

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/gojot/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/gojot/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

[image: gojot]

[image: Version]

 go-colorable

go-colorable

[image: Godoc Reference] [http://godoc.org/github.com/mattn/go-colorable]
[image: Build Status] [https://travis-ci.org/mattn/go-colorable]
[image: Coverage Status] [https://coveralls.io/github/mattn/go-colorable?branch=master]
[image: Go Report Card] [https://goreportcard.com/report/mattn/go-colorable]

Colorable writer for windows.

For example, most of logger packages doesn’t show colors on windows. (I know we can do it with ansicon. But I don’t want.)
This package is possible to handle escape sequence for ansi color on windows.

Too Bad!

[image:]

So Good!

[image:]

Usage

logrus.SetFormatter(&logrus.TextFormatter{ForceColors: true})
logrus.SetOutput(colorable.NewColorableStdout())

logrus.Info("succeeded")
logrus.Warn("not correct")
logrus.Error("something error")
logrus.Fatal("panic")

You can compile above code on non-windows OSs.

Installation

$ go get github.com/mattn/go-colorable

License

MIT

Author

Yasuhiro Matsumoto (a.k.a mattn)

 go-isatty

go-isatty

[image: Godoc Reference] [http://godoc.org/github.com/mattn/go-isatty]
[image: Build Status] [https://travis-ci.org/mattn/go-isatty]
[image: Coverage Status] [https://coveralls.io/github/mattn/go-isatty?branch=master]
[image: Go Report Card] [https://goreportcard.com/report/mattn/go-isatty]

isatty for golang

Usage

package main

import (
 "fmt"
 "github.com/mattn/go-isatty"
 "os"
)

func main() {
 if isatty.IsTerminal(os.Stdout.Fd()) {
 fmt.Println("Is Terminal")
 } else if isatty.IsCygwinTerminal(os.Stdout.Fd()) {
 fmt.Println("Is Cygwin/MSYS2 Terminal")
 } else {
 fmt.Println("Is Not Terminal")
 }
}

Installation

$ go get github.com/mattn/go-isatty

License

MIT

Author

Yasuhiro Matsumoto (a.k.a mattn)

Thanks

	k-takata: base idea for IsCygwinTerminal

https://github.com/k-takata/go-iscygpty

 Logrus

Logrus [image: :walrus:]

[image: Build Status] [https://travis-ci.org/sirupsen/logrus]

[image: GoDoc] [https://godoc.org/github.com/sirupsen/logrus]

Logrus is a structured logger for Go (golang), completely API compatible with
the standard library logger.

Seeing weird case-sensitive problems? It’s in the past been possible to
import Logrus as both upper- and lower-case. Due to the Go package environment,
this caused issues in the community and we needed a standard. Some environments
experienced problems with the upper-case variant, so the lower-case was decided.
Everything using logrus will need to use the lower-case:
github.com/sirupsen/logrus. Any package that isn’t, should be changed.

To fix Glide, see these
comments [https://github.com/sirupsen/logrus/issues/553#issuecomment-306591437].
For an in-depth explanation of the casing issue, see this
comment [https://github.com/sirupsen/logrus/issues/570#issuecomment-313933276].

Are you interested in assisting in maintaining Logrus? Currently I have a
lot of obligations, and I am unable to provide Logrus with the maintainership it
needs. If you’d like to help, please reach out to me at simon at author's username dot com.

Nicely color-coded in development (when a TTY is attached, otherwise just
plain text):

[image: Colored]

With log.SetFormatter(&log.JSONFormatter{}), for easy parsing by logstash
or Splunk:

{"animal":"walrus","level":"info","msg":"A group of walrus emerges from the
ocean","size":10,"time":"2014-03-10 19:57:38.562264131 -0400 EDT"}

{"level":"warning","msg":"The group's number increased tremendously!",
"number":122,"omg":true,"time":"2014-03-10 19:57:38.562471297 -0400 EDT"}

{"animal":"walrus","level":"info","msg":"A giant walrus appears!",
"size":10,"time":"2014-03-10 19:57:38.562500591 -0400 EDT"}

{"animal":"walrus","level":"info","msg":"Tremendously sized cow enters the ocean.",
"size":9,"time":"2014-03-10 19:57:38.562527896 -0400 EDT"}

{"level":"fatal","msg":"The ice breaks!","number":100,"omg":true,
"time":"2014-03-10 19:57:38.562543128 -0400 EDT"}

With the default log.SetFormatter(&log.TextFormatter{}) when a TTY is not
attached, the output is compatible with the
logfmt [http://godoc.org/github.com/kr/logfmt] format:

time="2015-03-26T01:27:38-04:00" level=debug msg="Started observing beach" animal=walrus number=8
time="2015-03-26T01:27:38-04:00" level=info msg="A group of walrus emerges from the ocean" animal=walrus size=10
time="2015-03-26T01:27:38-04:00" level=warning msg="The group's number increased tremendously!" number=122 omg=true
time="2015-03-26T01:27:38-04:00" level=debug msg="Temperature changes" temperature=-4
time="2015-03-26T01:27:38-04:00" level=panic msg="It's over 9000!" animal=orca size=9009
time="2015-03-26T01:27:38-04:00" level=fatal msg="The ice breaks!" err=&{0x2082280c0 map[animal:orca size:9009] 2015-03-26 01:27:38.441574009 -0400 EDT panic It's over 9000!} number=100 omg=true
exit status 1

Case-sensitivity

The organization’s name was changed to lower-case–and this will not be changed
back. If you are getting import conflicts due to case sensitivity, please use
the lower-case import: github.com/sirupsen/logrus.

Example

The simplest way to use Logrus is simply the package-level exported logger:

package main

import (
 log "github.com/sirupsen/logrus"
)

func main() {
 log.WithFields(log.Fields{
 "animal": "walrus",
 }).Info("A walrus appears")
}

Note that it’s completely api-compatible with the stdlib logger, so you can
replace your log imports everywhere with log "github.com/sirupsen/logrus"
and you’ll now have the flexibility of Logrus. You can customize it all you
want:

package main

import (
 "os"
 log "github.com/sirupsen/logrus"
)

func init() {
 // Log as JSON instead of the default ASCII formatter.
 log.SetFormatter(&log.JSONFormatter{})

 // Output to stdout instead of the default stderr
 // Can be any io.Writer, see below for File example
 log.SetOutput(os.Stdout)

 // Only log the warning severity or above.
 log.SetLevel(log.WarnLevel)
}

func main() {
 log.WithFields(log.Fields{
 "animal": "walrus",
 "size": 10,
 }).Info("A group of walrus emerges from the ocean")

 log.WithFields(log.Fields{
 "omg": true,
 "number": 122,
 }).Warn("The group's number increased tremendously!")

 log.WithFields(log.Fields{
 "omg": true,
 "number": 100,
 }).Fatal("The ice breaks!")

 // A common pattern is to re-use fields between logging statements by re-using
 // the logrus.Entry returned from WithFields()
 contextLogger := log.WithFields(log.Fields{
 "common": "this is a common field",
 "other": "I also should be logged always",
 })

 contextLogger.Info("I'll be logged with common and other field")
 contextLogger.Info("Me too")
}

For more advanced usage such as logging to multiple locations from the same
application, you can also create an instance of the logrus Logger:

package main

import (
 "os"
 "github.com/sirupsen/logrus"
)

// Create a new instance of the logger. You can have any number of instances.
var log = logrus.New()

func main() {
 // The API for setting attributes is a little different than the package level
 // exported logger. See Godoc.
 log.Out = os.Stdout

 // You could set this to any `io.Writer` such as a file
 // file, err := os.OpenFile("logrus.log", os.O_CREATE|os.O_WRONLY, 0666)
 // if err == nil {
 // log.Out = file
 // } else {
 // log.Info("Failed to log to file, using default stderr")
 // }

 log.WithFields(logrus.Fields{
 "animal": "walrus",
 "size": 10,
 }).Info("A group of walrus emerges from the ocean")
}

Fields

Logrus encourages careful, structured logging through logging fields instead of
long, unparseable error messages. For example, instead of: log.Fatalf("Failed to send event %s to topic %s with key %d"), you should log the much more
discoverable:

log.WithFields(log.Fields{
 "event": event,
 "topic": topic,
 "key": key,
}).Fatal("Failed to send event")

We’ve found this API forces you to think about logging in a way that produces
much more useful logging messages. We’ve been in countless situations where just
a single added field to a log statement that was already there would’ve saved us
hours. The WithFields call is optional.

In general, with Logrus using any of the printf-family functions should be
seen as a hint you should add a field, however, you can still use the
printf-family functions with Logrus.

Default Fields

Often it’s helpful to have fields always attached to log statements in an
application or parts of one. For example, you may want to always log the
request_id and user_ip in the context of a request. Instead of writing
log.WithFields(log.Fields{"request_id": request_id, "user_ip": user_ip}) on
every line, you can create a logrus.Entry to pass around instead:

requestLogger := log.WithFields(log.Fields{"request_id": request_id, "user_ip": user_ip})
requestLogger.Info("something happened on that request") # will log request_id and user_ip
requestLogger.Warn("something not great happened")

Hooks

You can add hooks for logging levels. For example to send errors to an exception
tracking service on Error, Fatal and Panic, info to StatsD or log to
multiple places simultaneously, e.g. syslog.

Logrus comes with built-in hooks. Add those, or your custom hook, in
init:

import (
 log "github.com/sirupsen/logrus"
 "gopkg.in/gemnasium/logrus-airbrake-hook.v2" // the package is named "aibrake"
 logrus_syslog "github.com/sirupsen/logrus/hooks/syslog"
 "log/syslog"
)

func init() {

 // Use the Airbrake hook to report errors that have Error severity or above to
 // an exception tracker. You can create custom hooks, see the Hooks section.
 log.AddHook(airbrake.NewHook(123, "xyz", "production"))

 hook, err := logrus_syslog.NewSyslogHook("udp", "localhost:514", syslog.LOG_INFO, "")
 if err != nil {
 log.Error("Unable to connect to local syslog daemon")
 } else {
 log.AddHook(hook)
 }
}

Note: Syslog hook also support connecting to local syslog (Ex. “/dev/log” or “/var/run/syslog” or “/var/run/log”). For the detail, please check the syslog hook README.

Hook	Description
—–	———–
Airbrake “legacy” [https://github.com/gemnasium/logrus-airbrake-legacy-hook]	Send errors to an exception tracking service compatible with the Airbrake API V2. Uses airbrake-go [https://github.com/tobi/airbrake-go] behind the scenes.
Airbrake [https://github.com/gemnasium/logrus-airbrake-hook]	Send errors to the Airbrake API V3. Uses the official gobrake [https://github.com/airbrake/gobrake] behind the scenes.
Amazon Kinesis [https://github.com/evalphobia/logrus_kinesis]	Hook for logging to Amazon Kinesis [https://aws.amazon.com/kinesis/]
Amqp-Hook [https://github.com/vladoatanasov/logrus_amqp]	Hook for logging to Amqp broker (Like RabbitMQ)
Bugsnag [https://github.com/Shopify/logrus-bugsnag/blob/master/bugsnag.go]	Send errors to the Bugsnag exception tracking service.
DeferPanic [https://github.com/deferpanic/dp-logrus]	Hook for logging to DeferPanic
Discordrus [https://github.com/kz/discordrus]	Hook for logging to Discord [https://discordapp.com/]
ElasticSearch [https://github.com/sohlich/elogrus]	Hook for logging to ElasticSearch
Firehose [https://github.com/beaubrewer/logrus_firehose]	Hook for logging to Amazon Firehose [https://aws.amazon.com/kinesis/firehose/]
Fluentd [https://github.com/evalphobia/logrus_fluent]	Hook for logging to fluentd
Go-Slack [https://github.com/multiplay/go-slack]	Hook for logging to Slack [https://slack.com]
Graylog [https://github.com/gemnasium/logrus-graylog-hook]	Hook for logging to Graylog [http://graylog2.org/]
Hiprus [https://github.com/nubo/hiprus]	Send errors to a channel in hipchat.
Honeybadger [https://github.com/agonzalezro/logrus_honeybadger]	Hook for sending exceptions to Honeybadger
InfluxDB [https://github.com/Abramovic/logrus_influxdb]	Hook for logging to influxdb
Influxus [http://github.com/vlad-doru/influxus]	Hook for concurrently logging to InfluxDB [http://influxdata.com/]
Journalhook [https://github.com/wercker/journalhook]	Hook for logging to systemd-journald
KafkaLogrus [https://github.com/goibibo/KafkaLogrus]	Hook for logging to kafka
LFShook [https://github.com/rifflock/lfshook]	Hook for logging to the local filesystem
Logentries [https://github.com/jcftang/logentriesrus]	Hook for logging to Logentries [https://logentries.com/]
Logentrus [https://github.com/puddingfactory/logentrus]	Hook for logging to Logentries [https://logentries.com/]
Logmatic.io [https://github.com/logmatic/logmatic-go]	Hook for logging to Logmatic.io [http://logmatic.io/]
Logrusly [https://github.com/sebest/logrusly]	Send logs to Loggly [https://www.loggly.com/]
Logstash [https://github.com/bshuster-repo/logrus-logstash-hook]	Hook for logging to Logstash [https://www.elastic.co/products/logstash]
Mail [https://github.com/zbindenren/logrus_mail]	Hook for sending exceptions via mail
Mattermost [https://github.com/shuLhan/mattermost-integration/tree/master/hooks/logrus]	Hook for logging to Mattermost [https://mattermost.com/]
Mongodb [https://github.com/weekface/mgorus]	Hook for logging to mongodb
NATS-Hook [https://github.com/rybit/nats_logrus_hook]	Hook for logging to NATS [https://nats.io]
Octokit [https://github.com/dorajistyle/logrus-octokit-hook]	Hook for logging to github via octokit
Papertrail [https://github.com/polds/logrus-papertrail-hook]	Send errors to the Papertrail [https://papertrailapp.com] hosted logging service via UDP.
PostgreSQL [https://github.com/gemnasium/logrus-postgresql-hook]	Send logs to PostgreSQL [http://postgresql.org]
Pushover [https://github.com/toorop/logrus_pushover]	Send error via Pushover [https://pushover.net]
Raygun [https://github.com/squirkle/logrus-raygun-hook]	Hook for logging to Raygun.io [http://raygun.io/]
Redis-Hook [https://github.com/rogierlommers/logrus-redis-hook]	Hook for logging to a ELK stack (through Redis)
Rollrus [https://github.com/heroku/rollrus]	Hook for sending errors to rollbar
Scribe [https://github.com/sagar8192/logrus-scribe-hook]	Hook for logging to Scribe [https://github.com/facebookarchive/scribe]
Sentry [https://github.com/evalphobia/logrus_sentry]	Send errors to the Sentry error logging and aggregation service.
Slackrus [https://github.com/johntdyer/slackrus]	Hook for Slack chat.
Stackdriver [https://github.com/knq/sdhook]	Hook for logging to Google Stackdriver [https://cloud.google.com/logging/]
Sumorus [https://github.com/doublefree/sumorus]	Hook for logging to SumoLogic [https://www.sumologic.com/]
Syslog [https://github.com/sirupsen/logrus/blob/master/hooks/syslog/syslog.go]	Send errors to remote syslog server. Uses standard library log/syslog behind the scenes.
Syslog TLS [https://github.com/shinji62/logrus-syslog-ng]	Send errors to remote syslog server with TLS support.
TraceView [https://github.com/evalphobia/logrus_appneta]	Hook for logging to AppNeta TraceView [https://www.appneta.com/products/traceview/]
Typetalk [https://github.com/dragon3/logrus-typetalk-hook]	Hook for logging to Typetalk [https://www.typetalk.in/]
logz.io [https://github.com/ripcurld00d/logrus-logzio-hook]	Hook for logging to logz.io [https://logz.io], a Log as a Service using Logstash
SQS-Hook [https://github.com/tsarpaul/logrus_sqs]	Hook for logging to Amazon Simple Queue Service (SQS) [https://aws.amazon.com/sqs/]

