
gnsq Documentation
Release 1.0.1

Trevor Olson

Apr 26, 2019

Contents

1 gnsq 1
1.1 Installation . 1
1.2 Usage . 2
1.3 Compatibility . 2
1.4 Dependencies . 2
1.5 Contributing . 3

2 Contents 5
2.1 Consumer: high-level message reader . 5
2.2 Producer: high-level message writer . 7
2.3 Nsqd clients . 9
2.4 Nsqlookupd client . 13
2.5 NSQ Message . 14
2.6 Signals . 15
2.7 Contrib modules . 15
2.8 Contributing . 18
2.9 Credits . 20
2.10 Upgrading to Newer Releases . 20
2.11 History . 22

3 Indices and tables 25

i

ii

CHAPTER 1

gnsq

A gevent based python client for NSQ distributed messaging platform.

Features include:

• Free software: BSD license

• Documentation: https://gnsq.readthedocs.org

• Battle tested on billions and billions of messages </sagan>

• Based on gevent for fast concurrent networking

• Fast and flexible signals with Blinker

• Automatic nsqlookupd discovery and back-off

• Support for TLS, DEFLATE, and Snappy

• Full HTTP clients for both nsqd and nsqlookupd

1.1 Installation

At the command line:

$ easy_install gnsq

Or even better, if you have virtualenvwrapper installed:

$ mkvirtualenv gnsq
$ pip install gnsq

1

https://pypi.python.org/pypi/gnsq
https://travis-ci.org/wtolson/gnsq
https://gnsq.readthedocs.io/en/latest/?badge=latest
http://gevent.org/
http://nsq.io/
https://gnsq.readthedocs.org
http://gevent.org/
http://pythonhosted.org/blinker/

gnsq Documentation, Release 1.0.1

Currently there is support for Python 2.7+, Python 3.4+ and PyPy.

1.2 Usage

First make sure nsq is installed and running. Next create a producer and publish some messages to your topic:

import gnsq

producer = gnsq.Producer('localhost:4150')
producer.start()

producer.publish('topic', 'hello gevent!')
producer.publish('topic', 'hello nsq!')

Then create a Consumer to consume messages from your topic:

consumer = gnsq.Consumer('topic', 'channel', 'localhost:4150')

@consumer.on_message.connect
def handler(consumer, message):

print 'got message:', message.body

consumer.start()

1.3 Compatibility

For NSQ 1.0 and later, use the major version 1 (1.x.y) of gnsq.

For NSQ 0.3.8 and earlier, use the major version 0 (0.x.y) of the library.

The recommended way to set your requirements in your setup.py or requirements.txt is:

NSQ 1.x.y
gnsq>=1.0.0

NSQ 0.x.y
gnsq<1.0.0

1.4 Dependencies

Optional snappy support depends on the python-snappy package which in turn depends on libsnappy:

Debian
$ sudo apt-get install libsnappy-dev

Or OS X
$ brew install snappy

And then install python-snappy
$ pip install python-snappy

2 Chapter 1. gnsq

http://nsq.io/overview/quick_start.html

gnsq Documentation, Release 1.0.1

1.5 Contributing

Feedback, issues, and contributions are always gratefully welcomed. See the contributing guide for details on how to
help and setup a development environment.

1.5. Contributing 3

https://github.com/wtolson/gnsq/blob/master/CONTRIBUTING.rst

gnsq Documentation, Release 1.0.1

4 Chapter 1. gnsq

CHAPTER 2

Contents

2.1 Consumer: high-level message reader

class gnsq.Consumer(topic, channel, nsqd_tcp_addresses=[], lookupd_http_addresses=[],
name=None, message_handler=None, max_tries=5, max_in_flight=1,
requeue_delay=0, lookupd_poll_interval=60, lookupd_poll_jitter=0.3,
low_ready_idle_timeout=10, max_backoff_duration=128, back-
off_on_requeue=True, **kwargs)

High level NSQ consumer.

A Consumer will connect to the nsqd tcp addresses or poll the provided nsqlookupd http addresses for the
configured topic and send signals to message handlers connected to the on_message signal or provided by
message_handler.

Messages will automatically be finished when the message handle returns unless message.
enable_async() is called. If an exception occurs or NSQRequeueMessage is raised, the message
will be requeued.

The Consumer will handle backing off of failed messages up to a configurable max_interval as well as
automatically reconnecting to dropped connections.

Example usage:

from gnsq import Consumer

consumer = gnsq.Consumer('topic', 'channel', 'localhost:4150')

@consumer.on_message.connect
def handler(consumer, message):

print 'got message:', message.body

consumer.start()

Parameters

5

gnsq Documentation, Release 1.0.1

• topic – specifies the desired NSQ topic

• channel – specifies the desired NSQ channel

• nsqd_tcp_addresses – a sequence of string addresses of the nsqd instances this con-
sumer should connect to

• lookupd_http_addresses – a sequence of string addresses of the nsqlookupd in-
stances this consumer should query for producers of the specified topic

• name – a string that is used for logging messages (defaults to 'gnsq.consumer.
{topic}.{channel}')

• message_handler – the callable that will be executed for each message received

• max_tries – the maximum number of attempts the consumer will make to process a
message after which messages will be automatically discarded

• max_in_flight – the maximum number of messages this consumer will pipeline for
processing. this value will be divided evenly amongst the configured/discovered nsqd pro-
ducers

• requeue_delay – the default delay to use when requeueing a failed message

• lookupd_poll_interval – the amount of time in seconds between querying all of
the supplied nsqlookupd instances. A random amount of time based on this value will be
initially introduced in order to add jitter when multiple consumers are running

• lookupd_poll_jitter – the maximum fractional amount of jitter to add to the
lookupd poll loop. This helps evenly distribute requests even if multiple consumers restart
at the same time.

