

Welcome to gnsq’s documentation!

gnsq

[image: _images/gnsq.svg]
 [https://pypi.python.org/pypi/gnsq][image: _images/gnsq1.svg]
 [https://travis-ci.org/wtolson/gnsq][image: Documentation Status]
 [https://gnsq.readthedocs.io/en/latest/?badge=latest]A gevent [http://gevent.org/] based python client for NSQ [http://nsq.io/] distributed messaging platform.

Features include:

	Free software: BSD license

	Documentation: https://gnsq.readthedocs.org

	Battle tested on billions and billions of messages </sagan>

	Based on gevent [http://gevent.org/] for fast concurrent networking

	Fast and flexible signals with Blinker [http://pythonhosted.org/blinker/]

	Automatic nsqlookupd discovery and back-off

	Support for TLS, DEFLATE, and Snappy

	Full HTTP clients for both nsqd and nsqlookupd

Installation

At the command line:

$ easy_install gnsq

Or even better, if you have virtualenvwrapper installed:

$ mkvirtualenv gnsq
$ pip install gnsq

Currently there is support for Python 2.7+, Python 3.4+ and PyPy.

Usage

First make sure nsq is installed and running [http://nsq.io/overview/quick_start.html]. Next create a producer and
publish some messages to your topic:

import gnsq

producer = gnsq.Producer('localhost:4150')
producer.start()

producer.publish('topic', 'hello gevent!')
producer.publish('topic', 'hello nsq!')

Then create a Consumer to consume messages from your topic:

consumer = gnsq.Consumer('topic', 'channel', 'localhost:4150')

@consumer.on_message.connect
def handler(consumer, message):
 print 'got message:', message.body

consumer.start()

Compatibility

For NSQ 1.0 and later, use the major version 1 (1.x.y) of gnsq.

For NSQ 0.3.8 and earlier, use the major version 0 (0.x.y) of the
library.

The recommended way to set your requirements in your setup.py or
requirements.txt is:

NSQ 1.x.y
gnsq>=1.0.0

NSQ 0.x.y
gnsq<1.0.0

Dependencies

Optional snappy support depends on the python-snappy package which in turn
depends on libsnappy:

Debian
$ sudo apt-get install libsnappy-dev

Or OS X
$ brew install snappy

And then install python-snappy
$ pip install python-snappy

Contributing

Feedback, issues, and contributions are always gratefully welcomed. See the
contributing guide [https://github.com/wtolson/gnsq/blob/master/CONTRIBUTING.rst] for details on how to help and setup a development
environment.

Contents

	Consumer: high-level message reader

	Producer: high-level message writer

	Nsqd clients

	Nsqlookupd client

	NSQ Message

	Signals
	Subscribing to signals

	Contrib modules
	Batching messages

	Giveup handlers

	Concurrency

	Error logging

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	Upgrading to Newer Releases
	Version 1.0.0

	History
	1.0.1 (2019-04-24)

	1.0.0 (2019-04-24)

	0.4.0 (2017-06-13)

	0.3.3 (2016-09-25)

	0.3.2 (2016-04-10)

	0.3.1 (2015-11-06)

	0.3.0 (2015-06-14)

	0.2.3 (2015-02-16)

	0.2.2 (2015-01-12)

	0.2.1 (2015-01-12)

	0.2.0 (2014-08-03)

	0.1.4 (2014-07-24)

	0.1.3 (2014-07-08)

	0.1.2 (2014-07-08)

	0.1.1 (2014-07-07)

	0.1.0 (2014-07-07)

Indices and tables

	Index

	Module Index

	Search Page

Consumer: high-level message reader

	
class gnsq.Consumer(topic, channel, nsqd_tcp_addresses=[], lookupd_http_addresses=[], name=None, message_handler=None, max_tries=5, max_in_flight=1, requeue_delay=0, lookupd_poll_interval=60, lookupd_poll_jitter=0.3, low_ready_idle_timeout=10, max_backoff_duration=128, backoff_on_requeue=True, **kwargs)

	High level NSQ consumer.

A Consumer will connect to the nsqd tcp addresses or poll the provided
nsqlookupd http addresses for the configured topic and send signals to
message handlers connected to the on_message signal or provided by
message_handler.

