

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.





          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  
Gobackup

[image: _images/gobackup.svg]Go Report Card [https://goreportcard.com/report/github.com/lucashtc/gobackup]

Ferramenta para criação de backups de Banco MySQL localmente.


Em Desenvolvimento




Installation

go get github.com/lucashtc/gobackup 








Usage

cd github.com/lucashtc/gobackup 

go run gobackup.go -l /backup/ -u userDatabase -p password
#OR 
go build 
gobackup -l /backup/ -u userDatabase -p password








License

MIT [https://github.com/lucashtc/gobackup/blob/master/LICENSE]







          

      

      

    

  

    
      
          
            
  
Version 1.4.1 (2018-11-14)

Bugfixes:


	Fix TIME format for binary columns (#818)


	Fix handling of empty auth plugin names (#835)


	Fix caching_sha2_password with empty password (#826)


	Fix canceled context broke mysqlConn (#862)


	Fix OldAuthSwitchRequest support (#870)


	Fix Auth Response packet for cleartext password (#887)







Version 1.4 (2018-06-03)

Changes:


	Documentation fixes (#530, #535, #567)


	Refactoring (#575, #579, #580, #581, #603, #615, #704)


	Cache column names (#444)


	Sort the DSN parameters in DSNs generated from a config (#637)


	Allow native password authentication by default (#644)


	Use the default port if it is missing in the DSN (#668)


	Removed the strict mode (#676)


	Do not query max_allowed_packet by default (#680)


	Dropped support Go 1.6 and lower (#696)


	Updated ConvertValue() to match the database/sql/driver implementation (#760)


	Document the usage of 0000-00-00T00:00:00 as the time.Time zero value (#783)


	Improved the compatibility of the authentication system (#807)




New Features:


	Multi-Results support (#537)


	rejectReadOnly DSN option (#604)


	context.Context support (#608, #612, #627, #761)


	Transaction isolation level support (#619, #744)


	Read-Only transactions support (#618, #634)


	NewConfig function which initializes a config with default values (#679)


	Implemented the ColumnType interfaces (#667, #724)


	Support for custom string types in ConvertValue (#623)


	Implemented NamedValueChecker, improving support for uint64 with high bit set (#690, #709, #710)


	caching_sha2_password authentication plugin support (#794, #800, #801, #802)


	Implemented driver.SessionResetter (#779)


	sha256_password authentication plugin support (#808)




Bugfixes:


	Use the DSN hostname as TLS default ServerName if tls=true (#564, #718)


	Fixed LOAD LOCAL DATA INFILE for empty files (#590)


	Removed columns definition cache since it sometimes cached invalid data (#592)


	Don’t mutate registered TLS configs (#600)


	Make RegisterTLSConfig concurrency-safe (#613)


	Handle missing auth data in the handshake packet correctly (#646)


	Do not retry queries when data was written to avoid data corruption (#302, #736)


	Cache the connection pointer for error handling before invalidating it (#678)


	Fixed imports for appengine/cloudsql (#700)


	Fix sending STMT_LONG_DATA for 0 byte data (#734)


	Set correct capacity for []bytes read from length-encoded strings (#766)


	Make RegisterDial concurrency-safe (#773)







Version 1.3 (2016-12-01)

Changes:


	Go 1.1 is no longer supported


	Use decimals fields in MySQL to format time types (#249)


	Buffer optimizations (#269)


	TLS ServerName defaults to the host (#283)


	Refactoring (#400, #410, #437)


	Adjusted documentation for second generation CloudSQL (#485)


	Documented DSN system var quoting rules (#502)


	Made statement.Close() calls idempotent to avoid errors in Go 1.6+ (#512)




New Features:


	Enable microsecond resolution on TIME, DATETIME and TIMESTAMP (#249)


	Support for returning table alias on Columns() (#289, #359, #382)


	Placeholder interpolation, can be actived with the DSN parameter interpolateParams=true (#309, #318, #490)


	Support for uint64 parameters with high bit set (#332, #345)


	Cleartext authentication plugin support (#327)


	Exported ParseDSN function and the Config struct (#403, #419, #429)


	Read / Write timeouts (#401)


	Support for JSON field type (#414)


	Support for multi-statements and multi-results (#411, #431)


	DSN parameter to set the driver-side max_allowed_packet value manually (#489)


	Native password authentication plugin support (#494, #524)




Bugfixes:


	Fixed handling of queries without columns and rows (#255)


	Fixed a panic when SetKeepAlive() failed (#298)


	Handle ERR packets while reading rows (#321)


	Fixed reading NULL length-encoded integers in MySQL 5.6+ (#349)


	Fixed absolute paths support in LOAD LOCAL DATA INFILE (#356)


	Actually zero out bytes in handshake response (#378)


	Fixed race condition in registering LOAD DATA INFILE handler (#383)


	Fixed tests with MySQL 5.7.9+ (#380)


	QueryUnescape TLS config names (#397)


	Fixed “broken pipe” error by writing to closed socket (#390)


	Fixed LOAD LOCAL DATA INFILE buffering (#424)


	Fixed parsing of floats into float64 when placeholders are used (#434)


	Fixed DSN tests with Go 1.7+ (#459)


	Handle ERR packets while waiting for EOF (#473)


	Invalidate connection on error while discarding additional results (#513)


	Allow terminating packets of length 0 (#516)







Version 1.2 (2014-06-03)

Changes:


	We switched back to a “rolling release”. go get installs the current master branch again


	Version v1 of the driver will not be maintained anymore. Go 1.0 is no longer supported by this driver


	Exported errors to allow easy checking from application code


	Enabled TCP Keepalives on TCP connections


	Optimized INFILE handling (better buffer size calculation, lazy init, …)


	The DSN parser also checks for a missing separating slash


	Faster binary date / datetime to string formatting


	Also exported the MySQLWarning type


	mysqlConn.Close returns the first error encountered instead of ignoring all errors


	writePacket() automatically writes the packet size to the header


	readPacket() uses an iterative approach instead of the recursive approach to merge splitted packets




New Features:


	RegisterDial allows the usage of a custom dial function to establish the network connection


	Setting the connection collation is possible with the collation DSN parameter. This parameter should be preferred over the charset parameter


	Logging of critical errors is configurable with SetLogger


	Google CloudSQL support




Bugfixes:


	Allow more than 32 parameters in prepared statements


	Various old_password fixes


	Fixed TestConcurrent test to pass Go’s race detection


	Fixed appendLengthEncodedInteger for large numbers


	Renamed readLengthEnodedString to readLengthEncodedString and skipLengthEnodedString to skipLengthEncodedString (fixed typo)







Version 1.1 (2013-11-02)

Changes:


	Go-MySQL-Driver now requires Go 1.1


	Connections now use the collation utf8_general_ci by default. Adding &charset=UTF8 to the DSN should not be necessary anymore


	Made closing rows and connections error tolerant. This allows for example deferring rows.Close() without checking for errors


	[]byte(nil) is now treated as a NULL value. Before, it was treated like an empty string / []byte("")


	DSN parameter values must now be url.QueryEscape’ed. This allows text values to contain special characters, such as ‘&’.


	Use the IO buffer also for writing. This results in zero allocations (by the driver) for most queries


	Optimized the buffer for reading


	stmt.Query now caches column metadata


	New Logo


	Changed the copyright header to include all contributors


	Improved the LOAD INFILE documentation


	The driver struct is now exported to make the driver directly accessible


	Refactored the driver tests


	Added more benchmarks and moved all to a separate file


	Other small refactoring




New Features:


	Added old_passwords support: Required in some cases, but must be enabled by adding allowOldPasswords=true to the DSN since it is insecure


	Added a clientFoundRows parameter: Return the number of matching rows instead of the number of rows changed on UPDATEs


	Added TLS/SSL support: Use a TLS/SSL encrypted connection to the server. Custom TLS configs can be registered and used




Bugfixes:


	Fixed MySQL 4.1 support: MySQL 4.1 sends packets with lengths which differ from the specification


	Convert to DB timezone when inserting time.Time


	Splitted packets (more than 16MB) are now merged correctly


	Fixed false positive io.EOF errors when the data was fully read


	Avoid panics on reuse of closed connections


	Fixed empty string producing false nil values


	Fixed sign byte for positive TIME fields







Version 1.0 (2013-05-14)

Initial Release





          

      

      

    

  

    
      
          
            
  
Contributing Guidelines


Reporting Issues

Before creating a new Issue, please check first if a similar Issue already exists [https://github.com/go-sql-driver/mysql/issues?state=open] or was recently closed [https://github.com/go-sql-driver/mysql/issues?direction=desc&page=1&sort=updated&state=closed].




Contributing Code

By contributing to this project, you share your code under the Mozilla Public License 2, as specified in the LICENSE file.
Don’t forget to add yourself to the AUTHORS file.


Code Review

Everyone is invited to review and comment on pull requests.
If it looks fine to you, comment with “LGTM” (Looks good to me).

If changes are required, notice the reviewers with “PTAL” (Please take another look) after committing the fixes.

Before merging the Pull Request, at least one team member [https://github.com/go-sql-driver?tab=members] must have commented with “LGTM”.






Development Ideas

If you are looking for ideas for code contributions, please check our Development Ideas [https://github.com/go-sql-driver/mysql/wiki/Development-Ideas] Wiki page.







