (my_image.pngqg)

Place the module and image files at the path:

module.yaml
assets/my_image.png

Private Assets

Private assets are other files that are stored with a module but are not exposed by the web server. The directory provides
a place to store files for internal use during module development.

Place private assets in a private-assets subdirectory next to the module YAML file.

4.4.4 Questions

Questions have the following required fields:

- id: ql
title: Your Favorite Animal
prompt: What's your favorite animal?
type: text

The question id is used to refer to this Question in other questions and in the output documents.

The title is used to describe the Question in places where a long-form prompt would not be appropriate.

4.4. Modules, Questions, and Documents YAML Reference 75

govready-q Documentation, Release 0.8.6

The prompt is the text the user is prompted with when presented with the question. The prompt is rendered like other
Module documents but it is always specified in markdown format (see Documents). The first line (paragraph) of the
prompt is shown in larger, bold type.

A question may have other optional fields that provide the user with other information, such as:

examples:
- example: |
First example.
- example: |
Second example.
reference_text: See NIST SP 800-171 page 102.

Like the prompt, each entry inside examples and the reference_text are Markdown templates.

Removing a question, changing a question type, and other changes as noted below are incompatible changes (see
Updating Modules).

Question Types

text

This type asks the user for a single line of free-form text. The text cannot be empty.

A placeholder can be specified which places ghosted “placeholder” text inside the form field when the user has
not yet entered anything. A default value can be specified, instead, which fills in the field with a value that the
user can edit (or not) before submitting the answer. The placeholder and default fields are rendered like other Module
documents — just like the prompt.

help text can be specified which provides an additional prompt smaller and below the field input.

Example:

- id: gl
title: Your Favorite Animal
prompt: What's your favorite animal?
type: text
placeholder: enter a type of animal
help: Examples: dog, cat, turtle, lion

In document templates and impute conditions, the value of text questions is simply the text the user entered.

password

This type asks the user for a password. It is the same as the text question type, except that a password input field is
used to mask the input. help can be specified. placeholder and default are not allowed.

email—-address

This type asks the user for an email address. It is the same as the text question type, except that the value entered
must be a valid email address. placeholder, default, and help can be specified.

76 Chapter 4. Authoring Compliance Apps

govready-q Documentation, Release 0.8.6

url

This type asks the user for a web address (a URL). It is the same as the text question type, except that the value
entered must be a valid web address. placeholder, default, and help can be specified. The web address is not
checked for existence — only the form (syntax) of the address is checked.

longtext

This type asks the user for free-form text using a large rich text input area that allows for multiple lines of text and
some simple formatting. The text cannot be empty.

A default value can be specified, which fills in the field with a value that the user can edit (or not) before submitting
the answer. The field is rendered like other Module documents — just like the prompt. It is given in Markdown.

help text can be specified which provides an additional prompt smaller and below the field input.

In document templates and impute conditions, the value of longtext questions is the text the user entered, as a
string, with rich formatted represented in CommonMark. In document templates, the text is automatically converted
back to rich formatting.

date

This type asks the user for a date.
help text can be specified which provides an additional prompt smaller and below the field input.

In document templates and impute conditions, the value of date questions is a text string in YYYY-MM-DD format.

choice

This type asks the user to choose one of several options. The options are given as:

choices:
- key: pet
text: common pet
help: Is this animal a common pet?
- key: wild
text: wild animal
help: Is this animal an undomesticated wild animal?

The user must select exactly one choice.

The help text is optional. It is displayed smaller and below each choice. (Unlike some other question types, there is
no help field on the question as a whole.)

In document templates and impute conditions, the value of choice questions is the key of the choice selected by the
user. Use questionid.text to access the display text for the choice.

Removing a choice is an incompatible change (see Updating Modules).

yesno

This type is the same as choice but with built-in choices for yes and no. It is the same as a choice question type
with these choices:

4.4. Modules, Questions, and Documents YAML Reference 77

govready-q Documentation, Release 0.8.6

choices:
- key: yes
text: Yes
- key: no
text: No

The user must choose either yes or no.

multiple-choice

The multiple-choice question type is similar to the choice question type except that:
* The user can select multiple choices.

¢ In document templates and impute conditions, the value of multiple-choice questions is a list of the keys
of the choices selected by the user. When used bare, this renders as a comma-separated list of keys. One

can use the “‘llength‘ filter <http://jinja.pocoo.org/docs/dev/templates/#length>‘_and {% for ... in
$}... {% endfor %} loops to access the individual choices the user selected. Use questionid.text

to render a comma-separated list of the display text of the selected choices.

* min and max may be specified. If min is specified, it must be greater than or equal to zero and requires that the
user choose at least that many choices. If max is specified, it must be greater than or equal to one (and if min is
specified, it must be at least min) and requires that the user choose at most that number of choices.

Increasing the min or decreasing the max are incompatible changes (see Updating Modules).

integer

This question type asks for a numeric, integer input.
If min and max are set, then the value is restricted to that range. If min is omitted, then negative numbers are allowed!
As with the text question types, placeholder and help text can also be specified.

In document templates and impute conditions, the value of integer questions is the numeric value entered by the
user.

real

This question type asks for a numeric input, allowing for real (floating-point) numbers.
If min and max are set, then the value is restricted to that range. If min is omitted, then negative numbers are allowed!

As with the text question types, placeholder and help text can also be specified and in document templates and
impute conditions the value of these questions is the numeric value entered by the user. .

file

This question type asks the user to upload a file.
help text can also be specified, as in the text question types.

By default, any type of file is permitted to be uploaded. If the optional £ile—-type field is set, the uploaded file is
validated to be of a particular type. Supported values for the £ile-type field are:

* image: Ensures the file is an image. The uploaded file is converted to PNG format internally.

78 Chapter 4. Authoring Compliance Apps

http://jinja.pocoo.org/docs/dev/templates/#length

govready-q Documentation, Release 0.8.6

If file-type is image, then some image transformation can be run, e.g.:

- id: logo
title: Logo
prompt: Upload a logo.
type: file
file-type: image
image:
max—-size:
width: 60
height: 60

If image->max-size is given, then the image will be resized prior to being saved internally so that its width and
height do not exceed the given dimensions.

In document templates and impute conditions, the value of these questions is a Python dict (JSON object) containing
url (adownload URL) and size (in bytes) fields.

module, module-set

These question type prompt the user to select another completed module as the answer to the question. The
module-id field specifies the ID of another module specification. The module question type allows for a sin-
gle other module to answer the question. The module—-set question type allows for zero or more other modules to
answer the question.

The module-id field specifies a module ID as it occurs in the id field of another YAML file in the same application.