• low_ready_idle_timeout – the amount of time in seconds to wait for a message
from a producer when in a state where RDY counts are re-distributed (ie. max_in_flight <
num_producers)

• max_backoff_duration – the maximum time we will allow a backoff state to last in
seconds. If zero, backoff wil not occur

• backoff_on_requeue – if False, backoff will only occur on exception

• **kwargs – passed to NsqdTCPClient initialization

close()
Immediately close all connections and stop workers.

is_running
Check if consumer is currently running.

is_starved
Evaluate whether any of the connections are starved.

This property should be used by message handlers to reliably identify when to process a batch of messages.

join(timeout=None, raise_error=False)
Block until all connections have closed and workers stopped.

on_auth
Emitted after a connection is successfully authenticated.

The signal sender is the consumer and the conn and parsed response are sent as arguments.

on_close
Emitted after close().

6 Chapter 2. Contents

gnsq Documentation, Release 1.0.1

The signal sender is the consumer.

on_error
Emitted when an error is received.

The signal sender is the consumer and the error is sent as an argument.

on_exception
Emitted when an exception is caught while handling a message.

The signal sender is the consumer and the message and error are sent as arguments.

on_finish
Emitted after a message is successfully finished.

The signal sender is the consumer and the message_id is sent as an argument.

on_giving_up
Emitted after a giving up on a message.

Emitted when a message has exceeded the maximum number of attempts (max_tries) and will no
longer be requeued. This is useful to perform tasks such as writing to disk, collecting statistics etc. The
signal sender is the consumer and the message is sent as an argument.

on_message
Emitted when a message is received.

The signal sender is the consumer and the message is sent as an argument. The message_handler
param is connected to this signal.

on_requeue
Emitted after a message is requeued.

The signal sender is the consumer and the message_id and timeout are sent as arguments.

on_response
Emitted when a response is received.

The signal sender is the consumer and the response is sent as an argument.

start(block=True)
Start discovering and listing to connections.

2.2 Producer: high-level message writer

class gnsq.Producer(nsqd_tcp_addresses=[], max_backoff_duration=128, **kwargs)
High level NSQ producer.

A Producer will connect to the nsqd tcp addresses and support async publishing (PUB & MPUB & DPUB) of
messages to nsqd over the TCP protocol.

Example publishing a message:

from gnsq import Producer

producer = Producer('localhost:4150')
producer.start()
producer.publish('topic', b'hello world')

Parameters

2.2. Producer: high-level message writer 7

gnsq Documentation, Release 1.0.1

• nsqd_tcp_addresses – a sequence of string addresses of the nsqd instances this con-
sumer should connect to

• max_backoff_duration – the maximum time we will allow a backoff state to last in
seconds. If zero, backoff wil not occur

• **kwargs – passed to NsqdTCPClient initialization

close()
Immediately close all connections and stop workers.

is_running
Check if the producer is currently running.

join(timeout=None, raise_error=False)
Block until all connections have closed and workers stopped.

multipublish(topic, messages, block=True, timeout=None, raise_error=True)
Publish an iterable of messages to the given topic.

Parameters

• topic – the topic to publish to

• messages – iterable of bytestrings to publish

• block – wait for a connection to become available before publishing the message. If
block is False and no connections are available, NSQNoConnections is raised

• timeout – if timeout is a positive number, it blocks at most timeout seconds before
raising NSQNoConnections

• raise_error – if True, it blocks until a response is received from the nsqd server, and
any error response is raised. Otherwise an AsyncResult is returned

on_auth
Emitted after a connection is successfully authenticated.

The signal sender is the consumer and the conn and parsed response are sent as arguments.

on_close
Emitted after close().

The signal sender is the consumer.

on_error
Emitted when an error is received.

The signal sender is the consumer and the error is sent as an argument.

on_response
Emitted when a response is received.

The signal sender is the consumer and the ‘ ‘ is sent as an argument.

publish(topic, data, defer=None, block=True, timeout=None, raise_error=True)
Publish a message to the given topic.

Parameters

• topic – the topic to publish to

• data – bytestring data to publish

• defer – duration in milliseconds to defer before publishing (requires nsq 0.3.6)

8 Chapter 2. Contents

gnsq Documentation, Release 1.0.1

• block – wait for a connection to become available before publishing the message. If
block is False and no connections are available, NSQNoConnections is raised

• timeout – if timeout is a positive number, it blocks at most timeout seconds before
raising NSQNoConnections

• raise_error – if True, it blocks until a response is received from the nsqd server, and
any error response is raised. Otherwise an AsyncResult is returned

start()
Start discovering and listing to connections.

