GitPython Documentation
Release 2.1.3

Michael Trier

Mar 08, 2017

Contents

3

1 Overview / Install 1
L1 Requirements v v v it e 1
1.2 Installing GitPython 1
1.3 LImitations o v v v i e 2
1.4 Getting Started e e e 2
1.5 APIReference i i e e 2
1.6 Source Code e e e e 2
1.7 Questions and ANSWETS v v v i i e e e e e e e e e e e e e e e e e e 3
1.8 Issue Tracker L o e e e e e e e e 3
1.9 License Information L e 3
GitPython Tutorial 5
2.1 Meetthe Repotype L L e 5
2.2 Examining References e 9
2.3 Modifying References L e e e e e e e 10
2.4 Understanding ObjJects o v i i e e e e e e e e e e e e e 10
2.5 TheCommitobject o o e e e e e 11
2.6 TheTreeobject o o i i e e e e e e e e e e 12
2.7 Thelndex Object o i i e e e 13
2.8 HandlingRemotes e 14
2.9 Submodule Handling e e e e e e e 15
2.10 Obtaining Diff Information e 16
2.11 Switching Branches e 16
2.12 Initializin@ @ TEPOSILOTY . .« . o v v i it e e e e e e e e e e e e e e e e e e e 17
2.13 Usinggitdirectly oL e 17
2.14 Object Databases v v i i e e e e e e e e e e e e e e e 18
2.15 Git Command Debugging and Customization oo v v vt vt e 18
216 ANdevenmore o ittt e e e e e e e e e e e e 19
API Reference 21
3.1 Objects.Base e e e e e e 21
3.2 Objects.Blob e e e e 23
3.3 Objects.Commit L e e 23
34 Objects.Tag o o o e e 26
3.5 ODJectS.TICE . . v v v v v e 27
3.6 Objects.Functions i e e e e e e e e e e e 29
3.7 Objects.Submodule.base e 29

3.8 Objects.Submodule.root e e e e e e e e e 34
3.9 Objects.Submodule.util L e e e e e e e e 36
3.10 Objects.Util L o e e e 36
3.1 Index.Base o o e e e e e 39
3.12 Index.Functions e e e e e e e e e e 45
303 Index.TyPes . . . o o o v v e e e e e 46
314 Index.Util . . . oo o o e e 48
305 GitCmd o e 49
3,16 Config o e e e e e e e e 53
307 Diff . .o e e 53
3.8 EXCEPLiONS . . . o v v it e e e e e e e e e 56
3.19 Refs.symbolic e e e e e e e e e 58
320 Refsreference oL e e 61
321 Refshead L L e 62
322 Refstag o oL 64
323 RefSaemote e e e e e e e e e e e e e e e e 65
324 Refsdog. . . . o o 65
325 RemMOte o o e e e e 67
326 Repo.Base e e e e e 74
327 Repo.Functions L e 80
328 Util . .o e 81
Roadmap 87
Changelog 89
5.1 213-Bugfixes. e 89
5.2 2. 1.1-Bugfixes. . . o oo e e e e e e 89
5.3 2.1.0 - Much better windows support!o 89
54 2.09-Bugfixes. 89
5.5 2.0.8-Features and Bugfixes e e e e 90
5,6 2.0.7-NewPFeatures e e e 90
5.7 2.0.6-Fixesand Features e e e e e 90
5.8 2.0.5-FiXeS . . . o o i 90
59 2.04-FiXeS . . o v v i e 90
500 2.0.3-FiXeS . . ¢ v v v i e e 91
S01 2.0.2-FiXeS . ¢ v v v it e e e e e e 91
502 2.0.1-FiXeS . . . o o o e e e e 91
503 2.0.0-Features o e e e e 91
504 1.0.2-FiXeS . . o v v i i e e e 91
505 100 -FIXeS o . o v o o e e e e e e e e e e e e e e 92
506 1.0.0-NOteS . . . o v vt e e e e e e 92
507 03.7-FiXeS . ¢ o v v it e e e 92
5.8 0.3.6-Features oo e e e e e e e 92
519 03.5-Bugfixes. 93
520 0.34-Python3 Support e 93
521 0.3.3 e 93
522 0321 L 94
523 0.3.2 e e 94
524 032RCL. . . . e 94
525 03.1Beta2 . . . e 94
526 03.1Betal. . .o e e 95
527 03.0Beta2 . . . o e 95
528 03.0Betal. . . o e 95
529 02Beta2. . . . 96

530 0.2 . e 96

531 0.1.6 . o o e e e 100
532 0.1.5 e e 100
533 0.1.4.1 . . e e e 101
534 0.1.4 L 102
535 0.1.2 e e 102
536 0.1.1 . o e e e 102
537 0.1.0 . o e e e 102
6 Indices and tables 103
Python Module Index 105

CHAPTER 1

Overview / Install

GitPython is a python library used to interact with git repositories, high-level like git-porcelain, or low-level like
git-plumbing.

It provides abstractions of git objects for easy access of repository data, and additionally allows you to access the
git repository more directly using either a pure python implementation, or the faster, but more resource intensive git
command implementation.

The object database implementation is optimized for handling large quantities of objects and large datasets, which is
achieved by using low-level structures and data streaming.

Requirements

Python 2.7 or newer Since GitPython 2.0.0. Please note that python 2.6 is still reasonably well supported, but
might deteriorate over time. Support is provided on a best-effort basis only.

Git 1.7.0 or newer It should also work with older versions, but it may be that some operations involving re-
motes will not work as expected.

* GitDB - a pure python git database implementation
¢ Python Nose - used for running the tests

* Mock by Michael Foord used for tests. Requires version 0.5

Installing GitPython

Installing GitPython is easily done using pip. Assuming it is installed, just run the following from the command-line:

’# pip install gitpython

This command will download the latest version of GitPython from the Python Package Index and install it to your
system. More information about pip and pypi can be found here:

https://www.python.org
https://git-scm.com/
https://pypi.python.org/pypi/gitdb
https://nose.readthedocs.io/en/latest/
http://www.voidspace.org.uk/python/mock.html
https://pip.pypa.io/en/latest/installing.html
http://pypi.python.org/pypi/GitPython

GitPython Documentation, Release 2.1.3

* install pip
* pypi

Alternatively, you can install from the distribution using the setup . py script:

python setup.py install

Note: In this case, you have to manually install GitDB as well. It would be recommended to use the gir source
repository in that case.

Limitations

Leakage of System Resources

GitPython is not suited for long-running processes (like daemons) as it tends to leak system resources. It was written
in a time where destructors (as implemented in the __del__ method) still ran deterministically.

In case you still want to use it in such a context, you will want to search the codebase for __del__ implementations
and call these yourself when you see fit.

Another way assure proper cleanup of resources is to factor out GitPython into a separate process which can be dropped
periodically.

Best-effort for Python 2.6 and Windows support

This means that support for these platforms is likely to worsen over time as they are kept alive solely by their users, or
not.

Getting Started

* GitPython Tutorial - This tutorial provides a walk-through of some of the basic functionality and concepts used
in GitPython. It, however, is not exhaustive so you are encouraged to spend some time in the API Reference.

API Reference

An organized section of the GitPython API is at API Reference.

Source Code

GitPython’s git repo is available on GitHub, which can be browsed at:
* https://github.com/gitpython-developers/GitPython

and cloned using:

$ git clone https://github.com/gitpython-developers/GitPython git-python

2 Chapter 1. Overview / Install

https://pip.pypa.io/en/latest/installing.html
https://pypi.python.org/pypi/GitPython
https://pypi.python.org/pypi/gitdb
https://github.com/gitpython-developers/GitPython

GitPython Documentation, Release 2.1.3

Initialize all submodules to obtain the required dependencies with:

$ cd git-python
$ git submodule update —--init —--recursive

Finally verify the installation by running the nose powered unit tests:

’$ nosetests

Questions and Answers
Please use stackoverflow for questions, and don’t forget to tag it with gitpython to assure the right people see the

question in a timely manner.

http://stackoverflow.com/questions/tagged/gitpython

Issue Tracker

The issue tracker is hosted by github:

https://github.com/gitpython-developers/GitPython/issues

License Information

GitPython is licensed under the New BSD License. See the LICENSE file for more information.