          

      

      

    

  

    
      
          
            
  
Go-MySQL-Driver

A MySQL-Driver for Go’s database/sql [https://golang.org/pkg/database/sql/] package

[image: Golang Gopher holding the MySQL Dolphin]Go-MySQL-Driver logo




	Features


	Requirements


	Installation


	Usage


	DSN (Data Source Name)


	Password


	Protocol


	Address


	Parameters


	Examples






	Connection pool and timeouts


	context.Context Support


	ColumnType Support


	LOAD DATA LOCAL INFILE support


	time.Time support


	Unicode support






	Testing / Development


	License







Features


	Lightweight and fast [https://github.com/go-sql-driver/sql-benchmark]


	Native Go implementation. No C-bindings, just pure Go


	Connections over TCP/IPv4, TCP/IPv6, Unix domain sockets or custom protocols [https://godoc.org/github.com/go-sql-driver/mysql#DialFunc]


	Automatic handling of broken connections


	Automatic Connection Pooling (by database/sql package)


	Supports queries larger than 16MB


	Full sql.RawBytes [https://golang.org/pkg/database/sql/#RawBytes] support.


	Intelligent LONG DATA handling in prepared statements


	Secure LOAD DATA LOCAL INFILE support with file Whitelisting and io.Reader support


	Optional time.Time parsing


	Optional placeholder interpolation







Requirements


	Go 1.7 or higher. We aim to support the 3 latest versions of Go.


	MySQL (4.1+), MariaDB, Percona Server, Google CloudSQL or Sphinx (2.2.3+)









Installation

Simple install the package to your $GOPATH [https://github.com/golang/go/wiki/GOPATH] with the go tool [https://golang.org/cmd/go/] from shell:

$ go get -u github.com/go-sql-driver/mysql





Make sure Git is installed [https://git-scm.com/downloads] on your machine and in your system’s PATH.




Usage

Go MySQL Driver is an implementation of Go’s database/sql/driver interface. You only need to import the driver and can use the full database/sql [https://golang.org/pkg/database/sql/] API then.

Use mysql as driverName and a valid DSN  as dataSourceName:

import "database/sql"
import _ "github.com/go-sql-driver/mysql"

db, err := sql.Open("mysql", "user:password@/dbname")





Examples are available in our Wiki [https://github.com/go-sql-driver/mysql/wiki/Examples].


DSN (Data Source Name)

The Data Source Name has a common format, like e.g. PEAR DB [http://pear.php.net/manual/en/package.database.db.intro-dsn.php] uses it, but without type-prefix (optional parts marked by squared brackets):

[username[:password]@][protocol[(address)]]/dbname[?param1=value1&...&paramN=valueN]





A DSN in its fullest form:

username:password@protocol(address)/dbname?param=value





Except for the databasename, all values are optional. So the minimal DSN is:

/dbname





If you do not want to preselect a database, leave dbname empty:

/





This has the same effect as an empty DSN string:







Alternatively, Config.FormatDSN [https://godoc.org/github.com/go-sql-driver/mysql#Config.FormatDSN] can be used to create a DSN string by filling a struct.


Password

Passwords can consist of any character. Escaping is not necessary.




Protocol

See net.Dial [https://golang.org/pkg/net/#Dial] for more information which networks are available.
In general you should use an Unix domain socket if available and TCP otherwise for best performance.




Address

For TCP and UDP networks, addresses have the form host[:port].
If port is omitted, the default port will be used.
If host is a literal IPv6 address, it must be enclosed in square brackets.
The functions net.JoinHostPort [https://golang.org/pkg/net/#JoinHostPort] and net.SplitHostPort [https://golang.org/pkg/net/#SplitHostPort] manipulate addresses in this form.

For Unix domain sockets the address is the absolute path to the MySQL-Server-socket, e.g. /var/run/mysqld/mysqld.sock or /tmp/mysql.sock.




Parameters

Parameters are case-sensitive!

Notice that any of true, TRUE, True or 1 is accepted to stand for a true boolean value. Not surprisingly, false can be specified as any of: false, FALSE, False or 0.


allowAllFiles

Type:           bool
Valid Values:   true, false
Default:        false





allowAllFiles=true disables the file Whitelist for LOAD DATA LOCAL INFILE and allows all files.
Might be insecure! [http://dev.mysql.com/doc/refman/5.7/en/load-data-local.html]




allowCleartextPasswords

Type:           bool
Valid Values:   true, false
Default:        false





allowCleartextPasswords=true allows using the cleartext client side plugin [http://dev.mysql.com/doc/en/cleartext-authentication-plugin.html] if required by an account, such as one defined with the PAM authentication plugin [http://dev.mysql.com/doc/en/pam-authentication-plugin.html]. Sending passwords in clear text may be a security problem in some configurations. To avoid problems if there is any possibility that the password would be intercepted, clients should connect to MySQL Server using a method that protects the password. Possibilities include TLS / SSL, IPsec, or a private network.




allowNativePasswords

Type:           bool
Valid Values:   true, false
Default:        true





allowNativePasswords=false disallows the usage of MySQL native password method.




allowOldPasswords

Type:           bool
Valid Values:   true, false
Default:        false





allowOldPasswords=true allows the usage of the insecure old password method. This should be avoided, but is necessary in some cases. See also the old_passwords wiki page [https://github.com/go-sql-driver/mysql/wiki/old_passwords].




charset

Type:           string
Valid Values:   <name>
Default:        none





Sets the charset used for client-server interaction ("SET NAMES <value>"). If multiple charsets are set (separated by a comma), the following charset is used if setting the charset failes. This enables for example support for utf8mb4 (introduced in MySQL 5.5.3 [http://dev.mysql.com/doc/refman/5.5/en/charset-unicode-utf8mb4.html]) with fallback to utf8 for older servers (charset=utf8mb4,utf8).

Usage of the charset parameter is discouraged because it issues additional queries to the server.
Unless you need the fallback behavior, please use collation instead.




collation

Type:           string
Valid Values:   <name>
Default:        utf8_general_ci





Sets the collation used for client-server interaction on connection. In contrast to charset, collation does not issue additional queries. If the specified collation is unavailable on the target server, the connection will fail.

A list of valid charsets for a server is retrievable with SHOW COLLATION.




clientFoundRows

Type:           bool
Valid Values:   true, false
Default:        false





clientFoundRows=true causes an UPDATE to return the number of matching rows instead of the number of rows changed.




columnsWithAlias

Type:           bool
Valid Values:   true, false
Default:        false





When columnsWithAlias is true, calls to sql.Rows.Columns() will return the table alias and the column name separated by a dot. For example:

SELECT u.id FROM users as u





will return u.id instead of just id if columnsWithAlias=true.




interpolateParams

Type:           bool
Valid Values:   true, false
Default:        false





If interpolateParams is true, placeholders (?) in calls to db.Query() and db.Exec() are interpolated into a single query string with given parameters. This reduces the number of roundtrips, since the driver has to prepare a statement, execute it with given parameters and close the statement again with interpolateParams=false.

This can not be used together with the multibyte encodings BIG5, CP932, GB2312, GBK or SJIS. These are blacklisted as they may introduce a SQL injection vulnerability [http://stackoverflow.com/a/12118602/3430118]!




loc

Type:           string
Valid Values:   <escaped name>
Default:        UTC





Sets the location for time.Time values (when using parseTime=true). “Local” sets the system’s location. See time.LoadLocation [https://golang.org/pkg/time/#LoadLocation] for details.

Note that this sets the location for time.Time values but does not change MySQL’s time_zone setting [https://dev.mysql.com/doc/refman/5.5/en/time-zone-support.html]. For that see the time_zone system variable, which can also be set as a DSN parameter.

Please keep in mind, that param values must be url.QueryEscape [https://golang.org/pkg/net/url/#QueryEscape]’ed. Alternatively you can manually replace the / with %2F. For example US/Pacific would be loc=US%2FPacific.




maxAllowedPacket

Type:          decimal number
Default:       4194304





Max packet size allowed in bytes. The default value is 4 MiB and should be adjusted to match the server settings. maxAllowedPacket=0 can be used to automatically fetch the max_allowed_packet variable from server on every connection.




multiStatements

Type:           bool
Valid Values:   true, false
Default:        false





Allow multiple statements in one query. While this allows batch queries, it also greatly increases the risk of SQL injections. Only the result of the first query is returned, all other results are silently discarded.

When multiStatements is used, ? parameters must only be used in the first statement.




parseTime

Type:           bool
Valid Values:   true, false
Default:        false





parseTime=true changes the output type of DATE and DATETIME values to time.Time instead of []byte / string
The date or datetime like 0000-00-00 00:00:00 is converted into zero value of time.Time.




readTimeout

Type:           duration
Default:        0





I/O read timeout. The value must be a decimal number with a unit suffix (“ms”, “s”, “m”, “h”), such as “30s”, “0.5m” or “1m30s”.




rejectReadOnly

Type:           bool
Valid Values:   true, false
Default:        false





rejectReadOnly=true causes the driver to reject read-only connections. This
is for a possible race condition during an automatic failover, where the mysql
client gets connected to a read-only replica after the failover.