2.3 Nsqd clients

class gnsq.NsqdHTTPClient(host=’localhost’, port=4151, **kwargs)
Low level http client for nsqd.

Parameters

• host – nsqd host address (default: localhost)

• port – nsqd http port (default: 4151)

• useragent – useragent sent to nsqd (default: <client_library_name>/
<version>)

• connection_class – override the http connection class

create_channel(topic, channel)
Create a channel for an existing topic.

create_topic(topic)
Create a topic.

delete_channel(topic, channel)
Delete an existing channel for an existing topic.

delete_topic(topic)
Delete a topic.

empty_channel(topic, channel)
Empty all the queued messages for an existing channel.

empty_topic(topic)
Empty all the queued messages for an existing topic.

classmethod from_url(url, **kwargs)
Create a client from a url.

info()
Returns version information.

multipublish(topic, messages, binary=False)
Publish an iterable of messages to the given topic over http.

Parameters

• topic – the topic to publish to

• messages – iterable of bytestrings to publish

• binary – enable binary mode. defaults to False (requires nsq 1.0.0)

2.3. Nsqd clients 9

gnsq Documentation, Release 1.0.1

By default multipublish expects messages to be delimited by "\n", use the binary flag to enable binary
mode where the POST body is expected to be in the following wire protocol format.

pause_channel(topic, channel)
Pause message flow to consumers of an existing channel.

Messages will queue at channel.

pause_topic(topic)
Pause message flow to all channels on an existing topic.

Messages will queue at topic.

ping()
Monitoring endpoint.

Returns should return "OK", otherwise raises an exception.

publish(topic, data, defer=None)
Publish a message to the given topic over http.

Parameters

• topic – the topic to publish to

• data – bytestring data to publish

• defer – duration in millisconds to defer before publishing (requires nsq 0.3.6)

stats(topic=None, channel=None, text=False)
Return internal instrumented statistics.

Parameters

• topic – (optional) filter to topic

• channel – (optional) filter to channel

• text – return the stats as a string (default: False)

unpause_channel(topic, channel)
Resume message flow to consumers of an existing, paused, channel.

unpause_topic(topic)
Resume message flow to channels of an existing, paused, topic.

class gnsq.NsqdTCPClient(address=’127.0.0.1’, port=4150, timeout=60.0, client_id=None,
hostname=None, heartbeat_interval=30, output_buffer_size=16384, out-
put_buffer_timeout=250, tls_v1=False, tls_options=None, snappy=False,
deflate=False, deflate_level=6, sample_rate=0, auth_secret=None,
user_agent=’gnsq/1.0.1’)

Low level object representing a TCP connection to nsqd.

Parameters

• address – the host or ip address of the nsqd

• port – the nsqd tcp port to connect to

• timeout – the timeout for read/write operations (in seconds)

• client_id – an identifier used to disambiguate this client (defaults to the first part of the
hostname)

• hostname – the hostname where the client is deployed (defaults to the clients hostname)

10 Chapter 2. Contents

gnsq Documentation, Release 1.0.1

• heartbeat_interval – the amount of time in seconds to negotiate with the connected
producers to send heartbeats (requires nsqd 0.2.19+)

• output_buffer_size – size of the buffer (in bytes) used by nsqd for buffering writes
to this connection

• output_buffer_timeout – timeout (in ms) used by nsqd before flushing buffered
writes (set to 0 to disable). Warning: configuring clients with an extremely low (< 25ms)
output_buffer_timeout has a significant effect on nsqd CPU usage (particularly with > 50
clients connected).

• tls_v1 – enable TLS v1 encryption (requires nsqd 0.2.22+)

• tls_options – dictionary of options to pass to ssl.wrap_socket()

• snappy – enable Snappy stream compression (requires nsqd 0.2.23+)

• deflate – enable deflate stream compression (requires nsqd 0.2.23+)

• deflate_level – configure the deflate compression level for this connection (requires
nsqd 0.2.23+)

• sample_rate – take only a sample of the messages being sent to the client. Not setting
this or setting it to 0 will ensure you get all the messages destined for the client. Sample
rate can be greater than 0 or less than 100 and the client will receive that percentage of the
message traffic. (requires nsqd 0.2.25+)

• auth_secret – a string passed when using nsq auth (requires nsqd 0.2.29+)

• user_agent – a string identifying the agent for this client in the spirit of HTTP (default:
<client_library_name>/<version>) (requires nsqd 0.2.25+)

auth()
Send authorization secret to nsqd.

close()
Indicate no more messages should be sent.

close_stream()
Close the underlying socket.

connect()
Initialize connection to the nsqd.

finish(message_id)
Finish a message (indicate successful processing).

identify()
Update client metadata on the server and negotiate features.

Returns nsqd response data if there was feature negotiation, otherwise None

is_connected
Check if the client is currently connected.

is_starved
Evaluate whether the connection is starved.

This property should be used by message handlers to reliably identify when to process a batch of messages.

listen()
Listen to incoming responses until the connection closes.

multipublish(topic, messages)
Publish an iterable of messages to the given topic over http.