Level logging

Logrus has six logging levels: Debug, Info, Warning, Error, Fatal and Panic.

log.Debug("Useful debugging information.")
log.Info("Something noteworthy happened!")
log.Warn("You should probably take a look at this.")
log.Error("Something failed but I'm not quitting.")
// Calls os.Exit(1) after logging
log.Fatal("Bye.")
// Calls panic() after logging
log.Panic("I'm bailing.")

You can set the logging level on a Logger, then it will only log entries with
that severity or anything above it:

// Will log anything that is info or above (warn, error, fatal, panic). Default.
log.SetLevel(log.InfoLevel)

It may be useful to set log.Level = logrus.DebugLevel in a debug or verbose
environment if your application has that.

Entries

Besides the fields added with WithField or WithFields some fields are
automatically added to all logging events:

	time. The timestamp when the entry was created.

	msg. The logging message passed to {Info,Warn,Error,Fatal,Panic} after
the AddFields call. E.g. Failed to send event.

	level. The logging level. E.g. info.

Environments

Logrus has no notion of environment.

If you wish for hooks and formatters to only be used in specific environments,
you should handle that yourself. For example, if your application has a global
variable Environment, which is a string representation of the environment you
could do:

import (
 log "github.com/sirupsen/logrus"
)

init() {
 // do something here to set environment depending on an environment variable
 // or command-line flag
 if Environment == "production" {
 log.SetFormatter(&log.JSONFormatter{})
 } else {
 // The TextFormatter is default, you don't actually have to do this.
 log.SetFormatter(&log.TextFormatter{})
 }
}

This configuration is how logrus was intended to be used, but JSON in
production is mostly only useful if you do log aggregation with tools like
Splunk or Logstash.

Formatters

The built-in logging formatters are:

	logrus.TextFormatter. Logs the event in colors if stdout is a tty, otherwise
without colors.
	Note: to force colored output when there is no TTY, set the ForceColors
field to true. To force no colored output even if there is a TTY set the
DisableColors field to true. For Windows, see
github.com/mattn/go-colorable [https://github.com/mattn/go-colorable].

	All options are listed in the generated docs [https://godoc.org/github.com/sirupsen/logrus#TextFormatter].

	logrus.JSONFormatter. Logs fields as JSON.
	All options are listed in the generated docs [https://godoc.org/github.com/sirupsen/logrus#JSONFormatter].

Third party logging formatters:

	FluentdFormatter [https://github.com/joonix/log]. Formats entries that can by parsed by Kubernetes and Google Container Engine.

	logstash [https://github.com/bshuster-repo/logrus-logstash-hook]. Logs fields as Logstash [http://logstash.net] Events.

	prefixed [https://github.com/x-cray/logrus-prefixed-formatter]. Displays log entry source along with alternative layout.

	zalgo [https://github.com/aybabtme/logzalgo]. Invoking the P͉̫o̳̼̊w̖͈̰͎e̬͔̭͂r͚̼̹̲ ̫͓͉̳͈ō̠͕͖̚f̝͍̠ ͕̲̞͖͑Z̖̫̤̫ͪa͉̬͈̗l͖͎g̳̥o̰̥̅!̣͔̲̻͊̄ ̙̘̦̹̦.

You can define your formatter by implementing the Formatter interface,
requiring a Format method. Format takes an *Entry. entry.Data is a
Fields type (map[string]interface{}) with all your fields as well as the
default ones (see Entries section above):

type MyJSONFormatter struct {
}

log.SetFormatter(new(MyJSONFormatter))

func (f *MyJSONFormatter) Format(entry *Entry) ([]byte, error) {
 // Note this doesn't include Time, Level and Message which are available on
 // the Entry. Consult `godoc` on information about those fields or read the
 // source of the official loggers.
 serialized, err := json.Marshal(entry.Data)
 if err != nil {
 return nil, fmt.Errorf("Failed to marshal fields to JSON, %v", err)
 }
 return append(serialized, '\n'), nil
}

Logger as an io.Writer

Logrus can be transformed into an io.Writer. That writer is the end of an io.Pipe and it is your responsibility to close it.

w := logger.Writer()
defer w.Close()

srv := http.Server{
 // create a stdlib log.Logger that writes to
 // logrus.Logger.
 ErrorLog: log.New(w, "", 0),
}

Each line written to that writer will be printed the usual way, using formatters
and hooks. The level for those entries is info.

This means that we can override the standard library logger easily:

logger := logrus.New()
logger.Formatter = &logrus.JSONFormatter{}

// Use logrus for standard log output
// Note that `log` here references stdlib's log
// Not logrus imported under the name `log`.
log.SetOutput(logger.Writer())

Rotation

Log rotation is not provided with Logrus. Log rotation should be done by an
external program (like logrotate(8)) that can compress and delete old log
entries. It should not be a feature of the application-level logger.

Tools

Tool	Description
—-	———–
Logrus Mate [https://github.com/gogap/logrus_mate]	Logrus mate is a tool for Logrus to manage loggers, you can initial logger’s level, hook and formatter by config file, the logger will generated with different config at different environment.
Logrus Viper Helper [https://github.com/heirko/go-contrib/tree/master/logrusHelper]	An Helper around Logrus to wrap with spf13/Viper to load configuration with fangs! And to simplify Logrus configuration use some behavior of Logrus Mate [https://github.com/gogap/logrus_mate]. sample [https://github.com/heirko/iris-contrib/blob/master/middleware/logrus-logger/example]

Testing

Logrus has a built in facility for asserting the presence of log messages. This is implemented through the test hook and provides:

	decorators for existing logger (test.NewLocal and test.NewGlobal) which basically just add the test hook

	a test logger (test.NewNullLogger) that just records log messages (and does not output any):

import(
 "github.com/sirupsen/logrus"
 "github.com/sirupsen/logrus/hooks/test"
 "github.com/stretchr/testify/assert"
 "testing"
)

func TestSomething(t*testing.T){
 logger, hook := test.NewNullLogger()
 logger.Error("Helloerror")

 assert.Equal(t, 1, len(hook.Entries))
 assert.Equal(t, logrus.ErrorLevel, hook.LastEntry().Level)
 assert.Equal(t, "Helloerror", hook.LastEntry().Message)

 hook.Reset()
 assert.Nil(t, hook.LastEntry())
}

Fatal handlers

Logrus can register one or more functions that will be called when any fatal
level message is logged. The registered handlers will be executed before
logrus performs a os.Exit(1). This behavior may be helpful if callers need
to gracefully shutdown. Unlike a panic("Something went wrong...") call which can be intercepted with a deferred recover a call to os.Exit(1) can not be intercepted.

...
handler := func() {
 // gracefully shutdown something...
}
logrus.RegisterExitHandler(handler)
...

Thread safety

By default Logger is protected by mutex for concurrent writes, this mutex is invoked when calling hooks and writing logs.
If you are sure such locking is not needed, you can call logger.SetNoLock() to disable the locking.

Situation when locking is not needed includes:

	You have no hooks registered, or hooks calling is already thread-safe.

	Writing to logger.Out is already thread-safe, for example:

	logger.Out is protected by locks.

	logger.Out is a os.File handler opened with O_APPEND flag, and every write is smaller than 4k. (This allow multi-thread/multi-process writing)

(Refer to http://www.notthewizard.com/2014/06/17/are-files-appends-really-atomic/)

 1.0.3

1.0.3

	Replace example files with testable examples

1.0.2

	bug: quote non-string values in text formatter (#583)

	Make (*Logger) SetLevel a public method

1.0.1

	bug: fix escaping in text formatter (#575)

1.0.0

	Officially changed name to lower-case

	bug: colors on Windows 10 (#541)

	bug: fix race in accessing level (#512)

0.11.5

	feature: add writer and writerlevel to entry (#372)

0.11.4

	bug: fix undefined variable on solaris (#493)

0.11.3

	formatter: configure quoting of empty values (#484)

	formatter: configure quoting character (default is ") (#484)

	bug: fix not importing io correctly in non-linux environments (#481)

0.11.2

	bug: fix windows terminal detection (#476)

0.11.1

	bug: fix tty detection with custom out (#471)

0.11.0

	performance: Use bufferpool to allocate (#370)

	terminal: terminal detection for app-engine (#343)

	feature: exit handler (#375)

0.10.0

	feature: Add a test hook (#180)

	feature: ParseLevel is now case-insensitive (#326)

	feature: FieldLogger interface that generalizes Logger and Entry (#308)

	performance: avoid re-allocations on WithFields (#335)

0.9.0

	logrus/text_formatter: don’t emit empty msg

	logrus/hooks/airbrake: move out of main repository

	logrus/hooks/sentry: move out of main repository

	logrus/hooks/papertrail: move out of main repository

	logrus/hooks/bugsnag: move out of main repository

	logrus/core: run tests with -race

	logrus/core: detect TTY based on stderr

	logrus/core: support WithError on logger

	logrus/core: Solaris support

0.8.7

	logrus/core: fix possible race (#216)

	logrus/doc: small typo fixes and doc improvements

0.8.6

	hooks/raven: allow passing an initialized client

0.8.5

	logrus/core: revert #208

0.8.4

	formatter/text: fix data race (#218)

0.8.3

	logrus/core: fix entry log level (#208)

	logrus/core: improve performance of text formatter by 40%

	logrus/core: expose LevelHooks type

	logrus/core: add support for DragonflyBSD and NetBSD

	formatter/text: print structs more verbosely

0.8.2

	logrus: fix more Fatal family functions

0.8.1

	logrus: fix not exiting on Fatalf and Fatalln

0.8.0

	logrus: defaults to stderr instead of stdout

	hooks/sentry: add special field for *http.Request

	formatter/text: ignore Windows for colors

0.7.3

	formatter/*: allow configuration of timestamp layout

0.7.2

	formatter/text: Add configuration option for time format (#158)

 Syslog Hooks for Logrus

Syslog Hooks for Logrus [image: :walrus:]

Usage

import (
 "log/syslog"
 "github.com/sirupsen/logrus"
 lSyslog "github.com/sirupsen/logrus/hooks/syslog"
)

func main() {
 log := logrus.New()
 hook, err := lSyslog.NewSyslogHook("udp", "localhost:514", syslog.LOG_INFO, "")

 if err == nil {
 log.Hooks.Add(hook)
 }
}

If you want to connect to local syslog (Ex. “/dev/log” or “/var/run/syslog” or “/var/run/log”). Just assign empty string to the first two parameters of NewSyslogHook. It should look like the following.

import (
 "log/syslog"
 "github.com/sirupsen/logrus"
 lSyslog "github.com/sirupsen/logrus/hooks/syslog"
)

func main() {
 log := logrus.New()
 hook, err := lSyslog.NewSyslogHook("", "", syslog.LOG_INFO, "")

 if err == nil {
 log.Hooks.Add(hook)
 }
}

 UUID package for Go language

UUID package for Go language

[image: Build Status] [https://travis-ci.org/satori/go.uuid]
[image: Coverage Status] [https://coveralls.io/github/satori/go.uuid]
[image: GoDoc] [http://godoc.org/github.com/satori/go.uuid]

This package provides pure Go implementation of Universally Unique Identifier (UUID). Supported both creation and parsing of UUIDs.

