
Goldilocks Documentation
Release 0.1.1

Sam Nicholls

July 07, 2016

Contents

1 Goldilocks 3
1.1 What is it? . 3
1.2 What can I use it for? . 3
1.3 Why should I use it? . 4
1.4 Requirements . 4
1.5 Installation . 4
1.6 Citation . 4
1.7 License . 5

2 Installation 7

3 Command Line Usage 9
3.1 Usage . 9
3.2 Example . 9

4 Basic Package Usage 11
4.1 Importing . 11
4.2 Providing Sequence Data as Dictionary . 11
4.3 Providing Sequence Data as FASTA . 12
4.4 Conducting a Census . 12
4.5 Getting the Regions . 13
4.6 Sorting Regions . 14
4.7 Setting Number of Processes . 15
4.8 Full Example . 15

5 Advanced Package Usage 17
5.1 Filtering Regions . 17
5.2 Excluding Regions . 18
5.3 Limiting Regions . 19
5.4 Full Example . 20

6 Exporting 21
6.1 Census Data . 21
6.2 FASTA . 22

7 Plotting 25
7.1 Scatter Graphs . 25
7.2 Line Graphs . 25
7.3 Histograms . 27

i

7.4 Advanced . 30
7.5 Integration with external plotting tools . 32

8 Custom Strategies 39
8.1 A Simple ORF Finder . 39

9 Examples 41
9.1 Example One . 41
9.2 Example Two . 41
9.3 Example Three . 42
9.4 Example Four . 42
9.5 Example Five . 43
9.6 Example Six . 43
9.7 Example Seven . 44

10 Contributing 45
10.1 Types of Contributions . 45
10.2 Get Started! . 46
10.3 Pull Request Guidelines . 46
10.4 Tips . 47

11 Credits 49
11.1 Development Lead . 49
11.2 Contributors . 49

12 History 51
12.1 0.1.1 (2016-07-07) . 51
12.2 0.1.0 (2016-03-08) . 51
12.3 0.0.83-beta . 51
12.4 0.0.82 (2016-01-29) . 52
12.5 0.0.81 (2016-01-29) . 52
12.6 0.0.80 (2015-08-10) . 53
12.7 0.0.71 (2015-07-11) . 53
12.8 0.0.6 (2015-06-23) . 54
12.9 Beta (2014-10-08) . 54
12.10 0.0.2 (2014-08-18) . 54
12.11 0.0.1 (2014-08-18) . 54

13 Indices and tables 55

ii

Goldilocks Documentation, Release 0.1.1

Contents:

Contents 1

Goldilocks Documentation, Release 0.1.1

2 Contents

CHAPTER 1

Goldilocks

Locating genomic regions that are “just right”.

• Documentation: http://goldilocks.readthedocs.org.

1.1 What is it?

Goldilocks is a Python package providing functionality for locating ‘interesting’ genomic regions for some definition
of ‘interesting’. You can import it to your scripts, pass it sequence data and search for subsequences that match some
criteria across one or more samples.

Goldilocks was developed to support our work in the investigation of quality control for genetic sequencing. It was
used to quickly locate regions on the human genome that expressed a desired level of variability, which were “just
right” for later variant calling and comparison.

The package has since been made more flexible and can be used to find regions of interest based on other criteria such
as GC-content, density of target k-mers, defined confidence metrics and missing nucleotides.

1.2 What can I use it for?

Given some genetic sequences (from one or more samples, comprising of one or more chromosomes), Goldilocks will
shard each chromosome in to subsequences of a desired size which may or may not overlap as required. For each
chromosome from each sample, each subsequence or ‘region’ is passed to the user’s chosen strategy.

The strategy simply defines what is of interest to the user in a language that Goldilocks can understand. Goldilocks is
currently packaged with the following strategies:

Strategy Census Description
GCRatioStrategy Calculate GC-ratio for subregions across the genome.
NucleotideCounter-
Strategy

Count given nucleotides for subregions across the genome.

MotifCounterStrategy Search for one or more particular motifs of interest of any and varying size in
subregions across the genome.

ReferenceConsen-
susStrategy

Calculate the (dis)similarity to a given reference across the genome.

PositionCounterStrat-
egy

Given a list of base locations, calculate density of those locations over subregions
across the genome.

3

http://goldilocks.readthedocs.org

Goldilocks Documentation, Release 0.1.1

Once all regions have been ‘censused’, the results may be sorted by one of four mathematical operations: max,
min, median and mean. So you may be interested in subregions of your sequence(s) that feature the most missing
nucleotides, or subregions that contain the mean or median number of SNPs or the lowest GC-ratio.

1.3 Why should I use it?

Goldilocks is hardly the first tool capable of calculating GC-content across a genome, or to find k-mers of interest, or
SNP density, so why should you use it as part of your bioinformatics pipeline?

Whilst not the first program to be able to conduct these tasks, it is the first to be capable of doing them all together,
sharing the same interfaces. Every strategy can quickly be swapped with another by changing one line of your code.
Every strategy returns regions in the same format and so you need not waste time munging data to fit the rest of your
pipeline.

Strategies are also customisable and extendable, those even vaguely familiar with Python should be able to construct
a strategy to meet their requirements.

Goldilocks is maintained, documented and tested, rather than that hacky perl script that you inherited years ago from
somebody who has now left your lab.

1.4 Requirements

To use;

• numpy

• matplotlib (for plotting)

To test;

• tox

• pytest

For coverage;

• nose

• python-coveralls

1.5 Installation

$ pip install goldilocks

1.6 Citation

Please cite us so we can continue to make useful software!

Nicholls, S. M., Clare, A., & Randall, J. C. (2016). Goldilocks: a tool for identifying genomic regions that are "just right." Bioinformatics (2016) 32 (13): 2047-2049. doi:10.1093/bioinformatics/btw116

4 Chapter 1. Goldilocks

Goldilocks Documentation, Release 0.1.1

@article{Nicholls01072016,
author = {Nicholls, Samuel M. and Clare, Amanda and Randall, Joshua C.},
title = {Goldilocks: a tool for identifying genomic regions that are ‘just right’},
volume = {32},
number = {13},
pages = {2047-2049},
year = {2016},
doi = {10.1093/bioinformatics/btw116},
URL = {http://bioinformatics.oxfordjournals.org/content/32/13/2047.abstract},
eprint = {http://bioinformatics.oxfordjournals.org/content/32/13/2047.full.pdf+html},
journal = {Bioinformatics}

}

1.7 License

Goldilocks is distributed under the MIT license, see LICENSE.

1.7. License 5

Goldilocks Documentation, Release 0.1.1

6 Chapter 1. Goldilocks

CHAPTER 2

Installation

At the command line:

$ pip install goldilocks

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv goldilocks
$ pip install goldilocks

7

Goldilocks Documentation, Release 0.1.1

8 Chapter 2. Installation

CHAPTER 3

Command Line Usage

Goldilocks is also packaged with a basic command line tool to demonstrate some of its capabilities and to provide
access to base functionality without requiring users to author a script of their own. For more complicated queries,
you’ll need to import Goldilocks as a package to a script of your own. But for simple use-cases the tool might be
enough for you.

3.1 Usage

Goldilocks is invoked as follows:

goldilocks <strategy> <sort-op> [--tracks TRACK1 [TRACK2 ...]] -l LENGTH -s STRIDE [-@ THREADS] FAIDX1 [FAIDX2 ...]

Where a strategy is a census strategy listed as available...

$ goldilocks list
Available Strategies

* gc

* ref

* motif

* nuc

...and a sort operation is one of:

• max

• min

• mean

• median

• none

3.2 Example

Tabulate all regions and their associated counts of nucleotides A, C, G, T and N. Window size 100Kbp, overlap 50Kbp.
Census will spawn 4 processes. Regions in table will be sorted by co-ordinate:

goldilocks nuc none --tracks A C G T N -l 100000 -s 50000 -@ 4 /store/ref/hs37d5.fa.fai

Tabulate all regions and their associated GC-content. Same parameters as previous example but table will be sorted by
maximum GC-content descending:

9

Goldilocks Documentation, Release 0.1.1

goldilocks gc max -l 100000 -s 50000 -@ 4 /store/ref/hs37d5.fa.fai

10 Chapter 3. Command Line Usage

CHAPTER 4

Basic Package Usage

The following example assumes basic Python programming experience (and that you have installed Goldilocks), skip
to the end if you think you know what you’re doing.