1.7. Questions and Answers 3

http://code.google.com/p/python-nose/
http://stackoverflow.com/questions/tagged/gitpython
https://github.com/gitpython-developers/GitPython/issues

GitPython Documentation, Release 2.1.3

4 Chapter 1. Overview / Install

CHAPTER 2

GitPython Tutorial

GitPython provides object model access to your git repository. This tutorial is composed of multiple sections, most of
which explains a real-life usecase.

All code presented here originated from test_docs.py to assure correctness. Knowing this should also allow you to
more easily run the code for your own testing purposes, all you need is a developer installation of git-python.

Meet the Repo type

The first step is to create a git . Repo object to represent your repository.

from git import Repo
join = osp.join

rorepo is a Repo instance pointing to the git-python repository.

For all you know, the first argument to Repo is a path to the repository
you want to work with

repo = Repo(self.rorepo.working_tree_dir)

assert not repo.bare

In the above example, the directory self.rorepo.working_tree_dir equals /Users/mtrier/
Development/git-python and is my working repository which contains the .git directory. You can also
initialize GitPython with a bare repository.

bare_repo = Repo.init (join(rw_dir, 'bare-repo'), bare=True)
assert bare_repo.bare

A repo object provides high-level access to your data, it allows you to create and delete heads, tags and remotes and
access the configuration of the repository.

repo.config_reader () # get a config reader for read-only access
with repo.config writer(): # get a config writer to change configuration
pass # call release() to be sure changes are,

—written and locks are released

https://github.com/gitpython-developers/GitPython/blob/master/git/test/test_docs.py

GitPython Documentation, Release 2.1.3

Query the active branch, query untracked files or whether the repository data has been modified.

assert not bare_repo.is_dirty () # check the dirty state
repo.untracked_files # retrieve a list of untracked files
['my_untracked file']

Clone from existing repositories or initialize new empty ones.

cloned_repo = repo.clone (join(rw_dir, 'to/this/path'))
assert cloned_repo.__class__ is Repo # clone an existing repository
assert Repo.init (join(rw_dir, 'path/for/new/repo')).__class__ is Repo

Archive the repository contents to a tar file.

with open(join(rw_dir, 'repo.tar'), 'wb') as fp:
repo.archive (fp)

Advanced Repo Usage

And of course, there is much more you can do with this type, most of the following will be explained in greater detail
in specific tutorials. Don’t worry if you don’t understand some of these examples right away, as they may require a
thorough understanding of gits inner workings.

Query relevant repository paths ...

assert osp.isdir (cloned_repo.working_ tree_dir) # directory,,
—with your work files

assert cloned_repo.git_dir.startswith(cloned_repo.working_tree_dir) #.,
—directory containing the git repository

assert bare_repo.working_ tree_dir is None # bare_,
—repositories have no working tree

Heads Heads are branches in git-speak. Re ferences are pointers to a specific commit or to other references. Heads
and Tags are a kind of references. GitPython allows you to query them rather intuitively.

self.assertEqual (repo.head.ref, repo.heads.master, # head is a sym-ref_
—pointing to master
"It's ok if TC not running from “master .")
self.assertEqual (repo.tags['0.3.5"], repo.tag('refs/tags/0.3.5")) # you can,,
—access tags in various ways too
self.assertEqual (repo.refs.master, repo.heads['master']) # .refs_
—provides all refs, ie heads

if 'TRAVIS' not in os.environ:

self.assertEqual (repo.refs|['origin/master'], repo.remotes.origin.refs.
—>master) # ... remotes
self.assertEqual (repo.refs['0.3.5"], repo.tags['0.3.5"']) # ...

—and tags

You can also create new heads ...

new_branch = cloned_repo.create_head('feature') # create a new_,
—branch

assert cloned_repo.active_branch != new_branch # which wasn't_,
—checked out yet

6 Chapter 2. GitPython Tutorial

GitPython Documentation, Release 2.1.3

self.assertEqual (new_branch.commit, cloned_repo.active_branch.commit) #.,
—pointing to the checked-out commit

It's easy to let a branch point to the previous commit, without affecting,
—anything else

Each reference provides access to the git object it points to, usually,,
—commits

assert new_branch.set_commit ('HEAD~1") .commit == cloned_repo.active_branch.
—commit.parents[0]

... and tags ...

past = cloned_repo.create_tag('past', ref=new_branch,

message="This is a tag-object pointing to $s" %

—new_pranch.name)

self.assertEqual (past.commit, new_branch.commit) # the tag points to,,
—the specified commit

assert past.tag.message.startswith("This is") # and its object carries the_,
—message provided

now = cloned_repo.create_tag('now'") # This is a tag-reference. It

—may not carry meta-data
assert now.tag is None

You can traverse down to git ob jects through references and other objects. Some objects like commits have
additional meta-data to query.

assert now.commit.message != past.commit.message

You can read objects directly through binary streams, no working tree,
—required

assert (now.commit.tree / 'VERSION') .data_stream.read() .decode('ascii').
—»startswith('2")

You can traverse trees as well to handle all contained files of a_
—particular commit

file_count = 0

tree_count = 0

tree = past.commit.tree

for item in tree.traverse():

file_count += item.type == 'blob'
tree_count += item.type == 'tree'
assert file_count and tree_count # we have accumulated
—all directories and files
self.assertEqual (len(tree.blobs) + len(tree.trees), len(tree)) # a tree 1is_

—~iterable on its children

Remotes allow to handle fetch, pull and push operations, while providing optional real-time progress information to
progress delegates.

from git import RemoteProgress

class MyProgressPrinter (RemoteProgress) :
def update(self, op_code, cur_count, max_count=None, message='"'):
print (op_code, cur_count, max_count, cur_count / (max_count or 100.0),
— message or "NO MESSAGE")
end

self.assertEqual (len(cloned_repo.remotes), 1) # we have_,
—been cloned, so should be one remote

2.1. Meet the Repo type 7

GitPython Documentation, Release 2.1.3

self.assertEqual (len (bare_repo.remotes), 0) # this one_,
—was just initialized

origin = bare_repo.create_remote('origin', url=cloned_repo.working tree_dir)

assert origin.exists()

for fetch_info in origin.fetch(progress=MyProgressPrinter()) :

print ("Updated %s to $s" % (fetch_info.ref, fetch_info.commit))

create a local branch at the latest fetched master. We specify the name_
—statically, but you have all

information to do it programatically as well.

bare_master = bare_repo.create_head('master', origin.refs.master)

bare_repo.head.set_reference (bare_master)

assert not bare_repo.delete_remote (origin) .exists ()

push and pull behave very similarly

The index is also called stage in git-speak. It is used to prepare new commits, and can be used to keep results of
merge operations. Our index implementation allows to stream date into the index, which is useful for bare repositories
that do not have a working tree.

self.assertEqual (new_branch.checkout (), cloned_repo.active_branch) #.,
—checking out branch adjusts the wtree
self.assertEqual (new_branch.commit, past.commit) # Now,_,

—~the past is checked out

new_file_path = osp.join(cloned_repo.working_tree_dir, 'my-new-file')

open (new_file_path, 'wb').close() # create new_
—file in working tree

cloned_repo.index.add([new_file_path]) # add it to the,
—index

Commit the changes to deviate masters history

cloned_repo.index.commit ("Added a new file in the past - for later merege")

prepare a merge

master = cloned_repo.heads.master # right-hand side_,
—1s ahead of us, in the future
merge_base = cloned_repo.merge_base (new_branch, master) # allwos for a_

—three-way merge
cloned_repo.index.merge_tree (master, base=merge_base) # write the merge,
—result into index
cloned_repo.index.commit ("Merged past and now into future ;)",
parent_commits=(new_branch.commit, master.commit))

now new_branch is ahead of master, which probably should be checked out and,_
—reset softly.

note that all these operations didn't touch the working tree, as we managed,
—1t ourselves.