2.3. Nsqd clients 11

http://docs.python.org/2/library/ssl.html#ssl.wrap_socket

gnsq Documentation, Release 1.0.1

Parameters

• topic – the topic to publish to

• messages – iterable of bytestrings to publish

nop()
Send no-op to nsqd. Used to keep connection alive.

on_auth
Emitted after the connection is successfully authenticated.

The signal sender is the connection and the parsed response is sent as arguments.

on_close
Emitted after close_stream().

Sent after the connection socket has closed. The signal sender is the connection.

on_error
Emitted when an error frame is received.

The signal sender is the connection and the error is sent as an argument.

on_finish
Emitted after finish().

Sent after a message owned by this connection is successfully finished. The signal sender is the connection
and the message_id is sent as an argument.

on_message
Emitted when a message frame is received.

The signal sender is the connection and the message is sent as an argument.

on_requeue
Emitted after requeue().

Sent after a message owned by this connection is requeued. The signal sender is the connection and the
message_id, timeout and backoff flag are sent as arguments.

on_response
Emitted when a response frame is received.

The signal sender is the connection and the response is sent as an argument.

publish(topic, data, defer=None)
Publish a message to the given topic over tcp.

Parameters

• topic – the topic to publish to

• data – bytestring data to publish

• defer – duration in milliseconds to defer before publishing (requires nsq 0.3.6)

read_response()
Read an individual response from nsqd.

Returns tuple of the frame type and the processed data.

ready(count)
Indicate you are ready to receive count messages.

requeue(message_id, timeout=0, backoff=True)
Re-queue a message (indicate failure to process).

12 Chapter 2. Contents

gnsq Documentation, Release 1.0.1

subscribe(topic, channel)
Subscribe to a nsq topic and channel.

touch(message_id)
Reset the timeout for an in-flight message.

class gnsq.Nsqd(address=’127.0.0.1’, tcp_port=4150, http_port=4151, **kwargs)
Use NsqdTCPClient or NsqdHTTPClient instead.

Deprecated since version 1.0.0.

multipublish_http(topic, messages, **kwargs)
Use NsqdHTTPClient.multipublish() instead.

Deprecated since version 1.0.0.

multipublish_tcp(topic, messages, **kwargs)
Use NsqdTCPClient.multipublish() instead.

Deprecated since version 1.0.0.

publish_http(topic, data, **kwargs)
Use NsqdHTTPClient.publish() instead.

Deprecated since version 1.0.0.

publish_tcp(topic, data, **kwargs)
Use NsqdTCPClient.publish() instead.

Deprecated since version 1.0.0.

2.4 Nsqlookupd client

class gnsq.LookupdClient(host=’localhost’, port=4161, **kwargs)
Low level http client for nsqlookupd.

Parameters

• host – nsqlookupd host address (default: localhost)

• port – nsqlookupd http port (default: 4161)

• useragent – useragent sent to nsqlookupd (default: <client_library_name>/
<version>)

• connection_class – override the http connection class

channels(topic)
Returns all known channels of a topic.

create_channel(topic, channel)
Add a channel to nsqlookupd’s registry.

create_topic(topic)
Add a topic to nsqlookupd’s registry.

delete_channel(topic, channel)
Deletes an existing channel of an existing topic.

delete_topic(topic)
Deletes an existing topic.

2.4. Nsqlookupd client 13

gnsq Documentation, Release 1.0.1

classmethod from_url(url, **kwargs)
Create a client from a url.

info()
Returns version information.

lookup(topic)
Returns producers for a topic.

nodes()
Returns all known nsqd.

ping()
Monitoring endpoint.

Returns should return “OK”, otherwise raises an exception.

tombstone_topic(topic, node)
Tombstones a specific producer of an existing topic.

topics()
Returns all known topics.

class gnsq.Lookupd(address=’http://localhost:4161/’, **kwargs)
Use LookupdClient instead.

Deprecated since version 1.0.0.

base_url
Use LookupdClient.address instead.

Deprecated since version 1.0.0.

tombstone_topic_producer(topic, node)
Use LookupdClient.tombstone_topic() instead.

Deprecated since version 1.0.0.

2.5 NSQ Message

class gnsq.Message(timestamp, attempts, id, body)
A class representing a message received from nsqd.

enable_async()
Enables asynchronous processing for this message.

Consumer will not automatically respond to the message upon return of handle_message().

finish()
Respond to nsqd that you’ve processed this message successfully (or would like to silently discard it).

has_responded()
Returns whether or not this message has been responded to.

is_async()
Returns whether or not asynchronous processing has been enabled.

on_finish
Emitted after finish().

The signal sender is the message instance.

14 Chapter 2. Contents

gnsq Documentation, Release 1.0.1

on_requeue
Emitted after requeue().

The signal sender is the message instance and sends the timeout and a backoff flag as arguments.

on_touch
Emitted after touch().

The signal sender is the message instance.

requeue(time_ms=0, backoff=True)
Respond to nsqd that you’ve failed to process this message successfully (and would like it to be requeued).

touch()
Respond to nsqd that you need more time to process the message.

2.6 Signals

Both Consumer and NsqdTCPClient classes expose various signals provided by the Blinker library.