Example

Here’s an example of the module question type:

- id: evidence
title: Evidence
type: module
module-id: evidence
prompt: |
Provide evidence of your properly configured firewall, if possible.
impute:
— condition: not (have_other_dmz == 'ad_hoc_dmz"'")
value: ~

App protocols

Instead of using module-id, a protocol can be specified instead. A protocol is a globally unique identifier that
apps in the Compliance Store use to indicate that their questions and output documents meet a certain criteria (i.e.
implement the protocol). When a user attempts to answer a module or module—set question that uses protocol
instead of module—id, instead of starting a particular named module, the user instead can start any app from the
Compliance Store that implements the protocol.

For example:

- id: evidence
title: Evidence

(continues on next page)

4.4. Modules, Questions, and Documents YAML Reference 79

govready-q Documentation, Release 0.8.6

(continued from previous page)

type: module
protocol: govready.com/apps/compliance/2017/nist-sp-800-171-rl-ssp
prompt: |

Provide evidence of your properly configured firewall, if possible.

When a user answers this question, they will be redirected to the Compliance Store but will be offered only apps that
implement the protocol govready.com/apps/compliance/2017/nist-sp-800-171-rl-ssp.

An app implements a protocol by having aprotocol: field at the top level of the app’s YAML specification file with
the same value. For instance, the following app would be offered in the Compliance Store for this example question:

id: app

title: My App

type: project

protocol: govready.com/apps/compliance/2017/nist-sp-800-171-rl-ssp

Both protocol fields can be either a single string or a list of strings. When the question protocol value is a list, then
only apps which implement all of the listed protocols will be offered.

Question type details

Changing the module-id or protocol is considered an incompatible change (see Updating Modules), and if the
referenced Module’s specification is changed on disk in an incompatible way with existing user answers, the Module
in which the question occurs is also considered to have an incompatible change. Thus an incompatible change in a
module triggers an incompatible change in any other Module that refers to it (and so on recursively).

In document templates and impute conditions, the value of module questions is a dictionary of the answers to that
module. For example, if g5 is the ID of a question whose type is module, then { {g5.gl} } will provide the answer
to g1 within the module the user selected that answers ¢5.

interstitial

An interstitial question is not really a question at all! The prompt contains template content, as with other
questions, but it is typically longer content with deeper explanatory text. The user is not asked to enter any information.

In document templates and impute conditions, the value of interstitial questions is always a null value.

raw

This type is meant for questions that are always imputed (i.e. that are never presented to the user) and where the
answer value can be any JSON-serializable Python data structure, as given by the impute value (see Imputing Answers
below).

This question type should be avoided if one of the other question types specifies a more narrow data type. For instance,
if the imputed value is always a string, the text or longtext question types should be used instead.

Imputing Answers

The answer to one question may provide the answer to another. In such cases, the latter question is said to have an
imputed value and the user is not asked to answer the question. To impute a value, specify on the question whose value
is being imputed:

80 Chapter 4. Authoring Compliance Apps

govready-q Documentation, Release 0.8.6

impute:
- condition: gl == 'no'
value: don't know

This example says that if the answer to g1 is no, then the answer to this question is don't know.

The condition is a Jinja2 expression. Any question can be referred to in the expression (by its id). Questions
are tested on their internal values. For choice and multiple-choice questions, their values are their keys, not
their label text, and multiple-choice questions are /ists of keys. If condition is omitted, the imputed value is
always taken (i.e. the condition is implicitly met).

The value provided must be a valid value for the question type it is a part of. For choice questions, the value must
be a choice key, not the label text. For multiple—choice questions, the value must be a list of keys.

Multiple condition/value blocks can be provided. They are evaluated in order, with the first matching condition taking
precedence.

impute:
- condition: gl == 'no'
value: I don't know.
- condition: gl == 'yes'

value: I do know.

The value field can be evaluated as a Jinja2 expression, just like the condition, if value-mode is set to
expression. This can be used to pull forward the answers of previous questions:

impute:
- condition: gl == 'same-as-g0'
value: g0
value-mode: expression

value-mode can also be template to evaluate the value as a Jinja2 template, which will yield a text value.
In both conditions and expression-type values, as well as in documents, the variables you can use are:
 ids of questions in the module

* question_id.subquestion_id to access questions within the tasks that are assigned as answers to
module-type questions

* project, which gives the project name

* project.question_id, project.question_id.subquestion_id, etc. to access questions
within the project

* organization, which gives the organization name

We also have a function to retrieve the URL of a module’s static assets, e.g.:

<script src="{{static_asset_path_ for ('myscript.js') }}"></script>

4.4.5 Question Order
The order in which Questions are asked is determined through an algorithm. The algorithm determines which questions
need to be asked before other questions and which need to be asked in order to generate the output documents.

The only Questions that are asked of the user are those that are mentioned in any of the output templates or other
Questions that required to be asked before those mentioned Questions can be answered.

4.4. Modules, Questions, and Documents YAML Reference 81

http://jinja.pocoo.org/docs/dev/templates/#expressions
http://jinja.pocoo.org/docs/dev/templates/#expressions

govready-q Documentation, Release 0.8.6

If a Question mentions another question in its prompt text or impute conditions, the other question must be answered
first. A Question can also list other Questions that should be answered first as:

ask—-first:
— ql
— qz

4.4.6 Updating Modules

When a Module file specification is changed, the change is considered “compatible” or “incompatible” with existing
user answers.

Many changes are “compatible”: Changing the introduction or output documents, question prompts, and adding new
questions and choices are all compatible changes. These changes can be made “live” on any existing user answers.

Other changes are “incompatible”: Removing a choice is an incompatible change because a user may have already
chosen it. Removing a question is incompatible because it would result in a loss of user data.

When there is an incompatible change in a Module specification, a new iteration of the Module will be stored in the
program database but existing user answers will continue to be tied to the previous iteration of the Module specifica-
tion.

82 Chapter 4. Authoring Compliance Apps

CHAPTER B

Automation API

GovReady Q Compliance Apps can be updated with information gathered from live systems via the GovReady Q APL
The benefit of this capability is that the documentation produced by GovReady Compliance Apps, such as System
Security Plans (SSPs), can be assembled and updated with actual system data in an automated way.

5.1 Overview of the GovReady Q API

The GovReady Q API provides read and write access to the information stored in GovReady Q’s question-and-answer
data model. It is a RESTful API using HTTP GET and POST requests, API keys that are issued per user, and JSON
for request and response data.

Each GovReady Compliance App provides a separate API, and each app’s API is composed of fields for the same
information the app would ask an end-user using the Q website in a web browser. The app’s definition of questions to
ask the end user (see Modules, Questions, and Documents) also define the data model of the API.

As an example, the screenshot below shows a demonstration of a macOS File Server compliance app. The app asks
questions about the hostname of the server and the use of security groups.

83

Schema.html

govready-q Documentation, Release 0.8.6

macOS Server

All Answers

macOS File Server Details .