With 100% test coverage and benchmarks out of box.

Supported versions:

	Version 1, based on timestamp and MAC address (RFC 4122)

	Version 2, based on timestamp, MAC address and POSIX UID/GID (DCE 1.1)

	Version 3, based on MD5 hashing (RFC 4122)

	Version 4, based on random numbers (RFC 4122)

	Version 5, based on SHA-1 hashing (RFC 4122)

Installation

Use the go command:

$ go get github.com/satori/go.uuid

Requirements

UUID package requires Go >= 1.2.

Example

package main

import (
 "fmt"
 "github.com/satori/go.uuid"
)

func main() {
 // Creating UUID Version 4
 u1 := uuid.NewV4()
 fmt.Printf("UUIDv4: %s\n", u1)

 // Parsing UUID from string input
 u2, err := uuid.FromString("6ba7b810-9dad-11d1-80b4-00c04fd430c8")
 if err != nil {
 fmt.Printf("Something gone wrong: %s", err)
 }
 fmt.Printf("Successfully parsed: %s", u2)
}

Documentation

Documentation [http://godoc.org/github.com/satori/go.uuid] is hosted at GoDoc project.

Links

	RFC 4122 [http://tools.ietf.org/html/rfc4122]

	DCE 1.1: Authentication and Security Services [http://pubs.opengroup.org/onlinepubs/9696989899/chap5.htm#tagcjh_08_02_01_01]

Copyright

Copyright (C) 2013-2016 by Maxim Bublis b@codemonkey.ru.

UUID package released under MIT License.
See LICENSE [https://github.com/satori/go.uuid/blob/master/LICENSE] for details.

 Guide

 [image: Build Status] [https://travis-ci.org/chzyer/readline]
[image: Software License]
[image: Version] [https://github.com/chzyer/readline/releases]
[image: GoDoc] [https://godoc.org/github.com/chzyer/readline]
[image: OpenCollective]
[image: OpenCollective]

A powerful readline library in Linux macOS Windows Solaris

Guide

	Demo

	Shortcut

Repos using readline

[image: cockroachdb] [https://github.com/cockroachdb/cockroach]
[image: robertkrimen/otto] [https://github.com/robertkrimen/otto]
[image: empire] [https://github.com/remind101/empire]
[image: mehrdadrad/mylg] [https://github.com/mehrdadrad/mylg]
[image: knq/usql] [https://github.com/knq/usql]
[image: youtube/doorman] [https://github.com/youtube/doorman]
[image: bom-d-van/harp] [https://github.com/bom-d-van/harp]
[image: abiosoft/ishell] [https://github.com/abiosoft/ishell]
[image: Netflix/hal-9001] [https://github.com/Netflix/hal-9001]
[image: docker/go-p9p] [https://github.com/docker/go-p9p]

Feedback

If you have any questions, please submit a github issue and any pull requests is welcomed :)

	https://twitter.com/chzyer

	http://weibo.com/2145262190

Backers

Love Readline? Help me keep it alive by donating funds to cover project expenses!

[Become a backer [https://opencollective.com/readline#backer]]

 ChangeLog

ChangeLog

1.4 - 2016-07-25

	#60 [https://github.com/chzyer/readline/pull/60] Support dynamic autocompletion

	Fix ANSI parser on Windows

	Fix wrong column width in complete mode on Windows

	Remove dependent package “golang.org/x/crypto/ssh/terminal”

1.3 - 2016-05-09

	#38 [https://github.com/chzyer/readline/pull/38] add SetChildren for prefix completer interface

	#42 [https://github.com/chzyer/readline/pull/42] improve multiple lines compatibility

	#43 [https://github.com/chzyer/readline/pull/43] remove sub-package(runes) for gopkg compatiblity

	#46 [https://github.com/chzyer/readline/pull/46] Auto complete with space prefixed line

	#48 [https://github.com/chzyer/readline/pull/48] support suspend process (ctrl+Z)

	#49 [https://github.com/chzyer/readline/pull/49] fix bug that check equals with previous command

	#53 [https://github.com/chzyer/readline/pull/53] Fix bug which causes integer divide by zero panicking when input buffer is empty

1.2 - 2016-03-05

	Add a demo for checking password strength example/readline-pass-strength [https://github.com/chzyer/readline/blob/master/example/readline-pass-strength/readline-pass-strength.go], , written by @sahib [https://github.com/sahib]

	#23 [https://github.com/chzyer/readline/pull/23], support stdin remapping

	#27 [https://github.com/chzyer/readline/pull/27], add a UniqueEditLine to Config, which will erase the editing line after user submited it, usually use in IM.

	Add a demo for multiline example/readline-multiline [https://github.com/chzyer/readline/blob/master/example/readline-multiline/readline-multiline.go] which can submit one SQL by multiple lines.

	Supports performs even stdin/stdout is not a tty.

	Add a new simple apis for single instance, check by here [https://github.com/chzyer/readline/blob/master/std.go]. It need to save history manually if using this api.

	#28 [https://github.com/chzyer/readline/pull/28], fixes the history is not working as expected.

	#33 [https://github.com/chzyer/readline/pull/33], vim mode now support c, d, x (delete character), r (replace character)

1.1 - 2015-11-20

	#12 [https://github.com/chzyer/readline/pull/12] Add support for key <Delete>/<Home>/<End>

	Only enter raw mode as needed (calling Readline()), program will receive signal(e.g. Ctrl+C) if not interact with readline.

	Bugs fixed for PrefixCompleter

	Press Ctrl+D in empty line will cause io.EOF in error, Press Ctrl+C in anytime will cause ErrInterrupt instead of io.EOF, this will privodes a shell-like user experience.

	Customable Interrupt/EOF prompt in Config

	#17 [https://github.com/chzyer/readline/pull/17] Change atomic package to use 32bit function to let it runnable on arm 32bit devices

	Provides a new password user experience(readline.ReadPasswordEx()).

1.0 - 2015-10-14

	Initial public release.

 readline-im

readline-im

[image: readline-im]

 Readline Shortcut

Readline Shortcut

Meta+B means press Esc and n separately.Users can change that in terminal simulator(i.e. iTerm2) to Alt+BNotice: Meta+B is equals with Alt+B in windows.

	Shortcut in normal mode

Shortcut	Comment
——————	———————————
Ctrl+A	Beginning of line
Ctrl+B / ←	Backward one character
Meta+B	Backward one word
Ctrl+C	Send io.EOF
Ctrl+D	Delete one character
Meta+D	Delete one word
Ctrl+E	End of line
Ctrl+F / →	Forward one character
Meta+F	Forward one word
Ctrl+G	Cancel
Ctrl+H	Delete previous character
Ctrl+I / Tab	Command line completion
Ctrl+J	Line feed
Ctrl+K	Cut text to the end of line
Ctrl+L	Clear screen
Ctrl+M	Same as Enter key
Ctrl+N / ↓	Next line (in history)
Ctrl+P / ↑	Prev line (in history)
Ctrl+R	Search backwards in history
Ctrl+S	Search forwards in history
Ctrl+T	Transpose characters
Meta+T	Transpose words (TODO)
Ctrl+U	Cut text to the beginning of line
Ctrl+W	Cut previous word
Backspace	Delete previous character
Meta+Backspace	Cut previous word
Enter	Line feed

	Shortcut in Search Mode (Ctrl+S or Ctrl+r to enter this mode)

Shortcut	Comment
———————–	—————————————
Ctrl+S	Search forwards in history
Ctrl+R	Search backwards in history
Ctrl+C / Ctrl+G	Exit Search Mode and revert the history
Backspace	Delete previous character
Other	Exit Search Mode

	Shortcut in Complete Select Mode (double Tab to enter this mode)

Shortcut	Comment
———————–	—————————————-
Ctrl+F	Move Forward
Ctrl+B	Move Backward
Ctrl+N	Move to next line
Ctrl+P	Move to previous line
Ctrl+A	Move to the first candicate in current line
Ctrl+E	Move to the last candicate in current line
Tab / Enter	Use the word on cursor to complete
Ctrl+C / Ctrl+G	Exit Complete Select Mode
Other	Exit Complete Select Mode

 Color

Color [image: GoDoc] [http://godoc.org/github.com/fatih/color] [image: Build Status] [https://travis-ci.org/fatih/color]

Color lets you use colorized outputs in terms of ANSI Escape
Codes [http://en.wikipedia.org/wiki/ANSI_escape_code#Colors] in Go (Golang). It
has support for Windows too! The API can be used in several ways, pick one that
suits you.

[image: Color]

Install

go get github.com/fatih/color

Note that the vendor folder is here for stability. Remove the folder if you
already have the dependencies in your GOPATH.

Examples

Standard colors

// Print with default helper functions
color.Cyan("Prints text in cyan.")

// A newline will be appended automatically
color.Blue("Prints %s in blue.", "text")

// These are using the default foreground colors
color.Red("We have red")
color.Magenta("And many others ..")

Mix and reuse colors

// Create a new color object
c := color.New(color.FgCyan).Add(color.Underline)
c.Println("Prints cyan text with an underline.")

// Or just add them to New()
d := color.New(color.FgCyan, color.Bold)
d.Printf("This prints bold cyan %s\n", "too!.")

// Mix up foreground and background colors, create new mixes!
red := color.New(color.FgRed)

boldRed := red.Add(color.Bold)
boldRed.Println("This will print text in bold red.")

whiteBackground := red.Add(color.BgWhite)
whiteBackground.Println("Red text with white background.")

Use your own output (io.Writer)

// Use your own io.Writer output
color.New(color.FgBlue).Fprintln(myWriter, "blue color!")

blue := color.New(color.FgBlue)
blue.Fprint(writer, "This will print text in blue.")

Custom print functions (PrintFunc)

// Create a custom print function for convenience
red := color.New(color.FgRed).PrintfFunc()
red("Warning")
red("Error: %s", err)

// Mix up multiple attributes
notice := color.New(color.Bold, color.FgGreen).PrintlnFunc()
notice("Don't forget this...")

Custom fprint functions (FprintFunc)

blue := color.New(FgBlue).FprintfFunc()
blue(myWriter, "important notice: %s", stars)

// Mix up with multiple attributes
success := color.New(color.Bold, color.FgGreen).FprintlnFunc()
success(myWriter, "Don't forget this...")

Insert into noncolor strings (SprintFunc)

// Create SprintXxx functions to mix strings with other non-colorized strings:
yellow := color.New(color.FgYellow).SprintFunc()
red := color.New(color.FgRed).SprintFunc()
fmt.Printf("This is a %s and this is %s.\n", yellow("warning"), red("error"))

info := color.New(color.FgWhite, color.BgGreen).SprintFunc()
fmt.Printf("This %s rocks!\n", info("package"))

// Use helper functions
fmt.Println("This", color.RedString("warning"), "should be not neglected.")
fmt.Printf("%v %v\n", color.GreenString("Info:"), "an important message.")

// Windows supported too! Just don't forget to change the output to color.Output
fmt.Fprintf(color.Output, "Windows support: %s", color.GreenString("PASS"))

Plug into existing code

// Use handy standard colors
color.Set(color.FgYellow)

fmt.Println("Existing text will now be in yellow")
fmt.Printf("This one %s\n", "too")

color.Unset() // Don't forget to unset

// You can mix up parameters
color.Set(color.FgMagenta, color.Bold)
defer color.Unset() // Use it in your function

fmt.Println("All text will now be bold magenta.")

Disable color

There might be a case where you want to disable color output (for example to
pipe the standard output of your app to somewhere else). Color has support to
disable colors both globally and for single color definition. For example
suppose you have a CLI app and a --no-color bool flag. You can easily disable
the color output with:

var flagNoColor = flag.Bool("no-color", false, "Disable color output")

if *flagNoColor {
 color.NoColor = true // disables colorized output
}

It also has support for single color definitions (local). You can
disable/enable color output on the fly:

c := color.New(color.FgCyan)
c.Println("Prints cyan text")

c.DisableColor()
c.Println("This is printed without any color")

c.EnableColor()
c.Println("This prints again cyan...")

