
Cartographer ROS Documentation

The Cartographer Authors

Oct 27, 2022

Contents

1 Compiling Cartographer ROS 3
1.1 System Requirements . 3
1.2 Building & Installation . 3

2 Running Cartographer ROS on a demo bag 5
2.1 Deutsches Museum . 5
2.2 Pure localization . 5
2.3 Static landmarks . 6
2.4 Revo LDS . 6
2.5 PR2 . 7
2.6 Taurob Tracker . 7

3 Running Cartographer ROS on your own bag 9
3.1 Validate your bag . 9
3.2 Create a .lua configuration . 9
3.3 Create .launch files for your SLAM scenarios . 11
3.4 Try your configuration . 12

4 Algorithm walkthrough for tuning 13
4.1 Overview . 14
4.2 Input . 14
4.3 Local SLAM . 16
4.4 Global SLAM . 18

5 Tuning methodology 21
5.1 Built-in tools . 21
5.2 Example: tuning local SLAM . 21
5.3 Special Cases . 22
5.4 Still have a problem ? . 24

6 Exploiting the map generated by Cartographer ROS 25
6.1 Sample Usage . 25
6.2 Configuration . 26
6.3 First-person visualization of point clouds . 27

7 Going further 29
7.1 More input . 29

i

7.2 Localization only . 29
7.3 IMU Calibration . 30
7.4 Multi-trajectories SLAM . 30
7.5 Cloud integration with gRPC . 30

8 Getting involved 31

9 Lua configuration reference documentation 33

10 ROS API reference documentation 35
10.1 Cartographer Node . 35
10.2 Offline Node . 37
10.3 Occupancy grid Node . 38
10.4 Pbstream Map Publisher Node . 38

11 Public Data 39
11.1 2D Cartographer Backpack – Deutsches Museum . 39
11.2 3D Cartographer Backpack – Deutsches Museum . 43
11.3 MiR . 44
11.4 PR2 – Willow Garage . 44
11.5 Magazino . 46

12 Frequently asked questions 47
12.1 Why is laser data rate in the 3D bags higher than the maximum reported 20 Hz rotation speed of the

VLP-16? . 47
12.2 Why is IMU data required for 3D SLAM but not for 2D? . 47
12.3 How do I build cartographer_ros without rviz support? . 48
12.4 How do I fix the “You called InitGoogleLogging() twice!” error? 48

ii

Cartographer ROS Documentation

Cartographer is a system that provides real-time simultaneous localization and mapping (SLAM) in 2D and 3D across
multiple platforms and sensor configurations. This project provides Cartographer’s ROS integration.

Contents 1

https://github.com/cartographer-project/cartographer
https://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping

Cartographer ROS Documentation

2 Contents

CHAPTER 1

Compiling Cartographer ROS

1.1 System Requirements

The Cartographer ROS requirements are the same as the ones from Cartographer.

The following ROS distributions are currently supported:

• Melodic

• Noetic

1.2 Building & Installation

In order to build Cartographer ROS, we recommend using wstool and rosdep. For faster builds, we also recommend
using Ninja.

On Ubuntu Focal with ROS Noetic use these commands to install the above tools:

sudo apt-get update
sudo apt-get install -y python3-wstool python3-rosdep ninja-build stow

On older distributions:

sudo apt-get update
sudo apt-get install -y python-wstool python-rosdep ninja-build stow

After the tools are installed, create a new cartographer_ros workspace in ‘catkin_ws’.

mkdir catkin_ws
cd catkin_ws
wstool init src
wstool merge -t src https://raw.githubusercontent.com/cartographer-project/
→˓cartographer_ros/master/cartographer_ros.rosinstall
wstool update -t src

3

https://google-cartographer.readthedocs.io/en/latest/#system-requirements
http://wiki.ros.org/Distributions
http://wiki.ros.org/wstool
http://wiki.ros.org/rosdep
https://ninja-build.org

Cartographer ROS Documentation

Now you need to install cartographer_ros’ dependencies. First, we use rosdep to install the required packages. The
command ‘sudo rosdep init’ will print an error if you have already executed it since installing ROS. This error can be
ignored.

sudo rosdep init
rosdep update
rosdep install --from-paths src --ignore-src --rosdistro=${ROS_DISTRO} -y

Cartographer uses the abseil-cpp library that needs to be manually installed using this script:

src/cartographer/scripts/install_abseil.sh

Due to conflicting versions you might need to uninstall the ROS abseil-cpp using

sudo apt-get remove ros-${ROS_DISTRO}-abseil-cpp

Build and install.

catkin_make_isolated --install --use-ninja

This builds Cartographer from the latest HEAD of the master branch. If you want a specific version, you need to
change the version in the cartographer_ros.rosinstall.

4 Chapter 1. Compiling Cartographer ROS

https://abseil.io/

CHAPTER 2

Running Cartographer ROS on a demo bag

Now that Cartographer and Cartographer’s ROS integration are installed, you can download example bags (e.g. 2D
and 3D backpack collections of the Deutsches Museum) to a known location, in this case ~/Downloads, and use
roslaunch to bring up the demo.

The launch files will bring up roscore and rviz automatically.

Warning: When you want to run cartographer_ros, you might need to source your ROS environment by running
source install_isolated/setup.bash first (replace bash with zsh if your shell is zsh)

2.1 Deutsches Museum

Download and launch the 2D backpack demo:

wget -P ~/Downloads https://storage.googleapis.com/cartographer-public-data/bags/
→˓backpack_2d/cartographer_paper_deutsches_museum.bag
roslaunch cartographer_ros demo_backpack_2d.launch bag_filename:=${HOME}/Downloads/
→˓cartographer_paper_deutsches_museum.bag

Download and launch the 3D backpack demo:

wget -P ~/Downloads https://storage.googleapis.com/cartographer-public-data/bags/
→˓backpack_3d/with_intensities/b3-2016-04-05-14-14-00.bag
roslaunch cartographer_ros demo_backpack_3d.launch bag_filename:=${HOME}/Downloads/b3-
→˓2016-04-05-14-14-00.bag

2.2 Pure localization

Pure localization uses 2 different bags. The first one is used to generate the map, the second to run pure localization.

5

https://en.wikipedia.org/wiki/Deutsches_Museum

Cartographer ROS Documentation

Download the 2D bags from the Deutsche Museum:

wget -P ~/Downloads https://storage.googleapis.com/cartographer-public-data/bags/
→˓backpack_2d/b2-2016-04-05-14-44-52.bag
wget -P ~/Downloads https://storage.googleapis.com/cartographer-public-data/bags/
→˓backpack_2d/b2-2016-04-27-12-31-41.bag

Generate the map (wait until cartographer_offline_node finishes) and then run pure localization:

roslaunch cartographer_ros offline_backpack_2d.launch bag_filenames:=${HOME}/
→˓Downloads/b2-2016-04-05-14-44-52.bag
roslaunch cartographer_ros demo_backpack_2d_localization.launch \

load_state_filename:=${HOME}/Downloads/b2-2016-04-05-14-44-52.bag.pbstream \
bag_filename:=${HOME}/Downloads/b2-2016-04-27-12-31-41.bag

Download the 3D bags from the Deutsche Museum:

wget -P ~/Downloads https://storage.googleapis.com/cartographer-public-data/bags/
→˓backpack_3d/b3-2016-04-05-13-54-42.bag
wget -P ~/Downloads https://storage.googleapis.com/cartographer-public-data/bags/
→˓backpack_3d/b3-2016-04-05-15-52-20.bag

Generate the map (wait until cartographer_offline_node finishes) and then run pure localization:

roslaunch cartographer_ros offline_backpack_3d.launch bag_filenames:=${HOME}/
→˓Downloads/b3-2016-04-05-13-54-42.bag
roslaunch cartographer_ros demo_backpack_3d_localization.launch \

load_state_filename:=${HOME}/Downloads/b3-2016-04-05-13-54-42.bag.pbstream \
bag_filename:=${HOME}/Downloads/b3-2016-04-05-15-52-20.bag

2.3 Static landmarks

Download the landmarks example bag.
wget -P ~/Downloads https://storage.googleapis.com/cartographer-public-data/
→˓bags/mir/landmarks_demo_uncalibrated.bag

Launch the landmarks demo.
roslaunch cartographer_mir offline_mir_100_rviz.launch bag_filename:=${HOME}/
→˓Downloads/landmarks_demo_uncalibrated.bag

2.4 Revo LDS

Download and launch an example bag captured from a low-cost Revo Laser Distance Sensor from Neato Robotics
vacuum cleaners:

wget -P ~/Downloads https://storage.googleapis.com/cartographer-public-data/bags/revo_
→˓lds/cartographer_paper_revo_lds.bag
roslaunch cartographer_ros demo_revo_lds.launch bag_filename:=${HOME}/Downloads/
→˓cartographer_paper_revo_lds.bag

6 Chapter 2. Running Cartographer ROS on a demo bag

Cartographer ROS Documentation

2.5 PR2

Download and launch an example bag captured from a PR2 R&D humanoid robot from Willow Garage:

wget -P ~/Downloads https://storage.googleapis.com/cartographer-public-data/bags/pr2/
→˓2011-09-15-08-32-46.bag
roslaunch cartographer_ros demo_pr2.launch bag_filename:=${HOME}/Downloads/2011-09-15-
→˓08-32-46.bag

2.6 Taurob Tracker

Download and launch an example bag captured from a Taurob Tracker teleoperation robot:

wget -P ~/Downloads https://storage.googleapis.com/cartographer-public-data/bags/
→˓taurob_tracker/taurob_tracker_simulation.bag
roslaunch cartographer_ros demo_taurob_tracker.launch bag_filename:=${HOME}/Downloads/
→˓taurob_tracker_simulation.bag

2.5. PR2 7

Cartographer ROS Documentation

8 Chapter 2. Running Cartographer ROS on a demo bag

CHAPTER 3

Running Cartographer ROS on your own bag

Now that you’ve run Cartographer ROS on a couple of provided bags, you can go ahead and make Cartographer work
with your own data. Find a .bag recording you would like to use for SLAM and go through this tutorial.

Warning: When you want to run cartographer_ros, you might need to source your ROS environment by running
source install_isolated/setup.bash first (replace bash with zsh if your shell is zsh)

3.1 Validate your bag

Cartographer ROS provides a tool named cartographer_rosbag_validate to automatically analyze data
present in your bag. It is generally a good idea to run this tool before trying to tune Cartographer for incorrect data.

It benefits from the experience of the Cartographer authors and can detect a variety of mistakes commonly found in
bags. For instance, if a sensor_msgs/Imu topic is detected, the tool will make sure that the gravity vector has
not been removed from the IMU measurements because the gravity norm is used by Cartographer to determine the
direction of the ground.

The tool can also provide tips on how to improve the quality of your data. For example, with a Velodyne LIDAR, it is
recommended to have one sensor_msgs/PointCloud2 message per UDP packet sent by the sensor instead of
one message per revolution. With that granularity, Cartographer is then able to unwarp the point clouds deformation
caused by the robot’s motion and results in better reconstruction.

If you have sourced your Cartographer ROS environment, you can simply run the tool like this:

cartographer_rosbag_validate -bag_filename your_bag.bag

3.2 Create a .lua configuration

Cartographer is highly flexible and can be configured to work on a variety of robots. The robot configuration
is read from a options data structure that must be defined from a Lua script. The example configurations

9

Cartographer ROS Documentation

are defined in src/cartographer_ros/cartographer_ros/configuration_files and installed in
install_isolated/share/cartographer_ros/configuration_files/.

Note: Ideally, a .lua configuration should be robot-specific and not bag-specific.

You can start by copying one of the example and then adapt it to your own need. If you want to use 3D SLAM:

cp install_isolated/share/cartographer_ros/configuration_files/backpack_3d.lua
→˓install_isolated/share/cartographer_ros/configuration_files/my_robot.lua

If you want to use 2D SLAM:

cp install_isolated/share/cartographer_ros/configuration_files/backpack_2d.lua
→˓install_isolated/share/cartographer_ros/configuration_files/my_robot.lua

You can then edit my_robot.lua to suit the needs of your robot. The values defined in the options block define
how the Cartographer ROS frontend should interface with your bag. The values defined after the options paragraph
are used to tune the inner-working of Cartographer, we will ignore these for now.