4.1 Importing

To use Goldilocks you will need to import the goldilocks.goldilocks.Goldilocks class and your desired
census strategy (e.g. NucleotideCounterStrategy) from goldilocks.strategies to your script:

from goldilocks import Goldilocks
from goldilocks.strategies import NucleotideCounterStrategy

4.2 Providing Sequence Data as Dictionary

If you do not have FASTA files, the goldilocks.goldilocks.Goldilocks class allows you to provide se-
quence data in the following structure:

sequence_data = {
"sample_name_or_identifier": {

"chr_name_or_number": "my_actual_sequence",
}

}

For example:

sequence_data = {
"my_sample": {

2: "NANANANANA",
"one": "CATCANCAT",
"X": "GATTACAGATTACAN"

},
"my_other_sample": {

2: "GANGANGAN",
"one": "TATANTATA",
"X": "GATTACAGATTACAN"

}
}

The sequences are stored in a nested structure of Python dictionaries, each key of the sequence_data dictionary rep-
resents the name or an otherwise unique identifier for a particular sample (e.g. “my_sample”, “my_other_sample”),

11

Goldilocks Documentation, Release 0.1.1

the value is a dictionary whose own keys represent chromosome names or numbers 1 and the corresponding values are
the sequences themselves as a string 2. Regardless of how the chromosomes are identified, they must match across
samples if one wishes to make comparisons across samples.

4.3 Providing Sequence Data as FASTA

If your sequences are in FASTA format, you must first index them with samtools faidx, then for each sample, pass the
path to the index to Goldilocks in the following structure:

sequence_data = {
"my_sequence": {"file": "/path/to/fastaidx/1.fa.fai"},
"my_other_sequence": {"file": "/path/to/fastaidx/2.fa.fai"},
"my_other_other_sequence": {"file": "/path/to/fastaidx/3.fa.fai"},

}

When supplying sequences in this format, note the following:

• is_faidx=True must be passed to the Goldilocks constructor (see below),

• It is assumed that the FASTA will be in the same directory with the same name as its index, just without the
”.fai” extension,

• The key in the sequence data dictionary for each sample, must be file,

• The i-th sequence in each FASTA will be censused together, thus the order in which your sequences appear
matters.

It is anticipated in future these assumptions will be circumvented by additional options to the Goldilocks constructor.

To specify the is_faidx argument, call the constructor like so:

g = Goldilocks(NucleotideCounterStrategy(["N"]), sequence_data, length=3, stride=1, is_faidx=True)

Now Goldilocks will know to expect to open these file values as FASTA indexes, not sequence data!

4.4 Conducting a Census

Once you have organised your sequence data in to the appropriate structure, you may conduct the census
with Goldilocks by passing your strategy (e.g. NucleotideCounterStrategy) and sequence data to the imported
goldilocks.goldilocks.Goldilocks class:

g = Goldilocks(NucleotideCounterStrategy(["N"]), sequence_data, length=3, stride=1)

Make sure you add the brackets after the name of the imported strategy, this ‘creates’ a usuable strategy for Goldilocks
to work with.

For each chromosome (i.e. ‘one’, ‘X’ and 2) Goldilocks will split each sequence from the corresponding chromosome
in each of the two example samples in to triplets of bases (as our specified region length is 3) with an offset of 1 (as
our stride is 1). For example, chromosome “one” of “my_sample” will be split as follows:

CAT
ATC
TCA
CAN

1 Goldilocks has no preference for use of numbers or strings for chromosome names but it would be sensible to use numbers where possible for
cases where you might wish to sort by chromosome.

2 In future it is planned that sequences may be further nested in a dictionary to fully support polyploid species.

12 Chapter 4. Basic Package Usage

Goldilocks Documentation, Release 0.1.1

ANC
NCA
CAT

In our example, the NucleotideCounterStrategy will then count the number of N bases that appear in each split, for
each sample, for each chromosome.

4.5 Getting the Regions

Once the census is complete, you can extract all of the censused regions directly from your Goldilocks object. The
example below demonstrates the format of the returned regions dictionary for the example data above:

> g.regions
{

0: {
'chr': 2,
'ichr': 0,
'pos_end': 3,
'pos_start': 1,
'group_counts': {

'my_sample': {'default': 2},
'my_other_sample': {'default': 1},
'total': {'default': 3}

},
}

...

27: {
'chr': 'one',
'ichr': 6,
'pos_end': 9,
'pos_start': 7,
'group_counts': {

'my_sample': {'default': 0},
'my_other_sample': {'default': 0},
'total': {'default': 0}

},
}

}

The returned structure is a dictionary whose keys represent the id of each region, with values corresponding to a dic-
tionary of metadata for that particular id. The id is assigned incrementally (starting at 0) as each region is encountered
by Goldilocks during the census and isn’t particularly important.

Each region dictionary has the following metadata 3:

Key Value
id A unique id assigned to the region by Goldilocks
chr The chromosome the region appeared on (as found in the input data)
ichr This region is the ichr-th to appear on this chromosome (0-indexed)
pos_start The 1-indexed base of the sequence where the region begins (inclusive)
pos_end The 1-indexed base of the sequence where the region ends (inclusive)

3 Goldilocks used to feature a group_counts dictionary as part of the region metadata as shown in the example above, this was removed as it
duplicated data stored in the group_counts variable in the Goldilocks object needlessly. It has not been removed in the example output above as it
helps explain what regions represent.

4.5. Getting the Regions 13

Goldilocks Documentation, Release 0.1.1

In the example output above, the first (0th) censused region appears on chromosome 2 4 and includes bases 1-3. It
is the first (0th) region to appear on this chromosome and over those three bases, the corresponding subsequence for
“my_sample” contained 2 N bases and the corresponding subsequence for “my_other_sample” contained 1. In total,
over both samples, on chromosome 2, over bases 1-3, 3 N bases appeared.

The last region, region 27 (28th) appears on chromosome “one” 5 and includes bases 7-9. It is the seventh (6th by
0-index) found on this chromosome and over those three bases neither of the two samples contained an N base.

4.6 Sorting Regions

Following a census, Goldilocks allows you to sort the regions found by four mathematical operations: max, min, mean
and median.

g_max = g.query("max")
g_min = g.query("min")
g_mean = g.query("mean")
g_median = g.query("median")

The result of a query is the original goldilocks.goldilocks.Goldilocks object with
masked and sorted internal data. You can view a table-based representation of the regions with
goldilocks.goldilocks.Goldilocks.export_meta().

> g_max.export_meta(sep='\t', group="total")
[NOTE] Filtering values between 0.00 and 3.00 (inclusive)
[NOTE] 28 processed, 28 match search criteria, 0 excluded, 0 limit
chr pos_start pos_end total_default
2 1 3 3.0
2 3 5 3.0
2 5 7 3.0
2 7 9 3.0
2 2 4 2.0
2 4 6 2.0
2 6 8 2.0
2 8 10 2.0
X 13 15 2.0
one 4 6 2.0
one 5 7 2.0
one 3 5 1.0
one 6 8 1.0
X 1 3 0.0
X 2 4 0.0
X 3 5 0.0
X 4 6 0.0
X 5 7 0.0
X 6 8 0.0
X 7 9 0.0
X 8 10 0.0
X 9 11 0.0
X 10 12 0.0
X 11 13 0.0
X 12 14 0.0
one 1 3 0.0
one 2 4 0.0
one 7 9 0.0

4 As numbers are ordered before strings like “one” and “X” in Python.
5 As “X” is ordered before “one” in Python.

14 Chapter 4. Basic Package Usage

Goldilocks Documentation, Release 0.1.1

Note the regions in g_max are now sorted by the number of N bases that appeared. Ties are currently resolved by the
region that was seen first (has the lowest id).

4.7 Setting Number of Processes

Goldilocks supports multiprocessing and can spawn some number of additional processes to perform the census steps
before aggregating all the region counters and answering queries. To specify the number of processes Goldilocks
should use, specify a processes argument to the constructor:

g = Goldilocks(NucleotideCounterStrategy(["N"]), sequence_data, length=3, stride=1, processes=4)

4.8 Full Example

Census an example sequence for appearance of ‘N’ bases:

from goldilocks import Goldilocks
from goldilocks.strategies import NucleotideCounterStrategy

sequence_data = {
"my_sample": {

2: "NANANANANA",
"one": "CATCANCAT",
"X": "GATTACAGATTACAN"

},
"my_other_sample": {

2: "GANGANGAN",
"one": "TATANTATA",
"X": "GATTACAGATTACAN"

}
}

g = Goldilocks(NucleotideCounterStrategy(["N"]), sequence_data, length=3, stride=1, processes=4)

g_max_n_bases = g.query("max")
g_min_n_bases = g.query("min")
g_median_n_bases = g.query("median")
g_mean_n_bases = g.query("mean")

4.7. Setting Number of Processes 15

Goldilocks Documentation, Release 0.1.1

16 Chapter 4. Basic Package Usage

CHAPTER 5

Advanced Package Usage

The following assumes basic Python programming experience (and that you have installed Goldilocks and familiarised
yourself with the basics), skip to the end if you think you know what you’re doing.