Todo

	Save/Return previous values

	Evaluate fmt.Formatter interface

Credits

	Fatih Arslan [https://github.com/fatih]

	Windows support via @mattn: colorable [https://github.com/mattn/go-colorable]

License

The MIT License (MIT) - see LICENSE.md [https://github.com/fatih/color/blob/master/LICENSE.md] for more details

 <no title>

 The MIT License (MIT)

Copyright (c) 2013 Fatih Arslan

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 go-difflib

go-difflib

[image: Build Status] [https://travis-ci.org/pmezard/go-difflib]
[image: GoDoc] [https://godoc.org/github.com/pmezard/go-difflib/difflib]

Go-difflib is a partial port of python 3 difflib package. Its main goal
was to make unified and context diff available in pure Go, mostly for
testing purposes.

The following class and functions (and related tests) have be ported:

	SequenceMatcher

	unified_diff()

	context_diff()

Installation

$ go get github.com/pmezard/go-difflib/difflib

Quick Start

Diffs are configured with Unified (or ContextDiff) structures, and can
be output to an io.Writer or returned as a string.

diff := UnifiedDiff{
 A: difflib.SplitLines("foo\nbar\n"),
 B: difflib.SplitLines("foo\nbaz\n"),
 FromFile: "Original",
 ToFile: "Current",
 Context: 3,
}
text, _ := GetUnifiedDiffString(diff)
fmt.Printf(text)

would output:

--- Original
+++ Current
@@ -1,3 +1,3 @@
 foo
-bar
+baz

 go-homedir

go-homedir

This is a Go library for detecting the user’s home directory without
the use of cgo, so the library can be used in cross-compilation environments.

Usage is incredibly simple, just call homedir.Dir() to get the home directory
for a user, and homedir.Expand() to expand the ~ in a path to the home
directory.

Why not just use os/user? The built-in os/user package requires
cgo on Darwin systems. This means that any Go code that uses that package
cannot cross compile. But 99% of the time the use for os/user is just to
retrieve the home directory, which we can do for the current user without
cgo. This library does that, enabling cross-compilation.

 go-hashids

go-hashids [image: Build Status] [https://ci.appveyor.com/project/speps/go-hashids] [image: GoDoc] [https://godoc.org/github.com/speps/go-hashids]

Go (golang) v1 implementation of http://www.hashids.org
under MIT License (same as the original implementations)

Original implementations by Ivan Akimov [https://github.com/ivanakimov]

Setup

go get github.com/speps/go-hashids
CLI tool :

go get github.com/speps/go-hashids/cmd/hashid

Example

package main

import "fmt"
import "github.com/speps/go-hashids"

func main() {
 hd := hashids.NewData()
 hd.Salt = "this is my salt"
 hd.MinLength = 30
 h, _ := hashids.NewWithData(hd)
 e, _ := h.Encode([]int{45, 434, 1313, 99})
 fmt.Println(e)
 d, _ := h.DecodeWithError(e)
 fmt.Println(d)
}

Thanks to all the contributors

	Harm Aarts [https://github.com/haarts]

	Christoffer G. Thomsen [https://github.com/cgt]

	Peter Hellberg [https://github.com/peterhellberg]

	Rémy Oudompheng [https://github.com/remyoudompheng]

	Mart Roosmaa [https://github.com/roosmaa]

	Jakub Kramarz [https://github.com/jkramarz]

	Zou Xifeng [https://github.com/zouxifeng]

	Per Persson [https://github.com/md2perpe]

	Baiju Muthukadan [https://github.com/baijum]

	Pablo de la Concepción Sanz [https://github.com/pconcepcion]

	Olivier Mengué [https://github.com/dolmen]

	Matthew Valimaki [https://github.com/matthewvalimaki]

	Cody Maloney [https://github.com/cmaloney]

Let me know if I forgot anyone of course.

Changelog

2017/05/09

	Changed API
	New methods now return errors

	Added sanity check in Decode that makes sure that the salt is consistent

2014/09/13

	Updated to Hashids v1.0.0 (should be compatible with other implementations, let me know if not, was checked against the Javascript version)

	Changed API
	Encrypt/Decrypt are now Encode/Decode

	HashID is now constructed from HashIDData containing alphabet, salt and minimum length

 go-spew

go-spew

[[image: Build Status]]
(https://travis-ci.org/davecgh/go-spew) ![ISC License]
(http://img.shields.io/badge/license-ISC-blue.svg) [http://copyfree.org] [![Coverage Status]
(https://img.shields.io/coveralls/davecgh/go-spew.svg)]
(https://coveralls.io/r/davecgh/go-spew?branch=master)

Go-spew implements a deep pretty printer for Go data structures to aid in
debugging. A comprehensive suite of tests with 100% test coverage is provided
to ensure proper functionality. See test_coverage.txt for the gocov coverage
report. Go-spew is licensed under the liberal ISC license, so it may be used in
open source or commercial projects.

If you’re interested in reading about how this package came to life and some
of the challenges involved in providing a deep pretty printer, there is a blog
post about it
here [https://web.archive.org/web/20160304013555/https://blog.cyphertite.com/go-spew-a-journey-into-dumping-go-data-structures/].

Documentation

[[image: GoDoc]]
(http://godoc.org/github.com/davecgh/go-spew/spew)

Full go doc style documentation for the project can be viewed online without
installing this package by using the excellent GoDoc site here:
http://godoc.org/github.com/davecgh/go-spew/spew

You can also view the documentation locally once the package is installed with
the godoc tool by running godoc -http=":6060" and pointing your browser to
http://localhost:6060/pkg/github.com/davecgh/go-spew/spew

Installation

$ go get -u github.com/davecgh/go-spew/spew

Quick Start

Add this import line to the file you’re working in:

import "github.com/davecgh/go-spew/spew"

To dump a variable with full newlines, indentation, type, and pointer
information use Dump, Fdump, or Sdump:

spew.Dump(myVar1, myVar2, ...)
spew.Fdump(someWriter, myVar1, myVar2, ...)
str := spew.Sdump(myVar1, myVar2, ...)

Alternatively, if you would prefer to use format strings with a compacted inline
printing style, use the convenience wrappers Printf, Fprintf, etc with %v (most
compact), %+v (adds pointer addresses), %#v (adds types), or %#+v (adds types
and pointer addresses):

spew.Printf("myVar1: %v -- myVar2: %+v", myVar1, myVar2)
spew.Printf("myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
spew.Fprintf(someWriter, "myVar1: %v -- myVar2: %+v", myVar1, myVar2)
spew.Fprintf(someWriter, "myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)

Debugging a Web Application Example

Here is an example of how you can use spew.Sdump() to help debug a web application. Please be sure to wrap your output using the html.EscapeString() function for safety reasons. You should also only use this debugging technique in a development environment, never in production.

package main

import (
 "fmt"
 "html"
 "net/http"

 "github.com/davecgh/go-spew/spew"
)

func handler(w http.ResponseWriter, r *http.Request) {
 w.Header().Set("Content-Type", "text/html")
 fmt.Fprintf(w, "Hi there, %s!", r.URL.Path[1:])
 fmt.Fprintf(w, "<!--\n" + html.EscapeString(spew.Sdump(w)) + "\n-->")
}

func main() {
 http.HandleFunc("/", handler)
 http.ListenAndServe(":8080", nil)
}

Sample Dump Output

(main.Foo) {
 unexportedField: (*main.Bar)(0xf84002e210)({
 flag: (main.Flag) flagTwo,
 data: (uintptr) <nil>
 }),
 ExportedField: (map[interface {}]interface {}) {
 (string) "one": (bool) true
 }
}
([]uint8) {
 00000000 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 |............... |
 00000010 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30 |!"#$%&'()*+,-./0|
 00000020 31 32 |12|
}

Sample Formatter Output

Double pointer to a uint8:

 %v: <**>5
 %+v: <**>(0xf8400420d0->0xf8400420c8)5
 %#v: (**uint8)5
 %#+v: (**uint8)(0xf8400420d0->0xf8400420c8)5

Pointer to circular struct with a uint8 field and a pointer to itself:

 %v: <*>{1 <*><shown>}
 %+v: <*>(0xf84003e260){ui8:1 c:<*>(0xf84003e260)<shown>}
 %#v: (*main.circular){ui8:(uint8)1 c:(*main.circular)<shown>}
 %#+v: (*main.circular)(0xf84003e260){ui8:(uint8)1 c:(*main.circular)(0xf84003e260)<shown>}

Configuration Options

Configuration of spew is handled by fields in the ConfigState type. For
convenience, all of the top-level functions use a global state available via the
spew.Config global.

It is also possible to create a ConfigState instance that provides methods
equivalent to the top-level functions. This allows concurrent configuration
options. See the ConfigState documentation for more details.

* Indent
 String to use for each indentation level for Dump functions.
 It is a single space by default. A popular alternative is "\t".

* MaxDepth
 Maximum number of levels to descend into nested data structures.
 There is no limit by default.

* DisableMethods
 Disables invocation of error and Stringer interface methods.
 Method invocation is enabled by default.

* DisablePointerMethods
 Disables invocation of error and Stringer interface methods on types
 which only accept pointer receivers from non-pointer variables. This option
 relies on access to the unsafe package, so it will not have any effect when
 running in environments without access to the unsafe package such as Google
 App Engine or with the "safe" build tag specified.
 Pointer method invocation is enabled by default.

* DisablePointerAddresses
 DisablePointerAddresses specifies whether to disable the printing of
 pointer addresses. This is useful when diffing data structures in tests.

* DisableCapacities
 DisableCapacities specifies whether to disable the printing of capacities
 for arrays, slices, maps and channels. This is useful when diffing data
 structures in tests.

* ContinueOnMethod
 Enables recursion into types after invoking error and Stringer interface
 methods. Recursion after method invocation is disabled by default.

* SortKeys
 Specifies map keys should be sorted before being printed. Use
 this to have a more deterministic, diffable output. Note that
 only native types (bool, int, uint, floats, uintptr and string)
 and types which implement error or Stringer interfaces are supported,
 with other types sorted according to the reflect.Value.String() output
 which guarantees display stability. Natural map order is used by
 default.

* SpewKeys
 SpewKeys specifies that, as a last resort attempt, map keys should be
 spewed to strings and sorted by those strings. This is only considered
 if SortKeys is true.

Unsafe Package Dependency

This package relies on the unsafe package to perform some of the more advanced
features, however it also supports a “limited” mode which allows it to work in
environments where the unsafe package is not available. By default, it will
operate in this mode on Google App Engine and when compiled with GopherJS. The
“safe” build tag may also be specified to force the package to build without
using the unsafe package.

License

Go-spew is licensed under the copyfree [http://copyfree.org] ISC License.

 Testify - Thou Shalt Write Tests

Testify - Thou Shalt Write Tests

[image: Build Status] [https://travis-ci.org/stretchr/testify] [image: Go Report Card] [https://goreportcard.com/report/github.com/stretchr/testify] [image: GoDoc] [https://godoc.org/github.com/stretchr/testify]

Go code (golang) set of packages that provide many tools for testifying that your code will behave as you intend.

Features include:

	Easy assertions

	Mocking

	HTTP response trapping

	Testing suite interfaces and functions

Get started:

	Install testify with one line of code, or update it with another

	For an introduction to writing test code in Go, see http://golang.org/doc/code.html#Testing

	Check out the API Documentation http://godoc.org/github.com/stretchr/testify

	To make your testing life easier, check out our other project, gorc [http://github.com/stretchr/gorc]

	A little about Test-Driven Development (TDD) [http://en.wikipedia.org/wiki/Test-driven_development]

assert [http://godoc.org/github.com/stretchr/testify/assert] package

The assert package provides some helpful methods that allow you to write better test code in Go.

	Prints friendly, easy to read failure descriptions

	Allows for very readable code

	Optionally annotate each assertion with a message

See it in action:

package yours

import (
 "testing"
 "github.com/stretchr/testify/assert"
)

func TestSomething(t *testing.T) {

 // assert equality
 assert.Equal(t, 123, 123, "they should be equal")

 // assert inequality
 assert.NotEqual(t, 123, 456, "they should not be equal")

 // assert for nil (good for errors)
 assert.Nil(t, object)

 // assert for not nil (good when you expect something)
 if assert.NotNil(t, object) {

 // now we know that object isn't nil, we are safe to make
 // further assertions without causing any errors
 assert.Equal(t, "Something", object.Value)

 }

}

	Every assert func takes the testing.T object as the first argument. This is how it writes the errors out through the normal go test capabilities.

	Every assert func returns a bool indicating whether the assertion was successful or not, this is useful for if you want to go on making further assertions under certain conditions.

if you assert many times, use the below:

package yours

import (
 "testing"
 "github.com/stretchr/testify/assert"
)

func TestSomething(t *testing.T) {
 assert := assert.New(t)

 // assert equality
 assert.Equal(123, 123, "they should be equal")

 // assert inequality
 assert.NotEqual(123, 456, "they should not be equal")

 // assert for nil (good for errors)
 assert.Nil(object)

 // assert for not nil (good when you expect something)
 if assert.NotNil(object) {

 // now we know that object isn't nil, we are safe to make
 // further assertions without causing any errors
 assert.Equal("Something", object.Value)
 }
}

require [http://godoc.org/github.com/stretchr/testify/require] package

The require package provides same global functions as the assert package, but instead of returning a boolean result they terminate current test.