Messages will automatically be finished when the message handle returns
unless message.enable_async() is called.
If an exception occurs or NSQRequeueMessage is raised,
the message will be requeued.

The Consumer will handle backing off of failed messages up to a configurable
max_interval as well as automatically reconnecting to dropped
connections.

Example usage:

from gnsq import Consumer

consumer = gnsq.Consumer('topic', 'channel', 'localhost:4150')

@consumer.on_message.connect
def handler(consumer, message):
 print 'got message:', message.body

consumer.start()

	Parameters

	
	topic – specifies the desired NSQ topic

	channel – specifies the desired NSQ channel

	nsqd_tcp_addresses – a sequence of string addresses of the nsqd
instances this consumer should connect to

	lookupd_http_addresses – a sequence of string addresses of the
nsqlookupd instances this consumer should query for producers of the
specified topic

	name – a string that is used for logging messages (defaults to
'gnsq.consumer.{topic}.{channel}')

	message_handler – the callable that will be executed for each message
received

	max_tries – the maximum number of attempts the consumer will make to
process a message after which messages will be automatically discarded

	max_in_flight – the maximum number of messages this consumer will
pipeline for processing. this value will be divided evenly amongst the
configured/discovered nsqd producers

	requeue_delay – the default delay to use when requeueing a failed
message

	lookupd_poll_interval – the amount of time in seconds between querying
all of the supplied nsqlookupd instances. A random amount of time based
on this value will be initially introduced in order to add jitter when
multiple consumers are running

	lookupd_poll_jitter – the maximum fractional amount of jitter to add
to the lookupd poll loop. This helps evenly distribute requests even if
multiple consumers restart at the same time.

	low_ready_idle_timeout – the amount of time in seconds to wait for a
message from a producer when in a state where RDY counts are
re-distributed (ie. max_in_flight < num_producers)

	max_backoff_duration – the maximum time we will allow a backoff state
to last in seconds. If zero, backoff wil not occur

	backoff_on_requeue – if False, backoff will only occur on
exception

	**kwargs – passed to NsqdTCPClient initialization

	
close()

	Immediately close all connections and stop workers.

	
is_running

	Check if consumer is currently running.

	
is_starved

	Evaluate whether any of the connections are starved.

This property should be used by message handlers to reliably identify
when to process a batch of messages.

	
join(timeout=None, raise_error=False)

	Block until all connections have closed and workers stopped.

	
on_auth

	Emitted after a connection is successfully authenticated.

The signal sender is the consumer and the conn and parsed
response are sent as arguments.

	
on_close

	Emitted after close().

The signal sender is the consumer.

	
on_error

	Emitted when an error is received.

The signal sender is the consumer and the error is sent as an
argument.

	
on_exception

	Emitted when an exception is caught while handling a message.

The signal sender is the consumer and the message and error are
sent as arguments.

	
on_finish

	Emitted after a message is successfully finished.

The signal sender is the consumer and the message_id is sent as an
argument.

	
on_giving_up

	Emitted after a giving up on a message.

Emitted when a message has exceeded the maximum number of attempts
(max_tries) and will no longer be requeued. This is useful to
perform tasks such as writing to disk, collecting statistics etc. The
signal sender is the consumer and the message is sent as an
argument.

	
on_message

	Emitted when a message is received.

The signal sender is the consumer and the message is sent as an
argument. The message_handler param is connected to this signal.

	
on_requeue

	Emitted after a message is requeued.

The signal sender is the consumer and the message_id and timeout
are sent as arguments.

	
on_response

	Emitted when a response is received.

The signal sender is the consumer and the response is sent as an
argument.

	
start(block=True)

	Start discovering and listing to connections.

Producer: high-level message writer

	
class gnsq.Producer(nsqd_tcp_addresses=[], max_backoff_duration=128, **kwargs)

	High level NSQ producer.

A Producer will connect to the nsqd tcp addresses and support async
publishing (PUB & MPUB & DPUB) of messages to nsqd over the
TCP protocol.