5.1 Filtering Regions

5.1.1 Group

By default when returning region data the “total” group is used, in our running example of counting missing nu-
cleotides, this would represent the total number of ‘N’ bases seen in sequence data across each sample in the same
genomic region on the same chromosome. But if you are more interested in a particular sample:

g.query("max", group="my_sample")

5.1.2 Track

When using tracks (for strategies that calculate multiple distinct values for each genomic region - such as different
nucleotide bases or k-mers), you may wish to extract regions based on scores for a certain track:

g.query("max", track="AAA")

5.1.3 Absolute distance

You may be interested in regions within some distance of the mean:

g.query("mean", acutal_distance=10)

5.1.4 Percentile distance

Or perhaps the “top 10%”, or the “middle 25%” around the mean:

g.query("max", percentile_distance=10)
g.query("mean", percentile_distance=25)

When not using max or min, by default both actual and percentile differences calculate ‘around’ the mean or median
value instead. If you’d like to control this behaviour you can specify a direction: Let’s fetch regions that have values
falling within 25% above or below the mean respectively:

17

Goldilocks Documentation, Release 0.1.1

g.query("mean", percentile_distance=25, direction=1)
g.query("mean", percentile_distance=25, direction=-1)

5.1.5 Multiple criteria

You can of course use these at the same time (though actual and percentile distances are mutually exclusive), let’s
fetch the top 10% of regions that contain the most “AAA” k-mers for all chromosomes in a hypothetical sample called
“my_sample”:

g.query("max", group="my_sample", track="N", percentile_distance=10)

5.2 Excluding Regions

The filter function also allows users to specify a dictionary of exclusion criteria.

5.2.1 Starting position

To filter regions based on the 1-indexed starting position greater than or equal to 3:

g.query("min", exclusions={
"start_gte": 3,
})

5.2.2 Ending position

To filter regions based on the 1-indexed ending position less than or equal to 9:

g.query("min", exclusions={
"end_lte": 9,
})

5.2.3 Chromosome

You can filter regions that appear on particular chromosomes completely by providing a list:

g.query("min", exclusions={
"chr": ["X", 6],
})

5.2.4 Value of another count group

When using groups, one may wish to exclude results where the value of another group is less than the one selected by
the query. For example, for each region the following would result in regions where the count for my-other-sample is
greater than my-sample:

g.query("min", group="my-sample", exclusions={
"region_group_lte": "my-other-sample",
})

18 Chapter 5. Advanced Package Usage

Goldilocks Documentation, Release 0.1.1

5.2.5 Multiple Criteria

You may want to use such exclusion criteria at the same time. Let’s say we have a bunch of sequence data from a
species whose chromosomes all feature centromeres between bases 500-1000. Let’s ignore regions from that area.
Let’s also exclude anything from chromosome ‘G’. If a single one of these criteria are true, a region will be excluded:

g.query("mean", exclusions={
"start_gte": 500,
"end_lte": 1000,
"chr": ['G'],
})

What if you want to exclude based on multiple criteria that should all be true? Let’s exclude regions that start before
or on base 100 on chromosome X or Y 1. Note the use of use_and=True! 2

g.query("mean", exclusions={
"start_lte": 100,
"chr": ['X', 'Y'],
}, use_and=True)

5.2.6 Chromosome specific criteria

Finally applying exclusions across all chromosomes might seem quite naive, what if we want to ignore centromeres on
a real species? Introducing chromosome dependent exclusions; the syntax is the same as previously, just the exclusions
dictionary is a dictionary of dictionaries with keys representing each chromosome. Note the use of use_chrom=True:

g.query("median", exclusions={
"one": {

"start_lte": 3,
"end_gte": 4

},
2: {

"start_gte": 9
},
"X": {

"chr": True
}}, use_chrom=True)

It is important to note that currently Goldilocks does not sanity check the contents of the exclusions dictionary includ-
ing the spelling of exclusion names or whether you have correctly set use_chrom if you are providing chromosome
specific filtering. However, on this latter point, if Goldilocks detects a key in the exclusions dictionary matches the
name of a chromosome, it will print a warning (but continue regardless).

5.3 Limiting Regions

One may also limit the number of results returned by Goldilocks:

g.query("mean", limit=10)

1 Support for chromosome matching is still ‘or’ based even when using use_and=True, a region can’t appear on more than one chromosome and
so this seemed a more natural and useful behaviour.

2 Apart from the above caveat on chromosome matching always being or-based, currently there is no support for more complicated queries such
as exclude if (statement1 and statement2) or statement3. It’s or, or and on all criteria!

5.3. Limiting Regions 19

Goldilocks Documentation, Release 0.1.1

5.4 Full Example

Almost all of these options can be used together! Let’s finish off our examples by finding the top 5 regions that are
within an absolute distance of 1.0 from the maximum number of ‘N’ bases seen across all subsequences over the
‘my_sample’ sample. We’ll exclude any region that appears on chromosome “one” and any regions on chromosome
2 that start on a base position greater than or equal to 5 and end on a base position less than or equal to 10. Although
when filtering the default track is indeed ‘default’, we’ve explicity set that here too.:

g.query("max",
group="my_sample",
track="default",
actual_distance=1,
exclusions={

2: {
"start_gte": 5,
"end_lte": 10

},
"one": {

"chr":True
}

},
use_chrom=True,
use_and=True,
limit=5

).export_meta(sep="\t")

[NOTE] Filtering values between 1.00 and 2.00 (inclusive)
[NOTE] 28 processed, 12 match search criteria, 7 excluded, 5 limit
chr pos_start pos_end my_other_sample_default my_sample_default
2 1 3 1.0 2.0
2 3 5 1.0 2.0
2 2 4 1.0 1.0
2 4 6 1.0 1.0
X 13 15 1.0 1.0

20 Chapter 5. Advanced Package Usage

CHAPTER 6

Exporting

Goldilocks provides functions for the exporting of all censused regions metadata or for filtered regions resulting from
a query. The examples below follow on from the basic usage instructions earlier in the documentation.

6.1 Census Data

For a given sample one may export basic metadata for all regions that included sequence data from that particular
sample. The header is as follows:

Key Value
id A unique id assigned to the region by Goldilocks
track1 The value for the region as calculated by the strategy used. By default if a list of tracks is not

specified when the strategy is created, there will be just one track named ‘default’. For the majority
of ‘basic’ strategies this will be the case.

[track2 ...
trackN]

Optional further fields will appear for additional tracks, the column header will feature the name of
the track. For example, a k-mer counting strategy would feature a column for each k-mer specified
to the strategy.

chr The chromosome the region appeared on (as found in the input data)
pos_start The 1-indexed base of the sequence where the region begins (inclusive)
pos_end The 1-indexed base of the sequence where the region ends (inclusive)

Using the my_sample data:
...
g.export_meta("my_sample", sep="\t")

id default chr pos_start pos_end
0 2 2 1 3
1 1 2 2 4
2 2 2 3 5
3 1 2 4 6
4 2 2 5 7
5 1 2 6 8
6 2 2 7 9
7 1 2 8 10
8 0 X 1 3
9 0 X 2 4
10 0 X 3 5
11 0 X 4 6
12 0 X 5 7
13 0 X 6 8
14 0 X 7 9

21

Goldilocks Documentation, Release 0.1.1

15 0 X 8 10
16 0 X 9 11
17 0 X 10 12
18 0 X 11 13
19 0 X 12 14
20 1 X 13 15
21 0 one 1 3
22 0 one 2 4
23 0 one 3 5
24 1 one 4 6
25 1 one 5 7
26 1 one 6 8
27 0 one 7 9

6.2 FASTA

From any sorting or filtering operation on censused regions, a new Goldilocks object is returned, providing function
to output filtered sequence data to FASTA format.