Note that this should be a fairly rare case, as an automatic failover normally
happens when the primary is down, and the race condition shouldn’t happen
unless it comes back up online as soon as the failover is kicked off. On the
other hand, when this happens, a MySQL application can get stuck on a
read-only connection until restarted. It is however fairly easy to reproduce,
for example, using a manual failover on AWS Aurora’s MySQL-compatible cluster.

If you are not relying on read-only transactions to reject writes that aren’t
supposed to happen, setting this on some MySQL providers (such as AWS Aurora)
is safer for failovers.

Note that ERROR 1290 can be returned for a read-only server and this option will
cause a retry for that error. However the same error number is used for some
other cases. You should ensure your application will never cause an ERROR 1290
except for read-only mode when enabling this option.




serverPubKey

Type:           string
Valid Values:   <name>
Default:        none





Server public keys can be registered with mysql.RegisterServerPubKey [https://godoc.org/github.com/go-sql-driver/mysql#RegisterServerPubKey], which can then be used by the assigned name in the DSN.
Public keys are used to transmit encrypted data, e.g. for authentication.
If the server’s public key is known, it should be set manually to avoid expensive and potentially insecure transmissions of the public key from the server to the client each time it is required.




timeout

Type:           duration
Default:        OS default





Timeout for establishing connections, aka dial timeout. The value must be a decimal number with a unit suffix (“ms”, “s”, “m”, “h”), such as “30s”, “0.5m” or “1m30s”.




tls

Type:           bool / string
Valid Values:   true, false, skip-verify, <name>
Default:        false





tls=true enables TLS / SSL encrypted connection to the server. Use skip-verify if you want to use a self-signed or invalid certificate (server side). Use a custom value registered with mysql.RegisterTLSConfig [https://godoc.org/github.com/go-sql-driver/mysql#RegisterTLSConfig].




writeTimeout

Type:           duration
Default:        0





I/O write timeout. The value must be a decimal number with a unit suffix (“ms”, “s”, “m”, “h”), such as “30s”, “0.5m” or “1m30s”.




System Variables

Any other parameters are interpreted as system variables:


	<boolean_var>=<value>: SET <boolean_var>=<value>


	<enum_var>=<value>: SET <enum_var>=<value>


	<string_var>=%27<value>%27: SET <string_var>='<value>'




Rules:


	The values for string variables must be quoted with '.


	The values must also be url.QueryEscape [http://golang.org/pkg/net/url/#QueryEscape]’ed!
(which implies values of string variables must be wrapped with %27).




Examples:


	autocommit=1: SET autocommit=1


	time_zone=%27Europe%2FParis%27 [https://dev.mysql.com/doc/refman/5.5/en/time-zone-support.html]: SET time_zone='Europe/Paris'


	tx_isolation=%27REPEATABLE-READ%27 [https://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_tx_isolation]: SET tx_isolation='REPEATABLE-READ'









Examples

user@unix(/path/to/socket)/dbname





root:pw@unix(/tmp/mysql.sock)/myDatabase?loc=Local





user:password@tcp(localhost:5555)/dbname?tls=skip-verify&autocommit=true





Treat warnings as errors by setting the system variable sql_mode [https://dev.mysql.com/doc/refman/5.7/en/sql-mode.html]:

user:password@/dbname?sql_mode=TRADITIONAL





TCP via IPv6:

user:password@tcp([de:ad:be:ef::ca:fe]:80)/dbname?timeout=90s&collation=utf8mb4_unicode_ci





TCP on a remote host, e.g. Amazon RDS:

id:password@tcp(your-amazonaws-uri.com:3306)/dbname





Google Cloud SQL on App Engine (First Generation MySQL Server):

user@cloudsql(project-id:instance-name)/dbname





Google Cloud SQL on App Engine (Second Generation MySQL Server):

user@cloudsql(project-id:regionname:instance-name)/dbname





TCP using default port (3306) on localhost:

user:password@tcp/dbname?charset=utf8mb4,utf8&sys_var=esc%40ped





Use the default protocol (tcp) and host (localhost:3306):

user:password@/dbname





No Database preselected:

user:password@/










Connection pool and timeouts

The connection pool is managed by Go’s database/sql package. For details on how to configure the size of the pool and how long connections stay in the pool see *DB.SetMaxOpenConns, *DB.SetMaxIdleConns, and *DB.SetConnMaxLifetime in the database/sql documentation [https://golang.org/pkg/database/sql/]. The read, write, and dial timeouts for each individual connection are configured with the DSN parameters readTimeout, writeTimeout, and timeout, respectively.






ColumnType Support

This driver supports the ColumnType interface [https://golang.org/pkg/database/sql/#ColumnType] introduced in Go 1.8, with the exception of ColumnType.Length() [https://golang.org/pkg/database/sql/#ColumnType.Length], which is currently not supported.




context.Context Support

Go 1.8 added database/sql support for context.Context. This driver supports query timeouts and cancellation via contexts.
See context support in the database/sql package [https://golang.org/doc/go1.8#database_sql] for more details.


LOAD DATA LOCAL INFILE support

For this feature you need direct access to the package. Therefore you must change the import path (no _):

import "github.com/go-sql-driver/mysql"





Files must be whitelisted by registering them with mysql.RegisterLocalFile(filepath) (recommended) or the Whitelist check must be deactivated by using the DSN parameter allowAllFiles=true (Might be insecure! [http://dev.mysql.com/doc/refman/5.7/en/load-data-local.html]).

To use a io.Reader a handler function must be registered with mysql.RegisterReaderHandler(name, handler) which returns a io.Reader or io.ReadCloser. The Reader is available with the filepath Reader::<name> then. Choose different names for different handlers and DeregisterReaderHandler when you don’t need it anymore.

See the godoc of Go-MySQL-Driver [https://godoc.org/github.com/go-sql-driver/mysql] for details.




time.Time support

The default internal output type of MySQL DATE and DATETIME values is []byte which allows you to scan the value into a []byte, string or sql.RawBytes variable in your program.

However, many want to scan MySQL DATE and DATETIME values into time.Time variables, which is the logical opposite in Go to DATE and DATETIME in MySQL. You can do that by changing the internal output type from []byte to time.Time with the DSN parameter parseTime=true. You can set the default time.Time location [https://golang.org/pkg/time/#Location] with the loc DSN parameter.

Caution: As of Go 1.1, this makes time.Time the only variable type you can scan DATE and DATETIME values into. This breaks for example sql.RawBytes support [https://github.com/go-sql-driver/mysql/wiki/Examples#rawbytes].

Alternatively you can use the NullTime [https://godoc.org/github.com/go-sql-driver/mysql#NullTime] type as the scan destination, which works with both time.Time and string / []byte.




Unicode support

Since version 1.1 Go-MySQL-Driver automatically uses the collation utf8_general_ci by default.

Other collations / charsets can be set using the collation DSN parameter.

Version 1.0 of the driver recommended adding &charset=utf8 (alias for SET NAMES utf8) to the DSN to enable proper UTF-8 support. This is not necessary anymore. The collation parameter should be preferred to set another collation / charset than the default.

See http://dev.mysql.com/doc/refman/5.7/en/charset-unicode.html for more details on MySQL’s Unicode support.






Testing / Development

To run the driver tests you may need to adjust the configuration. See the Testing Wiki-Page [https://github.com/go-sql-driver/mysql/wiki/Testing] for details.

Go-MySQL-Driver is not feature-complete yet. Your help is very appreciated.
If you want to contribute, you can work on an open issue [https://github.com/go-sql-driver/mysql/issues?state=open] or review a pull request [https://github.com/go-sql-driver/mysql/pulls].

See the Contribution Guidelines [https://github.com/go-sql-driver/mysql/blob/master/CONTRIBUTING] for details.






License

Go-MySQL-Driver is licensed under the Mozilla Public License Version 2.0 [https://raw.github.com/go-sql-driver/mysql/master/LICENSE]

Mozilla summarizes the license scope as follows:


MPL: The copyleft applies to any files containing MPLed code.




That means:


	You can use the unchanged source code both in private and commercially.


	When distributing, you must publish the source code of any changed files licensed under the MPL 2.0 under a) the MPL 2.0 itself or b) a compatible license (e.g. GPL 3.0 or Apache License 2.0).


	You needn’t publish the source code of your library as long as the files licensed under the MPL 2.0 are unchanged.




Please read the MPL 2.0 FAQ [https://www.mozilla.org/en-US/MPL/2.0/FAQ/] if you have further questions regarding the license.

You can read the full terms here: LICENSE [https://raw.github.com/go-sql-driver/mysql/master/LICENSE].

[image: Golang Gopher transporting the MySQL Dolphin in a wheelbarrow]Go Gopher and MySQL Dolphin







          

      

      

    

  

    
      
          
            
  
Change Log

ATTN: This project uses semantic versioning [http://semver.org/].


Unreleased [https://github.com/urfave/cli/compare/v1.18.0...HEAD]




1.20.0 - 2017-08-10


Fixed


	HandleExitCoder is now correctly iterates over all errors in
a MultiError. The exit code is the exit code of the last error or 1 if
there are no ExitCoders in the MultiError.