Example publishing a message:

from gnsq import Producer

producer = Producer('localhost:4150')
producer.start()
producer.publish('topic', b'hello world')

	Parameters

	
	nsqd_tcp_addresses – a sequence of string addresses of the nsqd
instances this consumer should connect to

	max_backoff_duration – the maximum time we will allow a backoff state
to last in seconds. If zero, backoff wil not occur

	**kwargs – passed to NsqdTCPClient initialization

	
close()

	Immediately close all connections and stop workers.

	
is_running

	Check if the producer is currently running.

	
join(timeout=None, raise_error=False)

	Block until all connections have closed and workers stopped.

	
multipublish(topic, messages, block=True, timeout=None, raise_error=True)

	Publish an iterable of messages to the given topic.

	Parameters

	
	topic – the topic to publish to

	messages – iterable of bytestrings to publish

	block – wait for a connection to become available before
publishing the message. If block is False and no connections
are available, NSQNoConnections is raised

	timeout – if timeout is a positive number, it blocks at most
timeout seconds before raising
NSQNoConnections

	raise_error – if True, it blocks until a response is received
from the nsqd server, and any error response is raised. Otherwise
an AsyncResult is returned

	
on_auth

	Emitted after a connection is successfully authenticated.

The signal sender is the consumer and the conn and parsed
response are sent as arguments.

	
on_close

	Emitted after close().

The signal sender is the consumer.

	
on_error

	Emitted when an error is received.

The signal sender is the consumer and the error is sent as an
argument.

	
on_response

	Emitted when a response is received.

The signal sender is the consumer and the ` ` is sent as an
argument.

	
publish(topic, data, defer=None, block=True, timeout=None, raise_error=True)

	Publish a message to the given topic.

	Parameters

	
	topic – the topic to publish to

	data – bytestring data to publish

	defer – duration in milliseconds to defer before publishing
(requires nsq 0.3.6)

	block – wait for a connection to become available before
publishing the message. If block is False and no connections
are available, NSQNoConnections is raised

	timeout – if timeout is a positive number, it blocks at most
timeout seconds before raising
NSQNoConnections

	raise_error – if True, it blocks until a response is received
from the nsqd server, and any error response is raised. Otherwise
an AsyncResult is returned

	
start()

	Start discovering and listing to connections.

Nsqd clients

	
class gnsq.NsqdHTTPClient(host='localhost', port=4151, **kwargs)

	Low level http client for nsqd.

	Parameters

	
	host – nsqd host address (default: localhost)

	port – nsqd http port (default: 4151)

	useragent – useragent sent to nsqd (default:
<client_library_name>/<version>)

	connection_class – override the http connection class

	
create_channel(topic, channel)

	Create a channel for an existing topic.

	
create_topic(topic)

	Create a topic.

	
delete_channel(topic, channel)

	Delete an existing channel for an existing topic.

	
delete_topic(topic)

	Delete a topic.

	
empty_channel(topic, channel)

	Empty all the queued messages for an existing channel.

	
empty_topic(topic)

	Empty all the queued messages for an existing topic.

	
classmethod from_url(url, **kwargs)

	Create a client from a url.

	
info()

	Returns version information.

	
multipublish(topic, messages, binary=False)

	Publish an iterable of messages to the given topic over http.

	Parameters

	
	topic – the topic to publish to

	messages – iterable of bytestrings to publish

	binary – enable binary mode. defaults to False
(requires nsq 1.0.0)

By default multipublish expects messages to be delimited by "\n",
use the binary flag to enable binary mode where the POST body is
expected to be in the following wire protocol format.

	
pause_channel(topic, channel)

	Pause message flow to consumers of an existing channel.

Messages will queue at channel.

	
pause_topic(topic)

	Pause message flow to all channels on an existing topic.

Messages will queue at topic.

	
ping()

	Monitoring endpoint.

	Returns

	should return "OK", otherwise raises an exception.

	
publish(topic, data, defer=None)

	Publish a message to the given topic over http.

	Parameters

	
	topic – the topic to publish to

	data – bytestring data to publish

	defer – duration in millisconds to defer before publishing
(requires nsq 0.3.6)

	
stats(topic=None, channel=None, text=False)

	Return internal instrumented statistics.