See also:

The reference documentation of the Cartographer ROS configuration values and of the Cartographer configuration
values.

Among the values you need to adapt, you probably have to provide the TF frame IDs of your environment and robot
in map_frame, tracking_frame, published_frame and odom_frame.

Note: You can either distribute your robot’s TF tree from a /tf topic in your bag or define it in a .urdf robot
definition.

Warning: You should trust your poses! A small offset on the link between your robot and IMU or LIDAR can
lead to incoherent map reconstructions. Cartographer can usually correct small pose errors but not everything!

The other values you need to define are related to the number and type of sensors you would like to use.

• num_laser_scans: Number of sensor_msgs/LaserScan topics you’ll use.

• num_multi_echo_laser_scans: Number of sensor_msgs/MultiEchoLaserScan topics you’ll
use.

• num_point_clouds: Number of sensor_msgs/PointCloud2 topics you’ll use.

You can also enable the usage of landmarks and GPS as additional sources of localization using use_landmarks
and use_nav_sat. The rest of the variables in the options block should typically be left untouched.

Note: even if you use a 2D SLAM, the landmarks are 3D objects and can mislead you if viewed only on the 2D plane
due to their third dimension.

However, there is one global variable that you absolutely need to adapt to the needs of your
bag: TRAJECTORY_BUILDER_3D.num_accumulated_range_data or TRAJECTORY_BUILDER_2D.
num_accumulated_range_data. This variable defines the number of messages required to construct a full
scan (typically, a full revolution). If you follow cartographer_rosbag_validate’s advices and use 100 ROS

10 Chapter 3. Running Cartographer ROS on your own bag

https://google-cartographer-ros.readthedocs.io/en/latest/configuration.html
https://google-cartographer.readthedocs.io/en/latest/configuration.html
https://google-cartographer.readthedocs.io/en/latest/configuration.html

Cartographer ROS Documentation

messages per scan, you can set this variable to 100. If you have two range finding sensors (for instance, two LIDARs)
providing their full scans all at once, you should set this variable to 2.

3.3 Create .launch files for your SLAM scenarios

You may have noticed that each demo introduced in the previous section was run with a different roslaunch com-
mand. The recommended usage of Cartographer is indeed to provide a custom .launch file per robot and type of
SLAM. The example .launch files are defined in src/cartographer_ros/cartographer_ros/launch
and installed in install_isolated/share/cartographer_ros/launch/.

Start by copying one of the provided example:

cp install_isolated/share/cartographer_ros/launch/backpack_3d.launch install_isolated/
→˓share/cartographer_ros/launch/my_robot.launch
cp install_isolated/share/cartographer_ros/launch/demo_backpack_3d.launch install_
→˓isolated/share/cartographer_ros/launch/demo_my_robot.launch
cp install_isolated/share/cartographer_ros/launch/offline_backpack_3d.launch install_
→˓isolated/share/cartographer_ros/launch/offline_my_robot.launch
cp install_isolated/share/cartographer_ros/launch/demo_backpack_3d_localization.
→˓launch install_isolated/share/cartographer_ros/launch/demo_my_robot_localization.
→˓launch
cp install_isolated/share/cartographer_ros/launch/assets_writer_backpack_3d.launch
→˓install_isolated/share/cartographer_ros/launch/assets_writer_my_robot.launch

• my_robot.launch is meant to be used on the robot to execute SLAM online (in real time) with real sensors
data.

• demo_my_robot.launch is meant to be used from a development machine and expects a bag_filename
argument to replay data from a recording. This launch file also spawns a rviz window configured to visualize
Cartographer’s state.

• offline_my_robot.launch is very similar to demo_my_robot.launch but tries to execute SLAM
as fast as possible. This can make map building significantly faster. This launch file can also use multiple bag
files provided to the bag_filenames argument.

• demo_my_robot_localization.launch is very similar to demo_my_robot.launch but expects
a load_state_filename argument pointing to a .pbstream recording of a previous Cartographer ex-
ecution. The previous recording will be used as a pre-computed map and Cartographer will only perform
localization on this map.

• assets_writer_my_robot.launch is used to extract data out of a .pbstream recording of a previous
Cartographer execution.

Again, a few adaptations need to be made to those files to suit your robot.

• Every parameter given to -configuration_basename should be adapted to point to my_robot.lua.

• If you decided to use a .urdf description of your robot, you should place your description in
install_isolated/share/cartographer_ros/urdf and adapt the robot_description pa-
rameter to point to your file name.

• If you decided to use /tf messages, you can remove the robot_description parameter, the
robot_state_publisher node and the lines statring with -urdf.

• If the topic names published by your bag or sensors don’t match the ones expected by Cartographer ROS, you
can use <remap> elements to redirect your topics. The expected topic names depend on the type of range
finding devices you use.

3.3. Create .launch files for your SLAM scenarios 11

Cartographer ROS Documentation

Note:

• The IMU topic is expected to be named “imu”

• If you use only one sensor_msgs/LaserScan topic, it is expected to be named scan. If you have more,
they should be named scan_1, scan_2 etc. . .

• If you use only one sensor_msgs/MultiEchoLaserScan topic, it is expected to be named echoes. If
you have more, they should be named echoes_1, echoes_2 etc. . .

• If you use only one sensor_msgs/PointCloud2 topic, it is expected be named points2. If you have
more, they should be named points2_1, points2_2, etc. . .

3.4 Try your configuration

Everything is setup! You can now start Cartographer with:

roslaunch cartographer_ros my_robot.launch bag_filename:=/path/to/your_bag.bag

If you are lucky enough, everything should already work as expected. However, you might have some problems that
require tuning.

12 Chapter 3. Running Cartographer ROS on your own bag

CHAPTER 4

Algorithm walkthrough for tuning

Cartographer is a complex system and tuning it requires a good understanding of its inner working. This page tries to
give an intuitive overview of the different subsystems used by Cartographer along with their configuration values. If
you are interested in more than an introduction to Cartographer, you should refer to the Cartographer paper. It only
describes the 2D SLAM but it defines rigourously most of the concepts described here. Those concepts generally
apply to 3D as well.

W. Hess, D. Kohler, H. Rapp, and D. Andor, Real-Time Loop Closure in 2D LIDAR SLAM, in Robotics and Automa-
tion (ICRA), 2016 IEEE International Conference on. IEEE, 2016. pp. 1271–1278.

13

https://research.google.com/pubs/pub45466.html

Cartographer ROS Documentation

4.1 Overview

Cartographer can be seen as two separate, but related subsystems. The first one is local SLAM (sometimes
also called frontend or local trajectory builder). Its job is to build a succession of submaps. Each submap is
meant to be locally consistent but we accept that local SLAM drifts over time. Most of the local SLAM op-
tions can be found in install_isolated/share/cartographer/configuration_files/trajectory_builder_2d.lua for 2D and in-
stall_isolated/share/cartographer/configuration_files/trajectory_builder_3d.lua for 3D. (for the rest of this page we will
refer to TRAJECTORY_BUILDER_nD for the common options)

The other subsystem is global SLAM (sometimes called the backend). It runs in background threads and its
main job is to find loop closure constraints. It does that by scan-matching scans (gathered in nodes) against
submaps. It also incorporates other sensor data to get a higher level view and identify the most consistent
global solution. In 3D, it also tries to find the direction of gravity. Most of its options can be found in in-
stall_isolated/share/cartographer/configuration_files/pose_graph.lua

On a higher abstraction, the job of local SLAM is to generate good submaps and the job of global SLAM is to tie them
most consistently together.

4.2 Input

Range finding sensors (for example: LIDARs) provide depth information in multiple directions. However, some of
the measurements are irrelevant for SLAM. If the sensor is partially covered with dust or if it is directed towards a part

14 Chapter 4. Algorithm walkthrough for tuning

https://github.com/cartographer-project/cartographer/blob/master/docs/source/high_level_system_overview.png
https://github.com/cartographer-project/cartographer/blob/df337194e21f98f8c7b0b88dab33f878066d4b56/configuration_files/trajectory_builder_2d.lua
https://github.com/cartographer-project/cartographer/blob/df337194e21f98f8c7b0b88dab33f878066d4b56/configuration_files/trajectory_builder_3d.lua
https://github.com/cartographer-project/cartographer/blob/df337194e21f98f8c7b0b88dab33f878066d4b56/configuration_files/trajectory_builder_3d.lua
https://github.com/cartographer-project/cartographer/blob/df337194e21f98f8c7b0b88dab33f878066d4b56/configuration_files/pose_graph.lua
https://github.com/cartographer-project/cartographer/blob/df337194e21f98f8c7b0b88dab33f878066d4b56/configuration_files/pose_graph.lua

Cartographer ROS Documentation

of the robot, some of the measured distance can be considered as noise for SLAM. On the other hand, some of the
furthest measurements can also come from undesired sources (reflection, sensor noise) and are irrelevant for SLAM
as well. To tackle those issue, Cartographer starts by applying a bandpass filter and only keeps range values between a
certain min and max range. Those min and max values should be chosen according to the specifications of your robot
and sensors.

TRAJECTORY_BUILDER_nD.min_range
TRAJECTORY_BUILDER_nD.max_range

Note: In 2D, Cartographer replaces ranges further than max_range by TRAJECTORY_BUILDER_2D.
missing_data_ray_length. It also provides a max_z and min_z values to filter 3D point clouds into a 2D
cut.

Note: In Cartographer configuration files, every distance is defined in meters

Distances are measured over a certain period of time, while the robot is actually moving. However, distances are deliv-
ered by sensors “in batch” in large ROS messages. Each of the messages’ timestamp can be considered independently
by Cartographer to take into account deformations caused by the robot’s motion. The more often Cartographer gets
measurements, the better it becomes at unwarping the measurements to assemble a single coherent scan that could
have been captured instantly. It is therefore strongly encouraged to provide as many range data (ROS messages) by
scan (a set of range data that can be matched against another scan) as possible.

TRAJECTORY_BUILDER_nD.num_accumulated_range_data

Range data is typically measured from a single point on the robot but in multiple angles. This means that close surfaces
(for instance the road) are very often hit and provide lots of points. On the opposite, far objects are less often hit and
offer less points. In order to reduce the computational weight of points handling, we usually need to subsample point
clouds. However, a simple random sampling would remove points from areas where we already have a low density of
measurements and the high-density areas would still have more points than needed. To address that density problem,
we can use a voxel filter that downsamples raw points into cubes of a constant size and only keeps the centroid of each
cube.

A small cube size will result in a more dense data representation, causing more computations. A large cube size will
result in a data loss but will be much quicker.

TRAJECTORY_BUILDER_nD.voxel_filter_size

After having applied a fixed-size voxel filter, Cartographer also applies an adaptive voxel filter. This filter tries to
determine the optimal voxel size (under a max length) to achieve a target number of points. In 3D, two adaptive voxel
filters are used to generate a high resolution and a low resolution point clouds, their usage will be clarified in Local
SLAM.

TRAJECTORY_BUILDER_nD.*adaptive_voxel_filter.max_length
TRAJECTORY_BUILDER_nD.*adaptive_voxel_filter.min_num_points

An Inertial Measurement Unit can be an useful source of information for SLAM because it provides an accurate
direction of gravity (hence, of the ground) and a noisy but good overall indication of the robot’s rotation. In order
to filter the IMU noise, gravity is observed over a certain amount of time. If you use 2D SLAM, range data can be
handled in real-time without an additional source of information so you can choose whether you’d like Cartographer
to use an IMU or not. With 3D SLAM, you need to provide an IMU because it is used as an initial guess for the
orientation of the scans, greatly reducing the complexity of scan matching.

4.2. Input 15

Cartographer ROS Documentation

TRAJECTORY_BUILDER_2D.use_imu_data
TRAJECTORY_BUILDER_nD.imu_gravity_time_constant

Note: In Cartographer configuration files, every time value is defined in seconds

4.3 Local SLAM

Once a scan has been assembled and filtered from multiple range data, it is ready for the local SLAM algorithm. Local
SLAM inserts a new scan into its current submap construction by scan matching using an initial guess from the pose
extrapolator. The idea behind the pose extrapolator is to use sensor data of other sensors besides the range finder to
predict where the next scan should be inserted into the submap.