Following on from the example introduced earlier, the example below shows the subsequences of my_sample in the
FASTA format, ordered by their appearance in the filtered candidates list, from the highest number of ‘N’ bases, to
the lowest.
...
candidates = g.query("max", group="my_sample")
candidates.export_fasta("my_sample")

>my_sample|Chr2|Pos1:3
NAN
>my_sample|Chr2|Pos3:5
NAN
>my_sample|Chr2|Pos5:7
NAN
>my_sample|Chr2|Pos7:9
NAN
>my_sample|Chr2|Pos2:4
ANA
>my_sample|Chr2|Pos4:6
ANA
>my_sample|Chr2|Pos6:8
ANA
>my_sample|Chr2|Pos8:10
ANA
>my_sample|ChrX|Pos13:15
CAN
>my_sample|Chrone|Pos4:6
CAN
>my_sample|Chrone|Pos5:7
ANC
>my_sample|Chrone|Pos6:8
NCA
>my_sample|ChrX|Pos1:3
GAT
>my_sample|ChrX|Pos2:4
ATT
>my_sample|ChrX|Pos3:5
TTA

22 Chapter 6. Exporting

Goldilocks Documentation, Release 0.1.1

>my_sample|ChrX|Pos4:6
TAC
>my_sample|ChrX|Pos5:7
ACA
>my_sample|ChrX|Pos6:8
CAG
>my_sample|ChrX|Pos7:9
AGA
>my_sample|ChrX|Pos8:10
GAT
>my_sample|ChrX|Pos9:11
ATT
>my_sample|ChrX|Pos10:12
TTA
>my_sample|ChrX|Pos11:13
TAC
>my_sample|ChrX|Pos12:14
ACA
>my_sample|Chrone|Pos1:3
CAT
>my_sample|Chrone|Pos2:4
ATC
>my_sample|Chrone|Pos3:5
TCA
>my_sample|Chrone|Pos7:9
CAT

6.2. FASTA 23

Goldilocks Documentation, Release 0.1.1

24 Chapter 6. Exporting

CHAPTER 7

Plotting

7.1 Scatter Graphs

7.1.1 Simple Plot

After executing a census one can use the plot function to create a scatter graph of results. The x axis is the location
along the genome (with ordered chromosomes or contigs appearing sequentially) and the y axis is the value of the
censused region according to the strategy used. The example below plots GC content ratio across the first three
chromosomes of the hs37d5 reference sequence, with a window size of 100,000 and a step or overlap of 50,000.
Note that the plot title may be specified with the title keyword argument.

from goldilocks import Goldilocks
from goldilocks.strategies import GCRatioStrategy

sequence_data = {
"my_sequence": {"file": "/store/ref/hs37d5.1-3.fa.fai"},

}
g = Goldilocks(GCRatioStrategy(), sequence_data, length="100K", stride="50K", is_faidx=True)
g.plot(title="GC Content over hs37d5 Chr1-3")

7.2 Line Graphs

7.2.1 Plot multiple contigs or chromosomes from one sample

For long genomes or a census with a small window size, simple plots as shown in the previous section can appear
too crowded and thus difficult to extract information from. One can instead plot, for a given input sample, a panel of
census region data, by chromosome by specifying the name of the sample as the first parameter to the plot function
as per the example below:

25

Goldilocks Documentation, Release 0.1.1

from goldilocks import Goldilocks
from goldilocks.strategies import GCRatioStrategy

sequence_data = {
"hs37d5": {"file": "/store/ref/hs37d5.1-3.fa.fai"},
"GRCh38": {"file": "/store/ref/Homo_sapiens.GRCh38.dna.chromosome.1-3.fa.fai"},

}
g = Goldilocks(GCRatioStrategy(), sequence_data, length="1M", stride="250K", is_faidx=True)
g.plot("hs37d5", title="GC Content over hs37d5 Chr1-3")

Note that both the x and y axes are shared between all panels to avoid the automatic creation of graphics with the
potential to mislead readers on a first glance by not featuring the same axes ticks.

7.2.2 Plot a contig or chromosome from multiple samples

By default, data within the census is aggregated by region across all input samples (in the sequence_data dic-
tionary) for the entire genome. However, one may be interested in comparisons across samples, rather than between
chromosomes in a single sample. One can plot the census results for a specific contig or chromosome for each of the
input samples, by specifying the chrom keyword argument to the plot function. Take note that the argument refers
to the sequence that appears as the i’th contig of each of the input FASTA and not the actual name or identifier of the
chromosome itself.

from goldilocks import Goldilocks
from goldilocks.strategies import GCRatioStrategy

sequence_data = {
"hs37d5": {"file": "/store/ref/hs37d5.1.fa.fai"},
"GRCh38": {"file": "/store/ref/Homo_sapiens.GRCh38.dna.chromosome.1.fa.fai"},

}
g = Goldilocks(GCRatioStrategy(), sequence_data, length="1M", stride="250K", is_faidx=True)
g.plot(chrom=1, title="GC Content over Chr1")

26 Chapter 7. Plotting

Goldilocks Documentation, Release 0.1.1

7.3 Histograms

7.3.1 Simple profile (binning) plot

Rather than inspection of individual data points, one may want to know how census data behaves as a whole. The
plot function provides functionality to profile the results of a census through a histogram. Users can do this by
providing a list of bins to the bins keyword argument of the plot function, following a census.

The example below shows the distribution of GC content ratio across the hs37d5 reference sequence for all 100Kbp
regions (and step of 50Kbp). The x axis is the bin and the y axis represents the number of censused regions that fell
into a particular bin.

from goldilocks import Goldilocks
from goldilocks.strategies import GCRatioStrategy

sequence_data = {
"my_sequence": {"file": "/store/ref/hs37d5.fa.fai"}

}

g = Goldilocks(GCRatioStrategy(), sequence_data,
length="100K", stride="50K", is_faidx=True)

g.plot(bins=[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0],
title="GC Content Profile of hs37d5"

)

7.3. Histograms 27

Goldilocks Documentation, Release 0.1.1

7.3.2 Simpler profile (binning) plot

It’s trivial to select some sensible bins for the plotting of GC content as we know that the value for each region must
fall between 0 and 1. However, many strategies will have an unknown minimum and maximum value and it can thus
be difficult to select a suitable binning strategy without resorting to trial and error.

Thus the plot function permits a single integer to be provided to the bins keyword instead of a list. This will
automatically create 𝑁 + 1 equally sized bins (reserving a special bin for 0.0) between 0 and the maximum observed
value for the census. It is also possible to manually set the size of the largest bin with the bin_max keyword argument.
The following example creates the same graph as the previous subsection, but without explicitly providing a list of
bins.

from goldilocks import Goldilocks
from goldilocks.strategies import GCRatioStrategy

sequence_data = {
"my_sequence": {"file": "/store/ref/hs37d5.fa.fai"},

}
g = Goldilocks(GCRatioStrategy(), sequence_data, length="100K", stride="50K", is_faidx=True)
g.plot(bins=10, bin_max=1.0, title="GC Content Profile of hs37d5")

7.3.3 Proportional bin plot

Often it can be useful to compare the size of bins in terms of their proportion rather than raw counts alone. This can be
accomplished by specifying prop=True to plot. The y axis is now the percentage of all regions that were placed
in a particular bin instead of the raw count.

from goldilocks import Goldilocks
from goldilocks.strategies import GCRatioStrategy

sequence_data = {
"my_sequence": {"file": "/store/ref/hs37d5.fa.fai"}

}

g = Goldilocks(GCRatioStrategy(), sequence_data,
length="100K", stride="50K", is_faidx=True)

g.plot(bins=10, bin_max=1.0, prop=True, title="GC Content Profile of hs37d5")

28 Chapter 7. Plotting

Goldilocks Documentation, Release 0.1.1

7.3.4 Bin multiple contigs or chromosomes from one sample

As demonstrated with the line plots earlier, one may also specify a sample name as the first parameter to plot to
create a figure with each contig or chromosome’s histogram on an individual panel.

from goldilocks import Goldilocks
from goldilocks.strategies import GCRatioStrategy

sequence_data = {
"my_sequence": {"file": "/store/ref/hs37d5.1-3.fa.fai"}

}

g = Goldilocks(GCRatioStrategy(), sequence_data,
length="100K", stride="50K", is_faidx=True)

g.plot("my_sequence",
bins=10, bin_max=1.0, prop=True, title="GC Content Profiles of hs37d5 Chrs 1-3")

7.3.5 Bin a contig or chromosome from multiple samples

Similarly, one may want to profile a single contig or chromosome between each input group as previously demonstrated
by the line graphs.