This definitely requires you to know what you are doing :) !

assert osp.basename (new_file_path) in new_branch.commit.tree # new file is_,
—now 1in tree

master.commit = new_branch.commit # let master point to most,
—recent commit

cloned_repo.head.reference = master # we adjusted just the reference,
— not the working tree or index

Submodules represent all aspects of git submodules, which allows you query all of their related information, and
manipulate in various ways.

create a new submodule and check it out on the spot, setup to track master_
—branch of ‘bare_repo’

8 Chapter 2. GitPython Tutorial

GitPython Documentation, Release 2.1.3

As our GitPython repository has submodules already that point to github,
—make sure we don't

interact with them

for sm in cloned_repo.submodules:

assert not sm.remove () .exists () # after removal, the sm

—doesn't exist anymore

sm = cloned_repo.create_submodule ('mysubrepo', 'path/to/subrepo', url=bare_
—repo.git_dir, branch='master'")

.gitmodules was written and added to the index, which is now being committed

cloned_repo.index.commit ("Added submodule™)

assert sm.exists () and sm.module_exists () # this submodule 1is_,
—defintely available

sm.remove (module=True, configuration=False) # remove the working,,
—tree

assert sm.exists () and not sm.module_exists() # the submodule itself,
—1is still available

update all submodules, non-recursively to save time, this method is very,,
—powerful, go have a look

cloned_repo.submodule_update (recursive=False)

assert sm.module_exists () # The submodules,_,
—working tree was checked out by update

Examining References

References are the tips of your commit graph from which you can easily examine the history of your project.

import git
repo = git.Repo.clone_from(self._small_repo_url(), osp.join(rw_dir, 'repo'),
—branch="master')

—

heads = repo.heads

master = heads.master # lists can be accessed by name for convenience
master.commit # the commit pointed to by head called master
master.rename ('new_name') # rename heads

master.rename ('master’")

Tags are (usually immutable) references to a commit and/or a tag object.

tags = repo.tags
tagref = tags[0]

tagref.tag # tags may have tag objects carrying additional_,
—information

tagref.commit # but they always point to commits

repo.delete_tag(tagref) # delete or

repo.create_tag("my_tag") # create tags using the repo for convenience

A symbolic reference is aspecial case of a reference as it points to another reference instead of a commit.

head = repo.head # the head points to the active branch/ref
master = head.reference # retrieve the reference the head points to
master.commit # from here you use it as any other reference

Access the reflog easily.

2.2. Examining References 9

GitPython Documentation, Release 2.1.3

log = master.log()
log[0] # first (i.e. oldest) reflog entry
log[—-1] # last (i.e. most recent) reflog entry

Modifying References

You can easily create and delete reference types or modify where they point to.

new_branch = repo.create_head('new') # create a new one

new_branch.commit = 'HEAD~10' # set branch to another commit_,
—without changing index or working trees

repo.delete_head (new_branch) # delete an existing head - only,,
—works 1f it 1s not checked out

Create or delete t ags the same way except you may not change them afterwards.

new_tag = repo.create_tag('my_new_tag', message='my message')

You cannot change the commit a tag points to. Tags need to be re-created

self.failUnlessRaises (AttributeError, setattr, new_tag, 'commit', repo.commit (
— "HEAD~1"))

repo.delete_tag(new_tagqg)

Change the symbolic reference to switch branches cheaply (without adjusting the index or the working tree).

new_branch = repo.create_head('another-branch')
repo.head.reference = new_branch

Understanding Objects

An Object is anything storable in git’s object database. Objects contain information about their type, their uncom-
pressed size as well as the actual data. Each object is uniquely identified by a binary SHA1 hash, being 20 bytes in
size, or 40 bytes in hexadecimal notation.

Git only knows 4 distinct object types being B1obs, Trees, Commits and Tags.

In GitPython, all objects can be accessed through their common base, can be compared and hashed. They are usually
not instantiated directly, but through references or specialized repository functions.

hc = repo.head.commit

hct = hc.tree

hc != hct # @NoEffect
hc != repo.tags[0] # @NoEffect
hc == repo.head.reference.commit # @NoEffect

Common fields are ...

self.assertEqual (hct.type, 'tree') # preset string type, being a_
—class attribute

assert hct.size > 0 # size in bytes

assert len (hct.hexsha) == 40

assert len (hct.binsha) == 20

10 Chapter 2. GitPython Tutorial

GitPython Documentation, Release 2.1.3

Index objects are objects that can be put into git’s index. These objects are trees, blobs and submodules which
additionally know about their path in the file system as well as their mode.

self.assertEqual (hct.path, '") # root tree has no path

assert hct.trees[0].path != "' # the first contained item has one_
—though

self.assertEqual (hct.mode, 0040000) # trees have the mode of a
—linux directory

self.assertEqual (hct.blobs[0] .mode, 00100644) # blobs have specific mode,

—comparable to a standard linux fs

Access b1ob data (or any object data) using streams.

hct.blobs[0] .data_stream.read () # stream object to read data from
hct.blobs[0].stream_data (open (osp.join(rw_dir, 'blob_data'), 'wb')) # write_,
—data to given stream

The Commit object

Comm1it objects contain information about a specific commit. Obtain commits using references as done in Examining
References or as follows.

Obtain commits at the specified revision

repo.commit ('master")
repo.commit ('v0.8.1")
repo.commit ('HEAD~10")

Iterate 50 commits, and if you need paging, you can specify a number of commits to skip.

fifty_first_commits = list (repo.iter_commits ('master', max_count=50))

assert len(fifty_first_commits) == 50

this will return commits 21-30 from the commit list as traversed backwards_,
—master

ten_commits_past_twenty = list (repo.iter_commits ('master', max_count=10,
—skip=20))

assert len(ten_commits_past_twenty) == 10

assert fifty_ first_commits[20:30] == ten_commits_past_twenty

A commit object carries all sorts of meta-data

headcommit = repo.head.commit

assert len (headcommit.hexsha) == 40

assert len (headcommit.parents) > 0

assert headcommit.tree.type == 'tree'

assert headcommit.author.name == 'Sebastian Thiel'
assert isinstance (headcommit.authored_date, int)
assert headcommit.committer.name == 'Sebastian Thiel'

assert isinstance (headcommit.committed_date, int)
assert headcommit.message != "'

Note: date time is represented in a seconds since epoch format. Conversion to human readable form can be
accomplished with the various time module methods.

2.5. The Commit object 11

http://docs.python.org/library/time.html

GitPython Documentation, Release 2.1.3

import time
time.asctime (time.gmtime (headcommit.committed_date))
time.strftime ("%a, b %Y $H:%M", time.gmtime (headcommit.committed_date))

You can traverse a commit’s ancestry by chaining calls to parents

/\/\/\l)

’ assert headcommit.parents[0] .parents[0] .parents[0] == repo.commit ('master

The above corresponds to master”~"” or master~3 in git parlance.

The Tree object

A tree records pointers to the contents of a directory. Let’s say you want the root tree of the latest commit on the
master branch

tree = repo.heads.master.commit.tree
assert len (tree.hexsha) == 40

Once you have a tree, you can get its contents

assert len(tree.trees) > 0 # trees are subdirectories
assert len(tree.blobs) > 0 # blobs are files
assert len(tree.blobs) + len(tree.trees) == len(tree)

It is useful to know that a tree behaves like a list with the ability to query entries by name

self.assertEqual (tree['smmap'], tree / 'smmap') # access by index_,
—and by sub-path
for entry in tree: # intuitive,

—~iteration of tree members
print (entry)
blob = tree.trees[0].blobs[0] # let's get a blob,
—~1in a sub-tree
assert blob.name
assert len(blob.path) < len(blob.abspath)

self.assertEqual (tree.trees[0] .name + '/' + blob.name, blob.path) # this is_
—~how relative blob path generated
self.assertEqual (tree[blob.path], blob) # you can,,

—use paths like 'dir/file' in tree

There is a convenience method that allows you to get a named sub-object from a tree with a syntax similar to how
paths are written in a posix system

assert tree / 'smmap' == tree['smmap']
assert tree / blob.path == tree[blob.path]

You can also get a commit’s root tree directly from the repository

This example shows the various types of allowed ref-specs

assert repo.tree() == repo.head.commit.tree

past = repo.commit ('HEAD~5")

assert repo.tree(past) == repo.tree(past.hexsha)

self.assertEqual (repo.tree('v0.8.1") .type, 'tree') # yes, you can,
—provide any refspec - works everywhere

12 Chapter 2. GitPython Tutorial

GitPython Documentation, Release 2.1.3

As trees allow direct access to their intermediate child entries only, use the traverse method to obtain an iterator to
retrieve entries recursively

assert len(tree) < len(list (tree.traverse()))

Note: If trees return Submodule objects, they will assume that they exist at the current head’s commit. The tree it
originated from may be rooted at another commit though, that it doesn’t know. That is why the caller would have to
set the submodule’s owning or parent commit using the set_parent_commit (my_commit) method.