Two scan matching strategies are available:

• The CeresScanMatcher takes the initial guess as prior and finds the best spot where the scan match fits
the submap. It does this by interpolating the submap and sub-pixel aligning the scan. This is fast, but cannot
fix errors that are significantly larger than the resolution of the submaps. If your sensor setup and timing is
reasonable, using only the CeresScanMatcher is usually the best choice to make.

• The RealTimeCorrelativeScanMatcher can be enabled if you do not have other sensors or you do
not trust them. It uses an approach similar to how scans are matched against submaps in loop closure (de-
scribed later), but instead it matches against the current submap. The best match is then used as prior for the
CeresScanMatcher. This scan matcher is very expensive and will essentially override any signal from other
sensors but the range finder, but it is robust in feature rich environments.

Either way, the CeresScanMatcher can be configured to give a certain weight to each of its input. The weight is a
measure of trust into your data, this can be seen as a static covariance. The unit of weight parameters are dimensionless
quantities and can’t be compared between each others. The bigger the weight of a source of data is, the more emphasis
Cartographer will put on this source of data when doing scan matching. Sources of data include occupied space (points
from the scan), translation and rotation from the pose extrapolator (or RealTimeCorrelativeScanMatcher)

TRAJECTORY_BUILDER_2D.ceres_scan_matcher.occupied_space_weight
TRAJECTORY_BUILDER_3D.ceres_scan_matcher.occupied_space_weight_0
TRAJECTORY_BUILDER_3D.ceres_scan_matcher.occupied_space_weight_1
TRAJECTORY_BUILDER_nD.ceres_scan_matcher.translation_weight
TRAJECTORY_BUILDER_nD.ceres_scan_matcher.rotation_weight

Note: In 3D, the occupied_space_weight_0 and occupied_space_weight_1 parameters are related,
respectively, to the high resolution and low resolution filtered point clouds.

The CeresScanMatcher gets its name from Ceres Solver, a library developed at Google to solve non-linear least
squares problems. The scan matching problem is modelled as the minimization of such a problem with the motion (a
transformation matrix) between two scans being a parameter to determine. Ceres optimizes the motion using a descent
algorithm for a given number of iterations. Ceres can be configured to adapt the convergence speed to your own needs.

TRAJECTORY_BUILDER_nD.ceres_scan_matcher.ceres_solver_options.use_nonmonotonic_steps
TRAJECTORY_BUILDER_nD.ceres_scan_matcher.ceres_solver_options.max_num_iterations
TRAJECTORY_BUILDER_nD.ceres_scan_matcher.ceres_solver_options.num_threads

The RealTimeCorrelativeScanMatcher can be toggled depending on the trust you have in your sensors.
It works by searching for similar scans in a search window which is defined by a maximum distance radius and a

16 Chapter 4. Algorithm walkthrough for tuning

http://ceres-solver.org/

Cartographer ROS Documentation

maximum angle radius. When performing scan matching with scans found in this window, a different weight can be
chosen for the translational and rotational components. You can play with those weight if, for example, you know that
your robot doesn’t rotate a lot.

TRAJECTORY_BUILDER_nD.use_online_correlative_scan_matching
TRAJECTORY_BUILDER_nD.real_time_correlative_scan_matcher.linear_search_window
TRAJECTORY_BUILDER_nD.real_time_correlative_scan_matcher.angular_search_window
TRAJECTORY_BUILDER_nD.real_time_correlative_scan_matcher.translation_delta_cost_weight
TRAJECTORY_BUILDER_nD.real_time_correlative_scan_matcher.rotation_delta_cost_weight

To avoid inserting too many scans per submaps, once a motion between two scans is found by the scan matcher, it
goes through a motion filter. A scan is dropped if the motion that led to it is not considered as significant enough. A
scan is inserted into the current submap only if its motion is above a certain distance, angle or time threshold.

TRAJECTORY_BUILDER_nD.motion_filter.max_time_seconds
TRAJECTORY_BUILDER_nD.motion_filter.max_distance_meters
TRAJECTORY_BUILDER_nD.motion_filter.max_angle_radians

A submap is considered as complete when the local SLAM has received a given amount of range data. Local SLAM
drifts over time, global SLAM is used to fix this drift. Submaps must be small enough so that the drift inside them is
below the resolution, so that they are locally correct. On the other hand, they should be large enough to be distinct for
loop closure to work properly.

TRAJECTORY_BUILDER_nD.submaps.num_range_data

Submaps can store their range data in a couple of different data structures: The most widely used representation is
called probability grids. However, in 2D, one can also choose to use Truncated Signed Distance Fields (TSDF).

TRAJECTORY_BUILDER_2D.submaps.grid_options_2d.grid_type

Probability grids cut out space into a 2D or 3D table where each cell has a fixed size and contains the odds of being
obstructed. Odds are updated according to “hits” (where the range data is measured) and “misses” (the free space
between the sensor and the measured points). Both hits and misses can have a different weight in occupancy probability
calculations giving more or less trust to occupied or free space measurements.

TRAJECTORY_BUILDER_2D.submaps.range_data_inserter.probability_grid_range_data_
→˓inserter.hit_probability
TRAJECTORY_BUILDER_2D.submaps.range_data_inserter.probability_grid_range_data_
→˓inserter.miss_probability
TRAJECTORY_BUILDER_3D.submaps.range_data_inserter.hit_probability
TRAJECTORY_BUILDER_3D.submaps.range_data_inserter.miss_probability

In 2D, only one probability grid per submap is stored. In 3D, for scan matching performance reasons, two hybrid
probability grids are used. (the term “hybrid” only refers to an internal tree-like data representation and is abstracted
to the user)

• a low resolution hybrid grid for far measurements

• a high resolution hybrid grid for close measurements

Scan matching starts by aligning far points of the low resolution point cloud with the low resolution hybrid grid and
then refines the pose by aligning the close high resolution points with the high resolution hybrid grid.

TRAJECTORY_BUILDER_2D.submaps.grid_options_2d.resolution
TRAJECTORY_BUILDER_3D.submaps.high_resolution
TRAJECTORY_BUILDER_3D.submaps.low_resolution
TRAJECTORY_BUILDER_3D.high_resolution_adaptive_voxel_filter.max_range
TRAJECTORY_BUILDER_3D.low_resolution_adaptive_voxel_filter.max_range

4.3. Local SLAM 17

Cartographer ROS Documentation

Note: Cartographer ROS provides an RViz plugin to visualize submaps. You can select the submaps you want to see
from their number. In 3D, RViz only shows 2D projections of the 3D hybrid probability grids (in grayscale). Options
are made available in RViz’s left pane to switch between the low and high resolution hybrid grids visualization.

TODO: Documenting TSDF configuration

4.4 Global SLAM

While the local SLAM generates its succession of submaps, a global optimization (usually referred to as “the opti-
mization problem” or “sparse pose adjustment”) task runs in background. Its role is to re-arrange submaps between
each other so that they form a coherent global map. For instance, this optimization is in charge of altering the currently
built trajectory to properly align submaps with regards to loop closures.

The optimization is run in batches once a certain number of trajectory nodes was inserted. Depending on how fre-
quently you need to run it, you can tune the size of these batches.

POSE_GRAPH.optimize_every_n_nodes

Note: Setting POSE_GRAPH.optimize_every_n_nodes to 0 is a handy way to disable global SLAM and concentrate
on the behavior of local SLAM. This is usually one of the first thing to do to tune Cartographer.

The global SLAM is a kind of “GraphSLAM”, it is essentially a pose graph optimization which works by building
constraints between nodes and submaps and then optimizing the resulting constraints graph. Constraints can intu-
itively be thought of as little ropes tying all nodes together. The sparse pose adjustment fastens those ropes altogether.
The resulting net is called the “pose graph”.

Note: Constraints can be visualized in RViz, it is very handy to tune global SLAM. One can also toggle
POSE_GRAPH.constraint_builder.log_matches to get regular reports of the constraints builder format-
ted as histograms.

• Non-global constraints (also known as intra submaps constraints) are built automatically between nodes that are
closely following each other on a trajectory. Intuitively, those “non-global ropes” keep the local structure of the
trajectory coherent.

• Global constraints (also referred to as loop closure constraints or inter submaps constraints) are regularly
searched between a new submap and previous nodes that are considered “close enough” in space (part of a
certain search window) and a strong fit (a good match when running scan matching). Intuitively, those “global
ropes” introduce knots in the structure and firmly bring two strands closer.

POSE_GRAPH.constraint_builder.max_constraint_distance
POSE_GRAPH.fast_correlative_scan_matcher.linear_search_window
POSE_GRAPH.fast_correlative_scan_matcher_3d.linear_xy_search_window
POSE_GRAPH.fast_correlative_scan_matcher_3d.linear_z_search_window
POSE_GRAPH.fast_correlative_scan_matcher*.angular_search_window

Note: In practice, global constraints can do more than finding loop closures on a single trajectory. They can also
align different trajectories recorded by multiple robots but we will keep this usage and the parameters related to “global
localization” out of the scope of this document.

18 Chapter 4. Algorithm walkthrough for tuning

Cartographer ROS Documentation

To limit the amount of constraints (and computations), Cartographer only considers a subsampled set of all close nodes
for constraints building. This is controlled by a sampling ratio constant. Sampling too few nodes could result in missed
constraints and ineffective loop closures. Sampling too many nodes would slow the global SLAM down and prevent
real-time loop closures.

POSE_GRAPH.constraint_builder.sampling_ratio

When a node and a submap are considered for constraint building, they go through a first scan matcher called the
FastCorrelativeScanMatcher. This scan matcher has been specifically designed for Cartographer and makes
real-time loop closures scan matching possible. The FastCorrelativeScanMatcher relies on a “Branch and
bound” mechanism to work at different grid resolutions and efficiently eliminate incorrect matchings. This mechanism
is extensively presented in the Cartographer paper presented earlier in this document. It works on an exploration tree
whose depth can be controlled.

POSE_GRAPH.constraint_builder.fast_correlative_scan_matcher.branch_and_bound_depth
POSE_GRAPH.constraint_builder.fast_correlative_scan_matcher_3d.branch_and_bound_depth
POSE_GRAPH.constraint_builder.fast_correlative_scan_matcher_3d.full_resolution_depth

Once the FastCorrelativeScanMatcher has a good enough proposal (above a minimum score of matching),
it is then fed into a Ceres Scan Matcher to refine the pose.

POSE_GRAPH.constraint_builder.min_score
POSE_GRAPH.constraint_builder.ceres_scan_matcher_3d
POSE_GRAPH.constraint_builder.ceres_scan_matcher

When Cartographer runs the optimization problem, Ceres is used to rearrange submaps according to multiple residuals.
Residuals are calculated using weighted cost functions. The global optimization has cost functions to take into account
plenty of data sources: the global (loop closure) constraints, the non-global (matcher) constraints, the IMU acceleration
and rotation measurements, the local SLAM rough pose estimations, an odometry source or a fixed frame (such as a
GPS system). The weights and Ceres options can be configured as described in the Local SLAM section.

POSE_GRAPH.constraint_builder.loop_closure_translation_weight
POSE_GRAPH.constraint_builder.loop_closure_rotation_weight
POSE_GRAPH.matcher_translation_weight
POSE_GRAPH.matcher_rotation_weight
POSE_GRAPH.optimization_problem.*_weight
POSE_GRAPH.optimization_problem.ceres_solver_options

Note: One can find useful information about the residuals used in the optimization problem by toggling
POSE_GRAPH.log_residual_histograms

As part of its IMU residual, the optimization problem gives some flexibility to the IMU pose and, by default, Ceres is
free to optimize the extrinsic calibration between your IMU and tracking frame. If you don’t trust your IMU pose, the
results of Ceres’ global optimization can be logged and used to improve your extrinsic calibration. If Ceres doesn’t
optimize your IMU pose correctly and you trust your extrinsic calibration enough, you can make this pose constant.