2.6.1 Subscribing to signals

To subscribe to a signal, you can use the connect() method of a signal. The first argument is the function that
should be called when the signal is emitted, the optional second argument specifies a sender. To unsubscribe from a
signal, you can use the disconnect() method.

def error_handler(consumer, error):
print 'Got an error:', error

consumer.on_error.connect(error_handler)

You can also easily subscribe to signals by using connect() as a decorator:

@consumer.on_giving_up.connect
def handle_giving_up(consumer, message):

print 'Giving up on:', message.id

2.7 Contrib modules

Patterns and best practices for gnsq made code.

2.7.1 Batching messages

class gnsq.contrib.batch.BatchHandler(batch_size, handle_batch=None, han-
dle_message=None, handle_batch_error=None,
handle_message_error=None, timeout=10,
spawn=<bound method Greenlet.spawn of <class
’gevent._greenlet.Greenlet’>>)

Batch message handler for gnsq.

It is recommended to use a max inflight greater than the batch size.

Example usage:

2.6. Signals 15

https://pypi.python.org/pypi/blinker

gnsq Documentation, Release 1.0.1

>>> consumer = Consumer('topic', 'worker', max_in_flight=16)
>>> consumer.on_message.connect(BatchHandler(8, my_handler), weak=False)

handle_batch(messages)
Handle a batch message.

Processes a batch of messages. You must provide a handle_batch() function to the constructor or
override this method.

Raising an exception in handle_batch() will cause all messages in the batch to be requeued.

handle_batch_error(error, messages, batch)
Handle an exception processsing a batch of messages.

This may be overridden or passed into the constructor.

handle_message(message)
Handle a single message.

Over ride this to provide some processing and an individual message. The result of this function is what
is passed to handle_batch(). This may be overridden or passed into the constructor. By default it
simply returns the message.

Raising an exception in handle_message() will cause that message to be requeued and excluded from
the batch.

handle_message_error(error, message)
Handle an exception processesing an individual message.

This may be overridden or passed into the constructor.

2.7.2 Giveup handlers

class gnsq.contrib.giveup.LogGiveupHandler(log=<built-in method write of
_io.TextIOWrapper object>, newline=’n’)

Log messages on giveup.

Writes the message body to the log. This can be customized by subclassing and implementing
format_message(). Assuming messages do not requeued using the to_nsq utility.

Example usage:

>>> fp = open('topic.__BURY__.log', 'w')
>>> consumer.on_giving_up.connect(
... LogGiveupHandler(fp.write), weak=False)

class gnsq.contrib.giveup.JSONLogGiveupHandler(log=<built-in method write of
_io.TextIOWrapper object>, new-
line=’n’)

Log messages as json on giveup.

Works like LogGiveupHandler but serializes the message details as json before writing to the log.

Example usage:

>>> fp = open('topic.__BURY__.log', 'w')
>>> consumer.on_giving_up.connect(
... JSONLogGiveupHandler(fp.write), weak=False)

16 Chapter 2. Contents

gnsq Documentation, Release 1.0.1

class gnsq.contrib.giveup.NsqdGiveupHandler(topic, nsqd_hosts=[’localhost’],
nsqd_class=<class
’gnsq.nsqd.NsqdHTTPClient’>)

Send messages by to nsq on giveup.

Forwards the message body to the given topic where it can be inspected and requeued. This can be customized
by subclassing and implementing format_message(). Messages can be requeued with the nsq_to_nsq
utility.

Example usage:

>>> giveup_handler = NsqdGiveupHandler('topic.__BURY__')
>>> consumer.on_giving_up.connect(giveup_handler)

2.7.3 Concurrency

class gnsq.contrib.queue.QueueHandler
Iterator like api for gnsq.

Example usage:

>>> queue = QueueHandler()
>>> consumer = Consumer('topic', 'worker', max_in_flight=16)
>>> consumer.on_message.connect(queue)
>>> consumer.start(block=False)
>>> for message in queue:
... print(message.body)
... message.finish()

Or give it to a pool:

>>> gevent.pool.Pool().map(queue, my_handler)

Parameters maxsize – maximum number of messages that can be queued. If less than or equal to
zero or None, the queue size is infinite.

empty
Return True if the queue is empty, False otherwise.

full
Return True if the queue is full, False otherwise.

Queue(None) is never full.

get
Remove and return an item from the queue.

If optional args block is true and timeout is None (the default), block if necessary until an item is available.
If timeout is a positive number, it blocks at most timeout seconds and raises the Empty exception if no item
was available within that time. Otherwise (block is false), return an item if one is immediately available,
else raise the Empty exception (timeout is ignored in that case).

get_nowait
Remove and return an item from the queue without blocking.

Only get an item if one is immediately available. Otherwise raise the Empty exception.

2.7. Contrib modules 17

gnsq Documentation, Release 1.0.1

peek
Return an item from the queue without removing it.

If optional args block is true and timeout is None (the default), block if necessary until an item is available.
If timeout is a positive number, it blocks at most timeout seconds and raises the Empty exception if no item
was available within that time. Otherwise (block is false), return an item if one is immediately available,
else raise the Empty exception (timeout is ignored in that case).

peek_nowait
Return an item from the queue without blocking.