The Index Object

The git index is the stage containing changes to be written with the next commit or where merges finally have to take
place. You may freely access and manipulate this information using the TndexF i le object. Modify the index with
ease

index = repo.index

The index contains all blobs in a flat 1ist

assert len(list (index.iter_blobs())) == len([o for o in repo.head.commit.tree.
—traverse () if o.type == 'blob'])

Access blob objects

for (path, stage), entry in index.entries.items(): # @UnusedVariable

pass

new_file_path = osp.join(repo.working tree_dir, 'new-file-name')

open (new_file_path, 'w').close()

index.add ([new_file_path]) # add_,
—a new file to the index

index.remove (['LICENSE']) #.,
—remove an existing one

assert osp.isfile(osp.join(repo.working tree_dir, 'LICENSE')) # working tree,

—1s untouched

self.assertEqual (index.commit ("my commit message") .type, 'commit') o
— # commit changed index
repo.active_branch.commit = repo.commit ('HEAD~1") #

—~forget last commit

from git import Actor

author = Actor ("An author", "author@example.com")

committer = Actor ("A committer", "committer@example.com")

commit by commit message and author and committer

index.commit ("my commit message", author=author, committer=committer)

Create new indices from other trees or as result of a merge. Write that result to a new index file for later inspection.

from git import IndexFile

loads a tree into a temporary index, which exists just in memory

IndexFile.from_tree(repo, 'HEAD~1')

merge two trees three-way into memory

merge_index = IndexFile.from_tree(repo, 'HEAD~10', 'HEAD', repo.merge_base (
< '"HEAD~10', 'HEAD'))

and persist it

merge_index.write (osp.join(rw_dir, 'merged_index'"))

2.7. The Index Object 13

GitPython Documentation, Release 2.1.3

Handling Remotes

Remotes are used as alias for a foreign repository to ease pushing to and fetching from them

empty_repo = git.Repo.init (osp.join(rw_dir, 'empty'))

origin = empty_repo.create_remote('origin', repo.remotes.origin.url)
assert origin.exists()

assert origin == empty_repo.remotes.origin == empty_repo.remotes|['origin']
origin.fetch() # assure we actually have data. fetch()_

—returns useful information

Setup a local tracking branch of a remote branch

empty_repo.create_head('master', origin.refs.master) # create local branch
—"master" from remote "master"

empty_repo.heads.master.set_tracking_branch(origin.refs.master) # set local
—"master" to track remote "master

empty_repo.heads.master.checkout () # checkout local "master" to working tree

Three above commands in one:

empty_repo.create_head('master', origin.refs.master).set_tracking_
—branch (origin.refs.master) .checkout ()

rename remotes

origin.rename ('new_origin')

push and pull behaves similarly to ‘git push/pull’

origin.pull ()

origin.push()

assert not empty_ repo.delete remote (origin).exists() # create and
—delete remotes

You can easily access configuration information for a remote by accessing options as if they where attributes. The
modification of remote configuration is more explicit though.

assert origin.url == repo.remotes.origin.url
with origin.config writer as cw:
cw.set ("pushurl", "other_url")

Please note that in python 2, writing origin.config writer.set(...) 1is,

—~totally safe.
In py3 __del__ calls can be delayed, thus not writing changes in time.

You can also specify per-call custom environments using a new context manager on the Git command, e.g. for using
a specific SSH key. The following example works with gif starting at v2.3:

ssh_cmd = 'ssh -1 id_deployment_key'
with repo.git.custom_environment (GIT_SSH_COMMAND=ssh_cmd) :
repo.remotes.origin. fetch ()

This one sets a custom script to be executed in place of ssh, and can be used in git prior to v2.3:

ssh_executable = os.path.join(rw_dir, 'my_ssh_executable.sh')
with repo.git.custom_environment (GIT_SSH=ssh_executable) :
repo.remotes.origin. fetch ()

Here’s an example executable that can be used in place of the ssh_executable above:

#!/bin/sh
ID_RSA=/var/lib/openshift/5562b9%947ecdd5ce939000038/app-deployments/id_rsa
exec /usr/bin/ssh —-o StrictHostKeyChecking=no —-i $ID_RSA "$@"

14 Chapter 2. GitPython Tutorial

GitPython Documentation, Release 2.1.3

Please note that the script must be executable (i.e. chomd +x script.sh). StrictHostKeyChecking=no is used to avoid
prompts asking to save the hosts key to ~/.ssh/known_hosts, which happens in case you run this as daemon.

You might also have a look at Git.update_environment(...) in case you want to setup a changed environment more
permanently.

Submodule Handling

Submodules can be conveniently handled using the methods provided by GitPython, and as an added benefit, Git-
Python provides functionality which behave smarter and less error prone than its original c-git implementation, that is
GitPython tries hard to keep your repository consistent when updating submodules recursively or adjusting the existing
configuration.

repo = self.rorepo
sms = repo.submodules

assert len(sms) == 1

sm = sms[0]

self.assertEqual (sm.name, 'gitdb'") # git-python has_
—gitdb as single submodule ...

self.assertEqual (sm.children() [0] .name, 'smmap') # ... which has_,
—smmap as single submodule

The module is the repository referenced by the submodule

assert sm.module_exists () # the module is available,
—which doesn't have to be the case.

assert sm.module () .working_tree_dir.endswith('gitdb")

the submodule's absolute path is the module's path

assert sm.abspath == sm.module () .working_tree_dir

self.assertEqual (len (sm.hexsha), 40) # Its sha defines,,
—~the commit to checkout

assert sm.exists () # yes, this submodule is_,

—valid and exists

read its configuration conveniently

assert sm.config_reader () .get_value('path') == sm.path

self.assertEqual (len(sm.children()), 1) # query the_
—submodule hierarchy

In addition to the query functionality, you can move the submodule’s repository to a different path <move (..
.) >, write its configuration <config_writer () .set_value(...).release ()>, update its working tree
<update (...)>, and remove or add them <remove (...),add (...)>.

If you obtained your submodule object by traversing a tree object which is not rooted at the head’s commit, you have to
inform the submodule about its actual commit to retrieve the data from by using the set_parent_commit (.. .)
method.

The special RootModule type allows you to treat your master repository as root of a hierarchy of submodules, which
allows very convenient submodule handling. Its update (. ..) method is reimplemented to provide an advanced
way of updating submodules as they change their values over time. The update method will track changes and make
sure your working tree and submodule checkouts stay consistent, which is very useful in case submodules get deleted
or added to name just two of the handled cases.

Additionally, GitPython adds functionality to track a specific branch, instead of just a commit. Supported by cus-
tomized update methods, you are able to automatically update submodules to the latest revision available in the remote
repository, as well as to keep track of changes and movements of these submodules. To use it, set the name of the
branch you want to track to the submodule. $name.branch option of the .gitrmodules file, and use GitPython

2.9. Submodule Handling 15

GitPython Documentation, Release 2.1.3

update methods on the resulting repository with the to_latest_revision parameter turned on. In the latter
case, the sha of your submodule will be ignored, instead a local tracking branch will be updated to the respective
remote branch automatically, provided there are no local changes. The resulting behaviour is much like the one of
svn::externals, which can be useful in times.

Obtaining Diff Information

Diffs can generally be obtained by subclasses of D1 ffable as they provide the di £ £ method. This operation yields
a DifrfIndex allowing you to easily access diff information about paths.

Diffs can be made between the Index and Trees, Index and the working tree, trees and trees as well as trees and the
working copy. If commits are involved, their tree will be used implicitly.

hcommit = repo.head.commit

hcommit.diff () # diff tree against index

hcommit.diff ('HEAD~1") # diff tree against previous tree

hcommit.diff (None) # diff tree against working tree

index = repo.index

index.diff () # diff index against itself yielding empty,,
—~diff

index.diff (None) # diff index against working copy

index.diff ('HEAD") # diff index against current HEAD tree

The item returned is a Difflndex which is essentially a list of Diff objects. It provides additional filtering to ease
finding what you might be looking for.