	Parameters

	
	topic – (optional) filter to topic

	channel – (optional) filter to channel

	text – return the stats as a string (default: False)

	
unpause_channel(topic, channel)

	Resume message flow to consumers of an existing, paused, channel.

	
unpause_topic(topic)

	Resume message flow to channels of an existing, paused, topic.

	
class gnsq.NsqdTCPClient(address='127.0.0.1', port=4150, timeout=60.0, client_id=None, hostname=None, heartbeat_interval=30, output_buffer_size=16384, output_buffer_timeout=250, tls_v1=False, tls_options=None, snappy=False, deflate=False, deflate_level=6, sample_rate=0, auth_secret=None, user_agent='gnsq/1.0.1')

	Low level object representing a TCP connection to nsqd.

	Parameters

	
	address – the host or ip address of the nsqd

	port – the nsqd tcp port to connect to

	timeout – the timeout for read/write operations (in seconds)

	client_id – an identifier used to disambiguate this client (defaults
to the first part of the hostname)

	hostname – the hostname where the client is deployed (defaults to the
clients hostname)

	heartbeat_interval – the amount of time in seconds to negotiate with
the connected producers to send heartbeats (requires nsqd 0.2.19+)

	output_buffer_size – size of the buffer (in bytes) used by nsqd for
buffering writes to this connection

	output_buffer_timeout – timeout (in ms) used by nsqd before flushing
buffered writes (set to 0 to disable). Warning: configuring clients with
an extremely low (< 25ms) output_buffer_timeout has a significant effect
on nsqd CPU usage (particularly with > 50 clients connected).

	tls_v1 – enable TLS v1 encryption (requires nsqd 0.2.22+)

	tls_options – dictionary of options to pass to ssl.wrap_socket() [http://docs.python.org/2/library/ssl.html#ssl.wrap_socket]

	snappy – enable Snappy stream compression (requires nsqd 0.2.23+)

	deflate – enable deflate stream compression (requires nsqd 0.2.23+)

	deflate_level – configure the deflate compression level for this
connection (requires nsqd 0.2.23+)

	sample_rate – take only a sample of the messages being sent to the
client. Not setting this or setting it to 0 will ensure you get all the
messages destined for the client. Sample rate can be greater than 0 or
less than 100 and the client will receive that percentage of the message
traffic. (requires nsqd 0.2.25+)

	auth_secret – a string passed when using nsq auth (requires
nsqd 0.2.29+)

	user_agent – a string identifying the agent for this client in the
spirit of HTTP (default: <client_library_name>/<version>) (requires
nsqd 0.2.25+)

	
auth()

	Send authorization secret to nsqd.

	
close()

	Indicate no more messages should be sent.

	
close_stream()

	Close the underlying socket.

	
connect()

	Initialize connection to the nsqd.

	
finish(message_id)

	Finish a message (indicate successful processing).

	
identify()

	Update client metadata on the server and negotiate features.

	Returns

	nsqd response data if there was feature negotiation,
otherwise None

	
is_connected

	Check if the client is currently connected.

	
is_starved

	Evaluate whether the connection is starved.

This property should be used by message handlers to reliably identify
when to process a batch of messages.

	
listen()

	Listen to incoming responses until the connection closes.

	
multipublish(topic, messages)

	Publish an iterable of messages to the given topic over http.

	Parameters

	
	topic – the topic to publish to

	messages – iterable of bytestrings to publish

	
nop()

	Send no-op to nsqd. Used to keep connection alive.

	
on_auth

	Emitted after the connection is successfully authenticated.

The signal sender is the connection and the parsed response is sent
as arguments.

	
on_close

	Emitted after close_stream().

Sent after the connection socket has closed. The signal sender is the
connection.

	
on_error

	Emitted when an error frame is received.

The signal sender is the connection and the error is sent as an
argument.

	
on_finish

	Emitted after finish().

Sent after a message owned by this connection is successfully finished.
The signal sender is the connection and the message_id is sent as an
argument.

	
on_message

	Emitted when a message frame is received.

The signal sender is the connection and the message is sent as an
argument.

	
on_requeue

	Emitted after requeue().

Sent after a message owned by this connection is requeued. The signal
sender is the connection and the message_id, timeout and
backoff flag are sent as arguments.

	
on_response

	Emitted when a response frame is received.

The signal sender is the connection and the response is sent as an
argument.

	
publish(topic, data, defer=None)

	Publish a message to the given topic over tcp.

	Parameters

	
	topic – the topic to publish to

	data – bytestring data to publish

	defer – duration in milliseconds to defer before publishing
(requires nsq 0.3.6)

	
read_response()

	Read an individual response from nsqd.