7.3. Histograms 29

Goldilocks Documentation, Release 0.1.1

from goldilocks import Goldilocks
from goldilocks.strategies import GCRatioStrategy

sequence_data = {
"hs37d5": {"file": "/store/ref/hs37d5.1.fa.fai"},
"GRCh38": {"file": "/store/ref/Homo_sapiens.GRCh38.dna.chromosome.1.fa.fai"}

}

g = Goldilocks(GCRatioStrategy(), sequence_data,
length="100K", stride="50K", is_faidx=True)

g.plot(chrom=1, bins=10, bin_max=1.0, prop=True, title="GC Content Profiles over Chr 1")

7.4 Advanced

7.4.1 Plot data from multiple counting tracks from one sample’s chromosomes

The examples thus far have demonstrated plotting the results of a strategy responsible for counting one interesting
property. But strategies are capable of counting multiple targets of interest simultaneously. Of course, one may wish
to plot the results of all tracks rather than just the totals - especially for cases such as nucleotide counting where the
sum of all counts will typically equal the size of the census region! The plot function accepts a list of track names
to plot via the tracks keyword argument. Each counting track is then drawn on the same panel for the appropriate
chromosome. A suitable legend is automatically placed at the top of the figure.

from goldilocks import Goldilocks
from goldilocks.strategies import NucleotideCounterStrategy

sequence_data = {
"hs37d5": {"file": "/store/ref/hs37d5.1-3.fa.fai"},

}

g = Goldilocks(NucleotideCounterStrategy(["A", "C", "G", "T", "N"]), sequence_data,
length="1M", stride="500K", is_faidx=True, processes=4)

g.plot(group="hs37d5", prop=True, tracks=["A", "C", "G", "T", "N"])

30 Chapter 7. Plotting

Goldilocks Documentation, Release 0.1.1

Note that prop is not a required argument, but can still be used with the tracks list to plot counts proportionally.

7.4.2 Plot data from multiple counting tracks for one chromosome across many
samples

As previously demonstrated, one can use the chrom keyword argument for plot to create a figure featuring a panel
per input sample, displaying census results for a particular chromosome. Similarly, this feature is supported when
plotting multiple tracks with the tracks keyword.

from goldilocks import Goldilocks
from goldilocks.strategies import NucleotideCounterStrategy

sequence_data = {
"hs37d5": {"file": "/store/ref/hs37d5.1.fa.fai"},
"GRCh38": {"file": "/store/ref/Homo_sapiens.GRCh38.dna.chromosome.1.fa.fai"},

}

g = Goldilocks(NucleotideCounterStrategy(["A", "C", "G", "T", "N"]), sequence_data,
length="1M", stride="500K", is_faidx=True, processes=4)

g.plot(chrom=1, prop=True, tracks=["A", "C", "G", "T", "N"])

7.4. Advanced 31

Goldilocks Documentation, Release 0.1.1

7.5 Integration with external plotting tools

7.5.1 ggplot2

Plotting packages such as ggplot2 favour ‘‘melted” input. The figure below was created using data from Goldilocks
as part of our quality control study, the scatter plot compares the density of SNPs between the GWAS and SNP chip
studies across the human genome.

7.5.2 Circos

Goldilocks has an output format specifically designed to output information for use with the ‘‘popular and pretty”
circos visualisation tool. Below is an example of a figure that can be generated from data gathered by Goldilocks.
The figure visualises the selection of regions from our original quality control study. The Python script used to generate
the data and the Circos configuration follow.

Python script

from goldilocks import Goldilocks
from goldilocks.strategies import PositionCounterStrategy

sequence_data = {
"gwas": {"file": "/encrypt/ngsqc/vcf/cd-seq.vcf.q"},
"ichip": {"file": "/encrypt/ngsqc/vcf/cd-ichip.vcf.q"},

}

g = Goldilocks(PositionCounterStrategy(), sequence_data,
length="1M", stride="500K", is_pos_file=True)

Query for regions that meet all criteria across both sample groups
The output file goldilocks.circ is used to plot the yellow triangular indicators
g.query("median", percentile_distance=20, group="gwas", exclusions={"chr": [6]})
g.query("max", percentile_distance=5, group="ichip")
g.export_meta(fmt="circos", group="total", value_bool=True, chr_prefix="hs", to="goldilocks.circ")

Reset the regions selected and saved by queries
g.reset_candidates()

32 Chapter 7. Plotting

Goldilocks Documentation, Release 0.1.1

Export all region counts for both groups individually
The -all.circ files are used to plot the scatter plots and heatmaps
g.export_meta(fmt="circos", group="gwas", chr_prefix="hs", to="gwas-all.circ")
g.export_meta(fmt="circos", group="ichip", chr_prefix="hs", to="ichip-all.circ")

Export region counts for the groups where the criteria are met
The -candidates.circ files are used to plot the yellow 'bricks' that
appear between the two middle heatmaps
g.query("median", percentile_distance=20, group="gwas")
g.export_meta(fmt="circos", group="gwas", to="gwas-candidates.circ")
g.reset_candidates()
g.query("max", percentile_distance=5, group="ichip")
g.export_meta(fmt="circos", group="ichip", to="ichip-candidates.circ")
g.reset_candidates()

Circos configuration

circos.conf
<colors>
gold = 255, 204, 0
</colors>

karyotype = data/karyotype/karyotype.human.hg19.txt
chromosomes_units = 1000000
chromosomes_display_default = no
chromosomes = hs3;

<ideogram>

<spacing>
default = 0.01r
break = 2u
</spacing>

Ideogram position, fill and outline
radius = 0.9r
thickness = 80p
fill = yes
stroke_color = dgrey
stroke_thickness = 3p

Bands
show_bands = yes
band_transparency = 4
fill_bands = yes
band_stroke_thickness = 2
band_stroke_color = white

Labels
show_label = no
label_font = default
label_radius = 1r + 75p
label_size = 72
label_parallel = yes
label_case = upper

</ideogram>

7.5. Integration with external plotting tools 33

Goldilocks Documentation, Release 0.1.1

Ticks
show_ticks = yes
show_tick_labels = yes

<ticks>

label_font = default
radius = dims(ideogram,radius_outer)
label_offset = 5p
orientation = out
label_multiplier = 1e-6
color = black
chromosomes_display_default = yes

<tick>
spacing = 1u
size = 10p
thickness = 3p
color = lgrey
show_label = no

</tick>

<tick>
spacing = 5u
size = 20p
thickness = 5p
color = dgrey
show_label = yes
label_size = 24p
label_offset = 0p
format = %d

</tick>

<tick>
spacing = 10u
size = 30p
thickness = 5p
color = black
show_label = yes
label_size = 40p
label_offset = 5p
format = %d

</tick>

</ticks>

track_width = 0.05
track_pad = 0.02
track_start = 0.95

<plots>
<plot>

type = scatter
file = goldilocks.circ
r1 = 0.98r
r0 = 0.95r
orientation = out

34 Chapter 7. Plotting

Goldilocks Documentation, Release 0.1.1

glyph = triangle
#glyph_rotation = 180
glyph_size = 50p

color = gold
stroke_thickness = 2p
stroke_color = black

min = 0
max = 1

</plot>
<plot>

type = scatter

file = gwas-all.circ
r1 = 0.95r
r0 = 0.80r

fill = no
fill_color = black
color = black_a1
stroke_color = black
glyph = circle
glyph_size = 12