Traverse added Diff objects only
for diff_added in hcommit.diff ("HEAD~1') .iter_change_type('A"):
print (diff_added)

Use the diff framework if you want to implement git-status like functionality.
* A diff between the index and the commit’s tree your HEAD points to
* use repo.index.diff (repo.head.commit)
* A diff between the index and the working tree
* use repo.index.diff (None)
* A list of untracked files

* use repo.untracked_files

Switching Branches

To switch between branches similarto git checkout, you effectively need to point your HEAD symbolic reference
to the new branch and reset your index and working copy to match. A simple manual way to do it is the following one

Reset our working tree 10 commits into the past

past_branch = repo.create_head('past_branch', 'HEAD~10")
repo.head.reference = past_branch

assert not repo.head.is_detached

reset the index and working tree to match the pointed-to commit
repo.head.reset (index=True, working_tree=True)

16 Chapter 2. GitPython Tutorial

GitPython Documentation, Release 2.1.3

To detach your head, you have to point to a commit directy
repo.head.reference = repo.commit ('"HEAD~5")

assert repo.head.is_detached

now our head points 15 commits into the past, whereas the working tree
and index are 10 commits in the past

The previous approach would brutally overwrite the user’s changes in the working copy and index though and is less
sophisticated than a git—checkout. The latter will generally prevent you from destroying your work. Use the safer
approach as follows.

checkout the branch using git-checkout. It will fail as the working tree,
—appears dirty

self.failUnlessRaises (git.GitCommandError, repo.heads.master.checkout)

repo.heads.past_branch.checkout ()

Initializing a repository

In this example, we will initialize an empty repository, add an empty file to the index, and commit the change.

import git
repo_dir = osp.join(rw_dir, 'my-new-repo')
file_name = osp.join(repo_dir, 'new-file')

r = git.Repo.init (repo_dir)

This function just creates an empty file
open (file_name, 'wb').close()
r.index.add([file_name])

r.index.commit ("initial commit™)

Please have a look at the individual methods as they usually support a vast amount of arguments to customize their
behavior.

Using git directly

In case you are missing functionality as it has not been wrapped, you may conveniently use the git command directly.
It is owned by each repository instance.

git = repo.git

git.checkout ('HEAD', b="my_new_branch") # create a new branch
git.branch('another—-new-one')
git.branch('-D', 'another-new-one') # pass strings for full,,

—control over argument order
git.for_each_ref () # '-' becomes '_' when,_,
—calling it

The return value will by default be a string of the standard output channel produced by the command.

Keyword arguments translate to short and long keyword arguments on the command-line. The special notion git.
command (flag=True) will create a flag without value like command --flag.

2.12. Initializing a repository 17

GitPython Documentation, Release 2.1.3

If None is found in the arguments, it will be dropped silently. Lists and tuples passed as arguments will be unpacked
recursively to individual arguments. Objects are converted to strings using the str (.. .) function.

Object Databases

git.Repo instances are powered by its object database instance which will be used when extracting any data, or
when writing new objects.

The type of the database determines certain performance characteristics, such as the quantity of objects that can be
read per second, the resource usage when reading large data files, as well as the average memory footprint of your
application.

GitDB

The GitDB is a pure-python implementation of the git object database. It is the default database to use in GitPython
0.3. Its uses less memory when handling huge files, but will be 2 to 5 times slower when extracting large quantities
small of objects from densely packed repositories:

repo = Repo ("path/to/repo", odbt=GitDB)

GitCmdObjectDB

The git command database uses persistent git-cat-file instances to read repository information. These operate very fast
under all conditions, but will consume additional memory for the process itself. When extracting large files, memory
usage will be much higher than the one of the G1tDB:

’repo = Repo ("path/to/repo", odbt=GitCmdObjectDB)

Git Command Debugging and Customization

Using environment variables, you can further adjust the behaviour of the git command.
* GIT_PYTHON_TRACE
* If set to non-0, all executed git commands will be shown as they happen

* If set to full, the executed git command _and_ its entire output on stdout and stderr will be shown as
they happen

NOTE: All logging is outputted using a Python logger, so make sure your program is configured to show
INFO-level messages. If this is not the case, try adding the following to your program:

import logging
logging.basicConfig(level=logging.INFO)

* GIT_PYTHON_GIT_EXECUTABLE

* If set, it should contain the full path to the git executable, e.g. c:\Program Files (x86 \Gif\bin\git.exe on windows
or /usr/bin/git on linux.

18 Chapter 2. GitPython Tutorial

GitPython Documentation, Release 2.1.3

And even more ...

There is more functionality in there, like the ability to archive repositories, get stats and logs, blame, and probably a
few other things that were not mentioned here.

Check the unit tests for an in-depth introduction on how each function is supposed to be used.

2.16. And even more ... 19

GitPython Documentation, Release 2.1.3

20 Chapter 2. GitPython Tutorial

CHAPTER 3

API Reference

Objects.Base

class git.objects.base.Object (repo, binsha)
Implements an Object which may be Blobs, Trees, Commits and Tags

NULL_BIN_SHA = “x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x 00\x00\x 00’
NULL_HEX_SHA = “00°
TYPES = (‘blob’, ‘tree’, ‘commit’, ‘tag’)
__eq__ (other)
Returns True if the objects have the same SHA1
__hash__ ()
Returns Hash of our id allowing objects to be used in dicts and sets

__init__ (repo, binsha)
Initialize an object by identifying it by its binary sha. All keyword arguments will be set on demand if

None.
Parameters
* repo — repository this object is located in
* binsha - 20 byte SHA1
__module___ = ‘git.objects.base’

__ne__ (other)

Returns True if the objects do not have the same SHA1
__repr__ ()

Returns string with pythonic representation of our object

_ _slots__ =(‘repo’, ‘binsha’, ‘size’)

21

GitPython Documentation, Release 2.1.3

_str__ ()
Returns string of our SHA1 as understood by all git commands
binsha
data_stream
Returns File Object compatible stream to the uncompressed raw data of the object
Note returned streams must be read in order
hexsha
Returns 40 byte hex version of our 20 byte binary sha

classmethod new (repo, id)

Returns New Object instance of a type appropriate to the object type behind id. The id of the
newly created object will be a binsha even though the input id may have been a Reference or
Rev-Spec

Parameters id - reference, rev-spec, or hexsha

Note This cannot be a__new__ method as it would always call __init__ with the input id which
is not necessarily a binsha.

classmethod new_from_sha (repo, shal)
Returns new object instance of a type appropriate to represent the given binary shal
Parameters shal — 20 byte binary shal

repo

size

stream_data (ostream)
Writes our data directly to the given output stream :param ostream: File object compatible stream object.
:return: self

type = None

class git.objects.base.IndexObject (repo, binsha, mode=None, path=None)
Base for all objects that can be part of the index file , namely Tree, Blob and SubModule objects

__hash__ ()
Returns Hash of our path as index items are uniquely identifyable by path, not by their data !

__init__ (repo, binsha, mode=None, path=None)
Initialize a newly instanced IndexObject

Parameters
* repo —is the Repo we are located in
* binsha - 20 byte shal

* mode - is the stat compatible file mode as int, use the stat module to evaluate the infor-
mation

* path — is the path to the file in the file system, relative to the git repository root, i.e.
file.ext or folder/other.ext

Note Path may not be set of the index object has been created directly as it cannot be retrieved
without knowing the parent tree.

22 Chapter 3. API Reference

GitPython Documentation, Release 2.1.3

__module___ = ‘git.objects.base’

__slots__ =(‘path’, ‘mode’)

abspath
Returns
Absolute path to this index object in the file system (as opposed to the .path field which is a
path relative to the git repository).
The returned path will be native to the system and contains ¢ on windows.
mode
name

Returns Name portion of the path, effectively being the basename

path

Objects.Blob

class git.objects.blob.Blob (repo, binsha, mode=None, path=None)
A Blob encapsulates a git blob object

DEFAULT MIME_ TYPE = ‘text/plain’

__module___ = ‘git.objects.blob’

__slots_ =()

executable_mode = 33261

file mode = 33188

link_mode = 40960

mime_type
Returns String describing the mime type of this file (based on the filename)
Note Defaults to ‘text/plain’ in case the actual file type is unknown.

type = ‘blob’

Objects.Commit

class git.objects.commit .Commit (repo, binsha, tree=None, author=None, authored_date=None,
author_tz_offset=None, committer=None, committed_date=None,
committer_tz_offset=None, message=None, parents=None, en-
coding=None, gpgsig=None)
Wraps a git Commit object.

This class will act lazily on some of its attributes and will query the value on demand only if it involves calling
the git binary.