See t.FailNow [http://golang.org/pkg/testing/#T.FailNow] for details.

http [http://godoc.org/github.com/stretchr/testify/http] package

The http package contains test objects useful for testing code that relies on the net/http package. Check out the (deprecated) API documentation for the http package [http://godoc.org/github.com/stretchr/testify/http].

We recommend you use httptest [http://golang.org/pkg/net/http/httptest] instead.

mock [http://godoc.org/github.com/stretchr/testify/mock] package

The mock package provides a mechanism for easily writing mock objects that can be used in place of real objects when writing test code.

An example test function that tests a piece of code that relies on an external object testObj, can setup expectations (testify) and assert that they indeed happened:

package yours

import (
 "testing"
 "github.com/stretchr/testify/mock"
)

/*
 Test objects
*/

// MyMockedObject is a mocked object that implements an interface
// that describes an object that the code I am testing relies on.
type MyMockedObject struct{
 mock.Mock
}

// DoSomething is a method on MyMockedObject that implements some interface
// and just records the activity, and returns what the Mock object tells it to.
//
// In the real object, this method would do something useful, but since this
// is a mocked object - we're just going to stub it out.
//
// NOTE: This method is not being tested here, code that uses this object is.
func (m *MyMockedObject) DoSomething(number int) (bool, error) {

 args := m.Called(number)
 return args.Bool(0), args.Error(1)

}

/*
 Actual test functions
*/

// TestSomething is an example of how to use our test object to
// make assertions about some target code we are testing.
func TestSomething(t *testing.T) {

 // create an instance of our test object
 testObj := new(MyMockedObject)

 // setup expectations
 testObj.On("DoSomething", 123).Return(true, nil)

 // call the code we are testing
 targetFuncThatDoesSomethingWithObj(testObj)

 // assert that the expectations were met
 testObj.AssertExpectations(t)

}

For more information on how to write mock code, check out the API documentation for the mock package [http://godoc.org/github.com/stretchr/testify/mock].

You can use the mockery tool [http://github.com/vektra/mockery] to autogenerate the mock code against an interface as well, making using mocks much quicker.

suite [http://godoc.org/github.com/stretchr/testify/suite] package

The suite package provides functionality that you might be used to from more common object oriented languages. With it, you can build a testing suite as a struct, build setup/teardown methods and testing methods on your struct, and run them with ‘go test’ as per normal.

An example suite is shown below:

// Basic imports
import (
 "testing"
 "github.com/stretchr/testify/assert"
 "github.com/stretchr/testify/suite"
)

// Define the suite, and absorb the built-in basic suite
// functionality from testify - including a T() method which
// returns the current testing context
type ExampleTestSuite struct {
 suite.Suite
 VariableThatShouldStartAtFive int
}

// Make sure that VariableThatShouldStartAtFive is set to five
// before each test
func (suite *ExampleTestSuite) SetupTest() {
 suite.VariableThatShouldStartAtFive = 5
}

// All methods that begin with "Test" are run as tests within a
// suite.
func (suite *ExampleTestSuite) TestExample() {
 assert.Equal(suite.T(), 5, suite.VariableThatShouldStartAtFive)
}

// In order for 'go test' to run this suite, we need to create
// a normal test function and pass our suite to suite.Run
func TestExampleTestSuite(t *testing.T) {
 suite.Run(t, new(ExampleTestSuite))
}

For a more complete example, using all of the functionality provided by the suite package, look at our example testing suite [https://github.com/stretchr/testify/blob/master/suite/suite_test.go]

For more information on writing suites, check out the API documentation for the suite package [http://godoc.org/github.com/stretchr/testify/suite].

Suite object has assertion methods:

// Basic imports
import (
 "testing"
 "github.com/stretchr/testify/suite"
)

// Define the suite, and absorb the built-in basic suite
// functionality from testify - including assertion methods.
type ExampleTestSuite struct {
 suite.Suite
 VariableThatShouldStartAtFive int
}

// Make sure that VariableThatShouldStartAtFive is set to five
// before each test
func (suite *ExampleTestSuite) SetupTest() {
 suite.VariableThatShouldStartAtFive = 5
}

// All methods that begin with "Test" are run as tests within a
// suite.
func (suite *ExampleTestSuite) TestExample() {
 suite.Equal(suite.VariableThatShouldStartAtFive, 5)
}

// In order for 'go test' to run this suite, we need to create
// a normal test function and pass our suite to suite.Run
func TestExampleTestSuite(t *testing.T) {
 suite.Run(t, new(ExampleTestSuite))
}

Installation

To install Testify, use go get:

* Latest version: go get github.com/stretchr/testify
* Specific version: go get gopkg.in/stretchr/testify.v1

This will then make the following packages available to you:

github.com/stretchr/testify/assert
github.com/stretchr/testify/mock
github.com/stretchr/testify/http

Import the testify/assert package into your code using this template:

package yours

import (
 "testing"
 "github.com/stretchr/testify/assert"
)

func TestSomething(t *testing.T) {

 assert.True(t, true, "True is true!")

}

Staying up to date

To update Testify to the latest version, use go get -u github.com/stretchr/testify.

Version History

	1.0 - New package versioning strategy adopted.

Contributing

Please feel free to submit issues, fork the repository and send pull requests!

When submitting an issue, we ask that you please include a complete test function that demonstrates the issue. Extra credit for those using Testify to write the test code that demonstrates it.

Licence

Copyright (c) 2012 - 2013 Mat Ryer and Tyler Bunnell

Please consider promoting this project if you find it useful.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 cli

cli

[image: Build Status] [https://travis-ci.org/urfave/cli]
[image: Windows Build Status] [https://ci.appveyor.com/project/urfave/cli]
[image: GoDoc] [https://godoc.org/github.com/urfave/cli]
[image: codebeat] [https://codebeat.co/projects/github-com-urfave-cli]
[image: Go Report Card] [https://goreportcard.com/report/urfave/cli]
[image: top level coverage] [http://gocover.io/github.com/urfave/cli] /
[image: altsrc coverage] [http://gocover.io/github.com/urfave/cli/altsrc]

Notice: This is the library formerly known as
github.com/codegangsta/cli – Github will automatically redirect requests
to this repository, but we recommend updating your references for clarity.

cli is a simple, fast, and fun package for building command line apps in Go. The
goal is to enable developers to write fast and distributable command line
applications in an expressive way.

	Overview

	Installation
	Supported platforms

	Using the v2 branch

	Pinning to the v1 releases

	Getting Started

	Examples
	Arguments

	Flags
	Placeholder Values

	Alternate Names

	Ordering

	Values from the Environment

	Values from alternate input sources (YAML, TOML, and others)

	Subcommands

	Subcommands categories

	Exit code

	Bash Completion
	Enabling

	Distribution

	Customization

	Generated Help Text
	Customization

	Version Flag
	Customization

	Full API Example

	Contribution Guidelines

Overview

Command line apps are usually so tiny that there is absolutely no reason why
your code should not be self-documenting. Things like generating help text and
parsing command flags/options should not hinder productivity when writing a
command line app.

This is where cli comes into play. cli makes command line programming fun,
organized, and expressive!

Installation

Make sure you have a working Go environment. Go version 1.2+ is supported. See
the install instructions for Go [http://golang.org/doc/install.html].

To install cli, simply run:

$ go get github.com/urfave/cli

Make sure your PATH includes the $GOPATH/bin directory so your commands can
be easily used:

export PATH=$PATH:$GOPATH/bin

Supported platforms

cli is tested against multiple versions of Go on Linux, and against the latest
released version of Go on OS X and Windows. For full details, see
./.travis.yml and ./appveyor.yml.

Using the v2 branch

Warning: The v2 branch is currently unreleased and considered unstable.

There is currently a long-lived branch named v2 that is intended to land as
the new master branch once development there has settled down. The current
master branch (mirrored as v1) is being manually merged into v2 on
an irregular human-based schedule, but generally if one wants to “upgrade” to
v2 now and accept the volatility (read: “awesomeness”) that comes along with
that, please use whatever version pinning of your preference, such as via
gopkg.in:

$ go get gopkg.in/urfave/cli.v2

...
import (
 "gopkg.in/urfave/cli.v2" // imports as package "cli"
)
...

Pinning to the v1 releases

Similarly to the section above describing use of the v2 branch, if one wants
to avoid any unexpected compatibility pains once v2 becomes master, then
pinning to v1 is an acceptable option, e.g.:

$ go get gopkg.in/urfave/cli.v1

...
import (
 "gopkg.in/urfave/cli.v1" // imports as package "cli"
)
...

This will pull the latest tagged v1 release (e.g. v1.18.1 at the time of writing).

Getting Started

One of the philosophies behind cli is that an API should be playful and full of
discovery. So a cli app can be as little as one line of code in main().


``` go
package mainimport (
“os”

“github.com/urfave/cli”
)

func main() {
cli.NewApp().Run(os.Args)
}


This app will run and show help text, but is not very useful. Let's give an
action to execute and some help documentation:

<!-- {
  "output": "boom! I say!"
} -->
``` go
package main

import (
 "fmt"
 "os"

 "github.com/urfave/cli"
)

func main() {
 app := cli.NewApp()
 app.Name = "boom"
 app.Usage = "make an explosive entrance"
 app.Action = func(c *cli.Context) error {
 fmt.Println("boom! I say!")
 return nil
 }

 app.Run(os.Args)
}

Running this already gives you a ton of functionality, plus support for things
like subcommands and flags, which are covered below.

Examples

Being a programmer can be a lonely job. Thankfully by the power of automation
that is not the case! Let’s create a greeter app to fend off our demons of
loneliness!

Start by creating a directory named greet, and within it, add a file,
greet.go with the following code in it:


``` go
package mainimport (
“fmt”
“os”

“github.com/urfave/cli”
)

func main() {
app := cli.NewApp()
app.Name = “greet”
app.Usage = “fight the loneliness!“
app.Action = func(c *cli.Context) error {
fmt.Println(“Hello friend!”)
return nil
}

app.Run(os.Args)
}


Install our command to the `$GOPATH/bin` directory:





$ go install


Finally run our new command:





$ greet
Hello friend!


cli also generates neat help text:





$ greet help
NAME:
greet - fight the loneliness!

USAGE:
greet [global options] command [command options] [arguments...]

VERSION:
0.0.0

COMMANDS:
help, h  Shows a list of commands or help for one command

GLOBAL OPTIONS
–version Shows version information


### Arguments

You can lookup arguments by calling the `Args` function on `cli.Context`, e.g.:

<!-- {
  "output": "Hello \""
} -->
``` go
package main

import (
 "fmt"
 "os"

 "github.com/urfave/cli"
)

func main() {
 app := cli.NewApp()

 app.Action = func(c *cli.Context) error {
 fmt.Printf("Hello %q", c.Args().Get(0))
 return nil
 }

 app.Run(os.Args)
}

Flags

Setting and querying flags is simple.


``` go
package mainimport (
“fmt”
“os”

“github.com/urfave/cli”
)

func main() {
app := cli.NewApp()

app.Flags = []cli.Flag {
cli.StringFlag{
Name: “lang”,
Value: “english”,
Usage: “language for the greeting”,
},
}

app.Action = func(c *cli.Context) error {
name := “Nefertiti”
if c.NArg() > 0 {
name = c.Args().Get(0)
}
if c.String(“lang”) == “spanish” {
fmt.Println(“Hola”, name)
} else {
fmt.Println(“Hello”, name)
}
return nil
}

app.Run(os.Args)
}


You can also set a destination variable for a flag, to which the content will be
scanned.

<!-- {
  "output": "Hello someone"
} -->
``` go
package main

import (
 "os"
 "fmt"

 "github.com/urfave/cli"
)

func main() {
 var language string

 app := cli.NewApp()

 app.Flags = []cli.Flag {
 cli.StringFlag{
 Name: "lang",
 Value: "english",
 Usage: "language for the greeting",
 Destination: &language,
 },
 }

 app.Action = func(c *cli.Context) error {
 name := "someone"
 if c.NArg() > 0 {
 name = c.Args()[0]
 }
 if language == "spanish" {
 fmt.Println("Hola", name)
 } else {
 fmt.Println("Hello", name)
 }
 return nil
 }

 app.Run(os.Args)
}

See full list of flags at http://godoc.org/github.com/urfave/cli

Placeholder Values

Sometimes it’s useful to specify a flag’s value within the usage string itself.
Such placeholders are indicated with back quotes.

For example this:


```go
package mainimport (
“os”

“github.com/urfave/cli”
)

func main() {
app := cli.NewApp()

app.Flags = []cli.Flag{
cli.StringFlag{
Name:  “config, c”,
Usage: “Load configuration from FILE”,
},
}

app.Run(os.Args)
}


Will result in help output like:





–config FILE, -c FILE   Load configuration from FILE


Note that only the first placeholder is used. Subsequent back-quoted words will
be left as-is.

#### Alternate Names

You can set alternate (or short) names for flags by providing a comma-delimited
list for the `Name`. e.g.

<!-- {
  "args": ["&#45;&#45;help"],
  "output": "&#45;&#45;lang value, &#45;l value.*language for the greeting.*default: \"english\""
} -->
``` go
package main

import (
 "os"

 "github.com/urfave/cli"
)

func main() {
 app := cli.NewApp()

 app.Flags = []cli.Flag {
 cli.StringFlag{
 Name: "lang, l",
 Value: "english",
 Usage: "language for the greeting",
 },
 }

 app.Run(os.Args)
}

That flag can then be set with --lang spanish or -l spanish. Note that
giving two different forms of the same flag in the same command invocation is an
error.