<backgrounds>
<background>

color = vlgrey
y0 = 207

</background>
<background>

color = vlgrey
y1 = 207
y0 = 179

</background>
<background>

color = gold
y1 = 179
y0 = 148

</background>
<background>

color = vlgrey
y1 = 145
y0 = 122

</background>
<background>

color = vlgrey
y1 = 122
y0 = 0

</background>
</backgrounds>

<axes>
<axis>

color = white
thickness = 1
spacing = 0.05r

7.5. Integration with external plotting tools 35

Goldilocks Documentation, Release 0.1.1

</axis>
</axes>
<rules>

<rule>
condition = var(value) < 1
show = no

</rule>
</rules>

</plot>
<plot>

type = heatmap
file = gwas-all.circ

color list
color = grey,vvlblue,vlblue,lblue,blue,dblue,vdblue,vvdblue,black
r1 = 0.80r
r0 = 0.75r

scale_log_base = 0.75
color_mapping = 2
min = 1
max = 267 # 95%

</plot>

<plot>
type = tile
layers_overflow = collapse
file = gwas-candidates.circ
r1 = 0.7495r
r0 = 0.73r
orientation = in

layers = 1
margin = 0.0u
thickness = 30p
padding = 8p

color = gold
stroke_thickness = 0
stroke_color = gold

</plot>
<plot>

type = tile
layers_overflow = collapse
file = ichip-candidates.circ
r1 = 0.73r
r0 = 0.70r
orientation = out

layers = 1
margin = 0.0u
thickness = 30p
padding = 8p

color = gold
stroke_color = gold

</plot>

36 Chapter 7. Plotting

Goldilocks Documentation, Release 0.1.1

<plot>
type = heatmap
file = ichip-all.circ

color list
color = grey,vvlgreen,vlgreen,lgreen,green,dgreen,vdgreen,vvdgreen,black
r1 = 0.70r
r0 = 0.65r

min = 1
max = 1097.71 # 99%
color_mapping = 2
scale_log_base = 0.2

</plot>
<plot>

type = scatter

file = ichip-all.circ
r1 = 0.65r
r0 = 0.50r
orientation = in

fill_color = black
stroke_color = black
glyph = circle
glyph_size = 12
color = black_a1

<backgrounds>
<background>

color = gold
y0 = 379

</background>
<background>

color = vlgrey
y1 = 379
y0 = 49

</background>
<background>

color = vlgrey
y1 = 49
y0 = 0

</background>
</backgrounds>

<axes>
<axis>

color = white
thickness = 1
spacing = 0.05r

</axis>
</axes>
<rules>

<rule>
condition = var(value) < 1
show = no

</rule>

7.5. Integration with external plotting tools 37

Goldilocks Documentation, Release 0.1.1

</rules>
</plot>

</plots>

##
The remaining content is standard and required. It is imported
from default files in the Circos distribution.
#
These should be present in every Circos configuration file and
overridden as required. To see the content of these files,
look in etc/ in the Circos distribution.



RGB/HSV color definitions, color lists, location of fonts, fill patterns.
Included from Circos distribution.
<<include etc/colors_fonts_patterns.conf>>

Debugging, I/O an dother system parameters
Included from Circos distribution.
<<include etc/housekeeping.conf>>
anti_aliasing* = no

38 Chapter 7. Plotting

CHAPTER 8

Custom Strategies

One of the major features of Goldilocks is its extensibility. Strategies are both easily customisable and interchangeable,
as they all share a common interface. This interface also provides a platform for users with some knowledge of Python
to construct their own custom census rules. One such example follows below:

8.1 A Simple ORF Finder

8.1.1 Code Sample

Import Goldilocks and the BaseStrategy class
from goldilocks import Goldilocks
from goldilocks.strategies import BaseStrategy

Define a new class for your custom strategy that inherits from BaseStrategy
class MyCustomSimpleORFCounterStrategy(BaseStrategy):

Initialising function boilerplate, required to set-up some properties of the census
def __init__(self, tracks=None, min_codons=1):

Initialise the custom class with super
super(MyCustomSimpleORFCounterStrategy, self).__init__(

tracks=range(0,3), # Use range to specify a counter for
each of the three possible forward
reading frames in which to search
to search for open reading frames

label="Forward Open Reading Frames" # Y-Axis Plot Label
)
self.MIN_CODONS = min_codons

This function defines the actual behaviour of a census for a given region
of sequence and the current counting track (one of three reading frames)
def census(self, sequence, track_frame, **kwargs):

STARTS = ["ATG"]
STOPS = ["TAA", "TGA", "TAG"]
CODON_SIZE = 3

Split input sequence into codons. Open a frame if a START is found
and increment the ORF counter if a STOP is encountered afterward
orfs = orf_open = 0
for i in xrange(track_frame, len(sequence), CODON_SIZE):

codon = sequence[i:i+CODON_SIZE].upper()
if codon in STARTS and orf_open == 0:

39

Goldilocks Documentation, Release 0.1.1

orf_open = 1
elif codon in STOPS and orf_open > 0:

if orf_open > self.MIN_CODONS:
orfs += 1

orf_open = 0
elif orf_open > 0:

orf_open += 1
return orfs

Organise and execute the census
sequence_data = { "hs37d5": {"file": "/store/ref/hs37d5.1-3.fa.fai"} }
g = Goldilocks(MyCustomSimpleORFCounterStrategy(min_codons=30), sequence_data,

length="1M", stride="1M", is_faidx=True, processes=4)

8.1.2 Implementation Description

Strategies are defined as Python classes, inheriting from the BaseStrategy class found in the
goldilocks.strategies subpackage. The class requires just two function definitions to be compliant with
the shared interface; __init__: the class initializer that takes care of the setup of the strategy’s internals via the
BaseStrategy parent class, and census: the function actually responsible for the behaviour of the strategy itself.

The example presented is a very simple open reading frame counter. It searches the three forward frames for start
codons that are then followed by one of the three stop codons. The ‘‘tracks” in this example are the three possible
frames. Note on line 9 that our __init__ provides a default argument for tracks of None. Thus this particular
strategy does not need the tracks argument. Instead, the track list is provided by the strategy itself, and passed to
the BaseStrategy __init__ (line 12), forcing tracks to be the list [0, 1, 2]. The elements of this list are used as
an integer offset from which to begin splitting input DNA sequences when conducting the census later, which is why
on this occasion we don’t want to allow the user to specify their own tracks. Other strategies, such as the included
NucleotideCounterStrategy just pass the tracks argument from the user through to the super __init__.

For a given array of sequence data and a frame offset (track_frame), the census function splits the sequence
into nucleotide triplets from the offset and searches for open reading frames. A subsequence is considered an ORF by
this strategy if the ATG START codon is encountered and later followed by any STOP codon.

Our example finishes with the familiar specification of the location of input sequence data and the construction of the
census itself. Here we specify a census of all 1Mbp regions with no overlap (that is, the stride is equal to the size of
the regions) and instantiate our new MyCustomSimpleORFCounterStrategy with a keyword requiring valid
ORFs to be at least 30 codons in length (excluding start and stop).

Every strategy’s census function is expected to return a numerical result that can be used to rank and sort regions, in
this scenario, census returns the number of ORFs found.

Note also, strategies may specify any number of keyword arguments that are not found in the BaseStrategy. In
our example, min_codons can be set by a user to specify how many codons must lie between an opening and closing
codon to be counted as an open reading frame. We store this value as a member of the strategy object on line 18 and
use it on line 35 to ensure the orfs counter is only incremented when the length of the current open reading frame has
exceeded the provided threshold. One could store any number of configurable parameters inside of the strategy class
in this fashion. This framework allows one to increase the complexity of strategies while still providing a friendly and
interchangeable interface for end users.

40 Chapter 8. Custom Strategies

CHAPTER 9

Examples

The following includes some simple examples of what Goldilocks can be used for.

9.1 Example One

Read a pair of 1-indexed base position lists and output all regions falling within 2 of the maximum count of positions
in regions across both, in a table.

from goldilocks import Goldilocks
from goldilocks.strategies import PositionCounterStrategy
data = {

"my_positions": {
1: [1,2,5,10,15,15,18,25,30,50,51,52,53,54,55,100]

},
"my_other_positions": {

1: [1,3,5,7,9,12,15,21,25,51,53,59,91,92,93,95,99,100]
}

}
g = Goldilocks(PositionCounterStrategy(), data, is_pos=True, length=10, stride=1)

g.query("max", actual_distance=2).export_meta(sep="\t", group="total")

9.2 Example Two

Read a short sequence, census GC-ratio and output the top 5 regions as FASTA.

from goldilocks import Goldilocks
from goldilocks.strategies import GCRatioStrategy
data = {

"my_sequence": {
1: "ACCGAGAGATTT"

}
}
g = Goldilocks(GCRatioStrategy(), data, 3, 1)

g.query("max", limit=5).export_fasta()

41

Goldilocks Documentation, Release 0.1.1

9.3 Example Three

Read a short sequence and census the appearance of the “AAA” and “CCC” motif. Output a table of regions with
the most occurrences of CCC (and at least one) and another table of regions featuring the most appearances of both
motifs. Output only the maximum region (actual_distance = 0) displaying both motifs to FASTA.

from goldilocks import Goldilocks
from goldilocks.strategies import MotifCounterStrategy
data = {