POSE_GRAPH.optimization_problem.log_solver_summary
POSE_GRAPH.optimization_problem.use_online_imu_extrinsics_in_3d

In residuals, the influence of outliers is handled by a Huber loss function configured with a certain a Huber scale. The
bigger the Huber scale, the higher is the impact of (potential) outliers.

POSE_GRAPH.optimization_problem.huber_scale

4.4. Global SLAM 19

https://github.com/ceres-solver/ceres-solver/blob/0d3a84fce553c9f7aab331f0895fa7b1856ef5ee/include/ceres/loss_function.h#L172

Cartographer ROS Documentation

Once the trajectory is finished, Cartographer runs a new global optimization with, typically, a lot more iterations than
previous global optimizations. This is done to polish the final result of Cartographer and usually does not need to be
real-time so a large number of iterations is often a right choice.

POSE_GRAPH.max_num_final_iterations

20 Chapter 4. Algorithm walkthrough for tuning

CHAPTER 5

Tuning methodology

Tuning Cartographer is unfortunately really difficult. The system has many parameters many of which affect each
other. This tuning guide tries to explain a principled approach on concrete examples.

5.1 Built-in tools

Cartographer provides built-in tools for SLAM evaluation that can be particularly useful for measuring the local SLAM
quality. They are stand-alone executables that ship with the core cartographer library and are hence independent,
but compatible with cartographer_ros. Therefore, please head to the Cartographer Read the Docs Evaluation
site for a conceptual overview and a guide on how to use the tools in practice.

These tools assume that you have serialized the SLAM state to a .pbstream file. With cartographer_ros, you
can invoke the assets_writer to serialize the state - see the Exploiting the map generated by Cartographer ROS
section for more information.

5.2 Example: tuning local SLAM

For this example we’ll start at cartographer commit aba4575 and cartographer_ros commit 99c23b6 and
look at the bag b2-2016-04-27-12-31-41.bag from our test data set.

At our starting configuration, we see some slipping pretty early in the bag. The backpack passed over a ramp in the
Deutsches Museum which violates the 2D assumption of a flat floor. It is visible in the laser scan data that contradicting
information is passed to the SLAM. But the slipping also indicates that we trust the point cloud matching too much
and disregard the other sensors quite strongly. Our aim is to improve the situation through tuning.

If we only look at this particular submap, that the error is fully contained in one submap. We also see that over time,
global SLAM figures out that something weird happened and partially corrects for it. The broken submap is broken
forever though.

Since the problem here is slippage inside a submap, it is a local SLAM issue. So let’s turn off global SLAM to not
mess with our tuning.

21

https://google-cartographer.readthedocs.io/en/latest/evaluation.html
https://google-cartographer.readthedocs.io/en/latest/evaluation.html
https://github.com/cartographer-project/cartographer/commit/aba4575d937df4c9697f61529200c084f2562584
https://github.com/cartographer-project/cartographer_ros/commit/99c23b6ac7874f7974e9ed808ace841da6f2c8b0

Cartographer ROS Documentation

POSE_GRAPH.optimize_every_n_nodes = 0

5.2.1 Correct size of submaps

The size of submaps is configured through TRAJECTORY_BUILDER_2D.submaps.num_range_data. Look-
ing at the individual submaps for this example they already fit the two constraints rather well, so we assume this
parameter is well tuned.

5.2.2 Tuning the CeresScanMatcher

In our case, the scan matcher can freely move the match forward and backwards without impacting the score. We’d
like to penalize this situation by making the scan matcher pay more for deviating from the prior that it got. The two pa-
rameters controlling this are TRAJECTORY_BUILDER_2D.ceres_scan_matcher.translation_weight
and rotation_weight. The higher, the more expensive it is to move the result away from the prior, or in other
words: scan matching has to generate a higher score in another position to be accepted.

For instructional purposes, let’s make deviating from the prior really expensive:

TRAJECTORY_BUILDER_2D.ceres_scan_matcher.translation_weight = 1e3

This allows the optimizer to pretty liberally overwrite the scan matcher results. This results in poses close to the prior,
but inconsistent with the depth sensor and clearly broken. Experimenting with this value yields a better result at 2e2.

Here, the scan matcher used rotation to still slightly mess up the result though. Setting the rotation_weight to
4e2 leaves us with a reasonable result.

5.2.3 Verification

To make sure that we did not overtune for this particular issue, we need to run the configuration against
other collected data. In this case, the new parameters did reveal slipping, for example at the beginning of
b2-2016-04-05-14-44-52.bag, so we had to lower the translation_weight to 1e2. This setting is
worse for the case we wanted to fix, but no longer slips. Before checking them in, we normalize all weights, since they
only have relative meaning. The result of this tuning was PR 428. In general, always try to tune for a platform, not a
particular bag.

5.3 Special Cases

The default configuration and the above tuning steps are focused on quality. Only after we have achieved good quality,
we can further consider special cases.

5.3.1 Low Latency

By low latency, we mean that an optimized local pose becomes available shortly after sensor input was received, usu-
ally within a second, and that global optimization has no backlog. Low latency is required for online algorithms, such
as robot localization. Local SLAM, which operates in the foreground, directly affects latency. Global SLAM builds
up a queue of background tasks. When global SLAM cannot keep up the queue, drift can accumulate indefinitely, so
global SLAM should be tuned to work in real time.

22 Chapter 5. Tuning methodology

https://github.com/cartographer-project/cartographer/pull/428

Cartographer ROS Documentation

There are many options to tune the different components for speed, and we list them ordered from the recommended,
straightforward ones to the those that are more intrusive. It is recommended to only explore one option at a time,
starting with the first. Configuration parameters are documented in the Cartographer documentation.

To tune global SLAM for lower latency, we reduce its computational load until is consistently keeps up with real-time
input. Below this threshold, we do not reduce it further, but try to achieve the best possible quality. To reduce global
SLAM latency, we can

• decrease optimize_every_n_nodes

• increase MAP_BUILDER.num_background_threads up to the number of cores

• decrease global_sampling_ratio

• decrease constraint_builder.sampling_ratio

• increase constraint_builder.min_score

• for the adaptive voxel filter(s), decrease .min_num_points, .max_range, increase .max_length

• increase voxel_filter_size, submaps.resolution, decrease submaps.num_range_data

• decrease search windows sizes, .linear_xy_search_window, .linear_z_search_window, .
angular_search_window

• increase global_constraint_search_after_n_seconds

• decrease max_num_iterations

To tune local SLAM for lower latency, we can

• increase voxel_filter_size

• increase submaps.resolution

• for the adaptive voxel filter(s), decrease .min_num_points, .max_range, increase .max_length

• decrease max_range (especially if data is noisy)

• decrease submaps.num_range_data

Note that larger voxels will slightly increase scan matching scores as a side effect, so score thresholds should be
increased accordingly.

5.3.2 Pure Localization in a Given Map

Pure localization is different from mapping. First, we expect a lower latency of both local and global SLAM. Second,
global SLAM will usually find a very large number of inter constraints between the frozen trajectory that serves as a
map and the current trajectory.

To tune for pure localization, we should first enable TRAJECTORY_BUILDER.pure_localization = true
and strongly decrease POSE_GRAPH.optimize_every_n_nodes to receive frequent results. With these
settings, global SLAM will usually be too slow and cannot keep up. As a next step, we strongly decrease
global_sampling_ratio and constraint_builder.sampling_ratio to compensate for the large
number of constraints. We then tune for lower latency as explained above until the system reliably works in real
time.

If you run in pure_localization, submaps.resolution should be matching with the resolution of the
submaps in the .pbstream you are running on. Using different resolutions is currently untested and may not work
as expected.

5.3. Special Cases 23

https://google-cartographer.readthedocs.io/en/latest/configuration.html

Cartographer ROS Documentation

5.3.3 Odometry in Global Optimization

If a separate odometry source is used as an input for local SLAM (use_odometry = true), we can also tune the
global SLAM to benefit from this additional information.

There are in total four parameters that allow us to tune the individual weights of local SLAM and odometry in the
optimization:

POSE_GRAPH.optimization_problem.local_slam_pose_translation_weight
POSE_GRAPH.optimization_problem.local_slam_pose_rotation_weight
POSE_GRAPH.optimization_problem.odometry_translation_weight
POSE_GRAPH.optimization_problem.odometry_rotation_weight

We can set these weights depending on how much we trust either local SLAM or the odometry. By default, odometry
is weighted into global optimization similar to local slam (scan matching) poses. However, odometry from wheel
encoders often has a high uncertainty in rotation. In this case, the rotation weight can be reduced, even down to zero.

5.4 Still have a problem ?

If you can’t get Cartographer to work reliably on your data, you can open a GitHub issue asking for help. De-
velopers are keen to help, but they can only be helpful if you follow an issue template containing the result of
rosbag_validate, a link to a fork of cartographer_ros with your config and a link to a .bag file re-
producing your problem.

Note: There are already lots of GitHub issues with all sorts of problems solved by the developers. Going through the
closed issues of cartographer_ros and of cartographer is a great way to learn more about Cartographer and maybe find
a solution to your problem !

24 Chapter 5. Tuning methodology

https://github.com/cartographer-project/cartographer_ros/issues
https://github.com/cartographer-project/cartographer_ros/issues/new?labels=question
https://github.com/cartographer-project/cartographer_ros/issues?q=is%3Aissue+is%3Aclosed
https://github.com/cartographer-project/cartographer_ros/issues?q=is%3Aissue+is%3Aclosed
https://github.com/cartographer-project/cartographer_ros/issues?q=is%3Aissue+is%3Aclosed

CHAPTER 6

Exploiting the map generated by Cartographer ROS

As sensor data come in, the state of a SLAM algorithm such as Cartographer evolves to stay the current best estimate of
a robot’s trajectory and surroundings. The most accurate localization and mapping Cartographer can offer is therefore
the one obtained when the algorithm finishes. Cartographer can serialize its internal state in a .pbstream file format
which is essentially a compressed protobuf file containing a snapshot of the data structures used by Cartographer
internally.

To run efficiently in real-time, Cartographer throws most of its sensor data away immediately and only works with a
small subset of its input, the mapping used internally (and saved in .pbstream files) is then very rough. However,
when the algorithm finishes and a best trajectory is established, it can be recombined a posteriori with the full sensors
data to create a high resolution map.

Cartographer makes this kind of recombination possible using cartographer_assets_writer. The assets
writer takes as input

1. the original sensors data that has been used to perform SLAM (in a ROS .bag file),

2. a cartographer state captured while performing SLAM on this sensor data (saved in a .pbstream file),

3. the sensor extrinsics (i.e. TF data from the bag or an URDF description),

4. and a pipeline configuration, which is defined in a .lua file.

The assets writer runs through the .bag data in batches with the trajectory found in the .pbstream. The pipeline
can be used to color, filter and export SLAM point cloud data into a variety of formats. There are multiple of such
points processing steps that can be interleaved in a pipeline - several ones are already available from cartographer/io.

6.1 Sample Usage

When running Cartographer with an offline node, a .pbstream file is automatically saved. For instance, with the
3D backpack example:

wget -P ~/Downloads https://storage.googleapis.com/cartographer-public-data/bags/
→˓backpack_3d/b3-2016-04-05-14-14-00.bag
roslaunch cartographer_ros offline_backpack_3d.launch bag_filenames:=${HOME}/
→˓Downloads/b3-2016-04-05-14-14-00.bag (continues on next page)

25

https://github.com/cartographer-project/cartographer/tree/f1ac8967297965b8eb6f2f4b08a538e052b5a75b/cartographer/io

Cartographer ROS Documentation

(continued from previous page)

Watch the output on the commandline until the node terminates. It will have written b3-2016-04-05-14-14-00.
bag.pbstream which represents the Cartographer state after it processed all data and finished all optimizations.