	Returns

	tuple of the frame type and the processed data.

	
ready(count)

	Indicate you are ready to receive count messages.

	
requeue(message_id, timeout=0, backoff=True)

	Re-queue a message (indicate failure to process).

	
subscribe(topic, channel)

	Subscribe to a nsq topic and channel.

	
touch(message_id)

	Reset the timeout for an in-flight message.

	
class gnsq.Nsqd(address='127.0.0.1', tcp_port=4150, http_port=4151, **kwargs)

	Use NsqdTCPClient or NsqdHTTPClient instead.

Deprecated since version 1.0.0.

	
multipublish_http(topic, messages, **kwargs)

	Use NsqdHTTPClient.multipublish() instead.

Deprecated since version 1.0.0.

	
multipublish_tcp(topic, messages, **kwargs)

	Use NsqdTCPClient.multipublish() instead.

Deprecated since version 1.0.0.

	
publish_http(topic, data, **kwargs)

	Use NsqdHTTPClient.publish() instead.

Deprecated since version 1.0.0.

	
publish_tcp(topic, data, **kwargs)

	Use NsqdTCPClient.publish() instead.

Deprecated since version 1.0.0.

Nsqlookupd client

	
class gnsq.LookupdClient(host='localhost', port=4161, **kwargs)

	Low level http client for nsqlookupd.

	Parameters

	
	host – nsqlookupd host address (default: localhost)

	port – nsqlookupd http port (default: 4161)

	useragent – useragent sent to nsqlookupd (default:
<client_library_name>/<version>)

	connection_class – override the http connection class

	
channels(topic)

	Returns all known channels of a topic.

	
create_channel(topic, channel)

	Add a channel to nsqlookupd’s registry.

	
create_topic(topic)

	Add a topic to nsqlookupd’s registry.

	
delete_channel(topic, channel)

	Deletes an existing channel of an existing topic.

	
delete_topic(topic)

	Deletes an existing topic.

	
classmethod from_url(url, **kwargs)

	Create a client from a url.

	
info()

	Returns version information.

	
lookup(topic)

	Returns producers for a topic.

	
nodes()

	Returns all known nsqd.

	
ping()

	Monitoring endpoint.

	Returns

	should return “OK”, otherwise raises an exception.

	
tombstone_topic(topic, node)

	Tombstones a specific producer of an existing topic.

	
topics()

	Returns all known topics.

	
class gnsq.Lookupd(address='http://localhost:4161/', **kwargs)

	Use LookupdClient instead.

Deprecated since version 1.0.0.

	
base_url

	Use LookupdClient.address instead.

Deprecated since version 1.0.0.

	
tombstone_topic_producer(topic, node)

	Use LookupdClient.tombstone_topic() instead.

Deprecated since version 1.0.0.

NSQ Message

	
class gnsq.Message(timestamp, attempts, id, body)

	A class representing a message received from nsqd.

	
enable_async()

	Enables asynchronous processing for this message.

Consumer will not automatically respond to the message
upon return of handle_message().

	
finish()

	Respond to nsqd that you’ve processed this message successfully
(or would like to silently discard it).

	
has_responded()

	Returns whether or not this message has been responded to.

	
is_async()

	Returns whether or not asynchronous processing has been enabled.

	
on_finish

	Emitted after finish().

The signal sender is the message instance.

	
on_requeue

	Emitted after requeue().

The signal sender is the message instance and sends the timeout and
a backoff flag as arguments.

	
on_touch

	Emitted after touch().

The signal sender is the message instance.

	
requeue(time_ms=0, backoff=True)

	Respond to nsqd that you’ve failed to process this message successfully
(and would like it to be requeued).

	
touch()

	Respond to nsqd that you need more time to process the message.

Signals

Both Consumer and NsqdTCPClient classes expose
various signals provided by the Blinker [https://pypi.python.org/pypi/blinker] library.

Subscribing to signals

To subscribe to a signal, you can use the
connect() method of a signal. The first
argument is the function that should be called when the signal is emitted,
the optional second argument specifies a sender. To unsubscribe from a
signal, you can use the disconnect() method.

def error_handler(consumer, error):
 print 'Got an error:', error

consumer.on_error.connect(error_handler)

You can also easily subscribe to signals by using
connect() as a decorator:

@consumer.on_giving_up.connect
def handle_giving_up(consumer, message):
 print 'Giving up on:', message.id

Contrib modules

Patterns and best practices for gnsq made code.