3.2. Objects.Blob 23

GitPython Documentation, Release 2.1.3

__init__ (repo, binsha, tree=None, author=None, authored_date=None, author_tz_offset=None,
committer=None, committed_date=None, committer_tz_offset=None, message=None, par-

ents=None, encoding=None, gpgsig=None)
Instantiate a new Commit. All keyword arguments taking None as default will be implicitly set on first

query.
Parameters
* binsha — 20 byte shal
* parents — tuple(Commit, ...) is a tuple of commit ids or actual Commits
e tree — Tree Tree object
e author — Actor is the author string (will be implicitly converted into an Actor object)

* authored date - int seconds_since_epoch is the authored DateTime - use
time.gmtime() to convert it into a different format

e author tz_offset —int_seconds_west_of utc is the timezone that the authored_date
is in
* committer — Actor is the committer string

* committed date - int_seconds_since_epoch is the committed DateTime - use
time.gmtime() to convert it into a different format

e committer tz_ offset —int_seconds_west_of_utc is the timezone that the commit-
ted_date is in

* message - string is the commit message
* encoding - string encoding of the message, defaults to UTF-8

* parents — List or tuple of Commit objects which are our parent(s) in the commit depen-
dency graph

Returns git.Commit

Note Timezone information is in the same format and in the same sign as what time.altzone
returns. The sign is inverted compared to git’s UTC timezone.

__module___ = ‘git.objects.commit’
_ slots__ =(‘tree’, ‘author’, ‘authored_date’, ‘author_tz_offset’, ‘committer’, ‘committed_date’, ‘committer_tz_offset
author

author tz_offset

authored_date

authored datetime

committed date

committed datetime

committer

committer tz offset
conf_encoding = ‘i18n.commitencoding’

count (paths="*, **kwargs)
Count the number of commits reachable from this commit

Parameters

24 Chapter 3. API Reference

GitPython Documentation, Release 2.1.3

paths — is an optional path or a list of paths restricting the return value to commits
actually containing the paths

kwargs — Additional options to be passed to git-rev-list. They must not alter the ouput
style of the command, or parsing will yield incorrect results

Returns int defining the number of reachable commits

classmethod create_from_tree (repo, tree, message, parent_commits=None, head=False,

author=None, committer=None, author_date=None, com-
mit_date=None)

Commit the given tree, creating a commit object.

Parameters

repo — Repo object the commit should be part of
tree — Tree object or hex or bin sha the tree of the new commit

message — Commit message. It may be an empty string if no message is provided. It
will be converted to a string in any case.

parent_commits — Optional Commit objects to use as parents for the new commit. If
empty list, the commit will have no parents at all and become a root commit. If None , the
current head commit will be the parent of the new commit object

head - If True, the HEAD will be advanced to the new commit automatically. Else the
HEAD will remain pointing on the previous commit. This could lead to undesired results
when diffing files.

author — The name of the author, optional. If unset, the repository configuration is used
to obtain this value.

committer — The name of the committer, optional. If unset, the repository configuration
is used to obtain this value.

author_date — The timestamp for the author field

commit_date — The timestamp for the committer field

Returns Commit object representing the new commit

Note Additional information about the committer and Author are taken from the environment or
from the git configuration, see git-commit-tree for more information

default_encoding = ‘UTF-8’

encoding

env_author_date = ‘GIT_AUTHOR_DATE’
env_committer date = ‘GIT_COMMITTER_DATE’

gpgsig

classmethod iter_items (repo, rev, paths="", **kwargs)
Find all commits matching the given criteria.

Parameters

repo — is the Repo
rev — revision specifier, see git-rev-parse for viable options

paths — is an optional path or list of paths, if set only Commits that include the path or
paths will be considered

3.3.

Objects.Commit

25

GitPython Documentation, Release 2.1.3

* kwargs — optional keyword arguments to git rev-list where max_ count is the maximum
number of commits to fetch skip is the number of commits to skip since all commits
since i.e. ‘1970-01-01"

Returns iterator yielding Commit items

iter_parents (paths="", **kwargs)
Iterate _all_ parents of this commit.

Parameters

» paths — Optional path or list of paths limiting the Commits to those that contain at least
one of the paths

* kwargs — All arguments allowed by git-rev-list
Returns Iterator yielding Commit objects which are parents of self
message
name_rev

Returns String describing the commits hex sha based on the closest Reference. Mostly useful
for UI purposes

parents

stats
Create a git stat from changes between this commit and its first parent or from all changes done if this is
the very first commit.

Returns git.Stats
summary

Returns First line of the commit message
tree

type = ‘commit’

Objects.Tag

Module containing all object based types.

class git.objects.tag.TagObject (repo, binsha, object=None, tag=None, tagger=None,
tagged_date=None, tagger_tz_offset=None, message=None)
Non-Lightweight tag carrying additional information about an object we are pointing to.

__init__ (repo, binsha, object=None, tag=None, tagger=None, tagged_date=None, tag-
ger_tz_offset=None, message=None)
Initialize a tag object with additional data

Parameters
* repo — repository this object is located in
* binsha — 20 byte SHAI
* object — Object instance of object we are pointing to
* tag — name of this tag

* tagger — Actor identifying the tagger

26 Chapter 3. API Reference

GitPython Documentation, Release 2.1.3

* tagged_date — int_seconds_since_epoch is the DateTime of the tag creation - use
time.gmtime to convert it into a different format

* tagged_tz_offset —int_seconds_west_of_utc is the timezone that the authored_date
18 in, in a format similar to time.altzone

__module___ = ‘git.objects.tag’

__slots___ =(‘object’, ‘tag’, ‘tagger’, ‘tagged_date’, ‘tagger_tz_offset’, ‘message’)
message

object

tag

tagged_date

tagger

tagger_tz_offset

type = ‘tag’

Objects.Tree

class git.objects.tree.TreeModifier (cache)
A utility class providing methods to alter the underlying cache in a list-like fashion.

Once all adjustments are complete, the _cache, which really is a reference to the cache of a tree, will be sorted.
Assuring it will be in a serializable state

_ _delitem (name)
Deletes an item with the given name if it exists

__init__ (cache)
__module___ = ‘git.objects.tree’
__slots__ =°¢ _cache’

add (sha, mode, name, force=False)
Add the given item to the tree. If an item with the given name already exists, nothing will be done, but a
ValueError will be raised if the sha and mode of the existing item do not match the one you add, unless
force is True

Parameters
* sha — The 20 or 40 byte sha of the item to add
* mode — int representing the stat compatible mode of the item

e force —If True, an item with your name and information will overwrite any existing item
with the same name, no matter which information it has

Returns self

add_unchecked (binsha, mode, name)
Add the given item to the tree, its correctness is assumed, which puts the caller into responsibility to assure
the input is correct. For more information on the parameters, see add :param binsha: 20 byte binary sha

set_done ()
Call this method once you are done modifying the tree information. It may be called several times, but be

aware that each call will cause a sort operation :return self:

3.5. Objects.Tree 27

GitPython Documentation, Release 2.1.3

class git.objects.tree.Tree (repo, binsha, mode=16384, path=None)

Tree objects represent an ordered list of Blobs and other Trees.

Tree as a list:

Access a specific blob using the
tree['filename'] notation.

You may as well access by index
blob = treel[0]

__contains__ (item)
__div__ (file)

For PY?2 only
__getitem _ (item)
__getslice__ (i,))

__init__ (repo, binsha, mode=16384, path=None)
__iter_ ()

len ()

__module___ = ‘git.objects.tree’
__reversed_ ()

_ _slots__ =°‘_cache’

__truediv__ (file)
For PY3 only

blob_id=8
blobs

Returns list(Blob, ...) list of blobs directly below this tree
cache

Returns An object allowing to modify the internal cache. This can be used to change the tree’s
contents. When done, make sure you call set_done on the tree modifier, or serialization
behaviour will be incorrect. See the TreeModi fier for more information on how to alter
the cache

commit_id=14

join (file)
Find the named object in this tree’s contents :return: git .Blob or git.Tree or git.Submodule

Raises KeyError — if given file or tree does not exist in tree
symlink_id=10

traverse (predicate=<function = <lambda>>, prune=<function <lambda>>, depth=-1,
branch_first=True, visit_once=False, ignore_self=1)
For documentation, see util. Traversable.traverse Trees are set to visit_once = False to gain more perfor-
mance in the traversal

tree_id=4
trees

Returns list(Tree, ...) list of trees directly below this tree

28

Chapter 3. API Reference

GitPython Documentation, Release 2.1.3

type = ‘tree’

Objects.Functions

Module with functions which are supposed to be as fast as possible

git.objects.fun.tree_to_stream (entries, write)
Write the give list of entries into a stream using its write method :param entries: sorted list of tuples with
(binsha, mode, name) :param write: write method which takes a data string

git.objects.fun.tree_entries_from_ data (data)
Reads the binary representation of a tree and returns tuples of Tree items :param data: data block with tree data
(as bytes) :return: list(tuple(binsha, mode, tree_relative_path), ...)

git.objects.fun.traverse_trees_recursive (odb, tree_shas, path_prefix)

Returns list with entries according to the given binary tree-shas. The result is encoded in a list
of n tuplelNone per blob/commit, (n == len(tree_shas)), where * [0] == 20 byte sha * [1] ==
mode as int * [2] == path relative to working tree root The entry tuple is None if the respective
blob/commit did not exist in the given tree.