"my_sequence": {
1: "CCCAAACCCGGGCCCGGGAGAAACCC"

}
}
g = Goldilocks(MotifCounterStrategy(["AAA", "CCC"]), data, 9, 1)

g.query("max", track="CCC", gmin=1).export_meta(sep="\t")
g.query("max", group="total").export_meta(sep="\t", group="total", track="default")

g.query("max", group="total", actual_distance=0).export_fasta()

9.4 Example Four

Read two samples of three short chromosomes and search for ‘N’ nucleotides. List and export a FASTA of regions
that contain at least one N, sorted by number of N’s appearing across both samples. Below, an example of complex
filtering.

from goldilocks import Goldilocks
from goldilocks.strategies import NucleotideCounterStrategy
data = {

"sample_one": {
1: "ANAGGGANACAN",
2: "ANAGGGANACAN",
3: "ANANNNANACAN",
4: "NNNNAANNAANN"

},
"sample_two": {

1: "ANAGGGANACAN",
2: "ANAGGGANACAN",
3: "ANANNNANACAN",
4: "NNNANNAANNAA"

}
}
g = Goldilocks(NucleotideCounterStrategy(["N"]), data, 3, 1)

g_max = g.query("max", gmin=1)
g_max.export_meta(sep="\t")
g_max.export_fasta()

g.query("min",
gmin = 1,
exclusions={

Filter any region with a starting position <= 3 or >= 10
"start_lte": 3,
"start_gte": 10,

42 Chapter 9. Examples

Goldilocks Documentation, Release 0.1.1

Filter any regions on Chr1
1: {

"chr": True
},

Filter NO regions on Chr2
NOTE: This also prevents the superexclusions above being applied.
2: {

"chr": False
},

Filter any region on Chr3 with an ending postion >= 9
3: {

"start_lte": 5 # NOTE: This overrides the start_lte applied above
}

}, use_chrom=True).export_meta(sep="\t")

9.5 Example Five

Read in four simple chromosomes from one sample and census the GC ratio. Plot both a scatter plot of all censused
regions over both of the provided samples with position over the x-axis and value on the y-axis. Produce a second plot
drawing a panel with a line graph for each chromosome with the same axes but data from one sample only. For the
combined result of both samples and chromosomes, organise the result of the census for each region into desired bins
and plot the result as a histogram. Repeat the process for the my_sequence sample and produce a panelled histogram
for each chromosome.

from goldilocks import Goldilocks
from goldilocks.strategies import GCRatioStrategy
data = {

"my_sequence": {
1: "ANAGGGANACANANAGGGANACANANAGGGANACANANAGGGANACANANAGGGACGCGCGCGGGGANACAN"*500,
2: "ANAGGCGCGCNANAGGGANACGCGGGGCCCGACANANAGGGANACANANAGGGACGCGCGCGCGCCCGACAN"*500,
3: "ANAGGCGCGCNANAGGGANACGCGGGGCCCGACANANAGGGANACANANAGGGACGCGCGCGCGCCCGACAN"*500,
4: "GCGCGCGCGCGCGCGCGGGGGGGGGCGCCGCCNNNNNNNNNNNNNNNNGCGCGCGCGCGCGCGNNNNNNNNN"*500

},
"my_same_sequence": {

1: "ANAGGGANACANANAGGGANACANANAGGGANACANANAGGGANACANANAGGGACGCGCGCGGGGANACAN"*500,
2: "ANAGGCGCGCNANAGGGANACGCGGGGCCCGACANANAGGGANACANANAGGGACGCGCGCGCGCCCGACAN"*500,
3: "ANAGGCGCGCNANAGGGANACGCGGGGCCCGACANANAGGGANACANANAGGGACGCGCGCGCGCCCGACAN"*500,
4: "GCGCGCGCGCGCGCGCGGGGGGGGGCGCCGCCNNNNNNNNNNNNNNNNGCGCGCGCGCGCGCGNNNNNNNNN"*500

}
}
g = Goldilocks(GCRatioStrategy(), data, 50, 10)

g.plot()
g.plot("my_sequence")
g.profile(bins=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0])
g.profile("my_sequence", bins=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0])

9.6 Example Six

Read a set of simple chromosomes from two samples and tabulate the top 10% of regions demonstrating the worst
consensus to the given reference over both samples. Plot the lack of consensus as line graphs for each chromosome,

9.5. Example Five 43

Goldilocks Documentation, Release 0.1.1

for each sample, then over all chromosomes for all samples on one graph.

from goldilocks import Goldilocks
from goldilocks.strategies import ReferenceConsensusStrategy
data = {

"first_sample": {
1: "NNNAANNNNNCCCCCNNNNNGGGGGNNNNNTTTTTNNNNNAAAAANNNNNCCCCCNNNNNGGGGGNNNNNTTTTTNNNNN",
2: "NNNNNCCCCCNNNNNTTTTTNNNNNAAAAANNNNNGGGGGNNNNNCCCCCNNNNNTTTTTNNNNNAAAAANNNNNGGGGN"

},
"second_sample": {

1: "NNNNNNNNNNCCCCCCCCCCNNNNNNNNNNTTTTTTTTTTNNNNNNNNNNCCCCCCCCCCNNNNNNNNNNTTTTTTTTTT",
2: "NNCCCCCCCCNNNNNNNNNNAAAAAAAAAANNNNNNNNNNCCCCCCCCCCNNNNNNNNNNAAAAAAAAAANNNNNNNNNN"

}
}
ref = {

1: "AAAAAAAAAACCCCCCCCCCGGGGGGGGGGTTTTTTTTTTAAAAAAAAAACCCCCCCCCCGGGGGGGGGGTTTTTTTTTT",
2: "CCCCCCCCCCTTTTTTTTTTAAAAAAAAAAGGGGGGGGGGCCCCCCCCCCTTTTTTTTTTAAAAAAAAAAGGGGGGGGGG"

}

g = Goldilocks(ReferenceConsensusStrategy(reference=ref, polarity=-1), data, stride=10, length=10)
g.query("max", percentile_distance=10).export_meta(group="total", track="default")

g.plot("first_sample")
g.plot("second_sample")
g.plot()

9.7 Example Seven

Read a pair of 1-indexed base position lists from two samples. Sort regions with the least number of marked positions
on Sample 1 and subsort by max marked positions in Sample 2.

from goldilocks import Goldilocks
from goldilocks.strategies import PositionCounterStrategy
data = {

"my_positions": {
1: [1,2,3,4,5,6,7,8,9,10,

11,13,15,17,19,
21,
31,39,
41]

},
"other_positions": {

1: [21,22,23,24,25,26,27,28,
31,33,39,
41,42,43,44,45,46,47,48,49,50]

}
}
g = Goldilocks(PositionCounterStrategy(), data, is_pos=True, length=10, stride=5)

g.query("max", group="my_positions").query("max", group="other_positions").export_meta(sep="\t")

44 Chapter 9. Examples

CHAPTER 10

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

10.1 Types of Contributions

10.1.1 Report Bugs

Report bugs at https://github.com/samstudio8/goldilocks/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

10.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

10.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “feature” is open to whoever wants to implement
it.

10.1.4 Write Documentation

Goldilocks could always use more documentation, whether as part of the official Goldilocks docs, in docstrings, or
even on the web in blog posts, articles, and such.

10.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/samstudio8/goldilocks/issues.

If you are proposing a feature:

45

https://github.com/samstudio8/goldilocks/issues
https://github.com/samstudio8/goldilocks/issues

Goldilocks Documentation, Release 0.1.1

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

10.2 Get Started!

Ready to contribute? Here’s how to set up goldilocks for local development.

1. Fork the goldilocks repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/goldilocks.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv goldilocks
$ cd goldilocks/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 goldilocks tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

10.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.6, 2.7, and 3.3, 3.4, and for PyPy. Check https://travis-
ci.org/samstudio8/goldilocks/pull_requests and make sure that the tests pass for all supported Python versions.

46 Chapter 10. Contributing

https://travis-ci.org/samstudio8/goldilocks/pull_requests
https://travis-ci.org/samstudio8/goldilocks/pull_requests

Goldilocks Documentation, Release 0.1.1

10.4 Tips

To run a subset of tests:

$ python -m unittest tests.test_goldilocks

10.4. Tips 47

Goldilocks Documentation, Release 0.1.1

48 Chapter 10. Contributing

CHAPTER 11

Credits

11.1 Development Lead

• Sam Nicholls <sam@samnicholls.net>

11.2 Contributors

None yet. Why not be the first?