Batching messages

	
class gnsq.contrib.batch.BatchHandler(batch_size, handle_batch=None, handle_message=None, handle_batch_error=None, handle_message_error=None, timeout=10, spawn=<bound method Greenlet.spawn of <class 'gevent._greenlet.Greenlet'>>)

	Batch message handler for gnsq.

It is recommended to use a max inflight greater than the batch size.

Example usage:

>>> consumer = Consumer('topic', 'worker', max_in_flight=16)
>>> consumer.on_message.connect(BatchHandler(8, my_handler), weak=False)

	
handle_batch(messages)

	Handle a batch message.

Processes a batch of messages. You must provide a handle_batch()
function to the constructor or override this method.

Raising an exception in handle_batch() will cause all messages in
the batch to be requeued.

	
handle_batch_error(error, messages, batch)

	Handle an exception processsing a batch of messages.

This may be overridden or passed into the constructor.

	
handle_message(message)

	Handle a single message.

Over ride this to provide some processing and an individual message.
The result of this function is what is passed to handle_batch().
This may be overridden or passed into the constructor. By default it
simply returns the message.

Raising an exception in handle_message() will cause that message
to be requeued and excluded from the batch.

	
handle_message_error(error, message)

	Handle an exception processesing an individual message.

This may be overridden or passed into the constructor.

Giveup handlers

	
class gnsq.contrib.giveup.LogGiveupHandler(log=<built-in method write of _io.TextIOWrapper object>, newline='n')

	Log messages on giveup.

Writes the message body to the log. This can be customized by subclassing
and implementing format_message(). Assuming messages do not requeued
using the to_nsq utility.

Example usage:

>>> fp = open('topic.__BURY__.log', 'w')
>>> consumer.on_giving_up.connect(
... LogGiveupHandler(fp.write), weak=False)

	
class gnsq.contrib.giveup.JSONLogGiveupHandler(log=<built-in method write of _io.TextIOWrapper object>, newline='n')

	Log messages as json on giveup.

Works like LogGiveupHandler but serializes the message details as
json before writing to the log.

Example usage:

>>> fp = open('topic.__BURY__.log', 'w')
>>> consumer.on_giving_up.connect(
... JSONLogGiveupHandler(fp.write), weak=False)

	
class gnsq.contrib.giveup.NsqdGiveupHandler(topic, nsqd_hosts=['localhost'], nsqd_class=<class 'gnsq.nsqd.NsqdHTTPClient'>)

	Send messages by to nsq on giveup.

Forwards the message body to the given topic where it can be inspected and
requeued. This can be customized by subclassing and implementing
format_message(). Messages can be requeued with the nsq_to_nsq
utility.

Example usage:

>>> giveup_handler = NsqdGiveupHandler('topic.__BURY__')
>>> consumer.on_giving_up.connect(giveup_handler)

Concurrency

	
class gnsq.contrib.queue.QueueHandler

	Iterator like api for gnsq.

Example usage:

>>> queue = QueueHandler()
>>> consumer = Consumer('topic', 'worker', max_in_flight=16)
>>> consumer.on_message.connect(queue)
>>> consumer.start(block=False)
>>> for message in queue:
... print(message.body)
... message.finish()

Or give it to a pool:

>>> gevent.pool.Pool().map(queue, my_handler)

	Parameters

	maxsize – maximum number of messages that can be queued. If less than
or equal to zero or None, the queue size is infinite.

	
empty

	Return True if the queue is empty, False otherwise.

	
full

	Return True if the queue is full, False otherwise.

Queue(None) is never full.

	
get

	Remove and return an item from the queue.

If optional args block is true and timeout is None (the default),
block if necessary until an item is available. If timeout is a positive number,
it blocks at most timeout seconds and raises the Empty exception
if no item was available within that time. Otherwise (block is false), return
an item if one is immediately available, else raise the Empty exception
(timeout is ignored in that case).

	
get_nowait

	Remove and return an item from the queue without blocking.

Only get an item if one is immediately available. Otherwise
raise the Empty exception.

	
peek

	Return an item from the queue without removing it.