	Fixed YAML file loading on Windows (previously would fail validate the file path)


	Subcommand Usage, Description, ArgsUsage, OnUsageError correctly
propogated


	ErrWriter is now passed downwards through command structure to avoid the
need to redefine it


	Pass Command context into OnUsageError rather than parent context so that
all fields are avaiable


	Errors occuring in Before funcs are no longer double printed


	Use UsageText in the help templates for commands and subcommands if
defined; otherwise build the usage as before (was previously ignoring this
field)


	IsSet and GlobalIsSet now correctly return whether a flag is set if
a program calls Set or GlobalSet directly after flag parsing (would
previously only return true if the flag was set during parsing)







Changed


	No longer exit the program on command/subcommand error if the error raised is
not an OsExiter. This exiting behavior was introduced in 1.19.0, but was
determined to be a regression in functionality. See the
PR [https://github.com/urfave/cli/pull/595] for discussion.







Added


	CommandsByName type was added to make it easy to sort Commands by name,
alphabetically


	altsrc now handles loading of string and int arrays from TOML


	Support for definition of custom help templates for App via
CustomAppHelpTemplate


	Support for arbitrary key/value fields on App to be used with
CustomAppHelpTemplate via ExtraInfo


	HelpFlag, VersionFlag, and BashCompletionFlag changed to explictly be
cli.Flags allowing for the use of custom flags satisfying the cli.Flag
interface to be used.









[1.19.1] - 2016-11-21


Fixed


	Fixes regression introduced in 1.19.0 where using an ActionFunc as
the Action for a command would cause it to error rather than calling the
function. Should not have a affected declarative cases using func(c *cli.Context) err).


	Shell completion now handles the case where the user specifies
--generate-bash-completion immediately after a flag that takes an argument.
Previously it call the application with --generate-bash-completion as the
flag value.









[1.19.0] - 2016-11-19


Added


	FlagsByName was added to make it easy to sort flags (e.g. sort.Sort(cli.FlagsByName(app.Flags)))


	A Description field was added to App for a more detailed description of
the application (similar to the existing Description field on Command)


	Flag type code generation via go generate


	Write to stderr and exit 1 if action returns non-nil error


	Added support for TOML to the altsrc loader


	SkipArgReorder was added to allow users to skip the argument reordering.
This is useful if you want to consider all “flags” after an argument as
arguments rather than flags (the default behavior of the stdlib flag
library). This is backported functionality from the removal of the flag
reordering [https://github.com/urfave/cli/pull/398] in the unreleased version
2


	For formatted errors (those implementing ErrorFormatter), the errors will
be formatted during output. Compatible with pkg/errors.







Changed


	Raise minimum tested/supported Go version to 1.2+







Fixed


	Consider empty environment variables as set (previously environment variables
with the equivalent of "" would be skipped rather than their value used).


	Return an error if the value in a given environment variable cannot be parsed
as the flag type. Previously these errors were silently swallowed.


	Print full error when an invalid flag is specified (which includes the invalid flag)


	App.Writer defaults to stdout when nil


	If no action is specified on a command or app, the help is now printed instead of panicing


	App.Metadata is initialized automatically now (previously was nil unless initialized)


	Correctly show help message if -h is provided to a subcommand


	context.(Global)IsSet now respects environment variables. Previously it
would return false if a flag was specified in the environment rather than
as an argument


	Removed deprecation warnings to STDERR to avoid them leaking to the end-user


	altsrcs import paths were updated to use gopkg.in/urfave/cli.v1. This
fixes issues that occurred when gopkg.in/urfave/cli.v1 was imported as well
as altsrc where Go would complain that the types didn’t match









[1.18.1] - 2016-08-28


Fixed


	Removed deprecation warnings to STDERR to avoid them leaking to the end-user (backported)









1.18.0 [https://github.com/urfave/cli/compare/v1.17.0...v1.18.0] - 2016-06-27


Added


	./runtests test runner with coverage tracking by default


	testing on OS X


	testing on Windows


	UintFlag, Uint64Flag, and Int64Flag types and supporting code







Changed


	Use spaces for alignment in help/usage output instead of tabs, making the
output alignment consistent regardless of tab width







Fixed


	Printing of command aliases in help text


	Printing of visible flags for both struct and struct pointer flags


	Display the help subcommand when using CommandCategories


	No longer swallows panics that occur within the Actions themselves when
detecting the signature of the Action field









[1.17.1] - 2016-08-28


Fixed


	Removed deprecation warnings to STDERR to avoid them leaking to the end-user









1.17.0 [https://github.com/urfave/cli/compare/v1.16.0...v1.17.0] - 2016-05-09


Added


	Pluggable flag-level help text rendering via cli.DefaultFlagStringFunc


	context.GlobalBoolT was added as an analogue to context.GlobalBool


	Support for hiding commands by setting Hidden: true – this will hide the
commands in help output







Changed


	Float64Flag, IntFlag, and DurationFlag default values are no longer
quoted in help text output.


	All flag types now include (default: {value}) strings following usage when a
default value can be (reasonably) detected.


	IntSliceFlag and StringSliceFlag usage strings are now more consistent
with non-slice flag types


	Apps now exit with a code of 3 if an unknown subcommand is specified
(previously they printed “No help topic for…”, but still exited 0. This
makes it easier to script around apps built using cli since they can trust
that a 0 exit code indicated a successful execution.


	cleanups based on Go Report Card
feedback [https://goreportcard.com/report/github.com/urfave/cli]









[1.16.1] - 2016-08-28


Fixed


	Removed deprecation warnings to STDERR to avoid them leaking to the end-user









1.16.0 [https://github.com/urfave/cli/compare/v1.15.0...v1.16.0] - 2016-05-02


Added


	Hidden field on all flag struct types to omit from generated help text







Changed


	BashCompletionFlag (--enable-bash-completion) is now omitted from
generated help text via the Hidden field







Fixed


	handling of error values in HandleAction and HandleExitCoder









1.15.0 [https://github.com/urfave/cli/compare/v1.14.0...v1.15.0] - 2016-04-30


Added


	This file!


	Support for placeholders in flag usage strings


	App.Metadata map for arbitrary data/state management


	Set and GlobalSet methods on *cli.Context for altering values after
parsing.


	Support for nested lookup of dot-delimited keys in structures loaded from
YAML.







Changed


	The App.Action and Command.Action now prefer a return signature of
func(*cli.Context) error, as defined by cli.ActionFunc.  If a non-nil
error is returned, there may be two outcomes:


	If the error fulfills cli.ExitCoder, then os.Exit will be called
automatically


	Else the error is bubbled up and returned from App.Run






	Specifying an Action with the legacy return signature of
func(*cli.Context) will produce a deprecation message to stderr


	Specifying an Action that is not a func type will produce a non-zero exit
from App.Run


	Specifying an Action func that has an invalid (input) signature will
produce a non-zero exit from App.Run







Deprecated


	[bookmark: deprecated-cli-app-runandexitonerror]
cli.App.RunAndExitOnError, which should now be done by returning an error
that fulfills cli.ExitCoder to cli.App.Run.


	[bookmark: deprecated-cli-app-action-signature] the legacy signature for
cli.App.Action of func(*cli.Context), which should now have a return
signature of func(*cli.Context) error, as defined by cli.ActionFunc.







Fixed


	Added missing *cli.Context.GlobalFloat64 method









1.14.0 [https://github.com/urfave/cli/compare/v1.13.0...v1.14.0] - 2016-04-03 (backfilled 2016-04-25)


Added


	Codebeat badge


	Support for categorization via CategorizedHelp and Categories on app.







Changed


	Use filepath.Base instead of path.Base in Name and HelpName.







Fixed


	Ensure version is not shown in help text when HideVersion set.









1.13.0 [https://github.com/urfave/cli/compare/v1.12.0...v1.13.0] - 2016-03-06 (backfilled 2016-04-25)


Added


	YAML file input support.


	NArg method on context.









1.12.0 [https://github.com/urfave/cli/compare/v1.11.1...v1.12.0] - 2016-02-17 (backfilled 2016-04-25)


Added


	Custom usage error handling.


	Custom text support in USAGE section of help output.


	Improved help messages for empty strings.


	AppVeyor CI configuration.







Changed


	Removed panic from default help printer func.


	De-duping and optimizations.







Fixed


	Correctly handle Before/After at command level when no subcommands.


	Case of literal - argument causing flag reordering.


	Environment variable hints on Windows.


	Docs updates.









1.11.1 [https://github.com/urfave/cli/compare/v1.11.0...v1.11.1] - 2015-12-21 (backfilled 2016-04-25)


Changed


	Use path.Base in Name and HelpName


	Export GetName on flag types.







Fixed


	Flag parsing when skipping is enabled.


	Test output cleanup.


	Move completion check to account for empty input case.









1.11.0 [https://github.com/urfave/cli/compare/v1.10.2...v1.11.0] - 2015-11-15 (backfilled 2016-04-25)


Added


	Destination scan support for flags.


	Testing against tip in Travis CI config.







Changed


	Go version in Travis CI config.







Fixed


	Removed redundant tests.


	Use correct example naming in tests.









1.10.2 [https://github.com/urfave/cli/compare/v1.10.1...v1.10.2] - 2015-10-29 (backfilled 2016-04-25)


Fixed


	Remove unused var in bash completion.