Parameters

* tree_shas — iterable of shas pointing to trees. All trees must be on the same level. A
tree-sha may be None in which case None

* path_prefix — a prefix to be added to the returned paths on this level, set it * for the
first iteration

Note The ordering of the returned items will be partially lost
git.objects.fun.traverse_tree_recursive (odb, tree_sha, path_prefix)

Returns list of entries of the tree pointed to by the binary tree_sha. An entry has the following
format: * [0] 20 byte sha * [1] mode as int * [2] path relative to the repository

Parameters path_prefix — prefix to prepend to the front of all returned paths

Objects.Submodule.base

class git.objects.submodule.base.Submodule (repo, binsha, mode=None, path=None,
name=None, parent_commit=None, url=None,

branch_path=None)
Implements access to a git submodule. They are special in that their sha represents a commit in the submodule’s

repository which is to be checked out at the path of this instance. The submodule type does not have a string
type associated with it, as it exists solely as a marker in the tree and index.

All methods work in bare and non-bare repositories.

__eq__ (other)
Compare with another submodule

__hash__ ()
Hash this instance using its logical id, not the sha

__init__ (repo, binsha, mode=None, path=None, name=None, parent_commit=None, url=None,
branch_path=None)
Initialize this instance with its attributes. We only document the ones that differ from IndexObject

3.6. Objects.Functions 29

GitPython Documentation, Release 2.1.3

Parameters

repo — Our parent repository

binsha - binary sha referring to a commit in the remote repository, see url parameter
parent_commit — see set_parent_commit()

url — The url to the remote repository which is the submodule

branch_path —full (relative) path to ref to checkout when cloning the remote repository

_ _module__ = ‘git.objects.submodule.base’

__ne__ (other)

Compare with another submodule for inequality

__repr__ ()

_ slots__ =(‘_parent_commit’, ‘_url’, °_branch_path’, *_name’, ¢_ weakref_ ’)

str ()

__weakref

list of weak references to the object (if defined)

classmethod add (repo, name, path, url=None, branch=None, no_checkout=False)

Add a new submodule to the given repository. This will alter the index as well as the .gitmodules file, but
will not create a new commit. If the submodule already exists, no matter if the configuration differs from

the one provided, the existing submodule will be returned.

Parameters

repo — Repository instance which should receive the submodule
name — The name/identifier for the submodule

path — repository-relative or absolute path at which the submodule should be located It
will be created as required during the repository initialization.

url — git-clone compatible URL, see git-clone reference for more information If None,
the repository is assumed to exist, and the url of the first remote is taken instead. This is
useful if you want to make an existing repository a submodule of anotherone.

branch — name of branch at which the submodule should (later) be checked out. The
given branch must exist in the remote repository, and will be checked out locally as a
tracking branch. It will only be written into the configuration if it not None, which is when
the checked out branch will be the one the remote HEAD pointed to. The result you get in
these situation is somewhat fuzzy, and it is recommended to specify at least ‘master’ here.
Examples are ‘master’ or ‘feature/new’

no_checkout - if True, and if the repository has to be cloned manually, no checkout
will be performed

Returns The newly created submodule instance

Note works atomically, such that no change will be done if the repository update fails for instance

branch

Returns The branch instance that we are to checkout

Raises InvalidGitRepositoryError —if our module is not yet checked out

branch_name

Returns the name of the branch, which is the shortest possible branch name

30

Chapter 3. API Reference

GitPython Documentation, Release 2.1.3

branch_path
Returns full (relative) path as string to the branch we would checkout from the remote and track
children ()

Returns IterableList(Submodule, ...) an iterable list of submodules instances which are children
of this submodule or 0 if the submodule is not checked out

config_reader ()

Returns ConfigReader instance which allows you to qurey the configuration values of this sub-
module, as provided by the .gitmodules file

Note The config reader will actually read the data directly from the repository and thus does not
need nor care about your working tree.

Note Should be cached by the caller and only kept as long as needed
Raises IOError — If the .gitmodules file/blob could not be read
config_writer (*args, **kwargs)
Returns a config writer instance allowing you to read and write the data
belonging to this submodule into the .gitmodules file.
Parameters

¢ index —if not None, an IndexFile instance which should be written. defaults to the index
of the Submodule’s parent repository.

* write —if True, the index will be written each time a configuration value changes.

Note the parameters allow for a more efficient writing of the index, as you can pass in a modified
index on your own, prevent automatic writing, and write yourself once the whole operation
is complete

Raises

* ValueError — if trying to get a writer on a parent_commit which does not match the
current head commit

* IOError — If the .gitmodules file/blob could not be read
exists ()

Returns True if the submodule exists, False otherwise. Please note that a submodule may exist
(in the .gitmodules file) even though its module doesn’t exist on disk

classmethod iter_items (repo, parent_commit="HEAD’)
Returns iterator yielding Submodule instances available in the given repository
k_default_mode =57344
k_head default = ‘master’
k_head_option = ‘branch’
k_modules_file = ‘.gitmodules’
module (*args, **kwargs)
Returns Repo instance initialized from the repository at our submodule path

Raises InvalidGitRepositoryError —if arepository was not available. This could also
mean that it was not yet initialized

. Objects.Submodule.base 31

GitPython Documentation, Release 2.1.3

module_exists ()
Returns True if our module exists and is a valid git repository. See module() method

move (*args, **kwargs)
Move the submodule to a another module path. This involves physically moving the repository at our
current path, changing the configuration, as well as adjusting our index entry accordingly.

Parameters

* module_path — the path to which to move our module in the parent repostory’s work-
ing tree, given as repository-relative or absolute path. Intermediate directories will be
created accordingly. If the path already exists, it must be empty. Trailing (back)slashes are
removed automatically

* configuration —if True, the configuration will be adjusted to let the submodule point
to the given path.

* module - if True, the repository managed by this submodule will be moved as well. If
False, we don’t move the submodule’s checkout, which may leave the parent repository in
an inconsistent state.

Returns self
Raises ValueError - if the module path existed and was not empty, or was a file

Note Currently the method is not atomic, and it could leave the repository in an inconsistent state
if a sub-step fails for some reason

name
Returns The name of this submodule. It is used to identify it within the .gitmodules file.

Note by default, the name is the path at which to find the submodule, but in git-python it should
be a unique identifier similar to the identifiers used for remotes, which allows to change the
path of the submodule easily

parent_commit
Returns Commit instance with the tree containing the .gitmodules file
Note will always point to the current head’s commit if it was not set explicitly

remove (*args, **kwargs)
Remove this submodule from the repository. This will remove our entry from the .gitmodules file and the
entry in the .git/config file.

Parameters

* module - If True, the module checkout we point to will be deleted as well. If the module
is currently on a commit which is not part of any branch in the remote, if the currently
checked out branch working tree, or untracked files, is ahead of its tracking branch, if you
have modifications in the In case the removal of the repository fails for these reasons, the
submodule status will not have been altered. If this submodule has child-modules on its
own, these will be deleted prior to touching the own module.

» force — Enforces the deletion of the module even though it contains modifications. This
basically enforces a brute-force file system based deletion.

* configuration - if True, the submodule is deleted from the configuration, otherwise
it isn’t. Although this should be enabled most of the times, this flag enables you to safely
delete the repository of your submodule.

32 Chapter 3. API Reference

GitPython Documentation, Release 2.1.3

e dry_run — if True, we will not actually do anything, but throw the errors we would
usually throw

Returns self
Note doesn’t work in bare repositories

Note doesn’t work atomically, as failure to remove any part of the submodule will leave an
inconsistent state

Raises
e InvalidGitRepositoryError —thrown if the repository cannot be deleted
* OSError - if directories or files could not be removed

rename (*args, **kwargs)
Rename this submodule :note: This method takes care of renaming the submodule in various places, such
as

*$parent_git_dir/config
*$working_tree_dir/.gitmodules
*(git >=v1.8.0: move submodule repository to new name)

As .gitmodules will be changed, you would need to make a commit afterwards. The changed .gitmodules
file will already be added to the index

Returns this submodule instance

set_parent_commit (commit, check=True)
Set this instance to use the given commit whose tree is supposed to contain the .gitmodules blob.