When running as an online node, Cartographer doesn’t know when your bag (or sensor input) ends so you need to use
the exposed services to explicitly finish the current trajectory and make Cartographer serialize its current state:

Finish the first trajectory. No further data will be accepted on it.
rosservice call /finish_trajectory 0

Ask Cartographer to serialize its current state.
(press tab to quickly expand the parameter syntax)
rosservice call /write_state "{filename: '${HOME}/Downloads/b3-2016-04-05-14-14-00.
→˓bag.pbstream', include_unfinished_submaps: "true"}"

Once you’ve retrieved your .pbstream file, you can run the assets writer with the sample pipeline for the 3D
backpack:

roslaunch cartographer_ros assets_writer_backpack_3d.launch \
bag_filenames:=${HOME}/Downloads/b3-2016-04-05-14-14-00.bag \
pose_graph_filename:=${HOME}/Downloads/b3-2016-04-05-14-14-00.bag.pbstream

All output files are prefixed with --output_file_prefix which defaults to the filename of the first bag. For
the last example, if you specify points.ply in the pipeline configuration file, this will translate to ${HOME}/
Downloads/b3-2016-04-05-14-14-00.bag_points.ply.

6.2 Configuration

The assets writer is modeled as a pipeline of PointsProcessor steps. PointsBatch data flows through each processor
and they all have the chance to modify the PointsBatch before passing it on.

For example the assets_writer_backpack_3d.lua pipeline uses min_max_range_filter to remove points that are
either too close or too far from the sensor. After this, it saves “X-Rays” (translucent side views of the map), then
recolors the PointsBatchs depending on the sensor frame ids and writes another set of X-Rays using these new
colors.

The available PointsProcessors are all defined in the cartographer/io sub-directory and documented in their
individual header files.

• color_points: Colors points with a fixed color by frame_id.

• dump_num_points: Passes through points, but keeps track of how many points it saw and output that on Flush.

• fixed_ratio_sampler: Only let a fixed ‘sampling_ratio’ of points through. A ‘sampling_ratio’ of 1. makes this
filter a no-op.

• frame_id_filter: Filters all points with blacklisted frame_id or a non-whitelisted frame id. Note that you can
either specify the whitelist or the blacklist, but not both at the same time.

• write_hybrid_grid: Creates a hybrid grid of the points with voxels being ‘voxel_size’ big.
‘range_data_inserter’ options are used to configure the range data ray tracing through the hybrid grid.

• intensity_to_color: Applies (‘intensity’ - min) / (max - min) * 255 and color the point grey with this value for
each point that comes from the sensor with ‘frame_id’. If ‘frame_id’ is empty, this applies to all points.

• min_max_range_filtering: Filters all points that are farther away from their ‘origin’ as ‘max_range’ or closer
than ‘min_range’.

26 Chapter 6. Exploiting the map generated by Cartographer ROS

https://github.com/cartographer-project/cartographer_ros/blob/44459e18102305745c56f92549b87d8e91f434fe/cartographer_ros/configuration_files/assets_writer_backpack_3d.lua
https://github.com/cartographer-project/cartographer/blob/30f7de1a325d6604c780f2f74d9a345ec369d12d/cartographer/io/points_processor.h
https://github.com/cartographer-project/cartographer/blob/30f7de1a325d6604c780f2f74d9a345ec369d12d/cartographer/io/points_batch.h
https://github.com/cartographer-project/cartographer_ros/blob/44459e18102305745c56f92549b87d8e91f434fe/cartographer_ros/configuration_files/assets_writer_backpack_3d.lua
https://github.com/cartographer-project/cartographer/tree/f1ac8967297965b8eb6f2f4b08a538e052b5a75b/cartographer/io

Cartographer ROS Documentation

• voxel_filter_and_remove_moving_objects: Voxel filters the data and only passes on points that we believe are
on non-moving objects.

• write_pcd: Streams a PCD file to disk. The header is written in ‘Flush’.

• write_ply: Streams a PLY file to disk. The header is written in ‘Flush’.

• write_probability_grid: Creates a probability grid with the specified ‘resolution’. As all points are projected
into the x-y plane the z component of the data is ignored. ‘range_data_inserter’ options are used to configure
the range data ray tracing through the probability grid.

• write_xray_image: Creates X-ray cuts through the points with pixels being ‘voxel_size’ big.

• write_xyz: Writes ASCII xyz points.

6.3 First-person visualization of point clouds

Two PointsProcessors are of particular interest: pcd_writing and ply_writing can save a point cloud in
a .pcd or .ply file format. These file formats can then be used by specialized software such as point_cloud_viewer
or meshlab to navigate through the high resolution map.

The typical assets writer pipeline for this outcome is composed of an IntensityToColorPointsProcessor giving points a
non-white color, then a PlyWritingPointsProcessor exporting the results to a .ply point cloud. An example of such a
pipeline is in assets_writer_backpack_2d.lua.

Once you have the .ply, follow the README of point_cloud_viewer to generate an on-disk octree data structure
which can be viewed by one of the viewers (SDL or web based) in the same repo. Note that color is required for
point_cloud_viewer to function.

6.3. First-person visualization of point clouds 27

https://github.com/cartographer-project/point_cloud_viewer
http://www.meshlab.net/
https://github.com/cartographer-project/cartographer/blob/30f7de1a325d6604c780f2f74d9a345ec369d12d/cartographer/io/intensity_to_color_points_processor.cc
https://github.com/cartographer-project/cartographer/blob/30f7de1a325d6604c780f2f74d9a345ec369d12d/cartographer/io/ply_writing_points_processor.h
https://github.com/cartographer-project/cartographer_ros/blob/44459e18102305745c56f92549b87d8e91f434fe/cartographer_ros/configuration_files/assets_writer_backpack_2d.lua
https://github.com/cartographer-project/point_cloud_viewer

Cartographer ROS Documentation

28 Chapter 6. Exploiting the map generated by Cartographer ROS

CHAPTER 7

Going further

Cartographer is not only a great SLAM algorithm, it also comes with a fully-featured implementation that brings lots
of “extra” features. This page lists some of those less known functionalities.

7.1 More input

If you have a source of odometry (such as a wheel encoder) publishing on a nav_msgs/Odometry topic and want
to use it to improve Cartographer’s localization, you can add an input to your .lua configuration files:

use_odometry = true

The messages will be expected on the odom topic.

A GPS publishing on a sensor_msgs/NavSatFix topic named fix can improve the global SLAM:

use_nav_sat = true

For landmarks publishing on a cartographer_ros_msgs/LandmarkList (message defined in cartogra-
pher_ros) topic named landmark:

use_landmarks = true

7.2 Localization only

If you have a map you are happy with and want to reduce computations, you can use the localization-only mode of
Cartographer which will run SLAM against the existing map and won’t build a new one. This is enabled by running
cartographer_node with a -load_state_filename argument and by defining the following line in your
lua config:

29

https://github.com/cartographer-project/cartographer_ros/blob/4b39ee68c7a4d518bf8d01a509331e2bc1f514a0/cartographer_ros_msgs/msg/LandmarkList.msg
https://github.com/cartographer-project/cartographer_ros/blob/4b39ee68c7a4d518bf8d01a509331e2bc1f514a0/cartographer_ros_msgs/msg/LandmarkList.msg

Cartographer ROS Documentation

TRAJECTORY_BUILDER.pure_localization_trimmer = {
max_submaps_to_keep = 3,

}

7.3 IMU Calibration

When performing the global optimization, Ceres tries to improve the pose between your IMU and range finding
sensors. A well chosen acquisition with lots of loop closure constraints (for instance if your robot goes on a straight
line and then back) can improve the quality of those corrections and become a reliable source of pose correction.
You can then use Cartographer as part of your calibration process to improve the quality of your robot’s extrinsic
calibration.

7.4 Multi-trajectories SLAM

Cartographer can perform SLAM from multiple robots emitting data in parallel. The global SLAM is able to detect
shared paths and will merge the maps built by the different robots as soon as it becomes possible. This is achieved
through the usage of two ROS services start_trajectory and finish_trajectory. (refer to the ROS API
reference documentation for more details on their usage)

7.5 Cloud integration with gRPC

Cartographer is built around Protobuf messages which make it very flexible and interoperable. One of the advantages
of that architecture is that it is easy to distribute on machines spread over the Internet. The typical use case would
be a fleet of robots navigating on a known map, they could have their SLAM algorithm run on a remote powerful
centralized localization server running a multi-trajectories Cartographer instance.

TODO: Instructions on how to get started with a gRPC Cartographer instance

30 Chapter 7. Going further

CHAPTER 8

Getting involved

Cartographer is developed in the open and allows anyone to contribute to the project. There are multiple ways to get
involved!

If you have question or think you’ve found an issue in Cartographer, you are welcome to open a GitHub issue.

If you have an idea of a significant change that should be documented and discussed before finding its way into
Cartographer, you should submit it as a pull request to the RFCs repository first. Simpler changes can also be discussed
in GitHub issues so that developers can help you get things right from the first try.

If you want to contribute code or documentation, this is done through GitHub pull requests. Pull requests need to
follow the contribution guidelines.

31

https://github.com/cartographer-project/cartographer/issues
https://github.com/cartographer-project/rfcs
https://github.com/cartographer-project/cartographer/pulls
https://github.com/cartographer-project/cartographer/blob/master/CONTRIBUTING.md

Cartographer ROS Documentation

32 Chapter 8. Getting involved

CHAPTER 9

Lua configuration reference documentation

Note that Cartographer’s ROS integration uses tf2, thus all frame IDs are expected to contain only a frame name
(lower-case with underscores) and no prefix or slashes. See REP 105 for commonly used coordinate frames.

Note that topic names are given as base names (see ROS Names) in Cartographer’s ROS integration. This means it is
up to the user of the Cartographer node to remap, or put them into a namespace.

The following are Cartographer’s ROS integration top-level options, all of which must be specified in the Lua config-
uration file:

map_frame The ROS frame ID to use for publishing submaps, the parent frame of poses, usually “map”.

tracking_frame The ROS frame ID of the frame that is tracked by the SLAM algorithm. If an IMU is used, it should
be at its position, although it might be rotated. A common choice is “imu_link”.

published_frame The ROS frame ID to use as the child frame for publishing poses. For example “odom” if an
“odom” frame is supplied by a different part of the system. In this case the pose of “odom” in the map_frame
will be published. Otherwise, setting it to “base_link” is likely appropriate.

odom_frame Only used if provide_odom_frame is true. The frame between published_frame and map_frame to be
used for publishing the (non-loop-closed) local SLAM result. Usually “odom”.

provide_odom_frame If enabled, the local, non-loop-closed, continuous pose will be published as the odom_frame
in the map_frame.

publish_frame_projected_to_2d If enabled, the published pose will be restricted to a pure 2D pose (no roll, pitch,
or z-offset). This prevents potentially unwanted out-of-plane poses in 2D mode that can occur due to the pose
extrapolation step (e.g. if the pose shall be published as a ‘base-footprint’-like frame)

use_odometry If enabled, subscribes to nav_msgs/Odometry on the topic “odom”. Odometry must be provided in
this case, and the information will be included in SLAM.

use_nav_sat If enabled, subscribes to sensor_msgs/NavSatFix on the topic “fix”. Navigation data must be provided
in this case, and the information will be included in the global SLAM.

use_landmarks If enabled, subscribes to cartographer_ros_msgs/LandmarkList on the topic “land-
marks”. Landmarks must be provided, as cartographer_ros_msgs/LandmarkEntry within cartogra-
pher_ros_msgs/LandmarkList. If cartographer_ros_msgs/LandmarkEntry data is provided the information
will be included in the SLAM according to the ID of the cartographer_ros_msgs/LandmarkEntry. The

33

http://wiki.ros.org/tf2
http://www.ros.org/reps/rep-0105.html
http://wiki.ros.org/Names
http://docs.ros.org/api/nav_msgs/html/msg/Odometry.html
http://docs.ros.org/api/sensor_msgs/html/msg/NavSatFix.html
https://github.com/cartographer-project/cartographer_ros/blob/master/cartographer_ros_msgs/msg/LandmarkList.msg
https://github.com/cartographer-project/cartographer_ros/blob/4b39ee68c7a4d518bf8d01a509331e2bc1f514a0/cartographer_ros_msgs/msg/LandmarkEntry.msg
https://github.com/cartographer-project/cartographer_ros/blob/master/cartographer_ros_msgs/msg/LandmarkList.msg
https://github.com/cartographer-project/cartographer_ros/blob/master/cartographer_ros_msgs/msg/LandmarkList.msg
https://github.com/cartographer-project/cartographer_ros/blob/4b39ee68c7a4d518bf8d01a509331e2bc1f514a0/cartographer_ros_msgs/msg/LandmarkEntry.msg
https://github.com/cartographer-project/cartographer_ros/blob/4b39ee68c7a4d518bf8d01a509331e2bc1f514a0/cartographer_ros_msgs/msg/LandmarkEntry.msg