These fields occur within Enter Information .

Question Answer

Hostname twiggie m
Security Groups + yes m
Security Groups Description .# There are 17 UNIX groups: adm (2 users: syslog, user), audio (2

users: speech-dispatcher, pulse), cd (1user: user), debian-
spamd (1User: de an-spamd), dip (luser: user), guest-PEpUkr (1
st -PEpUkr), lpadmin (1user: user), mongodb (1user:

mong nogroup (T user: sync), plugdev {'I user: u:ser}, postgres
(Tuser: postgres), root (luser: roc share (luser: user),
scanner ('l user: saned), ssl-cert (1 user: postgres), sudo (1 user:

>t), samb

user), user (luser: user)

Login Message ~ fetc/issue: m

Ubuntu 16.04.3 LT3 \n \1l

The answers to these questions can be both read from Q and written to Q using a JSON data structure:

{
"schema": "GovReady Q Project API 1.0",
"project": {
"file_server": {
"hostname": "twiggie",
"login_message": "/etc/issue:\n\n' ‘Ubuntu 16.04.3 LTS \\n \\1'"'",
"login_message.html": "<p>/etc/issue:</p>\n<p><code>Ubuntu 16.04.3 LTS
\\n \\1l</code></p>",
"using_security_groups": "yes",
"using_security_groups.text": "Yes"
"security_groups_description": "There are 17 UNIX groups: adm (2 users:
“syslog’, ‘user’), “audio® (2 users: "~ speech-dispatcher’, “pulse’), ...",
"security_groups_description.html": "<p>There are 17 UNIX groups: <code>
adm</code> (2 users: <code>syslog</code>, <code>user</code>), ..."
}
}
}

The second question, shown below, is a yes-no question. In the web browser this question appears as a radio select
question with Yes and No choices. In the JSON data structure, shown above, it is encoded as the JSON strings "yes"
or "no".

84 Chapter 5. Automation API

assets/macosapp.png

govready-q Documentation, Release 0.8.6

Are you using macOS Server security groups on twiggie?

© No

® Yes

Clear» = Mark as Unanswered » ¥ Discuss 2 Assign

Not Reviewed v

Each compliance app that has been started in GovReady Q and added to a project folder provides an APT Docs page
with samples and data schema documentation:

A macOS Server API

An APl is provided for programmatically getting and updating information stored in this macOS Server app. The APl can be used
from command-line tools and programming languages that allow making GET and/or POST HTTP requests.

Getting data from the app using the GET API
Project data can be read from the APl using an HTTP GET request to the following URL:
http://localhest:8000/apifvl/organizations/test/projects/47/answers

An APl key must be passed in the HTTP Authorization header. You can get your APl key from the API keys page.

You'll get the following response from the API:

{
"schema": "GovReady Q Project API 1.0",
"project": {
"file_ server": {
"hostname": "twiggie"™,
"using_security_groups": "yes",

"using_security groups.text": "Yes",

"security groups description": "There are 17 UNIX groups: ‘adm’ (2 users: ‘syslog’, ‘user’), ‘audio’ (2 us
"security groups description.html": "<p>There are 17 UNIX groups: <code>adm</code> (2 users: <code>syslog<
"login_message": "/etc/issue:\n\n' ' Ubuntu 16.04.3 LTS \\n \\1°°°",

"login_message.html“: "<prfete/issue:</pri\n<dp><code>Ubuntu 16.04.3 LTS \\n \\1</code></p>"

5.2 Using the Compliance API

To use a compliance app API, an app must already be started in GovReady Q by adding it to a project folder and its
modules must be started (but need not be completed) for them to be accessible from the API.

5.2. Using the Compliance API 85

assets/macosapp_q1.png
assets/macosapp_api.png

govready-q Documentation, Release 0.8.6

5.2.1 API keys

Every call to the API requires an API key. Each user has three API keys listed on their API Keys page, which can be
found in the user drop-down menu on Q: a read-only API key, a read-write API key, and a write-only API key:

» The read-only API key gives external tools the ability to see all data values that the associated user can see on
Q, but the API key cannot be used to change any data values.

» The read-write API key gives external tools the ability to see and make changes to anything the associated user
can see and make changes to on Q.

* The write-only API key gives external tools the ability to make changes to anything the associated user can
make changes to on Q but does not include the ability to see any data values stored in Q. The write-only key
is useful in situations where the external tool needs to be able to upload data but does not need to read existing
data values.

5.2.2 Getting data from the app using the GET API

Project data can be read from the API using an HTTP GET request to a URL of the following pattern:

{site base URL}/api/vl/organizations/{organization subdomain}/projects/
{project id}/answers

The complete URL can be found on the APT Docs page for a compliance app that has been started and added to a
project folder.

An API key must be passed in the HTTP Authorization header. You can get your API key from the API Keys
page, which is found in the site header menu in the user drop-down.

The API response is a JSON data structure similar to the example above. The schema of the response object is
documented on the app’s API Docs page. Further information can also be found below.

If you are using an operating system with a command line and the curl tool, you can try out the API by running:

curl --header "Authorization: {your—-api-key}" \
{site base URL}/api/vl/organizations/{organization subdomain}/projects/{project id}/
—answers

5.2.3 Updating data using a POST request with form data

There are two types of POST requests that can be used to update app data. In the first type, described in this section,
data values are provided as key-value pairs using the regular web browser form submission method. (In the second
form, described below, answers are provided using a JSON data structure that is formatted the same as the JSON data
structure returned by a GET request, which may be more appropriate when submitting non-textual and non-binary
content.)

In each of the key-value pairs submitted in the POST request, the key is a dotted-path question ID. The key always
begins with project . and is followed by the property names on the path to the question being updated, according
to the JSON data structure, with property names separated by the . character.

The value of each key-value pair is an answer submitted either as plain text or, for file-type questions, as a binary file.
If submitted as plain text and the question expects non-text data, such as a number, the value will be converted. When
uploading a binary file, the multipart/form-data content type must be used for the POST request.

As with the GET API, an API key must be passed in the HTTP header. An API key with write permission must be
used. You can get an API key from the API keys page on your Q site.

If you are using an operating system with a command line and the curl tool, you can try out the API by running:

86 Chapter 5. Automation API

https://tools.ietf.org/html/rfc2388

govready-q Documentation, Release 0.8.6

curl \

-—header "Authorization: <i>your-api-key</i>" \

-F project.question.subquestionl=datavalue \

-F project.question.subquestion2=datavalue \

{site base URL}/api/vl/organizations/{organization subdomain}/projects/{project id}/
—answers

For a file upload, use -F @filename.ext. curl’s —d option can be used in place of —F if none of the
fields are file uploads.