If optional args block is true and timeout is None (the default),
block if necessary until an item is available. If timeout is a positive number,
it blocks at most timeout seconds and raises the Empty exception
if no item was available within that time. Otherwise (block is false), return
an item if one is immediately available, else raise the Empty exception
(timeout is ignored in that case).

	
peek_nowait

	Return an item from the queue without blocking.

Only return an item if one is immediately available. Otherwise
raise the Empty exception.

	
qsize

	Return the size of the queue.

	
class gnsq.contrib.queue.ChannelHandler

	Iterator like api for gnsq.

Like QueueHandler with a maxsize of 1.

Error logging

	
class gnsq.contrib.sentry.SentryExceptionHandler(client)

	Log gnsq exceptions to sentry.

Example usage:

>>> from raven import Sentry
>>> sentry = Sentry()
>>> consumer.on_exception.connect(
... SentryExceptionHandler(sentry), weak=False)

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/wtolson/gnsq/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

gnsq could always use more documentation, whether as part of the
official gnsq docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at
https://github.com/wtolson/gnsq/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up gnsq for local development.

	Fork the gnsq repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/gnsq.git

	Install your local copy into a virtualenv. Assuming you have
virtualenvwrapper and libsnappy installed, this is how you set up your fork
for local development:

$ mkvirtualenv gnsq
$ cd gnsq/
$ pip install -r requirements.dev.txt -r requirements.docs.txt

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 gnsq tests
$ pytest
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6 and 2.7. Check
https://travis-ci.org/wtolson/gnsq/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ pytest tests/test_basic.py

Credits

Development Lead

	Trevor Olson <trevor@heytrevor.com>

Contributors

None yet. Why not be the first?

Upgrading to Newer Releases

This section of the documentation enumerates all the changes in gnsq from
release to release and how you can change your code to have a painless
updating experience.

Use the pip command to upgrade your existing Flask installation by
providing the --upgrade parameter:

$ pip install --upgrade gnsq

Version 1.0.0

While there are no breaking changes in version 1.0.0, much of the interface has
been deprecated to both simplify the api and bring it into better compliance
with the recommended naming schemes for nsq clients. Existing code should work
as is and deprecation warnings will be emitted for any code paths that need to
be changed.

Deprecated Reader

The main interface has been renamed from Reader to
Consumer. The api remains largely the same and can be swapped out
directly in most cases.

Async messages

The async flag has been removed from the Consumer. Instead
messages has a
message.enable_async()
method that may be used to indicate that a message will be handled
asynchronous.

Max concurrency

The max_concurrency parameter has been removed from
Consumer. If you wish to replicate this behavior, you should use
the gnsq.contrib.QueueHandler in conjunction with a worker pool:

from gevent.pool import Pool
from gnsq import Consumer
from gnsq.contrib.queue import QueueHandler

MAX_CONCURRENCY = 4

Create your consumer as usual
consumer = Consumer(
 'topic', 'worker', 'localhost:4150', max_in_flight=16)

Connect a queue handler to the on message signal
queue = QueueHandler()
consumer.on_message.connect(queue)

Start your consumer without blocking or in a separate greenlet
consumer.start(block=False)

If you want to limit your concurrency to a single greenlet, simply loop
over the queue in a for loop, or you can use a worker pool to distribute
the work.
pool = Pool(MAX_CONCURRENCY)
results = pool.imap_unordered(queue, my_handler)

Consume the results from the pool
for result in results:
 pass

Deprecated Nsqd

The Nsqd client has been split into two classes, corresponding
to the tcp and http APIs. The new classes are NsqdTCPClient and
NsqdHTTPClient respectively.

The methods publish_tcp, publish_http, multipublish_tcp, and
multipublish_http have been removed from the new classes.

Deprecated Lookupd

The Lookupd class has been replaced by
LookupdClient. LookupdClient can be constructed
using the host and port or by passing the url to
LookupdClient.from_url() instead.

The method tombstone_topic_producer()
has been renamed to tombstone_topic().