49

mailto:sam@samnicholls.net

Goldilocks Documentation, Release 0.1.1

50 Chapter 11. Credits

CHAPTER 12

History

12.1 0.1.1 (2016-07-07)

• Updated citation. Please cite us! <3

• [PR:ar0ch] Add lowercase matching in GCRatioStrategy Fixes ‘feature’ where lowercase letters are ig-
nored by GCRatioStrategy.

12.2 0.1.0 (2016-03-08)

• Goldilocks is published software!

12.3 0.0.83-beta

• -l and -s CLI arguments and corresponding length and stride parameters to Goldilocks constructor now support
SI suffixes: K, M, G, T. util module contains parse_si_bp used to parse option strings and return the number of
bases for length and stride.

• Add length and stride to x-axis label of plots.

• Add ignore_query option to plot to override new default behaviour of plot that only plots points for regions
remaining after a call to query.

• Remove profile function, use plot with bins=N instead.

• Add binning to plot to reduce code duplication.

• Add chrom kwarg to plot to allow plotting of a single chromosome across multiple input genomes.

• Fix support for plotting data from multiple contigs or chromosomes of a single input genome when provided as
a FASTA.

• Add ignore_query kwarg to plot for ignoring the results of a query on the Goldilocks object when performing a
plot afterwards.

• Bins no longer have to be specified manually, use bins=N, this will create N+1 bins (a special 0 bin is reserved)
between 0 and the largest observed value unless bin_max is also provided.

• Bins may have a hard upper limit set with bin_max. This will override the default of the largest observed value
regardless of whether bin_max is smaller.

• Plots can now be plotted proportionally with prop=True.

51

Goldilocks Documentation, Release 0.1.1

• Improve labels for plotting.

• Reduce duplication of plotting code inside plot.

• Share Y axis across plot panels to prevent potentially misleading default plots.

• Reduce duplication of code used for outputting metadata:

• Add fmt kwarg to export_meta that permits one of:

– bed BED format (compulsory fields only)

– circos A format compatible with the circos plotting tool

– melt A format that will suit import to an R dataframe without the need for additional munging with
reshape2

– table A plain tabular format that will suit for quick outputs with some munging

• Remove print_melt, use export_meta with fmt=melt.

• Add is_pos_file kwarg to Goldilocks, allows user to specify position based variants in the format CHRtPOS or
CHR:POS in a newline delimited file.

• Changed required idx key to file in sequence dictionaries.

• Added custom strategy and plotting examples to the documentation.

• The Goldilocks class is now imported as from goldilocks import Goldilocks.

• The textwrap.wrap function is used to write out FASTA more cleanly.

• A serious regression in the parsing of FASTA files introduced by v0.0.80 has been closed.

• Improved plotting functionality for co-plotting groups, tracks of chromosome has been introduced. Tracks can
now be plotted together on the same panel by providing their names as a list to the tracks keyword.

• reset_candidates allows users to “reset” the Goldilocks object after a query or sort has been performed on the
regions.

12.4 0.0.82 (2016-01-29)

• Changed example to use MotifCounterStrategy over removed KMerCounterStrategy.

• Fix runtime NameError preventing PositionCounterStrategy from executing correctly.

• Fix runtime NameError preventing ReferenceConsensusStrategy from executing correctly.

• Add default count track to PositionCounterStrategy to prevent accidental multiple counting issue encountered
when couting with the default track.

• Add LICENSE

• Paper accepted for press!

12.5 0.0.81 (2016-01-29)

• Fix versioning error.

52 Chapter 12. History

Goldilocks Documentation, Release 0.1.1

12.6 0.0.80 (2015-08-10)

• Added multiprocessing capabilities during census step.

• Added a simple command line interface.

• Removed prepare-evaluate paradigm from strategies and now perform counts directly on input data in one step.

• Skip slides (and set all counts to 0) if their end_pos falls outside of the region on that particular genome’s
chromosome/contig.

• Rename KMerCounterStrategy to MotifCounterStrategy

• Fixed bug causing use_and to not work as expected for chromosomes not explicitly listed in the exceptions dict
when also using use_chrom.

• Support use of FASTA files which must be supplied with a samtools faidx style index.

• Stopped supporting Python 3 due to incompatability with buffer and memoryview.

• Prevent query from deep copying itself on return. Note this means that a query will alter the original Goldilocks
object.

• Now using a 3D numpy matrix to store counters with memory shared to support multiprocessing during census.

• Removed StrategyValue as these cannot be stored in shared memory. This makes ratio-based strategies a bit of
a hack currently (but still work...)

• tldr; Goldilocks is at least 2-4x faster than previously, even without multiprocessing

12.7 0.0.71 (2015-07-11)

• Officially add MIT license to repository.

• Deprecate _filter.

• Update and tidy examples.py.

• is_seq argument to initialisation removed and replaced with is_pos.

• Use is_pos to indicate the expected input is positional, not sequence.

• Force use of PositionCounterStrategy when is_pos is True.

• Sequence data now read in to 0-indexed arrays to avoid the overhead of string re-allocation by having to
append a padding character to the beginning of very long strings.

• Region metadata continues to use 1-indexed positions for user output.

• VariantCounterStrategy now PositionCounterStrategy.

• PositionCounterStrategy expects 1-indexed lists of positions; prepare populates the listed locations with 1
and then evaluate returns the sum as before.

• test_regression2 updated to account for converting 1-index to 0-index when manually handling the se-
quence for expected results.

• query accepts gmax and gmin arguments to filter candidate regions by the group-track value.

• CandidateList removed and replaced with simply returning a new Goldilocks.

12.6. 0.0.80 (2015-08-10) 53

Goldilocks Documentation, Release 0.1.1

12.8 0.0.6 (2015-06-23)

• Goldilocks.sorted_regions stores a list of region ids to represent the result of a sorting operation following a call
to query.

• Regions in Goldilocks.regions now always have a copy of their “id” as a key.

• __check_exclusions now accepts a group and track for more complex exclusion-based operations.

• region_group_lte and region_group_gte added to usable exclusion fields to remove regions where the value of
the desired group/track combination is less/greater than or equal to the value of the group/track set by the current
query.

• query now returns a new Goldilocks instance, rather than a CandidateList.

• Goldilocks.candidates property now allows access to regions, this property will maintain the order of
sorted_regions if it has one.

• export_meta now allows group=None

• CandidateList class deleted.

• Test data that is no longer used has been deleted.

• Scripts for generating test data added to test_gen/ directory.

• Tests updated to reflect the fact CandidateList lists are no longer returned by query.

• _filter is to be deprecated in favour of query by 0.0.7

12.9 Beta (2014-10-08)

• Massively updated! Compatability with previous versions very broken.

• Software retrofitted to be much more flexible to support a wider range of problems.

12.10 0.0.2 (2014-08-18)

• Remove incompatible use of print

12.11 0.0.1 (2014-08-18)

• Initial package

54 Chapter 12. History

CHAPTER 13

Indices and tables

• genindex

• modindex

• search

55

	Goldilocks
	What is it?
	What can I use it for?
	Why should I use it?
	Requirements
	Installation
	Citation
	License

	Installation
	Command Line Usage
	Usage
	Example

	Basic Package Usage
	Importing
	Providing Sequence Data as Dictionary
	Providing Sequence Data as FASTA
	Conducting a Census
	Getting the Regions
	Sorting Regions
	Setting Number of Processes
	Full Example

	Advanced Package Usage
	Filtering Regions
	Excluding Regions
	Limiting Regions
	Full Example

	Exporting
	Census Data
	FASTA

	Plotting
	Scatter Graphs
	Line Graphs
	Histograms
	Advanced
	Integration with external plotting tools

	Custom Strategies
	A Simple ORF Finder

	Examples
	Example One
	Example Two
	Example Three
	Example Four
	Example Five
	Example Six
	Example Seven

	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines
	Tips

	Credits
	Development Lead
	Contributors

	History
	0.1.1 (2016-07-07)
	0.1.0 (2016-03-08)
	0.0.83-beta
	0.0.82 (2016-01-29)
	0.0.81 (2016-01-29)
	0.0.80 (2015-08-10)
	0.0.71 (2015-07-11)
	0.0.6 (2015-06-23)
	Beta (2014-10-08)
	0.0.2 (2014-08-18)
	0.0.1 (2014-08-18)

	Indices and tables