Cartographer ROS Documentation

cartographer_ros_msgs/LandmarkList should be provided at a sample rate comparable to the other sensors. The
list can be empty but has to be provided because Cartographer strictly time orders sensor data in order to make
the landmarks deterministic. However it is possible to set the trajectory builder option “collate_landmarks” to
false and allow for a non-deterministic but also non-blocking approach.

num_laser_scans Number of laser scan topics to subscribe to. Subscribes to sensor_msgs/LaserScan on the “scan”
topic for one laser scanner, or topics “scan_1”, “scan_2”, etc. for multiple laser scanners.

num_multi_echo_laser_scans Number of multi-echo laser scan topics to subscribe to. Subscribes to sen-
sor_msgs/MultiEchoLaserScan on the “echoes” topic for one laser scanner, or topics “echoes_1”, “echoes_2”,
etc. for multiple laser scanners.

num_subdivisions_per_laser_scan Number of point clouds to split each received (multi-echo) laser scan into. Sub-
dividing a scan makes it possible to unwarp scans acquired while the scanners are moving. There is a corre-
sponding trajectory builder option to accumulate the subdivided scans into a point cloud that will be used for
scan matching.

num_point_clouds Number of point cloud topics to subscribe to. Subscribes to sensor_msgs/PointCloud2 on the
“points2” topic for one rangefinder, or topics “points2_1”, “points2_2”, etc. for multiple rangefinders.

lookup_transform_timeout_sec Timeout in seconds to use for looking up transforms using tf2.

submap_publish_period_sec Interval in seconds at which to publish the submap poses, e.g. 0.3 seconds.

pose_publish_period_sec Interval in seconds at which to publish poses, e.g. 5e-3 for a frequency of 200 Hz.

publish_to_tf Enable or disable providing of TF transforms.

publish_tracked_pose Enable publishing of tracked pose as a geometry_msgs/PoseStamped to topic “tracked_pose”.

trajectory_publish_period_sec Interval in seconds at which to publish the trajectory markers, e.g. 30e-3 for 30
milliseconds.

rangefinder_sampling_ratio Fixed ratio sampling for range finders messages.

odometry_sampling_ratio Fixed ratio sampling for odometry messages.

fixed_frame_sampling_ratio Fixed ratio sampling for fixed frame messages.

imu_sampling_ratio Fixed ratio sampling for IMU messages.

landmarks_sampling_ratio Fixed ratio sampling for landmarks messages.

34 Chapter 9. Lua configuration reference documentation

https://github.com/cartographer-project/cartographer_ros/blob/master/cartographer_ros_msgs/msg/LandmarkList.msg
http://docs.ros.org/api/sensor_msgs/html/msg/LaserScan.html
http://docs.ros.org/api/sensor_msgs/html/msg/MultiEchoLaserScan.html
http://docs.ros.org/api/sensor_msgs/html/msg/MultiEchoLaserScan.html
http://docs.ros.org/api/sensor_msgs/html/msg/PointCloud2.html
http://wiki.ros.org/tf2
http://docs.ros.org/api/geometry_msgs/html/msg/PoseStamped.html

CHAPTER 10

ROS API reference documentation

10.1 Cartographer Node

The cartographer_node is the SLAM node used for online, real-time SLAM.

10.1.1 Command-line Flags

Call the node with the --help flag to see all available options.

10.1.2 Subscribed Topics

The following range data topics are mutually exclusive. At least one source of range data is required.

scan (sensor_msgs/LaserScan) Supported in 2D and 3D (e.g. using an axially rotating planar laser scanner). If
num_laser_scans is set to 1 in the Lua configuration reference documentation, this topic will be used as input
for SLAM. If num_laser_scans is greater than 1, multiple numbered scan topics (i.e. scan_1, scan_2, scan_3,
. . . up to and including num_laser_scans) will be used as inputs for SLAM.

35

https://github.com/cartographer-project/cartographer_ros/blob/master/cartographer_ros/cartographer_ros/node_main.cc
http://docs.ros.org/api/sensor_msgs/html/msg/LaserScan.html

Cartographer ROS Documentation

echoes (sensor_msgs/MultiEchoLaserScan) Supported in 2D and 3D (e.g. using an axially rotating planar laser
scanner). If num_multi_echo_laser_scans is set to 1 in the Lua configuration reference documentation, this
topic will be used as input for SLAM. Only the first echo is used. If num_multi_echo_laser_scans is greater
than 1, multiple numbered echoes topics (i.e. echoes_1, echoes_2, echoes_3, . . . up to and including
num_multi_echo_laser_scans) will be used as inputs for SLAM.

points2 (sensor_msgs/PointCloud2) If num_point_clouds is set to 1 in the Lua configuration reference documen-
tation, this topic will be used as input for SLAM. If num_point_clouds is greater than 1, multiple numbered
points2 topics (i.e. points2_1, points2_2, points2_3, . . . up to and including num_point_clouds) will be used as
inputs for SLAM.

The following additional sensor data topics may also be provided:

imu (sensor_msgs/Imu) Supported in 2D (optional) and 3D (required). This topic will be used as input for SLAM.

odom (nav_msgs/Odometry) Supported in 2D (optional) and 3D (optional). If use_odometry is enabled in the Lua
configuration reference documentation, this topic will be used as input for SLAM.

10.1.3 Published Topics

scan_matched_points2 (sensor_msgs/PointCloud2) Point cloud as it was used for the purpose of scan-to-submap
matching. This cloud may be both filtered and projected depending on the Lua configuration reference docu-
mentation.

submap_list (cartographer_ros_msgs/SubmapList) List of all submaps, including the pose and latest version num-
ber of each submap, across all trajectories.

tracked_pose (geometry_msgs/PoseStamped) Only published if the parameter publish_tracked_pose is set
to true. The pose of the tracked frame with respect to the map frame.

10.1.4 Services

All services responses include also a StatusResponse that comprises a code and a message field. For consis-
tency, the integer code is equivalent to the status codes used in the gRPC API.

submap_query (cartographer_ros_msgs/SubmapQuery) Fetches the requested submap.

start_trajectory (cartographer_ros_msgs/StartTrajectory) Starts a trajectory using default sensor topics and the
provided configuration. An initial pose can be optionally specified. Returns an assigned trajectory ID.

trajectory_query (cartographer_ros_msgs/TrajectoryQuery) Returns the trajectory data from the pose graph.

finish_trajectory (cartographer_ros_msgs/FinishTrajectory) Finishes the given trajectory_id’s trajectory by run-
ning a final optimization.

write_state (cartographer_ros_msgs/WriteState) Writes the current internal state to disk into filename. The file
will usually end up in ~/.ros or ROS_HOME if it is set. This file can be used as input to the assets_writer_main
to generate assets like probability grids, X-Rays or PLY files.

get_trajectory_states (cartographer_ros_msgs/GetTrajectoryStates) Returns the IDs and the states of the trajec-
tories. For example, this can be useful to observe the state of Cartographer from a separate node.

read_metrics (cartographer_ros_msgs/ReadMetrics) Returns the latest values of all internal metrics of Cartogra-
pher. The collection of runtime metrics is optional and has to be activated with the --collect_metrics
command line flag in the node.

36 Chapter 10. ROS API reference documentation

http://docs.ros.org/api/sensor_msgs/html/msg/MultiEchoLaserScan.html
http://docs.ros.org/api/sensor_msgs/html/msg/PointCloud2.html
http://docs.ros.org/api/sensor_msgs/html/msg/Imu.html
http://docs.ros.org/api/nav_msgs/html/msg/Odometry.html
http://docs.ros.org/api/sensor_msgs/html/msg/PointCloud2.html
https://github.com/cartographer-project/cartographer_ros/blob/master/cartographer_ros_msgs/msg/SubmapList.msg
http://docs.ros.org/api/geometry_msgs/html/msg/PoseStamped.html
https://developers.google.com/maps-booking/reference/grpc-api/status_codes
https://github.com/cartographer-project/cartographer_ros/blob/master/cartographer_ros_msgs/srv/SubmapQuery.srv
https://github.com/cartographer-project/cartographer_ros/blob/master/cartographer_ros_msgs/srv/StartTrajectory.srv
https://github.com/cartographer-project/cartographer_ros/blob/master/cartographer_ros_msgs/srv/TrajectoryQuery.srv
https://github.com/cartographer-project/cartographer_ros/blob/master/cartographer_ros_msgs/srv/FinishTrajectory.srv
https://github.com/cartographer-project/cartographer_ros/blob/master/cartographer_ros_msgs/srv/WriteState.srv
https://github.com/cartographer-project/cartographer_ros/blob/master/cartographer_ros_msgs/srv/GetTrajectoryStates.srv
https://github.com/cartographer-project/cartographer_ros/blob/master/cartographer_ros_msgs/srv/ReadMetrics.srv

Cartographer ROS Documentation

10.1.5 Required tf Transforms

Transforms from all incoming sensor data frames to the configured tracking_frame and published_frame must be
available. Typically, these are published periodically by a robot_state_publisher or a static_transform_publisher.

10.1.6 Provided tf Transforms

The transformation between the configured map_frame and published_frame is provided unless the parameter
publish_to_tf is set to false.

If provide_odom_frame is enabled in the Lua configuration reference documentation, additionally a continuous (i.e.
unaffected by loop closure) transform between the configured odom_frame and published_frame will be provided.

10.2 Offline Node

The offline_node is the fastest way of SLAMing a bag of sensor data. It does not listen on any topics, instead it reads
TF and sensor data out of a set of bags provided on the commandline. It also publishes a clock with the advancing
sensor data, i.e. replaces rosbag play. In all other regards, it behaves like the cartographer_node. Each
bag will become a separate trajectory in the final state. Once it is done processing all data, it writes out the final
Cartographer state and exits.

10.2.1 Published Topics

In addition to the topics that are published by the online node, this node also publishes:

~bagfile_progress (cartographer_ros_msgs/BagfileProgress) Bag files processing progress including detailed in-
formation about the bag currently being processed which will be published with a predefined interval that can
be specified using ~bagfile_progress_pub_interval ROS parameter.

10.2.2 Parameters

~bagfile_progress_pub_interval (double, default=10.0): The interval of publishing bag files processing progress in
seconds.

10.2. Offline Node 37

https://github.com/cartographer-project/cartographer_ros/blob/master/cartographer_ros/cartographer_ros/offline_node_main.cc
https://github.com/cartographer-project/cartographer_ros/blob/master/cartographer_ros_msgs/msg/BagfileProgress.msg

Cartographer ROS Documentation

10.3 Occupancy grid Node

The occupancy_grid_node listens to the submaps published by SLAM, builds an ROS occupancy_grid out of them
and publishes it. This tool is useful to keep old nodes that require a single monolithic map to work happy until new
nav stacks can deal with Cartographer’s submaps directly. Generating the map is expensive and slow, so map updates
are in the order of seconds. You can can selectively include/exclude submaps from frozen (static) or active trajectories
with a command line option. Call the node with the --help flag to see these options.

10.3.1 Subscribed Topics

It subscribes to Cartographer’s submap_list topic only.

10.3.2 Published Topics

map (nav_msgs/OccupancyGrid) If subscribed to, the node will continuously compute and publish the map. The
time between updates will increase with the size of the map. For faster updates, use the submaps APIs.

10.4 Pbstream Map Publisher Node

The pbstream_map_publisher is a simple node that creates a static occupancy grid out of a serialized Cartographer
state (pbstream format). It is an efficient alternative to the occupancy grid node if live updates are not important.

10.4.1 Subscribed Topics

None.

10.4.2 Published Topics

map (nav_msgs/OccupancyGrid) The published occupancy grid topic is latched.

