

Welcome to Gofri’s documentation!

Getting started:

	Installation

	Initializing a project

	Configuration file

	Start your application

	Generator

Controllers:

	HTTP request handling

	Filters

Installation

	Install from pip

	To install latest stable version run $ pip3 install Gofri.

To install current development version check out the GitHub repository.

Initializing a project

$ python3 -m gofri.generate_project <project-name> is the common way to create a project,
which will have the following structure

My-First-Project
 my_first_project
 __init__.py
 start.py
 conf.xml
 modules.py
 generate.py
 back
 __init__.py
 controller
 __init__.py
 ...
 dao
 __init__.py
 ...
 ...
 web
 <web content if needed>

Configuration file

The main configuration file is conf.xml and it’s in the root package.

HTTP

<configuration>
 <project>
 <app-path>example.app</app-path>
 </project>
 <hosting>
 <host></host>
 <port>8080</port>
 </hosting>

 ...

</configuration>

If you leave <host> empty, the default is 127.0.0.1.

Dependencies

<configuration>
 <dependencies>
 <dependency>matplotlib</dependency>
 <dependency>pygame</dependency>
 </dependencies>

 ...

</configuration>

This is how you can specify project dependencies in current version.
There will be more effective solutions for this purpose.

Note

Dependencies are automatically installed at startup, if they are not installed yet.

Start your application

To start your webapp run $ python3 start.py in the root package.

Expected output after startup:

GOFRI -- version: 1.0.1
##

All required dependencies are installed
* Running on http://127.0.0.1:8080/ (Press CTRL+C to quit)

Generator

Each generated project has a generate.py in the root package.
It’s a tool for rapid module generation for your project.

Main features:

Command: generate

Generate custom module:

generate
 module <name> <path>

Generate predefined modules:

generate
 controller <name>
 filter <name>
 service <name>
 dto <name>
 entity <name> [column names separated with space]

Example usage:

$ python3 generate.py generate entity dog name breed birth_year

HTTP request handling

Configuration

Configuration with conf.xml

HTTP controllers

HTTP controllers are modules which are responsible for receiving requests and sending responses to a client through HTTP connection.

Tip

It’s recommended to separate some request handler functions into more controllers to avoid too big, messy files.

	Generate a controller

	The common way to create a controller is using generate.py for this purpose:

$ python3 generate.py generate controller <name>

Decorator usage

The basic gofri HTTP decorators are in the gofri.lib.decorate.http module, and they are responsible for route management. They are GET, POST, PUT, HEAD and DELETE depending on what request method do you want to accept on the endpoint.

from gofri.lib.decorate.http import GET, POST, PUT, HEAD, DELETE

This is the first (positional) argument, which is always required:

	
	path

	Defines the url path of the given endpoint, you can also define path variables: path="/people/<person_id>", which have to be the first arguments of the decorated function (They are positional arguments of the function).

Example usage with @GET:

@GET(path="people/<person_id>")
def get_person(person_id):
 return person_service.get(person_id)

The remaining variables are strings which contain the names of the request part attributes seperated by semicolons(;).
Example usage: header='username;password'. The decorated function expects arguments with the defined names, so avoid using the same names even in different decorator values!

	
	params

	The variables defined here are the path parameters of a request, e.g. /search?keyword=house&where=images so the function’s arguments would be keyword and where.

	
	headers

	The request header parameters are defined in this string.

	@GET

	

@GET("/people")
def get_people():
 return [Person("Jane"), Person("Jack")]

@GET(path="/person", params="person_id")
def get_person(person_id):
 return person_service.get(person_id)

Example: <host>/person?person_id=1

	@POST

	

@POST has additional input values like:

	
	body

	Contains the request body.

@POST(path="/add", body="name;age")
def add_person(name, age):
 person_service.add(Person(name, age))

	
	json

	Contains the request body if it’s in application/json format:

@POST(path="/add_more", json="people")
def add_people(people):
 person_service.add_more(people)

Request body (application/json):

{
 "people": [
 {"name": "John", "age": 23},
 {"name": "Jane", "age": 18},
 {"name": "Jack", "age": 34}
]
}

headers example:

@POST(path="/auth", headers="name;password")
def auth(name, password):
 return service.auth()

You can also use more request part decorator value at once:

@POST(path="/library/<room_id>", json="books", params="note"):
def add_books(room_id, books, note):
 library.rooms[room_id].add_books(books, note)

	More

	@HEAD, @PUT and @DELETE is also available, they work the same way as @POST.

Note

The big advantage of Gofri’s HTTP decorators is that you don’t have to read different request parts inside the function because you have them as parameters.
If you want to use request parts differently, do as you would do it in Flask.

Filters

What are these?

HTTP filters are tools for filtering requests and set different properties before the request handler functions run.
To setup a filter is very easy you just have to create a class with @GofriFilter() decorator.

@GofriFilter()
class MyFilter(Filter):
 def filter(self, request, response):
 return self._continue(request, response)

Tip

It’s recommended to inherit your class from gofri.lib.http.filter.Filter, but works anyway, so your IDE can easily recognize overrideable methods.

Methods of Filter class:

	
	filter(request, response)

	The filtering logic should be implemented here, and to let the request go forward _continue(request, response) should be called.

	
	_continue(request, response)

	When this method is called, the request and response is passed to the next filter or to a controller which has a method to handle requests on the specific url.

Filtering by urls

By default a filter doesn’t filter anything, it’s configurable in the decorator GofriFilter().
The URLs which you want to filter are given in the decorator’s urls value, which is a list with the given URLs in string format.

@GofriFilter(urls=["/vpost", "/send"])
class MyFilter(Filter):
 def filter(self, request, response):
 return self._continue(request, response)

If you set @GofriFilter() decorator value filter_all to True, the filter activates on all URL endpoints on the server.

@GofriFilter(filter_all=True)
class MyFilter(Filter):
 def filter(self, request, response):
 return self._continue(request, response)

Specify order

You can configure that in which order do you want to make your filters work.
The lower the order value is, the sooner the filter works.

@GofriFilter(filter_all=True, order=1)
class AFilter(Filter):
 ...

@GofriFilter(filter_all=True, order=0)
class BFilter(Filter):
 ...

In the example above, BFilter filters before AFilter. The default order is 0.
If two filters has the same order, they are ranked by definition order in the code.

Note

You don’t have to specify the order of your filters strictly like 0-1-2..., it also works well with orders 2-3-6.

Index

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Gofri’s documentation!

 		
 Installation

 		
 Initializing a project

 		
 Configuration file

 		
 HTTP

 		
 Dependencies

 		
 Start your application

 		
 Generator

 		
 HTTP request handling

 		
 Configuration

 		
 HTTP controllers

 		
 Decorator usage

 		
 Filters

 		
 What are these?

 		
 Filtering by urls

 		
 Specify order

_static/up-pressed.png

_static/up.png