1.10.1 [https://github.com/urfave/cli/compare/v1.10.0...v1.10.1] - 2015-10-21 (backfilled 2016-04-25)


Added


	Coverage and reference logos in README.







Fixed


	Use specified values in help and version parsing.


	Only display app version and help message once.









1.10.0 [https://github.com/urfave/cli/compare/v1.9.0...v1.10.0] - 2015-10-06 (backfilled 2016-04-25)


Added


	More tests for existing functionality.


	ArgsUsage at app and command level for help text flexibility.







Fixed


	Honor HideHelp and HideVersion in App.Run.


	Remove juvenile word from README.









1.9.0 [https://github.com/urfave/cli/compare/v1.8.0...v1.9.0] - 2015-09-08 (backfilled 2016-04-25)


Added


	FullName on command with accompanying help output update.


	Set default $PROG in bash completion.







Changed


	Docs formatting.







Fixed


	Removed self-referential imports in tests.









1.8.0 [https://github.com/urfave/cli/compare/v1.7.1...v1.8.0] - 2015-06-30 (backfilled 2016-04-25)


Added


	Support for Copyright at app level.


	Parent func at context level to walk up context lineage.







Fixed


	Global flag processing at top level.









1.7.1 [https://github.com/urfave/cli/compare/v1.7.0...v1.7.1] - 2015-06-11 (backfilled 2016-04-25)


Added


	Aggregate errors from Before/After funcs.


	Doc comments on flag structs.


	Include non-global flags when checking version and help.


	Travis CI config updates.







Fixed


	Ensure slice type flags have non-nil values.


	Collect global flags from the full command hierarchy.


	Docs prose.









1.7.0 [https://github.com/urfave/cli/compare/v1.6.0...v1.7.0] - 2015-05-03 (backfilled 2016-04-25)


Changed


	HelpPrinter signature includes output writer.







Fixed


	Specify go 1.1+ in docs.


	Set Writer when running command as app.









1.6.0 [https://github.com/urfave/cli/compare/v1.5.0...v1.6.0] - 2015-03-23 (backfilled 2016-04-25)


Added


	Multiple author support.


	NumFlags at context level.


	Aliases at command level.







Deprecated


	ShortName at command level.







Fixed


	Subcommand help output.


	Backward compatible support for deprecated Author and Email fields.


	Docs regarding Names/Aliases.









1.5.0 [https://github.com/urfave/cli/compare/v1.4.1...v1.5.0] - 2015-02-20 (backfilled 2016-04-25)


Added


	After hook func support at app and command level.







Fixed


	Use parsed context when running command as subcommand.


	Docs prose.









1.4.1 [https://github.com/urfave/cli/compare/v1.4.0...v1.4.1] - 2015-01-09 (backfilled 2016-04-25)


Added


	Support for hiding -h / --help flags, but not help subcommand.


	Stop flag parsing after --.







Fixed


	Help text for generic flags to specify single value.


	Use double quotes in output for defaults.


	Use ParseInt instead of ParseUint for int environment var values.


	Use 0 as base when parsing int environment var values.









1.4.0 [https://github.com/urfave/cli/compare/v1.3.1...v1.4.0] - 2014-12-12 (backfilled 2016-04-25)


Added


	Support for environment variable lookup “cascade”.


	Support for Stdout on app for output redirection.







Fixed


	Print command help instead of app help in ShowCommandHelp.









1.3.1 [https://github.com/urfave/cli/compare/v1.3.0...v1.3.1] - 2014-11-13 (backfilled 2016-04-25)


Added


	Docs and example code updates.







Changed


	Default -v / --version flag made optional.









1.3.0 [https://github.com/urfave/cli/compare/v1.2.0...v1.3.0] - 2014-08-10 (backfilled 2016-04-25)


Added


	FlagNames at context level.


	Exposed VersionPrinter var for more control over version output.


	Zsh completion hook.


	AUTHOR section in default app help template.


	Contribution guidelines.


	DurationFlag type.









1.2.0 [https://github.com/urfave/cli/compare/v1.1.0...v1.2.0] - 2014-08-02


Added


	Support for environment variable defaults on flags plus tests.









1.1.0 [https://github.com/urfave/cli/compare/v1.0.0...v1.1.0] - 2014-07-15


Added


	Bash completion.


	Optional hiding of built-in help command.


	Optional skipping of flag parsing at command level.


	Author, Email, and Compiled metadata on app.


	Before hook func support at app and command level.


	CommandNotFound func support at app level.


	Command reference available on context.


	GenericFlag type.


	Float64Flag type.


	BoolTFlag type.


	IsSet flag helper on context.


	More flag lookup funcs at context level.


	More tests & docs.







Changed


	Help template updates to account for presence/absence of flags.


	Separated subcommand help template.


	Exposed HelpPrinter var for more control over help output.









1.0.0 [https://github.com/urfave/cli/compare/v0.1.0...v1.0.0] - 2013-11-01


Added


	help flag in default app flag set and each command flag set.


	Custom handling of argument parsing errors.


	Command lookup by name at app level.


	StringSliceFlag type and supporting StringSlice type.


	IntSliceFlag type and supporting IntSlice type.


	Slice type flag lookups by name at context level.


	Export of app and command help functions.


	More tests & docs.









0.1.0 - 2013-07-22


Added


	Initial implementation.












          

      

      

    

  

    
      
          
            
  
cli

[image: ../../../../_images/cli.svg]Build Status [https://travis-ci.org/urfave/cli]
[image: ../../../../_images/rtgk5xufi932pb2v.svg]Windows Build Status [https://ci.appveyor.com/project/urfave/cli]
[image: ../../../../_images/cli1.svg]GoDoc [https://godoc.org/github.com/urfave/cli]
[image: ../../../../_images/f00f6040f579708a60527cc8bb283536e2f08380.svg]codebeat [https://codebeat.co/projects/github-com-urfave-cli]
[image: ../../../../_images/cli2.svg]Go Report Card [https://goreportcard.com/report/urfave/cli]
[image: top level coverage]top level coverage [http://gocover.io/github.com/urfave/cli] /
[image: altsrc coverage]altsrc coverage [http://gocover.io/github.com/urfave/cli/altsrc]

Notice: This is the library formerly known as
github.com/codegangsta/cli – Github will automatically redirect requests
to this repository, but we recommend updating your references for clarity.

cli is a simple, fast, and fun package for building command line apps in Go. The
goal is to enable developers to write fast and distributable command line
applications in an expressive way.


	Overview


	Installation


	Supported platforms


	Using the v2 branch


	Pinning to the v1 releases






	Getting Started


	Examples


	Arguments


	Flags


	Placeholder Values


	Alternate Names


	Ordering


	Values from the Environment


	Values from alternate input sources (YAML, TOML, and others)






	Subcommands


	Subcommands categories


	Exit code


	Bash Completion


	Enabling


	Distribution


	Customization






	Generated Help Text


	Customization






	Version Flag


	Customization


	Full API Example










	Contribution Guidelines





Overview

Command line apps are usually so tiny that there is absolutely no reason why
your code should not be self-documenting. Things like generating help text and
parsing command flags/options should not hinder productivity when writing a
command line app.

This is where cli comes into play. cli makes command line programming fun,
organized, and expressive!




Installation

Make sure you have a working Go environment.  Go version 1.2+ is supported.  See
the install instructions for Go [http://golang.org/doc/install.html].

To install cli, simply run:

$ go get github.com/urfave/cli





Make sure your PATH includes the $GOPATH/bin directory so your commands can
be easily used:

export PATH=$PATH:$GOPATH/bin






Supported platforms

cli is tested against multiple versions of Go on Linux, and against the latest
released version of Go on OS X and Windows.  For full details, see
./.travis.yml and ./appveyor.yml.




Using the v2 branch

Warning: The v2 branch is currently unreleased and considered unstable.

There is currently a long-lived branch named v2 that is intended to land as
the new master branch once development there has settled down.  The current
master branch (mirrored as v1) is being manually merged into v2 on
an irregular human-based schedule, but generally if one wants to “upgrade” to
v2 now and accept the volatility (read: “awesomeness”) that comes along with
that, please use whatever version pinning of your preference, such as via
gopkg.in:

$ go get gopkg.in/urfave/cli.v2





...
import (
  "gopkg.in/urfave/cli.v2" // imports as package "cli"
)
...








Pinning to the v1 releases

Similarly to the section above describing use of the v2 branch, if one wants
to avoid any unexpected compatibility pains once v2 becomes master, then
pinning to v1 is an acceptable option, e.g.:

$ go get gopkg.in/urfave/cli.v1





...
import (
  "gopkg.in/urfave/cli.v1" // imports as package "cli"
)
...





This will pull the latest tagged v1 release (e.g. v1.18.1 at the time of writing).






Getting Started

One of the philosophies behind cli is that an API should be playful and full of
discovery. So a cli app can be as little as one line of code in main().

package main

import (
  "os"

  "github.com/urfave/cli"
)

func main() {
  cli.NewApp().Run(os.Args)
}





This app will run and show help text, but is not very useful. Let’s give an
action to execute and some help documentation:

package main

import (
  "fmt"
  "os"

  "github.com/urfave/cli"
)

func main() {
  app := cli.NewApp()
  app.Name = "boom"
  app.Usage = "make an explosive entrance"
  app.Action = func(c *cli.Context) error {
    fmt.Println("boom! I say!")
    return nil
  }

  app.Run(os.Args)
}





Running this already gives you a ton of functionality, plus support for things
like subcommands and flags, which are covered below.