5.2.4 Updating data using a POST request with JSON

Use a POST request instead a GET request to the same URL to update data stored in the app. Data values to save in
the app are included in the request body as JSON in the same format as returned by the GET request.

The POST request body always includes:

{
"schema": "GovReady Q Project API 1.0",
"project": {

}
}

Answer data is placed inside the project field.

As with the GET API, an API key must be passed in the HTTP Authorization header. An API key with write
permission must be used. You can get your API key from the API Keys page, which is found in the site header menu
in the user drop-down.

If you are using an operating system with a command line and the curl tool, you can try out the API by placing the
JSON request data in a file named data. json and then running:

curl —--header "Authorization: {your—api-key}" \

-XPOST --data @data.json --header "Content-Type: application/json" \

{site base URL}/api/vl/organizations/{organization subdomain}/projects/{project id}/
—answers

5.3 API Data Schema

Each compliance app documents its data schema on its API Docs page, which can be found inside the compliance app
after it has been started and added to a project folder.

Each question defined by the app — which it would ask an end-user when in a web browser — is exposed as a field in
the JSON data structure. The field types are:

¢ Text, password, email-address, and URL fields: Encoded as a JSON string. Email-address fields must contain
valid email addresses. URL fields must contain valid URLs.

* Long text fields, which hold multi-paragraph text: Encoded as a JSON string with formatting expressed in
CommonMark (i.e. Markdown).

* Date fields: Encoded as a JSON string in YYYY-MM-DD format.

* Single-choice and yes-no fields: Encoded as a JSON string holding a programmatic identifier for the selected
choice. Yes-no fields use the identifiers yes and no.

5.3. API Data Schema 87

http://commonmark.org/

govready-q Documentation, Release 0.8.6

* Multiple-choice fields: Encoded as a JSON array of strings, where each string is a programmatic identifier for a
selected choice.

* Integer and real number fields: Encoded as a JSON number. Integer fields must contain integer values.

« File fields: Encoded as a JSON object containing the properties url (a link to download the file content), t ype
(the MIME type), and size (the size of the file in bytes).

* “Module” questions create recursive structures and are encoded as JSON objects. “Module-set” questions are
encoded as JSON arrays of JSON objects.

All fields can also hold nul1, which indicates the question has been explicitly “skipped.” If a question is unanswered,
it does not appear in the APL

Single-choice, multiple-choice, and yes-no fields also appear in human-readable form as a second read-only field that
uses a . text suffix in the field’s name. Long text fields have an HTML display form, in which the CommonMark is
pre-rendered, in a parallel field with a . htm1 suffix in the field’s name. These fields cannot be used in the POST APIL.

More information about Q’s data types can be found in Modules, Questions, and Documents.

88 Chapter 5. Automation API

Schema.html

CHAPTER O

Data Design Guide

The documents in this section describe GovReady-Q’s database design.

6.1 Users, Organizations, Projects, Folders, and Invitations

The diagram below provides a summary representation of GovReady-Q’s Django siteapp data model, which han-
dles users, organizations, projects and folders, and invitations.

89

govready-q Documentation, Release 0.8.6

GovReady-Q Compliance Server

GO\/READY https://github.com/GovReady/govready-q 2017-12-04 v002
siteapp data model
I ——

AutoField accepted user ForeignKey (id)

api_key_ro CharField from_project ForeignKey (id)

api_key_rw CharField from_user ForelgnKey (id)

CharField =0 0= arganization ForeignKey (id)

date_joined DateTimeField =0 (== target_content_type ForeignKey (id)

first_name CharField d ey DataTimeFiald

s_aclive E jal AutoField E . N

staff Foreigniey (id) email_invitation_code

SLUperuser

Fmolgnl(l'jlI (id) extra

ast_login nto_project

ast_name CharField

notifernails_snabled IntegerField
nalifemails_last_at DateTimeField target_info ONField
natifemails_last_notif_id PasitivelntegerField target_cbject_id Poslmslmooarﬁsld
password CharField text TextField
usemame CharField to_emai CharField
updated al
)
. s ¢

id 'AutoFlald organization ForeignKey (id)

creaisd DateTimeField root_task ForeignKey (id)

s JSONField — e created DateTimeField

name CharField X SEONged

old

s_account_project Bo

subdomain CharField

= ion_project NullBooleanField
pdated DateTimeField

CharField - Em

DateTimeField

id AutoFleld
legnm (id)

GharFloId

ataTimaField

@ FEC 2017

GovReady-Q is multi-tenant. The siteapp data model represents users who are uniquely associated with an organiza-
tion and have membership in different organization projects. Users must be invited to projects.

Access control is based on organization and projects. Information cannot be shared across organizations and only
limited information can be shared across projects within an organization.

6.2 Compliance Apps, Modules, Questions, Tasks, and Answers

GovReady-Q is a governance, risk, and compliance platform for creating automated compliance processes ranging
from gathering information from persons and computers to generating compliance artifacts.

Information gathering is at the heart of GovReady-Q’s guidedmodules data model, which handles compliance
apps, modules, questions, tasks, and answers. Eight database tables make up the guidedmodules data model. The
complete data model spans three categories:

1. Compliance apps, which are reusable packages of questions, business logic, and document templates, are defined
by the database tables AppSource, AppInstance, Module, ModuleQuestion, and ModuleAsset.
Many compliance apps, and different versions of the same compliance app, can be in use simultaneously.

2. Information submitted by end-users to answer compliance app questions, as well as information sub-
mitted through the GovReady-Q API, is stored in the database tables Task, TaskAnswer, and
TaskAnswerHistory.

3. Imputed answers and documents generated by the business logic stored in compliance apps, which are computed
on-the-fly.

920 Chapter 6. Data Design Guide

assets/govready-q-siteapp-erd.png

govready-q Documentation, Release 0.8.6

The tables are described is additional detail below and their relationships are summarized in the following diagram:

GOVREADY

AutoFleld

available_lo_al

ChalFlsId
JSONFiekd
ﬂ
Applnstance
AutoField
ForelgnKey (id)
appnamea CharFiakd
ystem_app NullBagleanField
AutoField
source ForeignKey (id)
basepath SlugField
craated Da meField —|—
axtra JSONField
paths JSONField
total_hash GhIrFleId

oolear

DateTimeField

IL
ModuleAsse
id AutoField
source ForeignKey (id)
content_hash CharFiald
realed DateTimeField

axtra JSONField
file FileField

updated DateTimeField

GovReady-Q Compliance Server

https://github.com/GovReady/govready-q 207-12-04 v002

guidedmodules data model Task
AutoField
ForeignKey (id)
id AutoField ForeignKey (id)
app ForeignKey (id) ForeignKey (id)
assels ForeignKey (id) cadi lished NullBaoleanField
source ForeignKey (id) —'—oé DateTimaField ;O_Fm
superseded by ForeignKey (id) e DateTimeField
created DataTimeFiaki 8 JSs ald
module_name SlugField notes TextField
spec JSONField title CharField
updated DateTimaFiald updated DateTimeField
uuid UUIDField
;{ i
ModuleQuestion TaskAnswer
AutoField id AutoField
answer_type module Foreignkey (id) question ForeignKey (id)
module ForelgnKey (id) task ForeignKey (id)
— DateTimeField ~—————O%= created DateTimeField
definition_order IntegerFiald extra JSONField
key SlugField TaxtField
spec JSONField DataTimeField

updated DateTimeField

TaskAnswerHistory

id AutoField

answered by ForeignKey (id)

taskanswer ForeignKey (id}

answered_by_file FileField

answered_by_mathod CharField

clearad BooleanField
DataTimeField
JSONField M
TexiField

Integanlald

FileField
ated DateTimaField

© GovReady PBC 2017 e

6.2.1 Compliance Apps (Questions, Business Logic, and Templates)

The smallest unit of a compliance app is a Question. Questions come in different types, such as text, number,

and date (full list). Questions are grouped into questionnaires called Modules.

And Modules are grouped into

AppInstances, which are the versions of a compliance app that are loaded into the GovReady-Q database. Appln-
stances are loaded from AppSources, which define how to load compliance apps from remote sources such as GitHub
or an on-premise enterprise source control system.

AppInstances, Modules, and Questions define the structure of a compliance app but do not store any user-
submitted content. Separating structure from content is a common pattern in application design and is motivated by

several GovReady-Q goals:

¢ Compliance apps are reusable and can be easily loaded into different installs of GovReady-Q at different orga-

nizations.

* Anyone can author compliance apps and they can be kept private or shared publicly.

* One type of Question allows the user to choose a complete set of answers to another Module, which allows
question answers (i.e. user data) to be accessed from the business logic and templates of not only the Modules
the Questions are defined in but also from other Modules and even other compliance apps.

» Compliance apps are versioned and apps that have been started by users can be updated in non-destructive ways,
preserving answered questionnaires over the course of years,

6.2. Compliance Apps, Modules, Questions, Tasks, and Answers 91

assets/govready-q-guidedmodules-erd.png
Schema.html

govready-q Documentation, Release 0.8.6

GovReady-Q administrators will configure GovReady-Q with an AppSource record for each source of compliance
apps that will be made available to GovReady-Q users. Each AppSource has a “slug,” which is its unique name on
the GovReady-Q installation. An AppSource also defines a remote location — such as a GitHub repository, local
directory, or on-premise git server — to query for compliance apps, which will be listed in the app catalog. A typical
GovReady-Q installation might have one AppSource providing compliance apps published by GovReady PBC and a
second AppSource for providing compliance apps defined by the organization. Each AppSource defines the remote
location as well as local permissions such as which compliance apps in the store to make available to GovReady-Q
users and, in a multi-tenant setup, which site Organizations can see the compliance apps from the AppSource. See
App Sources for more information.

Each time a compliance app is started by a user, an AppSource is queried for the latest version of the selected com-
pliance app and an AppInstance is created that holds the complete set of questions, business logic, and templates
defined in that version of the compliance app. Therefore there will be a separate AppInstance in the database for every
version of every compliance app being used by GovReady-Q users.

Each Applnstance links back to the AppSource it was created from (the “source” field) and holds the name it was
given (the “appname” field). Each Applnstance brings along with it the Modules and Questions defined in that
version of the compliance app. In other words, Modules and Questions are specific to a Applnstancex. Therefore
if two versions of a compliance app are present in the database, a question that exists in both versions of the app is
represented as two Question records — one for each version of the app. Similarly, there will be (at least) two Modules,
one for each version of the app.

All compliance apps have at least two Modules. The first module, whose “module_name” identifier is always app,
defines the layout of the starting page of a compliance app, which can list one or more Modules to complete:

GOVREADY-Q The Company, Inc. MENU ~ User ~

#® System FISMA Level Components

£ Settings
A+ Invite
d System FISMA Level
11 APl Docs
This project will guide you through determining your system categorization under the NIST Risk ® Update App

Management Framework in order to get the System FISMA Level its Authority to Operate.

Questions

[

Determine Your FISMA Level
w Start section

@ GavReady 2018 Privary Palicy Terme of Service 51 10 8 2-re3-5-aNfea7AN

or a collection of modules and slots to start other compliance apps:

92 Chapter 6. Data Design Guide

AppSources.html
assets/fisma_level_app.png

govready-q Documentation, Release 0.8.6

GOVREADY-Q The Company, Inc. MENU ~ User ~

1) Generic Web Site Components

£ settings
% Generic Web Si
7 Generic Web Site
oo
@ Update App
This compliance app will help you achieve compliance for a generic web site. The app will produce
complian ocuments and artifacts for NIST SP 800-53 Rev 5 and NIST SP 800-171 Rev 1. View SSP »

Backlog Selected In Progress Completed
System Overview

System Profile

System
Categorization

Control Selection
Report

-

In both cases, the “cards” that represent modules to answer or slots for compliance apps to start are defined by
Questions in the “app” Module. When a user starts a module or selects a compliance app, that is recorded in
the database as answering the respective Question in the “app” Module (more on that below).

Besides listing questions, Modules also define zero or more output documents. Each output document is generated
by combining a template stored in the Module with user answers.

Similar to Modules, ModuleQuestions have a “key” field that uniquely identifies them within the Module they are
defined in. ModuleQuestions store the question type (text, date, etc.), the prompt shown to users, impute conditions
(see below), and other metadata.

ModuleAssets store a compliance app’s static assets used by the app’s templates. These assets often appear as
images or other embedded media in output documents generated by the compliance app.

6.2.2 User Answers (Tasks and Answers)

When a user is completing the questions in a compliance app, their answers are stored in a separate set of database
tables distinct from the tables used to store compliance app questions, business logic, and templates. The tables that
hold answers are Task, TaskAnwser, and TaskAnswerHistory.

Task and TaskAnswer are parallel tables to Module and ModuleQuestion and are related to where user an-
swers are stored. A Task is the instantiation of a Module that a GovReady-Q user or set of users are completing. A
TaskAnswer is the instantiation of a ModuleQuestion that a GovReady-Q user has answered. All of the Tasks
instantiated together for the same compliance app are related through the “project” field.

TaskAnswerHistory stores the complete history of user answers related to a TaskAnswer, i.e. to an instantiated
question. The current answer to a question and its associated metadata are stored in the most recent TaskAnswer-
History record for a particular TaskAnswer (the one with the highest “id” value — “id”’s are assigned to answers in
strictly increasing order). Therefore only the most recent Task AnswerHistory record for a TaskAnswer holds a current
answer, and earlier TaskAnswerHistory records are for audit logging and tracking changes.