Only return an item if one is immediately available. Otherwise raise the Empty exception.

qsize
Return the size of the queue.

class gnsq.contrib.queue.ChannelHandler
Iterator like api for gnsq.

Like QueueHandler with a maxsize of 1.

2.7.4 Error logging

class gnsq.contrib.sentry.SentryExceptionHandler(client)
Log gnsq exceptions to sentry.

Example usage:

>>> from raven import Sentry
>>> sentry = Sentry()
>>> consumer.on_exception.connect(
... SentryExceptionHandler(sentry), weak=False)

2.8 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

2.8.1 Types of Contributions

Report Bugs

Report bugs at https://github.com/wtolson/gnsq/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

18 Chapter 2. Contents

https://github.com/wtolson/gnsq/issues

gnsq Documentation, Release 1.0.1

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature” is open to whoever wants to implement
it.

Write Documentation

gnsq could always use more documentation, whether as part of the official gnsq docs, in docstrings, or even on the
web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/wtolson/gnsq/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

2.8.2 Get Started!

Ready to contribute? Here’s how to set up gnsq for local development.

1. Fork the gnsq repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/gnsq.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper and libsnappy installed, this is
how you set up your fork for local development:

$ mkvirtualenv gnsq
$ cd gnsq/
$ pip install -r requirements.dev.txt -r requirements.docs.txt

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 gnsq tests
$ pytest
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

2.8. Contributing 19

https://github.com/wtolson/gnsq/issues

gnsq Documentation, Release 1.0.1

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

2.8.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.6 and 2.7. Check https://travis-ci.org/wtolson/gnsq/pull_requests and
make sure that the tests pass for all supported Python versions.

2.8.4 Tips

To run a subset of tests:

$ pytest tests/test_basic.py

2.9 Credits

2.9.1 Development Lead

• Trevor Olson <trevor@heytrevor.com>

2.9.2 Contributors

None yet. Why not be the first?

2.10 Upgrading to Newer Releases

This section of the documentation enumerates all the changes in gnsq from release to release and how you can change
your code to have a painless updating experience.

Use the pip command to upgrade your existing Flask installation by providing the --upgrade parameter:

$ pip install --upgrade gnsq

2.10.1 Version 1.0.0

While there are no breaking changes in version 1.0.0, much of the interface has been deprecated to both simplify the
api and bring it into better compliance with the recommended naming schemes for nsq clients. Existing code should
work as is and deprecation warnings will be emitted for any code paths that need to be changed.

20 Chapter 2. Contents

https://travis-ci.org/wtolson/gnsq/pull_requests
mailto:trevor@heytrevor.com

gnsq Documentation, Release 1.0.1

Deprecated Reader

The main interface has been renamed from Reader to Consumer. The api remains largely the same and can be
swapped out directly in most cases.

Async messages

The async flag has been removed from the Consumer. Instead messages has a message.enable_async()
method that may be used to indicate that a message will be handled asynchronous.

Max concurrency

The max_concurrency parameter has been removed from Consumer. If you wish to replicate this behavior, you
should use the gnsq.contrib.QueueHandler in conjunction with a worker pool:

from gevent.pool import Pool
from gnsq import Consumer
from gnsq.contrib.queue import QueueHandler

MAX_CONCURRENCY = 4

Create your consumer as usual
consumer = Consumer(

'topic', 'worker', 'localhost:4150', max_in_flight=16)

Connect a queue handler to the on message signal
queue = QueueHandler()
consumer.on_message.connect(queue)

Start your consumer without blocking or in a separate greenlet
consumer.start(block=False)

If you want to limit your concurrency to a single greenlet, simply loop
over the queue in a for loop, or you can use a worker pool to distribute
the work.
pool = Pool(MAX_CONCURRENCY)
results = pool.imap_unordered(queue, my_handler)

Consume the results from the pool
for result in results:

pass

Deprecated Nsqd

The Nsqd client has been split into two classes, corresponding to the tcp and http APIs. The new classes are
NsqdTCPClient and NsqdHTTPClient respectively.

The methods publish_tcp, publish_http, multipublish_tcp, and multipublish_http have been removed from the new
classes.

2.10. Upgrading to Newer Releases 21

gnsq Documentation, Release 1.0.1

Deprecated Lookupd

The Lookupd class has been replaced by LookupdClient. LookupdClient can be constructed using the host
and port or by passing the url to LookupdClient.from_url() instead.

The method tombstone_topic_producer() has been renamed to tombstone_topic().

2.11 History

2.11.1 1.0.1 (2019-04-24)

• Fix long description in packaging

2.11.2 1.0.0 (2019-04-24)

• Drop support for python 2.6 and python 3.3, add support for python 3.7

• Drop support for nsq < 1.0.0

• Handle changing connections during redistribute ready

• Add create topic and create channel to LookupdClient

• Add pause and unpause topic to NsqdHTTPClient

• Add ability to filter NsqdHTTPClient stats by topic/channel

• Add text format for NsqdHTTPClient stats

• Add binary multipublish over http

• Add queue handler to the contrib package

• Add Producer class, a high level tcp message writer

• Fixed detecting if consumer is starved

• Optimizations to better distribute ready state among the nsqd connections

• Detect starved consumers when batching messages

• [DEPRECATED] Nsqd is deprecated. Use NsqdTCPClient or NsqdHTTPClient instead. See Version
1.0.0 for more information.