Examples

Being a programmer can be a lonely job. Thankfully by the power of automation
that is not the case! Let’s create a greeter app to fend off our demons of
loneliness!

Start by creating a directory named greet, and within it, add a file,
greet.go with the following code in it:

package main

import (
  "fmt"
  "os"

  "github.com/urfave/cli"
)

func main() {
  app := cli.NewApp()
  app.Name = "greet"
  app.Usage = "fight the loneliness!"
  app.Action = func(c *cli.Context) error {
    fmt.Println("Hello friend!")
    return nil
  }

  app.Run(os.Args)
}





Install our command to the $GOPATH/bin directory:

$ go install





Finally run our new command:

$ greet
Hello friend!





cli also generates neat help text:

$ greet help
NAME:
    greet - fight the loneliness!

USAGE:
    greet [global options] command [command options] [arguments...]

VERSION:
    0.0.0

COMMANDS:
    help, h  Shows a list of commands or help for one command

GLOBAL OPTIONS
    --version Shows version information






Arguments

You can lookup arguments by calling the Args function on cli.Context, e.g.:

package main

import (
  "fmt"
  "os"

  "github.com/urfave/cli"
)

func main() {
  app := cli.NewApp()

  app.Action = func(c *cli.Context) error {
    fmt.Printf("Hello %q", c.Args().Get(0))
    return nil
  }

  app.Run(os.Args)
}








Flags

Setting and querying flags is simple.

package main

import (
  "fmt"
  "os"

  "github.com/urfave/cli"
)

func main() {
  app := cli.NewApp()

  app.Flags = []cli.Flag {
    cli.StringFlag{
      Name: "lang",
      Value: "english",
      Usage: "language for the greeting",
    },
  }

  app.Action = func(c *cli.Context) error {
    name := "Nefertiti"
    if c.NArg() > 0 {
      name = c.Args().Get(0)
    }
    if c.String("lang") == "spanish" {
      fmt.Println("Hola", name)
    } else {
      fmt.Println("Hello", name)
    }
    return nil
  }

  app.Run(os.Args)
}





You can also set a destination variable for a flag, to which the content will be
scanned.

package main

import (
  "os"
  "fmt"

  "github.com/urfave/cli"
)

func main() {
  var language string

  app := cli.NewApp()

  app.Flags = []cli.Flag {
    cli.StringFlag{
      Name:        "lang",
      Value:       "english",
      Usage:       "language for the greeting",
      Destination: &language,
    },
  }

  app.Action = func(c *cli.Context) error {
    name := "someone"
    if c.NArg() > 0 {
      name = c.Args()[0]
    }
    if language == "spanish" {
      fmt.Println("Hola", name)
    } else {
      fmt.Println("Hello", name)
    }
    return nil
  }

  app.Run(os.Args)
}





See full list of flags at http://godoc.org/github.com/urfave/cli


Placeholder Values

Sometimes it’s useful to specify a flag’s value within the usage string itself.
Such placeholders are indicated with back quotes.

For example this:

package main

import (
  "os"

  "github.com/urfave/cli"
)

func main() {
  app := cli.NewApp()

  app.Flags = []cli.Flag{
    cli.StringFlag{
      Name:  "config, c",
      Usage: "Load configuration from `FILE`",
    },
  }

  app.Run(os.Args)
}





Will result in help output like:

--config FILE, -c FILE   Load configuration from FILE





Note that only the first placeholder is used. Subsequent back-quoted words will
be left as-is.




Alternate Names

You can set alternate (or short) names for flags by providing a comma-delimited
list for the Name. e.g.

package main

import (
  "os"

  "github.com/urfave/cli"
)

func main() {
  app := cli.NewApp()

  app.Flags = []cli.Flag {
    cli.StringFlag{
      Name: "lang, l",
      Value: "english",
      Usage: "language for the greeting",
    },
  }

  app.Run(os.Args)
}





That flag can then be set with --lang spanish or -l spanish. Note that
giving two different forms of the same flag in the same command invocation is an
error.




Ordering

Flags for the application and commands are shown in the order they are defined.
However, it’s possible to sort them from outside this library by using FlagsByName
or CommandsByName with sort.

For example this:

package main

import (
  "os"
  "sort"

  "github.com/urfave/cli"
)

func main() {
  app := cli.NewApp()

  app.Flags = []cli.Flag {
    cli.StringFlag{
      Name: "lang, l",
      Value: "english",
      Usage: "Language for the greeting",
    },
    cli.StringFlag{
      Name: "config, c",
      Usage: "Load configuration from `FILE`",
    },
  }

  app.Commands = []cli.Command{
    {
      Name:    "complete",
      Aliases: []string{"c"},
      Usage:   "complete a task on the list",
      Action:  func(c *cli.Context) error {
        return nil
      },
    },
    {
      Name:    "add",
      Aliases: []string{"a"},
      Usage:   "add a task to the list",
      Action:  func(c *cli.Context) error {
        return nil
      },
    },
  }

  sort.Sort(cli.FlagsByName(app.Flags))
  sort.Sort(cli.CommandsByName(app.Commands))

  app.Run(os.Args)
}





Will result in help output like:

--config FILE, -c FILE  Load configuration from FILE
--lang value, -l value  Language for the greeting (default: "english")








Values from the Environment

You can also have the default value set from the environment via EnvVar.  e.g.

package main

import (
  "os"

  "github.com/urfave/cli"
)

func main() {
  app := cli.NewApp()

  app.Flags = []cli.Flag {
    cli.StringFlag{
      Name: "lang, l",
      Value: "english",
      Usage: "language for the greeting",
      EnvVar: "APP_LANG",
    },
  }

  app.Run(os.Args)
}





The EnvVar may also be given as a comma-delimited “cascade”, where the first
environment variable that resolves is used as the default.

package main

import (
  "os"

  "github.com/urfave/cli"
)

func main() {
  app := cli.NewApp()

  app.Flags = []cli.Flag {
    cli.StringFlag{
      Name: "lang, l",
      Value: "english",
      Usage: "language for the greeting",
      EnvVar: "LEGACY_COMPAT_LANG,APP_LANG,LANG",
    },
  }

  app.Run(os.Args)
}








Values from alternate input sources (YAML, TOML, and others)

There is a separate package altsrc that adds support for getting flag values
from other file input sources.

Currently supported input source formats:


	YAML


	TOML




In order to get values for a flag from an alternate input source the following
code would be added to wrap an existing cli.Flag like below:

  altsrc.NewIntFlag(cli.IntFlag{Name: "test"})





Initialization must also occur for these flags. Below is an example initializing
getting data from a yaml file below.

  command.Before = altsrc.InitInputSourceWithContext(command.Flags, NewYamlSourceFromFlagFunc("load"))





The code above will use the “load” string as a flag name to get the file name of
a yaml file from the cli.Context.  It will then use that file name to initialize
the yaml input source for any flags that are defined on that command.  As a note
the “load” flag used would also have to be defined on the command flags in order
for this code snipped to work.

Currently only the aboved specified formats are supported but developers can
add support for other input sources by implementing the
altsrc.InputSourceContext for their given sources.

Here is a more complete sample of a command using YAML support:

package notmain

import (
  "fmt"
  "os"

  "github.com/urfave/cli"
  "github.com/urfave/cli/altsrc"
)

func main() {
  app := cli.NewApp()

  flags := []cli.Flag{
    altsrc.NewIntFlag(cli.IntFlag{Name: "test"}),
    cli.StringFlag{Name: "load"},
  }

  app.Action = func(c *cli.Context) error {
    fmt.Println("yaml ist rad")
    return nil
  }

  app.Before = altsrc.InitInputSourceWithContext(flags, altsrc.NewYamlSourceFromFlagFunc("load"))
  app.Flags = flags

  app.Run(os.Args)
}










Subcommands

Subcommands can be defined for a more git-like command line app.

package main

import (
  "fmt"
  "os"

  "github.com/urfave/cli"
)

func main() {
  app := cli.NewApp()

  app.Commands = []cli.Command{
    {
      Name:    "add",
      Aliases: []string{"a"},
      Usage:   "add a task to the list",
      Action:  func(c *cli.Context) error {
        fmt.Println("added task: ", c.Args().First())
        return nil
      },
    },
    {
      Name:    "complete",
      Aliases: []string{"c"},
      Usage:   "complete a task on the list",
      Action:  func(c *cli.Context) error {
        fmt.Println("completed task: ", c.Args().First())
        return nil
      },
    },
    {
      Name:        "template",
      Aliases:     []string{"t"},
      Usage:       "options for task templates",
      Subcommands: []cli.Command{
        {
          Name:  "add",
          Usage: "add a new template",
          Action: func(c *cli.Context) error {
            fmt.Println("new task template: ", c.Args().First())
            return nil
          },
        },
        {
          Name:  "remove",
          Usage: "remove an existing template",
          Action: func(c *cli.Context) error {
            fmt.Println("removed task template: ", c.Args().First())
            return nil
          },
        },
      },
    },
  }

  app.Run(os.Args)
}








Subcommands categories

For additional organization in apps that have many subcommands, you can
associate a category for each command to group them together in the help
output.