6.2. Compliance Apps, Modules, Questions, Tasks, and Answers 93

assets/generic_website_app.png

govready-q Documentation, Release 0.8.6

TaskAnswerHistory records have a “stored_value” field which holds the user’s answer encoded in JSON, other meta-
data such as “answered_by” for which user provided the answer, “skipped_reason” and “unsure” which are flags set if
the user skipped the question or wants to return to it later, and “reviewed” which holds workflow review state (e.g. if
a reviewer marks the answer as approved).

This data model supports GovReady-Q design goals, such as:
» Compliance app modules and questions can be assigned to different users to answer.

» The answer to questions may change while a complete history of answers are preserved in an immutable record,
including preserving past answer metadata such as who answered the question and whether the answer was
approved by a reviewer.

* Answers are strongly typed: text, numbers, dates, choices, and so on are encoded in a JSON representation that
preserves their data type.

* All questions can be skipped by storing null in “stored_value.”

6.2.3 Imputed Answers and Output Documents

Compliance apps hold business logic and templates that are used to “impute” answers to questions and generate output
documents, respectively. These computational outputs are not stored in the database. Instead, they are computed on-
the-fly by GovReady-Q as they are needed, and the results of the computations are cached so long as they remain
valid.

Imputed Answers

Imputation uses business logic rules to infer the answer to questions based on previous answers to questions. Imputa-
tion is used for a variety of purposes, such as:

» Hiding questions that are not applicable based on the answers to previous questions, by imputing null as the
answer to the question.

* Pre-answering questions when the answer is known based on the answers to previous questions.

* Running business logic computations, such as computing a grade or gap analysis, and storing the result of the
computation as the answer to the imputed question.

Questions whose answers are imputed are not asked of the user — the user may never see these questions at all. Some
questions are designed to always be imputed to support the execution of business logic rules.

The results of imputation are not stored in the database because they are computed on-the-fly to ensure that the
GovReady-Q always runs the business logic rules on the most recent, current set of answers to the questions. As a
result, there may be no TaskAnswer or TaskAnswerHistory records for questions that have been imputed.

In certain circumstances, a question’s answer may be imputed after a user already provided an answer to the question.
In such cases, the user’s answer remains in the database and appears in the database as the current answer to the
question. However, when visiting GovReady-Q, imputed answers supersede user answers and only the imputed value
will be used.

Output Documents

Compliance apps produce output documents. Each output document is generated by combining a template with the
answers to questions (both user-inputted and imputed). Templates are typically written using Markdown syntax and
are displayed in GovReady-Q as HTML documents, but they typically can also be downloaded in other formats such
as a Microsoft Word document or PDF.

94 Chapter 6. Data Design Guide

govready-q Documentation, Release 0.8.6

As with imputation, output documents are generated on-the-fly when they are viewed by GovReady-Q users. The
generated documents are not stored in the database because they are computed on-the-fly to ensure that the GovReady-
Q always runs the template on the most recent, current set of answers to the Module’s questions. As a result, there is
no database table for output documents.

6.2.4 Database Query Examples

Example: Find all approved answers to a particular question across users and tasks

Scenario: Unix File Server App contains a text-type question named “Hostname”. Many users have finished answer-
ing all of the questions in the app. However, our reviewers have only approved some of the answers so far. I want to
write an SQL query to return all approved answers to the “Hostname” question.

In this section, we will build up an SQL query to extract the data identified in the scenario. The query will be built
progressively over the next several sections to explain the rationale behind the GovReady-Q data model. Some of
GovReady-Q’s design choices — including separating the definitions of compliance apps from user-submitted data, as
well as recording an immutable history of user answers — are reflected in the SQL queries below. The complete SQL
query is shown at the end.

You may prefer to use the GovReady-Q API instead of writing a low-level database query, but this example is illustra-
tive for understanding GovReady-Q’s data model no matter which method you use to query the data.

Find the Applinstances

First locate the AppSource “slug” and AppInstance “appname” that identifies a compliance app in GovReady-
Q’s database. Find the app in the compliance apps catalog and click its Info button:

Unix Server

Enter information about a Unix Server.

The slug and the appname of the compliance app can be found in the URL:
http://mygovreadyq/store/myapps/unix_file_server

In this case the slug is “myapps” and the appname is “unix_file_server”. These two fields identify the compliance app
across its versions.

Construct an SQL query to return the numeric IDs of the Applnstances in the database for this compliance app. Each
Applnstance may be a different version of the compliance app or a different instance of the same app in use by different
users.

SELECT guidedmodules_appinstance.id
FROM guidedmodules_appinstance
LEFT JOIN guidedmodules_appsource

(continues on next page)

6.2. Compliance Apps, Modules, Questions, Tasks, and Answers 95

assets/unix_server_app_catalog_entry.png
http://mygovreadyq/store/

govready-q Documentation, Release 0.8.6

(continued from previous page)

ON guidedmodules_appsource.id = guidedmodules_appinstance.source_id
WHERE guidedmodules_appsource.slug = "myapps"
AND guidedmodules_appinstance.appname = "unix_file server";

This query will be adapted in the next section to find the hostname question.

Find the ModuleQuestions

Consult the compliance app source code YAML files to determine the “module_name” of the Module and “key” of
the ModuleQuestion — which are in the “id” fields in the YAML file.

Branch: published v govready-apps-dev / apps / unix_file_server / file_server.yaml

152 lines (117 sloc) 4.92 KB

id: file_server
title: Unix File Server Details
questions:
- id: hostname

title: Hostname

type: text

prompt: |

What is the hostname of the server?

The Module containing the hostname question has “file_server” as its module_name, and the ModuleQuestion’s
key is “hostname.”

Construct a preliminary SQL query to find all of the ModuleQuestion records for this question:

SELECT guidedmodules_modulequestion.id
FROM guidedmodules_modulequestion
LEFT JOIN guidedmodules_module
ON guidedmodules_module.id = guidedmodules_modulequestion.module_id
WHERE guidedmodules_module.module_name = "file server"
AND guidedmodules_modulequestion.key = "hostname";

This query might be too broad — it does not restrict the questions to those defined in the Unix File Server compliance
app. There might be other compliance apps that use the same module_name and question key. Combine the first two
queries to ensure only questions in the Unix File Server app are returned using a LEFT JOIN to bridge the tables:

SELECT guidedmodules_modulequestion.id
FROM guidedmodules_modulequestion
LEFT JOIN guidedmodules_appsource
ON guidedmodules_appsource.id = guidedmodules_appinstance.source_id
LEFT JOIN guidedmodules_appinstance
ON guidedmodules_appinstance.id = guidedmodules_module.app_id
LEFT JOIN guidedmodules_module
ON guidedmodules_module.id = guidedmodules_modulequestion.module_id
WHERE guidedmodules_appsource.slug = "myapps"
AND guidedmodules_appinstance.appname = "unix_file_ server"

(continues on next page)

96 Chapter 6. Data Design Guide

assets/unix-server-hostname-question.png

govready-q Documentation, Release 0.8.6

(continued from previous page)

AND guidedmodules_module.module_name = "file server"
AND guidedmodules_modulequestion.key = "hostname";

We’ll call this query MODULE_QUESTIONS — we’ll use it as a sub-query in the next step.