38 Chapter 10. ROS API reference documentation

https://github.com/cartographer-project/cartographer_ros/blob/master/cartographer_ros/cartographer_ros/occupancy_grid_node_main.cc
http://docs.ros.org/api/nav_msgs/html/msg/OccupancyGrid.html
https://github.com/cartographer-project/cartographer_ros/blob/master/cartographer_ros/cartographer_ros/pbstream_map_publisher_main.cc
http://docs.ros.org/api/nav_msgs/html/msg/OccupancyGrid.html

CHAPTER 11

Public Data

11.1 2D Cartographer Backpack – Deutsches Museum

This data was collected using a 2D LIDAR backpack at the Deutsches Museum. Each bag contains data from an IMU,
data from a horizontal LIDAR intended for 2D SLAM, and data from an additional vertical (i.e. push broom) LIDAR.

11.1.1 License

Copyright 2016 The Cartographer Authors

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

11.1.2 Data

ROS Bag Duration Size Floor Known Issues
b0-2014-07-11-10-
58-16.bag

149 s 38 MB
1. OG

b0-2014-07-11-11-
00-49.bag

513 s 135 MB
1. OG

Continued on next page

39

https://en.wikipedia.org/wiki/Deutsches_Museum
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.ros.org/Bags
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-07-11-10-58-16.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-07-11-10-58-16.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-07-11-11-00-49.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-07-11-11-00-49.bag

Cartographer ROS Documentation

Table 1 – continued from previous page
ROS Bag Duration Size Floor Known Issues
b0-2014-07-21-12-
42-53.bag

244 s 64 MB
1. OG

b0-2014-07-21-12-
49-19.bag

344 s 93 MB EG 1 gap in vertical
laser data

b0-2014-07-21-12-
55-35.bag

892 s 237 MB EG

b0-2014-07-21-13-
11-35.bag

615 s 162 MB EG

b0-2014-08-14-13-
23-01.bag

768 s 204 MB
1. OG

b0-2014-08-14-13-
36-48.bag

331 s 87 MB
1. OG

b0-2014-10-07-12-
13-36.bag

470 s 125 MB
1. OG

b0-2014-10-07-12-
34-42.bag

491 s 127 MB
1. OG

b0-2014-10-07-12-
43-25.bag

288 s 77 MB
1. OG

b0-2014-10-07-12-
50-07.bag

815 s 215 MB
1. OG

b1-2014-09-25-10-
11-12.bag

1829 s 480 MB EG

b1-2014-10-02-14-
08-42.bag

930 s 245 MB
1. OG

b1-2014-10-02-14-
33-25.bag

709 s 181 MB
1. OG

b1-2014-10-07-12-
12-04.bag

737 s 194 MB
1. OG

b1-2014-10-07-12-
34-51.bag

766 s 198 MB
1. OG

b2-2014-11-24-14-
20-50.bag

679 s 177 MB
1. OG

b2-2014-11-24-14-
33-46.bag

1285 s 330 MB
1. OG

b2-2014-12-03-10-
14-13.bag

1051 s 275 MB
1. OG

Continued on next page

40 Chapter 11. Public Data

http://wiki.ros.org/Bags
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-07-21-12-42-53.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-07-21-12-42-53.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-07-21-12-49-19.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-07-21-12-49-19.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-07-21-12-55-35.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-07-21-12-55-35.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-07-21-13-11-35.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-07-21-13-11-35.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-08-14-13-23-01.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-08-14-13-23-01.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-08-14-13-36-48.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-08-14-13-36-48.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-10-07-12-13-36.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-10-07-12-13-36.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-10-07-12-34-42.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-10-07-12-34-42.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-10-07-12-43-25.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-10-07-12-43-25.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-10-07-12-50-07.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b0-2014-10-07-12-50-07.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b1-2014-09-25-10-11-12.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b1-2014-09-25-10-11-12.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b1-2014-10-02-14-08-42.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b1-2014-10-02-14-08-42.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b1-2014-10-02-14-33-25.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b1-2014-10-02-14-33-25.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b1-2014-10-07-12-12-04.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b1-2014-10-07-12-12-04.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b1-2014-10-07-12-34-51.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b1-2014-10-07-12-34-51.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-11-24-14-20-50.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-11-24-14-20-50.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-11-24-14-33-46.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-11-24-14-33-46.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-12-03-10-14-13.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-12-03-10-14-13.bag

Cartographer ROS Documentation

Table 1 – continued from previous page
ROS Bag Duration Size Floor Known Issues
b2-2014-12-03-10-
33-51.bag

356 s 89 MB
1. OG

b2-2014-12-03-10-
40-04.bag

453 s 119 MB
1. OG

b2-2014-12-12-13-
51-02.bag

1428 s 368 MB
1. OG

b2-2014-12-12-14-
18-43.bag

1164 s 301 MB
1. OG

b2-2014-12-12-14-
41-29.bag

168 s 46 MB
1. OG

b2-2014-12-12-14-
48-22.bag

243 s 65 MB
1. OG

b2-2014-12-17-14-
33-12.bag

1061 s 277 MB
1. OG

b2-2014-12-17-14-
53-26.bag

246 s 62 MB
1. OG

b2-2014-12-17-14-
58-13.bag

797 s 204 MB EG

b2-2015-02-16-12-
26-11.bag

901 s 236 MB
1. OG

b2-2015-02-16-12-
43-57.bag

1848 s 475 MB
1. OG

b2-2015-04-14-14-
16-36.bag

1353 s 349 MB
1. OG

b2-2015-04-14-14-
39-59.bag

670 s 172 MB
1. OG

b2-2015-04-28-13-
01-40.bag

618 s 162 MB
1. OG

b2-2015-04-28-13-
17-23.bag

2376 s 613 MB
1. OG

b2-2015-05-12-12-
29-05.bag

942 s 240 MB
1. OG

2 gaps in laser data

b2-2015-05-12-12-
46-34.bag

2281 s 577 MB
1. OG

14 gaps in laser data

Continued on next page

11.1. 2D Cartographer Backpack – Deutsches Museum 41

http://wiki.ros.org/Bags
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-12-03-10-33-51.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-12-03-10-33-51.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-12-03-10-40-04.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-12-03-10-40-04.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-12-12-13-51-02.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-12-12-13-51-02.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-12-12-14-18-43.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-12-12-14-18-43.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-12-12-14-41-29.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-12-12-14-41-29.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-12-12-14-48-22.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-12-12-14-48-22.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-12-17-14-33-12.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-12-17-14-33-12.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-12-17-14-53-26.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-12-17-14-53-26.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-12-17-14-58-13.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2014-12-17-14-58-13.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-02-16-12-26-11.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-02-16-12-26-11.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-02-16-12-43-57.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-02-16-12-43-57.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-04-14-14-16-36.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-04-14-14-16-36.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-04-14-14-39-59.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-04-14-14-39-59.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-04-28-13-01-40.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-04-28-13-01-40.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-04-28-13-17-23.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-04-28-13-17-23.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-05-12-12-29-05.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-05-12-12-29-05.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-05-12-12-46-34.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-05-12-12-46-34.bag

Cartographer ROS Documentation

Table 1 – continued from previous page
ROS Bag Duration Size Floor Known Issues
b2-2015-05-26-13-
15-25.bag

747 s 195 MB
1. OG

b2-2015-06-09-14-
31-16.bag

1297 s 336 MB
1. OG

b2-2015-06-25-14-
25-51.bag

1071 s 272 MB
1. OG

b2-2015-07-07-11-
27-05.bag

1390 s 362 MB
1. OG

b2-2015-07-21-13-
03-21.bag

894 s 239 MB
1. OG

b2-2015-08-04-13-
39-24.bag

809 s 212 MB
1. OG

b2-2015-08-18-11-
42-31.bag

588 s 155 MB UG

b2-2015-08-18-11-
55-04.bag

504 s 130 MB UG

b2-2015-08-18-12-
06-34.bag

1299 s 349 MB EG

b2-2015-09-01-11-
55-40.bag

1037 s 274 MB UG

b2-2015-09-01-12-
16-13.bag

918 s 252 MB EG

b2-2015-09-15-14-
19-11.bag

859 s 225 MB
1. OG

b2-2015-11-24-14-
12-27.bag

843 s 226 MB
1. OG

b2-2016-01-19-14-
10-47.bag

310 s 81 MB
1. OG

b2-2016-02-02-14-
01-56.bag

787 s 213 MB EG 1 gap in laser data

b2-2016-03-01-14-
09-37.bag

948 s 255 MB EG

b2-2016-03-15-14-
23-01.bag

810 s 215 MB EG

b2-2016-04-05-14-
44-52.bag

360 s 94 MB
1. OG

b2-2016-04-27-12-
31-41.bag

881 s 234 MB
1. OG

42 Chapter 11. Public Data

http://wiki.ros.org/Bags
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-05-26-13-15-25.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-05-26-13-15-25.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-06-09-14-31-16.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-06-09-14-31-16.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-06-25-14-25-51.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-06-25-14-25-51.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-07-07-11-27-05.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-07-07-11-27-05.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-07-21-13-03-21.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-07-21-13-03-21.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-08-04-13-39-24.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-08-04-13-39-24.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-08-18-11-42-31.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-08-18-11-42-31.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-08-18-11-55-04.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-08-18-11-55-04.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-08-18-12-06-34.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-08-18-12-06-34.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-09-01-11-55-40.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-09-01-11-55-40.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-09-01-12-16-13.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-09-01-12-16-13.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-09-15-14-19-11.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-09-15-14-19-11.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-11-24-14-12-27.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-11-24-14-12-27.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2016-01-19-14-10-47.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2016-01-19-14-10-47.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2016-02-02-14-01-56.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2016-02-02-14-01-56.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2016-03-01-14-09-37.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2016-03-01-14-09-37.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2016-03-15-14-23-01.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2016-03-15-14-23-01.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2016-04-05-14-44-52.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2016-04-05-14-44-52.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2016-04-27-12-31-41.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2016-04-27-12-31-41.bag

Cartographer ROS Documentation

11.2 3D Cartographer Backpack – Deutsches Museum

This data was collected using a 3D LIDAR backpack at the Deutsches Museum. Each bag contains data from an IMU
and from two Velodyne VLP-16 LIDARs, one mounted horizontally (i.e. spin axis up) and one vertically (i.e. push
broom).

11.2.1 License

Copyright 2016 The Cartographer Authors

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

11.2.2 Data

ROS Bag Duration Size Known Issues
b3-2015-12-10-12-41-07.bag 1466 s 7.3 GB 1 large gap in data, no intensities
b3-2015-12-10-13-10-17.bag 718 s 5.5 GB 1 gap in data, no intensities
b3-2015-12-10-13-31-28.bag 720 s 5.2 GB 2 large gaps in data, no intensities
b3-2015-12-10-13-55-20.bag 429 s 3.3 GB
b3-2015-12-14-15-13-53.bag 916 s 7.1 GB no intensities
b3-2016-01-19-13-26-24.bag 1098 s 8.1 GB no intensities
b3-2016-01-19-13-50-11.bag 318 s 2.5 GB no intensities
b3-2016-02-02-13-32-01.bag 47 s 366 MB no intensities
b3-2016-02-02-13-33-30.bag 1176 s 9.0 GB no intensities
b3-2016-02-09-13-17-39.bag 529 s 4.0 GB
b3-2016-02-09-13-31-50.bag 801 s 6.1 GB no intensities
b3-2016-02-10-08-08-26.bag 3371 s 25 GB
b3-2016-03-01-13-39-41.bag 382 s 2.9 GB
b3-2016-03-01-15-42-37.bag 3483 s 17 GB 6 large gaps in data, no intensities
b3-2016-03-01-16-42-00.bag 313 s 2.4 GB no intensities
b3-2016-03-02-10-09-32.bag 1150 s 6.6 GB 3 large gaps in data, no intensities
b3-2016-04-05-13-54-42.bag 829 s 6.1 GB no intensities
b3-2016-04-05-14-14-00.bag 1221 s 9.1 GB
b3-2016-04-05-15-51-36.bag 30 s 231 MB
b3-2016-04-05-15-52-20.bag 377 s 2.7 GB no intensities
b3-2016-04-05-16-00-55.bag 940 s 6.9 GB no intensities
b3-2016-04-27-12-25-00.bag 2793 s 23 GB
b3-2016-04-27-12-56-11.bag 2905 s 21 GB
b3-2016-05-10-12-56-33.bag 1767 s 13 GB
b3-2016-06-07-12-42-49.bag 596 s 3.9 GB 3 gaps in horizontal laser data, no intensities

11.2. 3D Cartographer Backpack – Deutsches Museum 43

https://en.wikipedia.org/wiki/Deutsches_Museum
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.ros.org/Bags
https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2015-12-10-12-41-07.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2015-12-10-13-10-17.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2015-12-10-13-31-28.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/with_intensities/b3-2015-12-10-13-55-20.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2015-12-14-15-13-53.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2016-01-19-13-26-24.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2016-01-19-13-50-11.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2016-02-02-13-32-01.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2016-02-02-13-33-30.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/with_intensities/b3-2016-02-09-13-17-39.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2016-02-09-13-31-50.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/with_intensities/b3-2016-02-10-08-08-26.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/with_intensities/b3-2016-03-01-13-39-41.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2016-03-01-15-42-37.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2016-03-01-16-42-00.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2016-03-02-10-09-32.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2016-04-05-13-54-42.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/with_intensities/b3-2016-04-05-14-14-00.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/with_intensities/b3-2016-04-05-15-51-36.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2016-04-05-15-52-20.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2016-04-05-16-00-55.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/with_intensities/b3-2016-04-27-12-25-00.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/with_intensities/b3-2016-04-27-12-56-11.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/with_intensities/b3-2016-05-10-12-56-33.bag
https://storage.googleapis.com/cartographer-public-data/bags/backpack_3d/b3-2016-06-07-12-42-49.bag

Cartographer ROS Documentation

11.3 MiR

This data was collected using MiR100. An additional Logitech Webcam C930e Full HD camera was attached on top
to collect images for landmark detection.