History

1.0.1 (2019-04-24)

	Fix long description in packaging

1.0.0 (2019-04-24)

	Drop support for python 2.6 and python 3.3, add support for python 3.7

	Drop support for nsq < 1.0.0

	Handle changing connections during redistribute ready

	Add create topic and create channel to LookupdClient

	Add pause and unpause topic to NsqdHTTPClient

	Add ability to filter NsqdHTTPClient stats by topic/channel

	Add text format for NsqdHTTPClient stats

	Add binary multipublish over http

	Add queue handler to the contrib package

	Add Producer class, a high level tcp message writer

	Fixed detecting if consumer is starved

	Optimizations to better distribute ready state among the nsqd connections

	Detect starved consumers when batching messages

	[DEPRECATED] Nsqd is deprecated. Use
NsqdTCPClient or NsqdHTTPClient instead. See
Version 1.0.0 for more information.

	[DEPRECATED] Lookupd is deprecated. Use
LookupdClient instead. See Version 1.0.0 for more
information.

	[DEPRECATED] Reader is deprecated. Use Consumer
instead. See Version 1.0.0 for more information.

0.4.0 (2017-06-13)

	#13 - Allow use with nsq v1.0.0 (thanks @daroot)

	Add contrib package with utilities.

0.3.3 (2016-09-25)

	#11 - Make sure all socket data is sent.

	#5 - Add support for DPUB (defered publish).

0.3.2 (2016-04-10)

	Add support for Python 3 and PyPy.

	#7 - Fix undeclared variable in compression socket.

0.3.1 (2015-11-06)

	Fix negative in flight causing not throttling after backoff.

0.3.0 (2015-06-14)

	Fix extra backoff success/failures during backoff period.

	Fix case where handle_backoff is never called.

	Add backoff parameter to message.requeue().

	Allow overriding backoff on NSQRequeueMessage error.

	Handle connection failures while starting/completing backoff.

0.2.3 (2015-02-16)

	Remove disconnected nsqd messages from the worker queue.

	#4 - Fix crash in Reader.random_ready_conn (thanks @ianpreston).

0.2.2 (2015-01-12)

	Allow finishing and requeuing in sync handlers.

0.2.1 (2015-01-12)

	Topics and channels are now valid to 64 characters.

	Ephemeral topics are now valid.

	Adjustable backoff behavior.

0.2.0 (2014-08-03)

	Warn on connection failure.

	Add extra requires for snappy.

	Add support for nsq auth protocol.

0.1.4 (2014-07-24)

	Preemptively update ready count.

	Dependency and contributing documentation.

	Support for nsq back to 0.2.24.

0.1.3 (2014-07-08)

	Block as expected on start, even if already started.

	Raise runtime error if starting the reader without a message handler.

	Add on_close signal to the reader.

	Allow upgrading to tls+snappy or tls+deflate.

0.1.2 (2014-07-08)

	Flush delfate buffer for each message.

0.1.1 (2014-07-07)

	Fix packaging stream submodule.

	Send queued messages before closing socket.

	Continue to read from socket on EAGAIN

0.1.0 (2014-07-07)

	First release on PyPI.

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to gnsq’s documentation!

 		
 Consumer: high-level message reader

 		
 Producer: high-level message writer

 		
 Nsqd clients

 		
 Nsqlookupd client

 		
 NSQ Message

 		
 Signals

 		
 Subscribing to signals

 		
 Contrib modules

 		
 Batching messages

 		
 Giveup handlers

 		
 Concurrency

 		
 Error logging

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 Upgrading to Newer Releases

 		
 Version 1.0.0

 		
 Deprecated Reader

 		
 Deprecated Nsqd

 		
 Deprecated Lookupd

 		
 History

 		
 1.0.1 (2019-04-24)

 		
 1.0.0 (2019-04-24)

 		
 0.4.0 (2017-06-13)

 		
 0.3.3 (2016-09-25)

 		
 0.3.2 (2016-04-10)

 		
 0.3.1 (2015-11-06)

 		
 0.3.0 (2015-06-14)

 		
 0.2.3 (2015-02-16)

 		
 0.2.2 (2015-01-12)

 		
 0.2.1 (2015-01-12)

 		
 0.2.0 (2014-08-03)

 		
 0.1.4 (2014-07-24)

 		
 0.1.3 (2014-07-08)

 		
 0.1.2 (2014-07-08)

 		
 0.1.1 (2014-07-07)

 		
 0.1.0 (2014-07-07)

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