Find the history of answers

GovReady-Q has been designed so that separate tables contain the definition of the question and the user-submitted
answers to the question. Each answer is connected to a ModuleQuestion through a TaskAnswer. Locate the
TaskAnswers for the questions:

SELECT guidedmodules_taskanswer.id
FROM guidedmodules_taskanswer
WHERE guidedmodules_taskanswer.question_id IN (MODULE_QUESTIONS) ;

Replace MODULE_QUESTIONS with the preceding SQL query, inserting it as a sub-query.

The TaskAnswer table does not hold user answers, however. Answers are stored in the TaskAnswerHistory table
where the complete history of answers to questions are stored. We’ll now adapt the query to fetch the history of answers
to this question, including some metadata about the answers, by using a LEFT JOIN to bridge the TaskAnswerHistory
table and the TaskAnswer table:

SELECT guidedmodules_taskanswer.id, answer.stored_value, answer.created, siteapp_user.
—username
FROM guidedmodules_taskanswerhistory AS answer
LEFT JOIN guidedmodules_taskanswer
ON guidedmodules_taskanswer.id = answer.taskanswer_id
LEFT JOIN siteapp_user
ON siteapp_user.id = answer.answered_by_id
WHERE guidedmodules_taskanswer.question_id IN (MODULE_QUESTIONS) ;

Here is an example result:

Task Answer | Stored Value Created Username
10 “serverl.company.com” | 2018-05-19 20:33 | userl
10 “server2.company.com” | 2018-05-20 10:15 | userl
10 null 2018-05-20 10:35 | userl
11 “server2.company.com” | 2018-05-19 16:20 | user2

This is the complete history of answers for the “hostname” question in two separate Tasks, i.e. two instantiations of the
compliance app started by different users. The two instantiations of the question are identified by their TaskAnswer
“id”s, 10 and 11.

The history for TaskAnswer 10 has three rows. Two rows — the first two — reflect old answers to questions. This
indicates the user returned to the question twice. On the first occasion, the user replaced the original answer with
"server2.company.com". On the second revisit, the user replaced the original answer with null, clearing the
answer because the user decided they didn’t know the answer or the question didn’t apply to them.

The second TaskAnswer was answered once.

We’ll adapt this query in the next step to fetch just the current (most recent) answer in each Task.

6.2. Compliance Apps, Modules, Questions, Tasks, and Answers 97

govready-q Documentation, Release 0.8.6

Find the current answer to each question

The current answer for each question is stored in the TaskAnswerHistory record with the highest “id” for each
TaskAnswer. The IDs in the TaskAnswerHistory table are assigned strictly sequentially. To determine which TaskAn-
swerHistory record holds the current answer, use GROUP BY and max to fetch one TaskAnswerHistory for each
TaskAnswer:

SELECT max (answer.id)
FROM guidedmodules_taskanswerhistory AS answer
LEFT JOIN guidedmodules_taskanswer

ON guidedmodules_taskanswer.id = answer.taskanswer_id
LEFT JOIN siteapp_user

ON siteapp_user.id = answer.answered_by_id
WHERE guidedmodules_taskanswer.question_id IN (MODULE_QUESTIONS)
GROUP BY guidedmodules_taskanswer.id;

id
103
104

This result holds the current answers to the hostname question. We’ll call this query CURRENT_ANSWERS — we’ll
use it as a sub-query in the next query.

To fetch the answers and metadata but for the current answers, we’ll query the TaskAnswerHistory table using
the CURRENT_ANSWERS query as a sub-query to identify just the rows that are current answers to questions:

SELECT taskanswer_id, stored_value, created, username, reviewed
FROM guidedmodules_taskanswerhistory
LEFT JOIN siteapp_user
ON siteapp_user.id = answered_by_id
WHERE guidedmodules_taskanswerhistory.id IN (CURRENT_ANSWERS) ;

Here is an example result:

Task Answer | Stored Value Created Username | Reviewed
10 null 2018-05-20 10:35 | userl 0
11 “server2.company.com” | 2018-05-19 16:20 | user2 2

This result holds the current answers to the Unix File Server hostname question across all instances of the compliance
app in the GovReady-Q installation. Notice that the rows in the previous table that represented replaced answers to
the first TaskAnswer are omitted from the results in this query and only the current answer for each Task is included.

The “stored_value” column holds the user’s answer encoded in JSON. In JSON, text (strings) are enclosed in double
quotes. Therefore we know that the second answer is text. In JSON, nul1l (without double quotes around it) represents
an empty value — in GovReady-Q, that means the user skipped the question choosing I Don’t Know, It Doesn’t Apply,
or I’ll Come Back.

We’ll modify this query in the next section to filter on the reviewed status of each answer.
Filter on approved answers
The “reviewed” field of TaskAnswerHistory stores GovReady-Q’s simple workflow status of the answer. The

values are O (not reviewed), 1 (reviewed), and 2 (approved). To select just approved answers, add a WHERE clause
to the previous SQL query:

98 Chapter 6. Data Design Guide

govready-q Documentation, Release 0.8.6

SELECT taskanswer_id, stored_value,
FROM guidedmodules_taskanswerhistory
LEFT JOIN siteapp_user
ON siteapp_user.id = answered_by_id
WHERE guidedmodules_taskanswerhistory.id IN
AND reviewed = 2;

created,

username, reviewed

(CURRENT_ANSWERS)

The query extracts the answers in a structure similar to the following table:

Task Answer | Stored Value

Created

Username | Reviewed

11 “server2.company.com”

2018-05-19 16:20

user2 2

This is the complete query to extract the approved answers to the hostname question in the Unix File Server compliance
app. The query has been simplified by replacing a sub-query with CURRENT_ANSWERS, which itself has a sub-query
that has been replaced by MODULE_QUESTIONS. Both sub-queries can be found above.

6.3 Discussions

The diagram below provides a summary representation of GovReady-Q’s Django discussion data model that

handles discussions, comments, and invitations.