E.g.

package main

import (
  "os"

  "github.com/urfave/cli"
)

func main() {
  app := cli.NewApp()

  app.Commands = []cli.Command{
    {
      Name: "noop",
    },
    {
      Name:     "add",
      Category: "template",
    },
    {
      Name:     "remove",
      Category: "template",
    },
  }

  app.Run(os.Args)
}





Will include:

COMMANDS:
    noop

  Template actions:
    add
    remove








Exit code

Calling App.Run will not automatically call os.Exit, which means that by
default the exit code will “fall through” to being 0.  An explicit exit code
may be set by returning a non-nil error that fulfills cli.ExitCoder, or a
cli.MultiError that includes an error that fulfills cli.ExitCoder, e.g.:

package main

import (
  "os"

  "github.com/urfave/cli"
)

func main() {
  app := cli.NewApp()
  app.Flags = []cli.Flag{
    cli.BoolTFlag{
      Name:  "ginger-crouton",
      Usage: "is it in the soup?",
    },
  }
  app.Action = func(ctx *cli.Context) error {
    if !ctx.Bool("ginger-crouton") {
      return cli.NewExitError("it is not in the soup", 86)
    }
    return nil
  }

  app.Run(os.Args)
}








Bash Completion

You can enable completion commands by setting the EnableBashCompletion
flag on the App object.  By default, this setting will only auto-complete to
show an app’s subcommands, but you can write your own completion methods for
the App or its subcommands.

package main

import (
  "fmt"
  "os"

  "github.com/urfave/cli"
)

func main() {
  tasks := []string{"cook", "clean", "laundry", "eat", "sleep", "code"}

  app := cli.NewApp()
  app.EnableBashCompletion = true
  app.Commands = []cli.Command{
    {
      Name:  "complete",
      Aliases: []string{"c"},
      Usage: "complete a task on the list",
      Action: func(c *cli.Context) error {
         fmt.Println("completed task: ", c.Args().First())
         return nil
      },
      BashComplete: func(c *cli.Context) {
        // This will complete if no args are passed
        if c.NArg() > 0 {
          return
        }
        for _, t := range tasks {
          fmt.Println(t)
        }
      },
    },
  }

  app.Run(os.Args)
}






Enabling

Source the autocomplete/bash_autocomplete file in your .bashrc file while
setting the PROG variable to the name of your program:

PROG=myprogram source /.../cli/autocomplete/bash_autocomplete




Distribution

Copy autocomplete/bash_autocomplete into /etc/bash_completion.d/ and rename
it to the name of the program you wish to add autocomplete support for (or
automatically install it there if you are distributing a package). Don’t forget
to source the file to make it active in the current shell.

sudo cp src/bash_autocomplete /etc/bash_completion.d/<myprogram>
source /etc/bash_completion.d/<myprogram>





Alternatively, you can just document that users should source the generic
autocomplete/bash_autocomplete in their bash configuration with $PROG set
to the name of their program (as above).




Customization

The default bash completion flag (--generate-bash-completion) is defined as
cli.BashCompletionFlag, and may be redefined if desired, e.g.:

package main

import (
  "os"

  "github.com/urfave/cli"
)

func main() {
  cli.BashCompletionFlag = cli.BoolFlag{
    Name:   "compgen",
    Hidden: true,
  }

  app := cli.NewApp()
  app.EnableBashCompletion = true
  app.Commands = []cli.Command{
    {
      Name: "wat",
    },
  }
  app.Run(os.Args)
}










Generated Help Text

The default help flag (-h/--help) is defined as cli.HelpFlag and is checked
by the cli internals in order to print generated help text for the app, command,
or subcommand, and break execution.


Customization

All of the help text generation may be customized, and at multiple levels.  The
templates are exposed as variables AppHelpTemplate, CommandHelpTemplate, and
SubcommandHelpTemplate which may be reassigned or augmented, and full override
is possible by assigning a compatible func to the cli.HelpPrinter variable,
e.g.:

package main

import (
  "fmt"
  "io"
  "os"

  "github.com/urfave/cli"
)

func main() {
  // EXAMPLE: Append to an existing template
  cli.AppHelpTemplate = fmt.Sprintf(`%s

WEBSITE: http://awesometown.example.com

SUPPORT: support@awesometown.example.com

`, cli.AppHelpTemplate)

  // EXAMPLE: Override a template
  cli.AppHelpTemplate = `NAME:
   {{.Name}} - {{.Usage}}
USAGE:
   {{.HelpName}} {{if .VisibleFlags}}[global options]{{end}}{{if .Commands}} command [command options]{{end}} {{if .ArgsUsage}}{{.ArgsUsage}}{{else}}[arguments...]{{end}}
   {{if len .Authors}}
AUTHOR:
   {{range .Authors}}{{ . }}{{end}}
   {{end}}{{if .Commands}}
COMMANDS:
{{range .Commands}}{{if not .HideHelp}}   {{join .Names ", "}}{{ "\t"}}{{.Usage}}{{ "\n" }}{{end}}{{end}}{{end}}{{if .VisibleFlags}}
GLOBAL OPTIONS:
   {{range .VisibleFlags}}{{.}}
   {{end}}{{end}}{{if .Copyright }}
COPYRIGHT:
   {{.Copyright}}
   {{end}}{{if .Version}}
VERSION:
   {{.Version}}
   {{end}}
`

  // EXAMPLE: Replace the `HelpPrinter` func
  cli.HelpPrinter = func(w io.Writer, templ string, data interface{}) {
    fmt.Println("Ha HA.  I pwnd the help!!1")
  }

  cli.NewApp().Run(os.Args)
}





The default flag may be customized to something other than -h/--help by
setting cli.HelpFlag, e.g.:

package main

import (
  "os"

  "github.com/urfave/cli"
)

func main() {
  cli.HelpFlag = cli.BoolFlag{
    Name: "halp, haaaaalp",
    Usage: "HALP",
    EnvVar: "SHOW_HALP,HALPPLZ",
  }

  cli.NewApp().Run(os.Args)
}










Version Flag

The default version flag (-v/--version) is defined as cli.VersionFlag, which
is checked by the cli internals in order to print the App.Version via
cli.VersionPrinter and break execution.


Customization

The default flag may be customized to something other than -v/--version by
setting cli.VersionFlag, e.g.:

package main

import (
  "os"

  "github.com/urfave/cli"
)

func main() {
  cli.VersionFlag = cli.BoolFlag{
    Name: "print-version, V",
    Usage: "print only the version",
  }

  app := cli.NewApp()
  app.Name = "partay"
  app.Version = "19.99.0"
  app.Run(os.Args)
}





Alternatively, the version printer at cli.VersionPrinter may be overridden, e.g.:

package main

import (
  "fmt"
  "os"

  "github.com/urfave/cli"
)

var (
  Revision = "fafafaf"
)

func main() {
  cli.VersionPrinter = func(c *cli.Context) {
    fmt.Printf("version=%s revision=%s\n", c.App.Version, Revision)
  }

  app := cli.NewApp()
  app.Name = "partay"
  app.Version = "19.99.0"
  app.Run(os.Args)
}








Full API Example

Notice: This is a contrived (functioning) example meant strictly for API
demonstration purposes.  Use of one’s imagination is encouraged.

package main

import (
  "errors"
  "flag"
  "fmt"
  "io"
  "io/ioutil"
  "os"
  "time"

  "github.com/urfave/cli"
)

func init() {
  cli.AppHelpTemplate += "\nCUSTOMIZED: you bet ur muffins\n"
  cli.CommandHelpTemplate += "\nYMMV\n"
  cli.SubcommandHelpTemplate += "\nor something\n"

  cli.HelpFlag = cli.BoolFlag{Name: "halp"}
  cli.BashCompletionFlag = cli.BoolFlag{Name: "compgen", Hidden: true}
  cli.VersionFlag = cli.BoolFlag{Name: "print-version, V"}

  cli.HelpPrinter = func(w io.Writer, templ string, data interface{}) {
    fmt.Fprintf(w, "best of luck to you\n")
  }
  cli.VersionPrinter = func(c *cli.Context) {
    fmt.Fprintf(c.App.Writer, "version=%s\n", c.App.Version)
  }
  cli.OsExiter = func(c int) {
    fmt.Fprintf(cli.ErrWriter, "refusing to exit %d\n", c)
  }
  cli.ErrWriter = ioutil.Discard
  cli.FlagStringer = func(fl cli.Flag) string {
    return fmt.Sprintf("\t\t%s", fl.GetName())
  }
}

type hexWriter struct{}

func (w *hexWriter) Write(p []byte) (int, error) {
  for _, b := range p {
    fmt.Printf("%x", b)
  }
  fmt.Printf("\n")