• [DEPRECATED] Lookupd is deprecated. Use LookupdClient instead. See Version 1.0.0 for more infor-
mation.

• [DEPRECATED] Reader is deprecated. Use Consumer instead. See Version 1.0.0 for more information.

2.11.3 0.4.0 (2017-06-13)

• #13 - Allow use with nsq v1.0.0 (thanks @daroot)

• Add contrib package with utilities.

22 Chapter 2. Contents

gnsq Documentation, Release 1.0.1

2.11.4 0.3.3 (2016-09-25)

• #11 - Make sure all socket data is sent.

• #5 - Add support for DPUB (defered publish).

2.11.5 0.3.2 (2016-04-10)

• Add support for Python 3 and PyPy.

• #7 - Fix undeclared variable in compression socket.

2.11.6 0.3.1 (2015-11-06)

• Fix negative in flight causing not throttling after backoff.

2.11.7 0.3.0 (2015-06-14)

• Fix extra backoff success/failures during backoff period.

• Fix case where handle_backoff is never called.

• Add backoff parameter to message.requeue().

• Allow overriding backoff on NSQRequeueMessage error.

• Handle connection failures while starting/completing backoff.

2.11.8 0.2.3 (2015-02-16)

• Remove disconnected nsqd messages from the worker queue.

• #4 - Fix crash in Reader.random_ready_conn (thanks @ianpreston).

2.11.9 0.2.2 (2015-01-12)

• Allow finishing and requeuing in sync handlers.

2.11.10 0.2.1 (2015-01-12)

• Topics and channels are now valid to 64 characters.

• Ephemeral topics are now valid.

• Adjustable backoff behavior.

2.11.11 0.2.0 (2014-08-03)

• Warn on connection failure.

• Add extra requires for snappy.

• Add support for nsq auth protocol.

2.11. History 23

gnsq Documentation, Release 1.0.1

2.11.12 0.1.4 (2014-07-24)

• Preemptively update ready count.

• Dependency and contributing documentation.

• Support for nsq back to 0.2.24.

2.11.13 0.1.3 (2014-07-08)

• Block as expected on start, even if already started.

• Raise runtime error if starting the reader without a message handler.

• Add on_close signal to the reader.

• Allow upgrading to tls+snappy or tls+deflate.

2.11.14 0.1.2 (2014-07-08)

• Flush delfate buffer for each message.

2.11.15 0.1.1 (2014-07-07)

• Fix packaging stream submodule.

• Send queued messages before closing socket.

• Continue to read from socket on EAGAIN

2.11.16 0.1.0 (2014-07-07)

• First release on PyPI.

24 Chapter 2. Contents

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

25

gnsq Documentation, Release 1.0.1

26 Chapter 3. Indices and tables

Index

A
auth() (gnsq.NsqdTCPClient method), 11

B
base_url (gnsq.Lookupd attribute), 14
BatchHandler (class in gnsq.contrib.batch), 15

C
ChannelHandler (class in gnsq.contrib.queue), 18
channels() (gnsq.LookupdClient method), 13
close() (gnsq.Consumer method), 6
close() (gnsq.NsqdTCPClient method), 11
close() (gnsq.Producer method), 8
close_stream() (gnsq.NsqdTCPClient method), 11
connect() (gnsq.NsqdTCPClient method), 11
Consumer (class in gnsq), 5
create_channel() (gnsq.LookupdClient method),

13
create_channel() (gnsq.NsqdHTTPClient method),

9
create_topic() (gnsq.LookupdClient method), 13
create_topic() (gnsq.NsqdHTTPClient method), 9

D
delete_channel() (gnsq.LookupdClient method),

13
delete_channel() (gnsq.NsqdHTTPClient method),

9
delete_topic() (gnsq.LookupdClient method), 13
delete_topic() (gnsq.NsqdHTTPClient method), 9

E
empty (gnsq.contrib.queue.QueueHandler attribute), 17
empty_channel() (gnsq.NsqdHTTPClient method),

9
empty_topic() (gnsq.NsqdHTTPClient method), 9
enable_async() (gnsq.Message method), 14

F
finish() (gnsq.Message method), 14

finish() (gnsq.NsqdTCPClient method), 11
from_url() (gnsq.LookupdClient class method), 13
from_url() (gnsq.NsqdHTTPClient class method), 9
full (gnsq.contrib.queue.QueueHandler attribute), 17

G
get (gnsq.contrib.queue.QueueHandler attribute), 17
get_nowait (gnsq.contrib.queue.QueueHandler at-

tribute), 17

H
handle_batch() (gnsq.contrib.batch.BatchHandler

method), 16
handle_batch_error()

(gnsq.contrib.batch.BatchHandler method), 16
handle_message() (gnsq.contrib.batch.BatchHandler

method), 16
handle_message_error()