GOVREADY

organization
attached_to_object_id

created

updated

id

GovReady-Q Compliance Server
https://github.com/GovReady/govready-q

discussion data model

attached to_content_type

-

2017-12-03 w001

AutoField
ForeignKey (id)
ForelgnKey (id)
PositivelntegerField
DateTimeFielt

AutoFleld

replies to
user

id
comment
user

ForeigniKey (id}
ForeignKey (id)
ForelgnKey (id)
DateTimeField
Bool Field

DateTimeFiald

AutoFleld
ForeignKey (id)
ForelgnKey (id)
DateTimeField
JSONField
FilaField

DateTimeFiald
® GovReady PBC 2017

6.3. Discussions

99

assets/govready-q-discussion-erd.png

govready-q Documentation, Release 0.8.6

A single discussion can be instantiated and associated to any task (task ~= “question”). A discussion can have multiple
comments. Comments can have multiple attachments.

6.4 Generating Detailed Data Models

Below are instructions to use d jango—extensions to generate detailed data models.

Install django-extensions

http://django—extensions.readthedocs.io/en/latest/installation_instructions.html
apt install graphviz-dev

pip3 install django-extensions pygraphviz

Add django-extensions INSTALLED_APPS in siteapp > settings.py
INSTALLED_APPS = (

.

'django_extensions',

#

examples:

python3 manage.py graph_models -a -g -o my_project_visualized.png
python3 manage.py graph_models -a -o my_project.png

python3 manage.py graph_models —-a > my_project.dot

for a single django app:

python3 manage.py graph_models appl -o my_project_appl.png

100 Chapter 6. Data Design Guide

CHAPTER /

Testing

7.1 Running Tests

GovReady-Q’s unit tests and integration tests are currently combined. Our integration tests uses Selenium to simulate
user interactions with the interface.

To run the integration tests, you’ll also need to install chromedriver:

sudo apt-get install chromium-chromedriver (on Ubuntu)
brew install chromedriver (on Mac)

Navigate within your terminal to GovReady-Q top level directory.

Then run the test suite with:

’./manage.py test

NOTE: Depending on your Python3 configuration, you may need to run:

’pythonB manage.py test

To selectively run tests from individual modules:

test rendering of guided modules
./manage.py test guidedmodules

test general siteapp logic
./manage.py test siteapp

test discussion functionality
./manage.py test discussion

Or to selectively run tests from individual classes or methods:

101

govready-q Documentation, Release 0.8.6

run tests from individual test class
./manage.py test siteapp.tests.GeneralTests

run tests from individual test method
./manage.py test siteapp.tests.GeneralTests.test_login

7.2 Test Coverage Report

To produce a code coverage report, run the tests with coverage:

coverage run —--source='.' —--branch manage.py test
coverage report

7.3 Code Scanning and Analysis

GovReady-Q is a Python web application written on top of the Django framework and uses a variety of industry
standard Javascript libraries. See Software Requirements for high level view and the requirement . txt files for
detailed view.

GovReady-Q’s Python application code is found in the * . py files in the following directories and their subdirectories:
e discussion/
¢ guidedmodules/
* siteapp/

The small manage . py script in the root directory is part of the Django framework. We use bash utilities scripts
(* . sh) to automate installation and maintenance tasks of the code base. Python scripts in . circleci directory are
used within our Continuous Implementation pipeline.

7.3.1 Simple Static Code Analysis

To run a static code analysis with our typical settings:

bandit -s B101,B110,B603 -r discussion/ guidedmodules/ siteapp/

We use —s on the command-line and nosec in limited places in the source code to disable some checks that are
determined after review to be false positives.

7.3.2 Detailed Static and Dynamic Code Analysis
We periodically scan GovReady-Q’s code base with more traditional/powerful tools and remediate critical and high
vulnerabilities.

To scan GovReady-Q’s codebase, you will need to configure your tools to scan Python code. You are looking for the
* . py files across the code base.

To scan or do other penetration tests on the code base, we recommend deploying GovReady-Q with Docker.

102 Chapter 7. Testing

requirements.html#software-requirements
deploy_docker.html

govready-q Documentation, Release 0.8.6

7.4 Dependency Management and Vulnerability Testing

Our requirements.txt file is designed to work with pip install --require-hashes, which ensures
that every installed dependency matches a hash stored in this repository. The option requires that every dependency
(including dependencies of dependencies) be listed, pinned to a version number, and paired with a hash. We therefore
don’t manually edit requirements.txt. Instead, we place our immediate dependencies in requirements.
in and run requirements_txt_updater.sh (which calls pip-tools’s pip-compile command) to update the
requirements.txt file for production.

Continuous integration is set up with CircleCI at https://circleci.com/gh/GovReady/govready-q and performs unit tests,
integration tests, and security checks on our dependencies.

1. CI runs requirements_txt_checker.sh which ensures requirements.txt is in sync with
requirements.in. This script is set up to run against any similar files as well, such as MySQL-specific
requirements_mysqgl. * files.

2. CI checks that there are no known vulnerabilities in the dependencies using pyup.io.

3. CI checks that all packages are up to date with upstream sources (unless the package and its latest upstream
version are listed in requirements_txt_checker_ignoreupdates.txt).

7.4. Dependency Management and Vulnerability Testing 103

https://circleci.com/gh/GovReady/govready-q
https://pyup.io/

govready-q Documentation, Release 0.8.6

104 Chapter 7. Testing

CHAPTER 8

Indices and tables

* genindex
* modindex

e search

105

	What You Most Need to Know About GovReady-Q
	Why GovReady-Q?
	How GovReady-Q Accelerates Compliance
	GovReady-Q Philosophy
	GovReady-Q Features
	Using Hosted GovReady-Q
	Downloading GovReady-Q
	Installing GovReady-Q
	Finding Compliance Apps
	Documentation
	Support
	Reporting Bugs & Issues
	License / Credits
	About GovReady PBC

	Deploying GovReady-Q
	System Requirements for GovReady-Q
	Deploying GovReady-Q with Docker
	Installing GovReady-Q on the Host OS
	Deploying GovReady-Q in Production environments
	Installing GovReady-Q for Development or Contributing
	Setting up a Database for Production Workloads
	Configuring a Reverse Proxy Webserver for Production Use
	Environment Settings
	Enterprise Single-Sign On / Login
	Applying Custom Organization Branding

	Permissions
	What Q tracks
	Users
	Organizations
	Folders
	Projects
	Tasks

	Authoring Compliance Apps
	Understanding Compliance Apps
	Compliance App Authoring Tutorial
	App Sources
	Modules, Questions, and Documents YAML Reference

	Automation API
	Overview of the GovReady Q API
	Using the Compliance API
	API Data Schema

	Data Design Guide
	Users, Organizations, Projects, Folders, and Invitations
	Compliance Apps, Modules, Questions, Tasks, and Answers
	Discussions
	Generating Detailed Data Models

	Testing
	Running Tests
	Test Coverage Report
	Code Scanning and Analysis
	Dependency Management and Vulnerability Testing

	Indices and tables