Ordering

Flags for the application and commands are shown in the order they are defined.
However, it’s possible to sort them from outside this library by using FlagsByName
or CommandsByName with sort.

For example this:


``` go
package mainimport (
“os”
“sort”

“github.com/urfave/cli”
)

func main() {
app := cli.NewApp()

app.Flags = []cli.Flag {
cli.StringFlag{
Name: “lang, l”,
Value: “english”,
Usage: “Language for the greeting”,
},
cli.StringFlag{
Name: “config, c”,
Usage: “Load configuration from FILE”,
},
}

app.Commands = []cli.Command{
{
Name:    “complete”,
Aliases: []string{“c”},
Usage:   “complete a task on the list”,
Action:  func(c *cli.Context) error {
return nil
},
},
{
Name:    “add”,
Aliases: []string{“a”},
Usage:   “add a task to the list”,
Action:  func(c *cli.Context) error {
return nil
},
},
}

sort.Sort(cli.FlagsByName(app.Flags))
sort.Sort(cli.CommandsByName(app.Commands))

app.Run(os.Args)
}


Will result in help output like:





–config FILE, -c FILE  Load configuration from FILE
–lang value, -l value  Language for the greeting (default: “english”)


#### Values from the Environment

You can also have the default value set from the environment via `EnvVar`.  e.g.

<!-- {
  "args": ["&#45;&#45;help"],
  "output": "language for the greeting.*APP_LANG"
} -->
``` go
package main

import (
 "os"

 "github.com/urfave/cli"
)

func main() {
 app := cli.NewApp()

 app.Flags = []cli.Flag {
 cli.StringFlag{
 Name: "lang, l",
 Value: "english",
 Usage: "language for the greeting",
 EnvVar: "APP_LANG",
 },
 }

 app.Run(os.Args)
}

The EnvVar may also be given as a comma-delimited “cascade”, where the first
environment variable that resolves is used as the default.


``` go
package mainimport (
“os”

“github.com/urfave/cli”
)

func main() {
app := cli.NewApp()

app.Flags = []cli.Flag {
cli.StringFlag{
Name: “lang, l”,
Value: “english”,
Usage: “language for the greeting”,
EnvVar: “LEGACY_COMPAT_LANG,APP_LANG,LANG”,
},
}

app.Run(os.Args)
}


#### Values from alternate input sources (YAML, TOML, and others)

There is a separate package altsrc that adds support for getting flag values
from other file input sources.

Currently supported input source formats:
* YAML
* TOML

In order to get values for a flag from an alternate input source the following
code would be added to wrap an existing cli.Flag like below:

``` go
 altsrc.NewIntFlag(cli.IntFlag{Name: "test"})

Initialization must also occur for these flags. Below is an example initializing
getting data from a yaml file below.

 command.Before = altsrc.InitInputSourceWithContext(command.Flags, NewYamlSourceFromFlagFunc("load"))

The code above will use the “load” string as a flag name to get the file name of
a yaml file from the cli.Context. It will then use that file name to initialize
the yaml input source for any flags that are defined on that command. As a note
the “load” flag used would also have to be defined on the command flags in order
for this code snipped to work.

Currently only the aboved specified formats are supported but developers can
add support for other input sources by implementing the
altsrc.InputSourceContext for their given sources.

Here is a more complete sample of a command using YAML support:


``` go
package notmainimport (
“fmt”
“os”

“github.com/urfave/cli”
“github.com/urfave/cli/altsrc”
)

func main() {
app := cli.NewApp()

flags := []cli.Flag{
altsrc.NewIntFlag(cli.IntFlag{Name: “test”}),
cli.StringFlag{Name: “load”},
}

app.Action = func(c *cli.Context) error {
fmt.Println(“yaml ist rad”)
return nil
}

app.Before = altsrc.InitInputSourceWithContext(flags, altsrc.NewYamlSourceFromFlagFunc(“load”))
app.Flags = flags

app.Run(os.Args)
}


### Subcommands

Subcommands can be defined for a more git-like command line app.

<!-- {
  "args": ["template", "add"],
  "output": "new task template: .+"
} -->
```go
package main

import (
 "fmt"
 "os"

 "github.com/urfave/cli"
)

func main() {
 app := cli.NewApp()

 app.Commands = []cli.Command{
 {
 Name: "add",
 Aliases: []string{"a"},
 Usage: "add a task to the list",
 Action: func(c *cli.Context) error {
 fmt.Println("added task: ", c.Args().First())
 return nil
 },
 },
 {
 Name: "complete",
 Aliases: []string{"c"},
 Usage: "complete a task on the list",
 Action: func(c *cli.Context) error {
 fmt.Println("completed task: ", c.Args().First())
 return nil
 },
 },
 {
 Name: "template",
 Aliases: []string{"t"},
 Usage: "options for task templates",
 Subcommands: []cli.Command{
 {
 Name: "add",
 Usage: "add a new template",
 Action: func(c *cli.Context) error {
 fmt.Println("new task template: ", c.Args().First())
 return nil
 },
 },
 {
 Name: "remove",
 Usage: "remove an existing template",
 Action: func(c *cli.Context) error {
 fmt.Println("removed task template: ", c.Args().First())
 return nil
 },
 },
 },
 },
 }

 app.Run(os.Args)
}

Subcommands categories

For additional organization in apps that have many subcommands, you can
associate a category for each command to group them together in the help
output.

E.g.

package main

import (
 "os"

 "github.com/urfave/cli"
)

func main() {
 app := cli.NewApp()

 app.Commands = []cli.Command{
 {
 Name: "noop",
 },
 {
 Name: "add",
 Category: "template",
 },
 {
 Name: "remove",
 Category: "template",
 },
 }

 app.Run(os.Args)
}

Will include:

COMMANDS:
 noop

 Template actions:
 add
 remove

Exit code

Calling App.Run will not automatically call os.Exit, which means that by
default the exit code will “fall through” to being 0. An explicit exit code
may be set by returning a non-nil error that fulfills cli.ExitCoder, or a
cli.MultiError that includes an error that fulfills cli.ExitCoder, e.g.:

package main

import (
 "os"

 "github.com/urfave/cli"
)

func main() {
 app := cli.NewApp()
 app.Flags = []cli.Flag{
 cli.BoolTFlag{
 Name: "ginger-crouton",
 Usage: "is it in the soup?",
 },
 }
 app.Action = func(ctx *cli.Context) error {
 if !ctx.Bool("ginger-crouton") {
 return cli.NewExitError("it is not in the soup", 86)
 }
 return nil
 }