(gnsq.contrib.batch.BatchHandler method), 16
has_responded() (gnsq.Message method), 14

I
identify() (gnsq.NsqdTCPClient method), 11
info() (gnsq.LookupdClient method), 14
info() (gnsq.NsqdHTTPClient method), 9
is_async() (gnsq.Message method), 14
is_connected (gnsq.NsqdTCPClient attribute), 11
is_running (gnsq.Consumer attribute), 6
is_running (gnsq.Producer attribute), 8
is_starved (gnsq.Consumer attribute), 6
is_starved (gnsq.NsqdTCPClient attribute), 11

J
join() (gnsq.Consumer method), 6
join() (gnsq.Producer method), 8
JSONLogGiveupHandler (class in

gnsq.contrib.giveup), 16

L
listen() (gnsq.NsqdTCPClient method), 11

27

gnsq Documentation, Release 1.0.1

LogGiveupHandler (class in gnsq.contrib.giveup), 16
lookup() (gnsq.LookupdClient method), 14
Lookupd (class in gnsq), 14
LookupdClient (class in gnsq), 13

M
Message (class in gnsq), 14
multipublish() (gnsq.NsqdHTTPClient method), 9
multipublish() (gnsq.NsqdTCPClient method), 11
multipublish() (gnsq.Producer method), 8
multipublish_http() (gnsq.Nsqd method), 13
multipublish_tcp() (gnsq.Nsqd method), 13

N
nodes() (gnsq.LookupdClient method), 14
nop() (gnsq.NsqdTCPClient method), 12
Nsqd (class in gnsq), 13
NsqdGiveupHandler (class in gnsq.contrib.giveup),

16
NsqdHTTPClient (class in gnsq), 9
NsqdTCPClient (class in gnsq), 10

O
on_auth (gnsq.Consumer attribute), 6
on_auth (gnsq.NsqdTCPClient attribute), 12
on_auth (gnsq.Producer attribute), 8
on_close (gnsq.Consumer attribute), 6
on_close (gnsq.NsqdTCPClient attribute), 12
on_close (gnsq.Producer attribute), 8
on_error (gnsq.Consumer attribute), 7
on_error (gnsq.NsqdTCPClient attribute), 12
on_error (gnsq.Producer attribute), 8
on_exception (gnsq.Consumer attribute), 7
on_finish (gnsq.Consumer attribute), 7
on_finish (gnsq.Message attribute), 14
on_finish (gnsq.NsqdTCPClient attribute), 12
on_giving_up (gnsq.Consumer attribute), 7
on_message (gnsq.Consumer attribute), 7
on_message (gnsq.NsqdTCPClient attribute), 12
on_requeue (gnsq.Consumer attribute), 7
on_requeue (gnsq.Message attribute), 14
on_requeue (gnsq.NsqdTCPClient attribute), 12
on_response (gnsq.Consumer attribute), 7
on_response (gnsq.NsqdTCPClient attribute), 12
on_response (gnsq.Producer attribute), 8
on_touch (gnsq.Message attribute), 15

P
pause_channel() (gnsq.NsqdHTTPClient method),

10
pause_topic() (gnsq.NsqdHTTPClient method), 10
peek (gnsq.contrib.queue.QueueHandler attribute), 17
peek_nowait (gnsq.contrib.queue.QueueHandler at-

tribute), 18

ping() (gnsq.LookupdClient method), 14
ping() (gnsq.NsqdHTTPClient method), 10
Producer (class in gnsq), 7
publish() (gnsq.NsqdHTTPClient method), 10
publish() (gnsq.NsqdTCPClient method), 12
publish() (gnsq.Producer method), 8
publish_http() (gnsq.Nsqd method), 13
publish_tcp() (gnsq.Nsqd method), 13

Q
qsize (gnsq.contrib.queue.QueueHandler attribute), 18
QueueHandler (class in gnsq.contrib.queue), 17

R
read_response() (gnsq.NsqdTCPClient method), 12
ready() (gnsq.NsqdTCPClient method), 12
requeue() (gnsq.Message method), 15
requeue() (gnsq.NsqdTCPClient method), 12

S
SentryExceptionHandler (class in

gnsq.contrib.sentry), 18
start() (gnsq.Consumer method), 7
start() (gnsq.Producer method), 9
stats() (gnsq.NsqdHTTPClient method), 10
subscribe() (gnsq.NsqdTCPClient method), 12

T
tombstone_topic() (gnsq.LookupdClient method),

14
tombstone_topic_producer() (gnsq.Lookupd

method), 14
topics() (gnsq.LookupdClient method), 14
touch() (gnsq.Message method), 15
touch() (gnsq.NsqdTCPClient method), 13

U
unpause_channel() (gnsq.NsqdHTTPClient

method), 10
unpause_topic() (gnsq.NsqdHTTPClient method),

10

28 Index

	gnsq
	Installation
	Usage
	Compatibility
	Dependencies
	Contributing

	Contents
	Consumer: high-level message reader
	Producer: high-level message writer
	Nsqd clients
	Nsqlookupd client
	NSQ Message
	Signals
	Contrib modules
	Contributing
	Credits
	Upgrading to Newer Releases
	History

	Indices and tables