11.3.1 License

Copyright 2018 The Cartographer Authors

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

11.3.2 Data

ROS Bag Duration Size
landmarks_demo_uncalibrated.bag 180 s 41.7 MB

11.4 PR2 – Willow Garage

This is the Willow Garage data set, described in:

• “An Object-Based Semantic World Model for Long-Term Change Detection and Semantic Querying.”, by Julian
Mason and Bhaskara Marthi, IROS 2012.

More details about these data can be found in:

• “Unsupervised Discovery of Object Classes with a Mobile Robot”, by Julian Mason, Bhaskara Marthi, and
Ronald Parr. ICRA 2014.

• “Object Discovery with a Mobile Robot” by Julian Mason. PhD Thesis, 2013.

11.4.1 License

Copyright (c) 2011, Willow Garage All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the <organization> nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

44 Chapter 11. Public Data

http://www.mobile-industrial-robots.com/de/products/mir100/
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.ros.org/Bags
https://storage.googleapis.com/cartographer-public-data/bags/mir/landmarks_demo_uncalibrated.bag

Cartographer ROS Documentation

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL-
ITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

11.4.2 Data

ROS Bag Known Issues
2011-08-03-16-16-43.bag Missing base laser data
2011-08-03-20-03-22.bag
2011-08-04-12-16-23.bag
2011-08-04-14-27-40.bag
2011-08-04-23-46-28.bag
2011-08-05-09-27-53.bag
2011-08-05-12-58-41.bag
2011-08-05-23-19-43.bag
2011-08-08-09-48-17.bag
2011-08-08-14-26-55.bag
2011-08-08-23-29-37.bag
2011-08-09-08-49-52.bag
2011-08-09-14-32-35.bag
2011-08-09-22-31-30.bag
2011-08-10-09-36-26.bag
2011-08-10-14-48-32.bag
2011-08-11-01-31-15.bag
2011-08-11-08-36-01.bag
2011-08-11-14-27-41.bag
2011-08-11-22-03-37.bag
2011-08-12-09-06-48.bag
2011-08-12-16-39-48.bag
2011-08-12-22-46-34.bag
2011-08-15-17-22-26.bag
2011-08-15-21-26-26.bag
2011-08-16-09-20-08.bag
2011-08-16-18-40-52.bag
2011-08-16-20-59-00.bag
2011-08-17-15-51-51.bag
2011-08-17-21-17-05.bag
2011-08-18-20-33-16.bag
2011-08-18-20-52-30.bag
2011-08-19-10-12-20.bag
2011-08-19-14-17-55.bag
2011-08-19-21-35-17.bag
2011-08-22-10-02-27.bag
2011-08-22-14-53-33.bag

Continued on next page

11.4. PR2 – Willow Garage 45

http://wiki.ros.org/Bags
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-03-16-16-43.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-03-20-03-22.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-04-12-16-23.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-04-14-27-40.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-04-23-46-28.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-05-09-27-53.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-05-12-58-41.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-05-23-19-43.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-08-09-48-17.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-08-14-26-55.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-08-23-29-37.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-09-08-49-52.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-09-14-32-35.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-09-22-31-30.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-10-09-36-26.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-10-14-48-32.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-11-01-31-15.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-11-08-36-01.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-11-14-27-41.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-11-22-03-37.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-12-09-06-48.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-12-16-39-48.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-12-22-46-34.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-15-17-22-26.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-15-21-26-26.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-16-09-20-08.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-16-18-40-52.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-16-20-59-00.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-17-15-51-51.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-17-21-17-05.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-18-20-33-16.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-18-20-52-30.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-19-10-12-20.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-19-14-17-55.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-19-21-35-17.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-22-10-02-27.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-22-14-53-33.bag

Cartographer ROS Documentation

Table 2 – continued from previous page
ROS Bag Known Issues
2011-08-23-01-11-53.bag
2011-08-23-09-21-17.bag
2011-08-24-09-52-14.bag
2011-08-24-15-01-39.bag
2011-08-24-19-47-10.bag
2011-08-25-09-31-05.bag
2011-08-25-20-14-56.bag
2011-08-25-20-38-39.bag
2011-08-26-09-58-19.bag
2011-08-29-15-48-07.bag
2011-08-29-21-14-07.bag
2011-08-30-08-55-28.bag
2011-08-30-20-49-42.bag
2011-08-30-21-17-56.bag
2011-08-31-20-29-19.bag
2011-08-31-20-44-19.bag
2011-09-01-08-21-33.bag
2011-09-02-09-20-25.bag
2011-09-06-09-04-41.bag
2011-09-06-13-20-36.bag
2011-09-08-13-14-39.bag
2011-09-09-13-22-57.bag
2011-09-11-07-34-22.bag
2011-09-11-09-43-46.bag
2011-09-12-14-18-56.bag
2011-09-12-14-47-01.bag
2011-09-13-10-23-31.bag
2011-09-13-13-44-21.bag
2011-09-14-10-19-20.bag
2011-09-15-08-32-46.bag

11.5 Magazino

Datasets recorded on Magazino robots.

See the cartographer_magazino repository for an integration of Magazino robot data for Cartographer.

See the LICENSE file in cartographer_magazino for details on the dataset license.

11.5.1 Data

ROS Bag Duration Size Known Issues
hallway_return.bag 350 s 102.8 MB
hallway_localization.bag 137 s 40.4 MB

46 Chapter 11. Public Data

http://wiki.ros.org/Bags
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-23-01-11-53.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-23-09-21-17.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-24-09-52-14.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-24-15-01-39.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-24-19-47-10.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-25-09-31-05.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-25-20-14-56.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-25-20-38-39.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-26-09-58-19.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-29-15-48-07.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-29-21-14-07.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-30-08-55-28.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-30-20-49-42.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-30-21-17-56.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-31-20-29-19.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-08-31-20-44-19.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-09-01-08-21-33.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-09-02-09-20-25.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-09-06-09-04-41.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-09-06-13-20-36.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-09-08-13-14-39.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-09-09-13-22-57.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-09-11-07-34-22.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-09-11-09-43-46.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-09-12-14-18-56.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-09-12-14-47-01.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-09-13-10-23-31.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-09-13-13-44-21.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-09-14-10-19-20.bag
https://storage.googleapis.com/cartographer-public-data/bags/pr2/2011-09-15-08-32-46.bag
https://www.magazino.eu/?lang=en
https://github.com/magazino/cartographer_magazino
http://wiki.ros.org/Bags
https://storage.googleapis.com/cartographer-public-data/bags/toru/hallway_return.bag
https://storage.googleapis.com/cartographer-public-data/bags/toru/hallway_localization.bag

CHAPTER 12

Frequently asked questions

12.1 Why is laser data rate in the 3D bags higher than the maximum
reported 20 Hz rotation speed of the VLP-16?

The VLP-16 in the example bags is configured to rotate at 20 Hz. However, the frequency of UDP packets the VLP-16
sends is much higher and independent of the rotation frequency. The example bags contain a sensor_msgs/PointCloud2
per UDP packet, not one per revolution.

In the corresponding Cartographer configuration file you see TRAJECTORY_BUILDER_3D.num_accumulated_range_data
= 160 which means we accumulate 160 per-UDP-packet point clouds into one larger point cloud, which incorporates
motion estimation by combining constant velocity and IMU measurements, for matching. Since there are two
VLP-16s, 160 UDP packets is enough for roughly 2 revolutions, one per VLP-16.

12.2 Why is IMU data required for 3D SLAM but not for 2D?

In 2D, Cartographer supports running the correlative scan matcher, which is normally used for finding loop closure
constraints, for local SLAM. It is computationally expensive but can often render the incorporation of odometry or
IMU data unnecessary. 2D also has the benefit of assuming a flat world, i.e. up is implicitly defined.

In 3D, an IMU is required mainly for measuring gravity. Gravity is an attractive quantity to measure since it does not
drift and is a very strong signal and typically comprises most of any measured accelerations. Gravity is needed for two
reasons:

1. There are no assumptions about the world in 3D. To properly world align the resulting trajectory and map, gravity
is used to define the z-direction.

2. Roll and pitch can be derived quite well from IMU readings once the direction of gravity has been established. This
saves work for the scan matcher by reducing the search window in these dimensions.

47

http://www.ros.org/doc/api/sensor_msgs/html/msg/PointCloud2.html
https://github.com/cartographer-project/cartographer_ros/blob/master/cartographer_ros/configuration_files/backpack_3d.lua

Cartographer ROS Documentation

12.3 How do I build cartographer_ros without rviz support?

The simplest solution is to create an empty file named CATKIN_IGNORE in the cartographer_rviz package directory.

12.4 How do I fix the “You called InitGoogleLogging() twice!” error?

Building rosconsole with the glog back end can lead to this error. Use the log4cxx or print back end, selectable via the
ROSCONSOLE_BACKEND CMake argument, to avoid this issue.

48 Chapter 12. Frequently asked questions

http://wiki.ros.org/catkin/workspaces

	Compiling Cartographer ROS
	System Requirements
	Building & Installation

	Running Cartographer ROS on a demo bag
	Deutsches Museum
	Pure localization
	Static landmarks
	Revo LDS
	PR2
	Taurob Tracker

	Running Cartographer ROS on your own bag
	Validate your bag
	Create a .lua configuration
	Create .launch files for your SLAM scenarios
	Try your configuration

	Algorithm walkthrough for tuning
	Overview
	Input
	Local SLAM
	Global SLAM

	Tuning methodology
	Built-in tools
	Example: tuning local SLAM
	Special Cases
	Still have a problem ?

	Exploiting the map generated by Cartographer ROS
	Sample Usage
	Configuration
	First-person visualization of point clouds

	Going further
	More input
	Localization only
	IMU Calibration
	Multi-trajectories SLAM
	Cloud integration with gRPC

	Getting involved
	Lua configuration reference documentation
	ROS API reference documentation
	Cartographer Node
	Offline Node
	Occupancy grid Node
	Pbstream Map Publisher Node

	Public Data
	2D Cartographer Backpack – Deutsches Museum
	3D Cartographer Backpack – Deutsches Museum
	MiR
	PR2 – Willow Garage
	Magazino

	Frequently asked questions
	Why is laser data rate in the 3D bags higher than the maximum reported 20 Hz rotation speed of the VLP-16?
	Why is IMU data required for 3D SLAM but not for 2D?
	How do I build cartographer_ros without rviz support?
	How do I fix the “You called InitGoogleLogging() twice!” error?