  return len(p), nil
}

type genericType struct{
  s string
}

func (g *genericType) Set(value string) error {
  g.s = value
  return nil
}

func (g *genericType) String() string {
  return g.s
}

func main() {
  app := cli.NewApp()
  app.Name = "kənˈtrīv"
  app.Version = "19.99.0"
  app.Compiled = time.Now()
  app.Authors = []cli.Author{
    cli.Author{
      Name:  "Example Human",
      Email: "human@example.com",
    },
  }
  app.Copyright = "(c) 1999 Serious Enterprise"
  app.HelpName = "contrive"
  app.Usage = "demonstrate available API"
  app.UsageText = "contrive - demonstrating the available API"
  app.ArgsUsage = "[args and such]"
  app.Commands = []cli.Command{
    cli.Command{
      Name:        "doo",
      Aliases:     []string{"do"},
      Category:    "motion",
      Usage:       "do the doo",
      UsageText:   "doo - does the dooing",
      Description: "no really, there is a lot of dooing to be done",
      ArgsUsage:   "[arrgh]",
      Flags: []cli.Flag{
        cli.BoolFlag{Name: "forever, forevvarr"},
      },
      Subcommands: cli.Commands{
        cli.Command{
          Name:   "wop",
          Action: wopAction,
        },
      },
      SkipFlagParsing: false,
      HideHelp:        false,
      Hidden:          false,
      HelpName:        "doo!",
      BashComplete: func(c *cli.Context) {
        fmt.Fprintf(c.App.Writer, "--better\n")
      },
      Before: func(c *cli.Context) error {
        fmt.Fprintf(c.App.Writer, "brace for impact\n")
        return nil
      },
      After: func(c *cli.Context) error {
        fmt.Fprintf(c.App.Writer, "did we lose anyone?\n")
        return nil
      },
      Action: func(c *cli.Context) error {
        c.Command.FullName()
        c.Command.HasName("wop")
        c.Command.Names()
        c.Command.VisibleFlags()
        fmt.Fprintf(c.App.Writer, "dodododododoodododddooooododododooo\n")
        if c.Bool("forever") {
          c.Command.Run(c)
        }
        return nil
      },
      OnUsageError: func(c *cli.Context, err error, isSubcommand bool) error {
        fmt.Fprintf(c.App.Writer, "for shame\n")
        return err
      },
    },
  }
  app.Flags = []cli.Flag{
    cli.BoolFlag{Name: "fancy"},
    cli.BoolTFlag{Name: "fancier"},
    cli.DurationFlag{Name: "howlong, H", Value: time.Second * 3},
    cli.Float64Flag{Name: "howmuch"},
    cli.GenericFlag{Name: "wat", Value: &genericType{}},
    cli.Int64Flag{Name: "longdistance"},
    cli.Int64SliceFlag{Name: "intervals"},
    cli.IntFlag{Name: "distance"},
    cli.IntSliceFlag{Name: "times"},
    cli.StringFlag{Name: "dance-move, d"},
    cli.StringSliceFlag{Name: "names, N"},
    cli.UintFlag{Name: "age"},
    cli.Uint64Flag{Name: "bigage"},
  }
  app.EnableBashCompletion = true
  app.HideHelp = false
  app.HideVersion = false
  app.BashComplete = func(c *cli.Context) {
    fmt.Fprintf(c.App.Writer, "lipstick\nkiss\nme\nlipstick\nringo\n")
  }
  app.Before = func(c *cli.Context) error {
    fmt.Fprintf(c.App.Writer, "HEEEERE GOES\n")
    return nil
  }
  app.After = func(c *cli.Context) error {
    fmt.Fprintf(c.App.Writer, "Phew!\n")
    return nil
  }
  app.CommandNotFound = func(c *cli.Context, command string) {
    fmt.Fprintf(c.App.Writer, "Thar be no %q here.\n", command)
  }
  app.OnUsageError = func(c *cli.Context, err error, isSubcommand bool) error {
    if isSubcommand {
      return err
    }

    fmt.Fprintf(c.App.Writer, "WRONG: %#v\n", err)
    return nil
  }
  app.Action = func(c *cli.Context) error {
    cli.DefaultAppComplete(c)
    cli.HandleExitCoder(errors.New("not an exit coder, though"))
    cli.ShowAppHelp(c)
    cli.ShowCommandCompletions(c, "nope")
    cli.ShowCommandHelp(c, "also-nope")
    cli.ShowCompletions(c)
    cli.ShowSubcommandHelp(c)
    cli.ShowVersion(c)

    categories := c.App.Categories()
    categories.AddCommand("sounds", cli.Command{
      Name: "bloop",
    })

    for _, category := range c.App.Categories() {
      fmt.Fprintf(c.App.Writer, "%s\n", category.Name)
      fmt.Fprintf(c.App.Writer, "%#v\n", category.Commands)
      fmt.Fprintf(c.App.Writer, "%#v\n", category.VisibleCommands())
    }

    fmt.Printf("%#v\n", c.App.Command("doo"))
    if c.Bool("infinite") {
      c.App.Run([]string{"app", "doo", "wop"})
    }

    if c.Bool("forevar") {
      c.App.RunAsSubcommand(c)
    }
    c.App.Setup()
    fmt.Printf("%#v\n", c.App.VisibleCategories())
    fmt.Printf("%#v\n", c.App.VisibleCommands())
    fmt.Printf("%#v\n", c.App.VisibleFlags())

    fmt.Printf("%#v\n", c.Args().First())
    if len(c.Args()) > 0 {
      fmt.Printf("%#v\n", c.Args()[1])
    }
    fmt.Printf("%#v\n", c.Args().Present())
    fmt.Printf("%#v\n", c.Args().Tail())

    set := flag.NewFlagSet("contrive", 0)
    nc := cli.NewContext(c.App, set, c)

    fmt.Printf("%#v\n", nc.Args())
    fmt.Printf("%#v\n", nc.Bool("nope"))
    fmt.Printf("%#v\n", nc.BoolT("nerp"))
    fmt.Printf("%#v\n", nc.Duration("howlong"))
    fmt.Printf("%#v\n", nc.Float64("hay"))
    fmt.Printf("%#v\n", nc.Generic("bloop"))
    fmt.Printf("%#v\n", nc.Int64("bonk"))
    fmt.Printf("%#v\n", nc.Int64Slice("burnks"))
    fmt.Printf("%#v\n", nc.Int("bips"))
    fmt.Printf("%#v\n", nc.IntSlice("blups"))
    fmt.Printf("%#v\n", nc.String("snurt"))
    fmt.Printf("%#v\n", nc.StringSlice("snurkles"))
    fmt.Printf("%#v\n", nc.Uint("flub"))
    fmt.Printf("%#v\n", nc.Uint64("florb"))
    fmt.Printf("%#v\n", nc.GlobalBool("global-nope"))
    fmt.Printf("%#v\n", nc.GlobalBoolT("global-nerp"))
    fmt.Printf("%#v\n", nc.GlobalDuration("global-howlong"))
    fmt.Printf("%#v\n", nc.GlobalFloat64("global-hay"))
    fmt.Printf("%#v\n", nc.GlobalGeneric("global-bloop"))
    fmt.Printf("%#v\n", nc.GlobalInt("global-bips"))
    fmt.Printf("%#v\n", nc.GlobalIntSlice("global-blups"))
    fmt.Printf("%#v\n", nc.GlobalString("global-snurt"))
    fmt.Printf("%#v\n", nc.GlobalStringSlice("global-snurkles"))

    fmt.Printf("%#v\n", nc.FlagNames())
    fmt.Printf("%#v\n", nc.GlobalFlagNames())
    fmt.Printf("%#v\n", nc.GlobalIsSet("wat"))
    fmt.Printf("%#v\n", nc.GlobalSet("wat", "nope"))
    fmt.Printf("%#v\n", nc.NArg())
    fmt.Printf("%#v\n", nc.NumFlags())
    fmt.Printf("%#v\n", nc.Parent())

    nc.Set("wat", "also-nope")

    ec := cli.NewExitError("ohwell", 86)
    fmt.Fprintf(c.App.Writer, "%d", ec.ExitCode())
    fmt.Printf("made it!\n")
    return ec
  }

  if os.Getenv("HEXY") != "" {
    app.Writer = &hexWriter{}
    app.ErrWriter = &hexWriter{}
  }

  app.Metadata = map[string]interface{}{
    "layers":     "many",
    "explicable": false,
    "whatever-values": 19.99,
  }

  app.Run(os.Args)
}

func wopAction(c *cli.Context) error {
  fmt.Fprintf(c.App.Writer, ":wave: over here, eh\n")
  return nil
}












Contribution Guidelines

Feel free to put up a pull request to fix a bug or maybe add a feature. I will
give it a code review and make sure that it does not break backwards
compatibility. If I or any other collaborators agree that it is in line with
the vision of the project, we will work with you to get the code into
a mergeable state and merge it into the master branch.

If you have contributed something significant to the project, we will most
likely add you as a collaborator. As a collaborator you are given the ability
to merge others pull requests. It is very important that new code does not
break existing code, so be careful about what code you do choose to merge.

If you feel like you have contributed to the project but have not yet been
added as a collaborator, we probably forgot to add you, please open an issue.







          

      

      

    

  _static/ajax-loader.gif





_images/gomysql_m.png





_static/comment-close.png





_static/comment.png





_static/comment-bright.png





_static/down-pressed.png





_static/down.png





_images/go-mysql-driver_m.jpg





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_static/plus.png





_static/file.png





_static/minus.png





_static/up-pressed.png





_static/up.png