 app.Run(os.Args)
}

Bash Completion

You can enable completion commands by setting the EnableBashCompletion
flag on the App object. By default, this setting will only auto-complete to
show an app’s subcommands, but you can write your own completion methods for
the App or its subcommands.


``` go
package mainimport (
“fmt”
“os”

“github.com/urfave/cli”
)

func main() {
tasks := []string{“cook”, “clean”, “laundry”, “eat”, “sleep”, “code”}

app := cli.NewApp()
app.EnableBashCompletion = true
app.Commands = []cli.Command{
{
Name:  “complete”,
Aliases: []string{“c”},
Usage: “complete a task on the list”,
Action: func(c *cli.Context) error {
fmt.Println(“completed task: ”, c.Args().First())
return nil
},
BashComplete: func(c *cli.Context) {
// This will complete if no args are passed
if c.NArg() > 0 {
return
}
for _, t := range tasks {
fmt.Println(t)
}
},
},
}

app.Run(os.Args)
}


#### Enabling

Source the `autocomplete/bash_autocomplete` file in your `.bashrc` file while
setting the `PROG` variable to the name of your program:

`PROG=myprogram source /.../cli/autocomplete/bash_autocomplete`

#### Distribution

Copy `autocomplete/bash_autocomplete` into `/etc/bash_completion.d/` and rename
it to the name of the program you wish to add autocomplete support for (or
automatically install it there if you are distributing a package). Don't forget
to source the file to make it active in the current shell.





sudo cp src/bash_autocomplete /etc/bash_completion.d/
source /etc/bash_completion.d/
  
    
    
    Change Log
    
    

    
 
  
  

    
      
          
            
  
Change Log

ATTN: This project uses semantic versioning [http://semver.org/].


Unreleased [https://github.com/urfave/cli/compare/v1.18.0...HEAD]




1.20.0 - 2017-08-10


Fixed


	HandleExitCoder is now correctly iterates over all errors in
a MultiError. The exit code is the exit code of the last error or 1 if
there are no ExitCoders in the MultiError.

	Fixed YAML file loading on Windows (previously would fail validate the file path)

	Subcommand Usage, Description, ArgsUsage, OnUsageError correctly
propogated

	ErrWriter is now passed downwards through command structure to avoid the
need to redefine it

	Pass Command context into OnUsageError rather than parent context so that
all fields are avaiable

	Errors occuring in Before funcs are no longer double printed

	Use UsageText in the help templates for commands and subcommands if
defined; otherwise build the usage as before (was previously ignoring this
field)

	IsSet and GlobalIsSet now correctly return whether a flag is set if
a program calls Set or GlobalSet directly after flag parsing (would
previously only return true if the flag was set during parsing)






Changed


	No longer exit the program on command/subcommand error if the error raised is
not an OsExiter. This exiting behavior was introduced in 1.19.0, but was
determined to be a regression in functionality. See the
PR [https://github.com/urfave/cli/pull/595] for discussion.






Added


	CommandsByName type was added to make it easy to sort Commands by name,
alphabetically

	altsrc now handles loading of string and int arrays from TOML

	Support for definition of custom help templates for App via
CustomAppHelpTemplate

	Support for arbitrary key/value fields on App to be used with
CustomAppHelpTemplate via ExtraInfo

	HelpFlag, VersionFlag, and BashCompletionFlag changed to explictly be
cli.Flags allowing for the use of custom flags satisfying the cli.Flag
interface to be used.








[1.19.1] - 2016-11-21


Fixed


	Fixes regression introduced in 1.19.0 where using an ActionFunc as
the Action for a command would cause it to error rather than calling the
function. Should not have a affected declarative cases using func(c *cli.Context) err).

	Shell completion now handles the case where the user specifies
--generate-bash-completion immediately after a flag that takes an argument.
Previously it call the application with --generate-bash-completion as the
flag value.








[1.19.0] - 2016-11-19


Added


	FlagsByName was added to make it easy to sort flags (e.g. sort.Sort(cli.FlagsByName(app.Flags)))

	A Description field was added to App for a more detailed description of
the application (similar to the existing Description field on Command)

	Flag type code generation via go generate

	Write to stderr and exit 1 if action returns non-nil error

	Added support for TOML to the altsrc loader

	SkipArgReorder was added to allow users to skip the argument reordering.
This is useful if you want to consider all “flags” after an argument as
arguments rather than flags (the default behavior of the stdlib flag
library). This is backported functionality from the removal of the flag
reordering [https://github.com/urfave/cli/pull/398] in the unreleased version
2

	For formatted errors (those implementing ErrorFormatter), the errors will
be formatted during output. Compatible with pkg/errors.






Changed


	Raise minimum tested/supported Go version to 1.2+






Fixed


	Consider empty environment variables as set (previously environment variables
with the equivalent of "" would be skipped rather than their value used).

	Return an error if the value in a given environment variable cannot be parsed
as the flag type. Previously these errors were silently swallowed.

	Print full error when an invalid flag is specified (which includes the invalid flag)

	App.Writer defaults to stdout when nil

	If no action is specified on a command or app, the help is now printed instead of panicing

	App.Metadata is initialized automatically now (previously was nil unless initialized)

	Correctly show help message if -h is provided to a subcommand

	context.(Global)IsSet now respects environment variables. Previously it
would return false if a flag was specified in the environment rather than
as an argument

	Removed deprecation warnings to STDERR to avoid them leaking to the end-user

	altsrcs import paths were updated to use gopkg.in/urfave/cli.v1. This
fixes issues that occurred when gopkg.in/urfave/cli.v1 was imported as well
as altsrc where Go would complain that the types didn’t match








[1.18.1] - 2016-08-28


Fixed


	Removed deprecation warnings to STDERR to avoid them leaking to the end-user (backported)








1.18.0 [https://github.com/urfave/cli/compare/v1.17.0...v1.18.0] - 2016-06-27


Added


	./runtests test runner with coverage tracking by default

	testing on OS X

	testing on Windows

	UintFlag, Uint64Flag, and Int64Flag types and supporting code






Changed


	Use spaces for alignment in help/usage output instead of tabs, making the
output alignment consistent regardless of tab width






Fixed


	Printing of command aliases in help text

	Printing of visible flags for both struct and struct pointer flags

	Display the help subcommand when using CommandCategories

	No longer swallows panics that occur within the Actions themselves when
detecting the signature of the Action field








[1.17.1] - 2016-08-28


Fixed


	Removed deprecation warnings to STDERR to avoid them leaking to the end-user








1.17.0 [https://github.com/urfave/cli/compare/v1.16.0...v1.17.0] - 2016-05-09


Added


	Pluggable flag-level help text rendering via cli.DefaultFlagStringFunc

	context.GlobalBoolT was added as an analogue to context.GlobalBool

	Support for hiding commands by setting Hidden: true – this will hide the
commands in help output






Changed


	Float64Flag, IntFlag, and DurationFlag default values are no longer
quoted in help text output.

	All flag types now include (default: {value}) strings following usage when a
default value can be (reasonably) detected.

	IntSliceFlag and StringSliceFlag usage strings are now more consistent
with non-slice flag types

	Apps now exit with a code of 3 if an unknown subcommand is specified
(previously they printed “No help topic for...”, but still exited 0. This
makes it easier to script around apps built using cli since they can trust
that a 0 exit code indicated a successful execution.

	cleanups based on Go Report Card
feedback [https://goreportcard.com/report/github.com/urfave/cli]








[1.16.1] - 2016-08-28


Fixed


	Removed deprecation warnings to STDERR to avoid them leaking to the end-user








1.16.0 [https://github.com/urfave/cli/compare/v1.15.0...v1.16.0] - 2016-05-02


Added


	Hidden field on all flag struct types to omit from generated help text






Changed


	BashCompletionFlag (--enable-bash-completion) is now omitted from
generated help text via the Hidden field






Fixed


	handling of error values in HandleAction and HandleExitCoder








1.15.0 [https://github.com/urfave/cli/compare/v1.14.0...v1.15.0] - 2016-04-30


Added


	This file!

	Support for placeholders in flag usage strings

	App.Metadata map for arbitrary data/state management

	Set and GlobalSet methods on *cli.Context for altering values after
parsing.

	Support for nested lookup of dot-delimited keys in structures loaded from
YAML.






Changed


	The App.Action and Command.Action now prefer a return signature of
func(*cli.Context) error, as defined by cli.ActionFunc.  If a non-nil
error is returned, there may be two outcomes:
	If the error fulfills cli.ExitCoder, then os.Exit will be called
automatically

	Else the error is bubbled up and returned from App.Run





	Specifying an Action with the legacy return signature of
func(*cli.Context) will produce a deprecation message to stderr

	Specifying an Action that is not a func type will produce a non-zero exit
from App.Run

	Specifying an Action func that has an invalid (input) signature will
produce a non-zero exit from App.Run






Deprecated


	[bookmark: deprecated-cli-app-runandexitonerror]
cli.App.RunAndExitOnError, which should now be done by returning an error
that fulfills cli.ExitCoder to cli.App.Run.

	[bookmark: deprecated-cli-app-action-signature] the legacy signature for
cli.App.Action of func(*cli.Context), which should now have a return
signature of func(*cli.Context) error, as defined by cli.ActionFunc.






Fixed


	Added missing *cli.Context.GlobalFloat64 method








1.14.0 [https://github.com/urfave/cli/compare/v1.13.0...v1.14.0] - 2016-04-03 (backfilled 2016-04-25)


Added


	Codebeat badge

	Support for categorization via CategorizedHelp and Categories on app.






Changed


	Use filepath.Base instead of path.Base in Name and HelpName.






Fixed


	Ensure version is not shown in help text when HideVersion set.








1.13.0 [https://github.com/urfave/cli/compare/v1.12.0...v1.13.0] - 2016-03-06 (backfilled 2016-04-25)


Added


	YAML file input support.

	NArg method on context.








1.12.0 [https://github.com/urfave/cli/compare/v1.11.1...v1.12.0] - 2016-02-17 (backfilled 2016-04-25)


Added


	Custom usage error handling.

	Custom text support in USAGE section of help output.

	Improved help messages for empty strings.

	AppVeyor CI configuration.






Changed


	Removed panic from default help printer func.

	De-duping and optimizations.






Fixed


	Correctly handle Before/After at command level when no subcommands.

	Case of literal - argument causing flag reordering.

	Environment variable hints on Windows.

	Docs updates.








1.11.1 [https://github.com/urfave/cli/compare/v1.11.0...v1.11.1] - 2015-12-21 (backfilled 2016-04-25)


Changed


	Use path.Base in Name and HelpName

	Export GetName on flag types.






Fixed


	Flag parsing when skipping is enabled.

	Test output cleanup.

	Move completion check to account for empty input case.








1.11.0 [https://github.com/urfave/cli/compare/v1.10.2...v1.11.0] - 2015-11-15 (backfilled 2016-04-25)


Added


	Destination scan support for flags.

	Testing against tip in Travis CI config.






Changed


	Go version in Travis CI config.






Fixed


	Removed redundant tests.

	Use correct example naming in tests.








1.10.2 [https://github.com/urfave/cli/compare/v1.10.1...v1.10.2] - 2015-10-29 (backfilled 2016-04-25)


Fixed


	Remove unused var in bash completion.








1.10.1 [https://github.com/urfave/cli/compare/v1.10.0...v1.10.1] - 2015-10-21 (backfilled 2016-04-25)


Added


	Coverage and reference logos in README.






Fixed


	Use specified values in help and version parsing.

	Only display app version and help message once.








1.10.0 [https://github.com/urfave/cli/compare/v1.9.0...v1.10.0] - 2015-10-06 (backfilled 2016-04-25)


Added


	More tests for existing functionality.

	ArgsUsage at app and command level for help text flexibility.






Fixed


	Honor HideHelp and HideVersion in App.Run.

	Remove juvenile word from README.








1.9.0 [https://github.com/urfave/cli/compare/v1.8.0...v1.9.0] - 2015-09-08 (backfilled 2016-04-25)


Added


	FullName on command with accompanying help output update.

	Set default $PROG in bash completion.






Changed


	Docs formatting.






Fixed


	Removed self-referential imports in tests.








1.8.0 [https://github.com/urfave/cli/compare/v1.7.1...v1.8.0] - 2015-06-30 (backfilled 2016-04-25)


Added


	Support for Copyright at app level.

	Parent func at context level to walk up context lineage.






Fixed


	Global flag processing at top level.








1.7.1 [https://github.com/urfave/cli/compare/v1.7.0...v1.7.1] - 2015-06-11 (backfilled 2016-04-25)


Added


	Aggregate errors from Before/After funcs.

	Doc comments on flag structs.

	Include non-global flags when checking version and help.

	Travis CI config updates.






Fixed


	Ensure slice type flags have non-nil values.

	Collect global flags from the full command hierarchy.

	Docs prose.








1.7.0 [https://github.com/urfave/cli/compare/v1.6.0...v1.7.0] - 2015-05-03 (backfilled 2016-04-25)


Changed


	HelpPrinter signature includes output writer.






Fixed


	Specify go 1.1+ in docs.

	Set Writer when running command as app.








1.6.0 [https://github.com/urfave/cli/compare/v1.5.0...v1.6.0] - 2015-03-23 (backfilled 2016-04-25)


Added


	Multiple author support.

	NumFlags at context level.

	Aliases at command level.






Deprecated


	ShortName at command level.






Fixed


	Subcommand help output.

	Backward compatible support for deprecated Author and Email fields.

	Docs regarding Names/Aliases.








1.5.0 [https://github.com/urfave/cli/compare/v1.4.1...v1.5.0] - 2015-02-20 (backfilled 2016-04-25)


Added


	After hook func support at app and command level.






Fixed


	Use parsed context when running command as subcommand.

	Docs prose.








1.4.1 [https://github.com/urfave/cli/compare/v1.4.0...v1.4.1] - 2015-01-09 (backfilled 2016-04-25)


Added


	Support for hiding -h / --help flags, but not help subcommand.

	Stop flag parsing after --.






Fixed


	Help text for generic flags to specify single value.

	Use double quotes in output for defaults.

	Use ParseInt instead of ParseUint for int environment var values.

	Use 0 as base when parsing int environment var values.








1.4.0 [https://github.com/urfave/cli/compare/v1.3.1...v1.4.0] - 2014-12-12 (backfilled 2016-04-25)


Added


	Support for environment variable lookup “cascade”.

	Support for Stdout on app for output redirection.






Fixed


	Print command help instead of app help in ShowCommandHelp.








1.3.1 [https://github.com/urfave/cli/compare/v1.3.0...v1.3.1] - 2014-11-13 (backfilled 2016-04-25)


Added


	Docs and example code updates.






Changed


	Default -v / --version flag made optional.








1.3.0 [https://github.com/urfave/cli/compare/v1.2.0...v1.3.0] - 2014-08-10 (backfilled 2016-04-25)


Added


	FlagNames at context level.

	Exposed VersionPrinter var for more control over version output.

	Zsh completion hook.

	AUTHOR section in default app help template.

	Contribution guidelines.

	DurationFlag type.








1.2.0 [https://github.com/urfave/cli/compare/v1.1.0...v1.2.0] - 2014-08-02


Added


	Support for environment variable defaults on flags plus tests.








1.1.0 [https://github.com/urfave/cli/compare/v1.0.0...v1.1.0] - 2014-07-15


Added


	Bash completion.

	Optional hiding of built-in help command.

	Optional skipping of flag parsing at command level.

	Author, Email, and Compiled metadata on app.

	Before hook func support at app and command level.

	CommandNotFound func support at app level.

	Command reference available on context.

	GenericFlag type.

	Float64Flag type.

	BoolTFlag type.

	IsSet flag helper on context.

	More flag lookup funcs at context level.

	More tests &amp;

 docs.






Changed


	Help template updates to account for presence/absence of flags.

	Separated subcommand help template.

	Exposed HelpPrinter var for more control over help output.








1.0.0 [https://github.com/urfave/cli/compare/v0.1.0...v1.0.0] - 2013-11-01


Added


	help flag in default app flag set and each command flag set.

	Custom handling of argument parsing errors.

	Command lookup by name at app level.

	StringSliceFlag type and supporting StringSlice type.

	IntSliceFlag type and supporting IntSlice type.

	Slice type flag lookups by name at context level.

	Export of app and command help functions.

	More tests &amp;

 docs.








0.1.0 - 2013-07-22


Added


	Initial implementation.











          

      

      

    

  

  
    
    
    gogpg
    
    

    
 
  
  

    
      
          
            
  
gogpg

[image: GoDoc] [https://godoc.org/github.com/schollz/gogpg]
[image: Coverage]

gogpg is a Go-library with a simple API for decrypting/encrypting single-user armor-encoded GPG files.

See the tests and documentation for more info.


Development

To run the tests, you need to generate a key for Testy McTestFace:

$ cd testing
$ gpg --gen-key
$ # Use ID "Testy McTestFace" and password "1234"
$ gpg --yes --armor --recipient "Testy McTestFace" --trust-model always --encrypt hello.txt








License

MIT







          

      

      

    

  

  
    
    
    gogit
    
    

    
 
  
  

    
      
          
            
  
gogit




gogit

[image: GoDoc] [https://godoc.org/github.com/schollz/gogit]
[image: Coverage]




gogit

git is a Go-library with a simple API for using git.

See the tests and documentation for more info.


License

MIT







          

      

      

    

  

  
    
    
    Contributing to Go
    
    

    
 
  
  

    
      
          
            
  
Contributing to Go

Go is an open source project.

It is the work of hundreds of contributors. We appreciate your help!


Filing issues

When filing an issue [https://golang.org/issue/new], make sure to answer these five questions:


	What version of Go are you using (go version)?

	What operating system and processor architecture are you using?

	What did you do?

	What did you expect to see?

	What did you see instead?



General questions should go to the golang-nuts mailing list [https://groups.google.com/group/golang-nuts] instead of the issue tracker.
The gophers there will answer or ask you to file an issue if you’ve tripped over a bug.




Contributing code

Please read the Contribution Guidelines [https://golang.org/doc/contribute.html]
before sending patches.

We do not accept GitHub pull requests
(we use Gerrit [https://code.google.com/p/gerrit/] instead for code review).

Unless otherwise noted, the Go source files are distributed under
the BSD-style license found in the LICENSE file.







          

      

      

    

  

  
    
    
    Building sys/unix
    
    

    
 
  
  

    
      
          
            
  
Building sys/unix

The sys/unix package provides access to the raw system call interface of the
underlying operating system. See: https://godoc.org/golang.org/x/sys/unix

Porting Go to a new architecture/OS combination or adding syscalls, types, or
constants to an existing architecture/OS pair requires some manual effort;
however, there are tools that automate much of the process.


Build Systems

There are currently two ways we generate the necessary files. We are currently
migrating the build system to use containers so the builds are reproducible.
This is being done on an OS-by-OS basis. Please update this documentation as
components of the build system change.


Old Build System (currently for GOOS != "Linux" || GOARCH == "sparc64")

The old build system generates the Go files based on the C header files
present on your system. This means that files
for a given GOOS/GOARCH pair must be generated on a system with that OS and
architecture. This also means that the generated code can differ from system
to system, based on differences in the header files.

To avoid this, if you are using the old build system, only generate the Go
files on an installation with unmodified header files. It is also important to
keep track of which version of the OS the files were generated from (ex.
Darwin 14 vs Darwin 15). This makes it easier to track the progress of changes
and have each OS upgrade correspond to a single change.

To build the files for your current OS and architecture, make sure GOOS and
GOARCH are set correctly and run mkall.sh. This will generate the files for
your specific system. Running mkall.sh -n shows the commands that will be run.

Requirements: bash, perl, go




New Build System (currently for GOOS == "Linux" && GOARCH != "sparc64")

The new build system uses a Docker container to generate the go files directly
from source checkouts of the kernel and various system libraries. This means
that on any platform that supports Docker, all the files using the new build
system can be generated at once, and generated files will not change based on
what the person running the scripts has installed on their computer.

The OS specific files for the new build system are located in the ${GOOS}
directory, and the build is coordinated by the ${GOOS}/mkall.go program. When
the kernel or system library updates, modify the Dockerfile at
${GOOS}/Dockerfile to checkout the new release of the source.

To build all the files under the new build system, you must be on an amd64/Linux
system and have your GOOS and GOARCH set accordingly. Running mkall.sh will
then generate all of the files for all of the GOOS/GOARCH pairs in the new build
system. Running mkall.sh -n shows the commands that will be run.

Requirements: bash, perl, go, docker






Component files

This section describes the various files used in the code generation process.
It also contains instructions on how to modify these files to add a new
architecture/OS or to add additional syscalls, types, or constants. Note that
if you are using the new build system, the scripts cannot be called normally.
They must be called from within the docker container.


asm files

The hand-written assembly file at asm_${GOOS}_${GOARCH}.s implements system
call dispatch. There are three entry points:

  func Syscall(trap, a1, a2, a3 uintptr) (r1, r2, err uintptr)
  func Syscall6(trap, a1, a2, a3, a4, a5, a6 uintptr) (r1, r2, err uintptr)
  func RawSyscall(trap, a1, a2, a3 uintptr) (r1, r2, err uintptr)





The first and second are the standard ones; they differ only in how many
arguments can be passed to the kernel. The third is for low-level use by the
ForkExec wrapper. Unlike the first two, it does not call into the scheduler to
let it know that a system call is running.

When porting Go to an new architecture/OS, this file must be implemented for
each GOOS/GOARCH pair.




mksysnum

Mksysnum is a script located at ${GOOS}/mksysnum.pl (or mksysnum_${GOOS}.pl
for the old system). This script takes in a list of header files containing the
syscall number declarations and parses them to produce the corresponding list of
Go numeric constants. See zsysnum_${GOOS}_${GOARCH}.go for the generated
constants.

Adding new syscall numbers is mostly done by running the build on a sufficiently
new installation of the target OS (or updating the source checkouts for the
new build system). However, depending on the OS, you make need to update the
parsing in mksysnum.




mksyscall.pl

The syscall.go, syscall_${GOOS}.go, syscall_${GOOS}_${GOARCH}.go are
hand-written Go files which implement system calls (for unix, the specific OS,
or the specific OS/Architecture pair respectively) that need special handling
and list //sys comments giving prototypes for ones that can be generated.

The mksyscall.pl script takes the //sys and //sysnb comments and converts
them into syscalls. This requires the name of the prototype in the comment to
match a syscall number in the zsysnum_${GOOS}_${GOARCH}.go file. The function
prototype can be exported (capitalized) or not.

Adding a new syscall often just requires adding a new //sys function prototype
with the desired arguments and a capitalized name so it is exported. However, if
you want the interface to the syscall to be different, often one will make an
unexported //sys prototype, an then write a custom wrapper in
syscall_${GOOS}.go.




types files

For each OS, there is a hand-written Go file at ${GOOS}/types.go (or
types_${GOOS}.go on the old system). This file includes standard C headers and
creates Go type aliases to the corresponding C types. The file is then fed
through godef to get the Go compatible definitions. Finally, the generated code
is fed though mkpost.go to format the code correctly and remove any hidden or
private identifiers. This cleaned-up code is written to
ztypes_${GOOS}_${GOARCH}.go.

The hardest part about preparing this file is figuring out which headers to
include and which symbols need to be #defined to get the actual data
structures that pass through to the kernel system calls. Some C libraries
preset alternate versions for binary compatibility and translate them on the
way in and out of system calls, but there is almost always a #define that can
get the real ones.
See types_darwin.go and linux/types.go for examples.

To add a new type, add in the necessary include statement at the top of the
file (if it is not already there) and add in a type alias line. Note that if
your type is significantly different on different architectures, you may need
some #if/#elif macros in your include statements.




mkerrors.sh

This script is used to generate the system’s various constants. This doesn’t
just include the error numbers and error strings, but also the signal numbers
an a wide variety of miscellaneous constants. The constants come from the list
of include files in the includes_${uname} variable. A regex then picks out
the desired #define statements, and generates the corresponding Go constants.
The error numbers and strings are generated from #include <errno.h>, and the
signal numbers and strings are generated from #include <signal.h>. All of
these constants are written to zerrors_${GOOS}_${GOARCH}.go via a C program,
_errors.c, which prints out all the constants.

To add a constant, add the header that includes it to the appropriate variable.
Then, edit the regex (if necessary) to match the desired constant. Avoid making
the regex too broad to avoid matching unintended constants.






Generated files


zerror_${GOOS}_${GOARCH}.go

A file containing all of the system’s generated error numbers, error strings,
signal numbers, and constants. Generated by mkerrors.sh (see above).




zsyscall_${GOOS}_${GOARCH}.go

A file containing all the generated syscalls for a specific GOOS and GOARCH.
Generated by mksyscall.pl (see above).




zsysnum_${GOOS}_${GOARCH}.go

A list of numeric constants for all the syscall number of the specific GOOS
and GOARCH. Generated by mksysnum (see above).




ztypes_${GOOS}_${GOARCH}.go

A file containing Go types for passing into (or returning from) syscalls.
Generated by godefs and the types file (see above).









          

      

      

    

  

  
    
    
    Go Cryptography
    
    

    
 
  
  

    
      
          
            
  
Go Cryptography

This repository holds supplementary Go cryptography libraries.


Download/Install

The easiest way to install is to run go get -u golang.org/x/crypto/.... You
can also manually git clone the repository to $GOPATH/src/golang.org/x/crypto.




Report Issues / Send Patches

This repository uses Gerrit for code changes. To learn how to submit changes to
this repository, see https://golang.org/doc/contribute.html.

The main issue tracker for the crypto repository is located at
https://github.com/golang/go/issues. Prefix your issue with “x/crypto:” in the
subject line, so it is easy to find.

Note that contributions to the cryptography package receive additional scrutiny
due to their sensitive nature. Patches may take longer than normal to receive
feedback.







          

      

      

    

  

  
    
    
    Contributing to Go
    
    

    
 
  
  

    
      
          
            
  
Contributing to Go

Go is an open source project.

It is the work of hundreds of contributors. We appreciate your help!


Filing issues

When filing an issue [https://golang.org/issue/new], make sure to answer these five questions:


	What version of Go are you using (go version)?

	What operating system and processor architecture are you using?

	What did you do?

	What did you expect to see?

	What did you see instead?



General questions should go to the golang-nuts mailing list [https://groups.google.com/group/golang-nuts] instead of the issue tracker.
The gophers there will answer or ask you to file an issue if you’ve tripped over a bug.




Contributing code

Please read the Contribution Guidelines [https://golang.org/doc/contribute.html]
before sending patches.

We do not accept GitHub pull requests
(we use Gerrit [https://code.google.com/p/gerrit/] instead for code review).

Unless otherwise noted, the Go source files are distributed under
the BSD-style license found in the LICENSE file.







          

      

      

    

  

  
    
    
    Terminal progress bar for Go
    
    

    
 
  
  

    
      
          
            
  
Terminal progress bar for Go

[image: Join the chat at https://gitter.im/cheggaaa/pb] [https://gitter.im/cheggaaa/pb?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]

Simple progress bar for console programs.

Please check the new version https://github.com/cheggaaa/pb/tree/v2 (currently, it’s beta)


Installation

go get gopkg.in/cheggaaa/pb.v1








Usage

package main

import (
    "gopkg.in/cheggaaa/pb.v1"
    "time"
)

func main() {
    count := 100000
    bar := pb.StartNew(count)
    for i := 0; i < count; i++ {
        bar.Increment()
        time.Sleep(time.Millisecond)
    }
    bar.FinishPrint("The End!")
}





Result will be like this:

> go run test.go
37158 / 100000 [================>_______________________________] 37.16% 1m11s








Customization

// create bar
bar := pb.New(count)

// refresh info every second (default 200ms)
bar.SetRefreshRate(time.Second)

// show percents (by default already true)
bar.ShowPercent = true

// show bar (by default already true)
bar.ShowBar = true

// no counters
bar.ShowCounters = false

// show "time left"
bar.ShowTimeLeft = true

// show average speed
bar.ShowSpeed = true

// sets the width of the progress bar
bar.SetWidth(80)

// sets the width of the progress bar, but if terminal size smaller will be ignored
bar.SetMaxWidth(80)

// convert output to readable format (like KB, MB)
bar.SetUnits(pb.U_BYTES)

// and start
bar.Start()








Progress bar for IO Operations

// create and start bar
bar := pb.New(myDataLen).SetUnits(pb.U_BYTES)
bar.Start()

// my io.Reader
r := myReader

// my io.Writer
w := myWriter

// create proxy reader
reader := bar.NewProxyReader(r)

// and copy from pb reader
io.Copy(w, reader)





// create and start bar
bar := pb.New(myDataLen).SetUnits(pb.U_BYTES)
bar.Start()

// my io.Reader
r := myReader

// my io.Writer
w := myWriter

// create multi writer
writer := io.MultiWriter(w, bar)

// and copy
io.Copy(writer, r)

bar.Finish()








Custom Progress Bar Look-and-feel

bar.Format("<.- >")








Multiple Progress Bars (experimental and unstable)

Do not print to terminal while pool is active.

package main

import (
    "math/rand"
    "sync"
    "time"

    "gopkg.in/cheggaaa/pb.v1"
)

func main() {
    // create bars
    first := pb.New(200).Prefix("First ")
    second := pb.New(200).Prefix("Second ")
    third := pb.New(200).Prefix("Third ")
    // start pool
    pool, err := pb.StartPool(first, second, third)
    if err != nil {
        panic(err)
    }
    // update bars
    wg := new(sync.WaitGroup)
    for _, bar := range []*pb.ProgressBar{first, second, third} {
        wg.Add(1)
        go func(cb *pb.ProgressBar) {
            for n := 0; n < 200; n++ {
                cb.Increment()
                time.Sleep(time.Millisecond * time.Duration(rand.Intn(100)))
            }
            cb.Finish()
            wg.Done()
        }(bar)
    }
    wg.Wait()
    // close pool
    pool.Stop()
}





The result will be as follows:

$ go run example/multiple.go 
First 141 / 1000 [===============>---------------------------------------] 14.10 % 44s
Second 139 / 1000 [==============>---------------------------------------] 13.90 % 44s
Third 152 / 1000 [================>--------------------------------------] 15.20 % 40s











          

      

      

    

  

  
    
    
    YAML support for the Go language
    
    

    
 
  
  

    
      
          
            
  
YAML support for the Go language


Introduction

The yaml package enables Go programs to comfortably encode and decode YAML
values. It was developed within Canonical [https://www.canonical.com] as
part of the juju [https://juju.ubuntu.com] project, and is based on a
pure Go port of the well-known libyaml [http://pyyaml.org/wiki/LibYAML]
C library to parse and generate YAML data quickly and reliably.




Compatibility

The yaml package supports most of YAML 1.1 and 1.2, including support for
anchors, tags, map merging, etc. Multi-document unmarshalling is not yet
implemented, and base-60 floats from YAML 1.1 are purposefully not
supported since they’re a poor design and are gone in YAML 1.2.




Installation and usage

The import path for the package is gopkg.in/yaml.v1.

To install it, run:

go get gopkg.in/yaml.v1








API documentation

If opened in a browser, the import path itself leads to the API documentation:


	https://gopkg.in/yaml.v1






API stability

The package API for yaml v1 will remain stable as described in gopkg.in [https://gopkg.in].




License

The yaml package is licensed under the LGPL with an exception that allows it to be linked statically. Please see the LICENSE file for details.




Example

package main

import (
        "fmt"
        "log"

        "gopkg.in/yaml.v1"
)

var data = `
a: Easy!
b:
  c: 2
  d: [3, 4]
`

type T struct {
        A string
        B struct{C int; D []int ",flow"}
}

func main() {
        t := T{}
    
        err := yaml.Unmarshal([]byte(data), &t)
        if err != nil {
                log.Fatalf("error: %v", err)
        }
        fmt.Printf("--- t:\n%v\n\n", t)
    
        d, err := yaml.Marshal(&t)
        if err != nil {
                log.Fatalf("error: %v", err)
        }
        fmt.Printf("--- t dump:\n%s\n\n", string(d))
    
        m := make(map[interface{}]interface{})
    
        err = yaml.Unmarshal([]byte(data), &m)
        if err != nil {
                log.Fatalf("error: %v", err)
        }
        fmt.Printf("--- m:\n%v\n\n", m)
    
        d, err = yaml.Marshal(&m)
        if err != nil {
                log.Fatalf("error: %v", err)
        }
        fmt.Printf("--- m dump:\n%s\n\n", string(d))
}





This example will generate the following output:

--- t:
{Easy! {2 [3 