Parameters

* commit — Commit’ish reference pointing at the root_tree, or None to always point to the
most recent commit

* check - if True, relatively expensive checks will be performed to verify validity of the
submodule.

Raises
* ValueError — if the commit’s tree didn’t contain the .gitmodules blob.
* ValueError — if the parent commit didn’t store this submodule under the current path
Returns self
type = ‘submodule’

update (recursive=False, init=True, to_latest_revision=False, progress=None, dry_run=False,
force=False, keep_going=False)
Update the repository of this submodule to point to the checkout we point at with the binsha of this instance.
Parameters
* recursive —if True, we will operate recursively and update child- modules as well.

e init - if True, the module repository will be cloned into place if necessary

* to_latest_revision —if True, the submodule’s sha will be ignored during checkout.
Instead, the remote will be fetched, and the local tracking branch updated. This only works
if we have a local tracking branch, which is the case if the remote repository had a master
branch, or of the ‘branch’ option was specified for this submodule and the branch existed
remotely

3.7.

Objects.Submodule.base 33

GitPython Documentation, Release 2.1.3

progress — UpdateProgress instance or None if no progress should be shown

dry_run - if True, the operation will only be simulated, but not performed. All per-
formed operations are read-only

force - If True, we may reset heads even if the repository in question is dirty. Additi-
noally we will be allowed to set a tracking branch which is ahead of its remote branch back
into the past or the location of the remote branch. This will essentially ‘forget’ commits.
If False, local tracking branches that are in the future of their respective remote branches
will simply not be moved.

keep_going — if True, we will ignore but log all errors, and keep going recursively.
Unless dry_run is set as well, keep_going could cause subsequent/inherited errors you
wouldn’t see otherwise. In conjunction with dry_run, it can be useful to anticipate all
errors when updating submodules

Note does nothing in bare repositories
Note method is definitely not atomic if recurisve is True
Returns self
url
Returns The url to the repository which our module-repository refers to

class git.objects.submodule.base.UpdateProgress
Class providing detailed progress information to the caller who should derive from it and implement the

update (...) message
CLONE = 512
FETCH = 1024

UPDWKTREE = 2048

__module___ = ‘git.objects.submodule.base’
__slots_ =()

x=11

Objects.Submodule.root

class git.objects.submodule.root .RootModule (repo)
A (virtual) Root of all submodules in the given repository. It can be used to more easily traverse all submodules
of the master repository

__init__ (repo)

_ _module__ = ‘git.objects.submodule.root’
__slots_ =()
k_root_name=°_ROOT_’

module ()

Returns the actual repository containing the submodules

34 Chapter 3. API Reference

GitPython Documentation, Release 2.1.3

update (previous_commit=None, recursive=True, force_remove=False, init=True,
to_latest_revision=False, progress=None, dry_run=False, force_reset=False,

keep_going=False)
Update the submodules of this repository to the current HEAD commit. This method behaves smartly

by determining changes of the path of a submodules repository, next to changes to the to-be-checked-out
commit or the branch to be checked out. This works if the submodules ID does not change. Additionally
it will detect addition and removal of submodules, which will be handled gracefully.

Parameters

previous_commit - If set to a commit’ish, the commit we should use as the previous
commit the HEAD pointed to before it was set to the commit it points to now. If None, it
defaults to HEAD @ { 1} otherwise

recursive —if True, the children of submodules will be updated as well using the same
technique

force_remove — If submodules have been deleted, they will be forcibly removed. Oth-
erwise the update may fail if a submodule’s repository cannot be deleted as changes have
been made to it (see Submodule.update() for more information)

init - If we encounter a new module which would need to be initialized, then do it.

to_latest_revision — If True, instead of checking out the revision pointed to by
this submodule’s sha, the checked out tracking branch will be merged with the latest re-
mote branch fetched from the repository’s origin. Unless force_reset is specified, a local
tracking branch will never be reset into its past, therefore the remote branch must be in the
future for this to have an effect.

force_reset — if True, submodules may checkout or reset their branch even if the
repository has pending changes that would be overwritten, or if the local tracking branch
is in the future of the remote tracking branch and would be reset into its past.

progress — RootUpdateProgress instance or None if no progress should be sent

dry_run - if True, operations will not actually be performed. Progress messages will
change accordingly to indicate the WOULD DO state of the operation.

keep_going - if True, we will ignore but log all errors, and keep going recursively.
Unless dry_run is set as well, keep_going could cause subsequent/inherited errors you
wouldn’t see otherwise. In conjunction with dry_run, it can be useful to anticipate all
errors when updating submodules

Returns self

class git.objects

.submodule.root .RootUpdateProgress

Utility class which adds more opcodes to the UpdateProgress

BRANCHCHANGE = 16384

PATHCHANGE = 8192

REMOVE = 4096

URLCHANGE = 32768

__module___ = ‘git.objects.submodule.root’
__slots_ =()

x=15

3.8. Objects.Submodule.root

35

mailto:HEAD@\protect \T1\textbraceleft 1

GitPython Documentation, Release 2.1.3

Objects.Submodule.util

git.objects.submodule.util.sm_section (name)

Returns section title used in .gitmodules configuration file
git.objects.submodule.util.sm_name (section)

Returns name of the submodule as parsed from the section name
git.objects.submodule.util.mkhead (repo, path)

Returns New branch/head instance

git.objects.submodule.util.find_ first_remote_branch (remotes, branch_name)
Find the remote branch matching the name of the given branch or raise InvalidGitRepositoryError

class git.objects.submodule.util.SubmoduleConfigParser (*args, **kwargs)
Catches calls to _write, and updates the .gitmodules blob in the index with the new data, if we have written
into a stream. Otherwise it will add the local file to the index to make it correspond with the working tree.
Additionally, the cache must be cleared

Please note that no mutating method will work in bare mode
__ abstractmethods_ = frozenset([])

__init__ (*args, **kwargs)

__module___ = ‘git.objects.submodule.util’

flush to_index ()
Flush changes in our configuration file to the index

set_submodule (submodule)
Set this instance’s submodule. It must be called before the first write operation begins

write ()

Objects.Util

Module for general utility functions

git.objects.util.get_object_type_by_ name (object_type_name)
Returns type suitable to handle the given object type name. Use the type to create new instances.
Parameters object_type_name — Member of TYPES
Raises ValueError — In case object_type_name is unknown

git.objects.util.parse_date (string_date)
Parse the given date as one of the following

*Git internal format: timestamp offset
*RFC 2822: Thu, 07 Apr 2005 22:13:13 +0200.
*ISO 8601 2005-04-07T22:13:13 The T can be a space as well

Returns Tuple(int(timestamp_UTC), int(offset)), both in seconds since epoch
Raises ValueError — If the format could not be understood

Note Date can also be YYYY.MM.DD, MM/DD/YYYY and DD.MM.YYYY.

36 Chapter 3. API Reference

GitPython Documentation, Release 2.1.3

git.objects.util.parse_actor_and_date (line)
Parse out the actor (author or committer) info from a line like:

author Tom Preston-Werner <tom@mojombo.com> 1191999972 -0700

Returns [Actor, int_seconds_since_epoch, int_timezone_offset]
class git .objects.util.ProcessStreamAdapter (process, stream_name)
Class wireing all calls to the contained Process instance.

Use this type to hide the underlying process to provide access only to a specified stream. The process is usually
wrapped into an Autolnterrupt class to kill it if the instance goes out of scope.

__getattr__ (attr)

__init__ (process, stream_name)
__module___ = ‘git.objects.util’
__slots__ = (‘_proc’, ‘_stream’)

class git .objects.util.Traversable
Simple interface to perform depth-first or breadth-first traversals into one direction. Subclasses only need to
implement one function. Instances of the Subclass must be hashable

__module___ = ‘git.objects.util’
__slots_ =)
list_traverse (*args, **kwargs)
Returns IterableList with the results of the traversal as produced by traverse()

traverse (predicate=<function = <lambda>>, prune=<function <lambda>>, depth=-1,
branch_first=True, visit_once=True, ignore_self=1, as_edge=False)

Returns iterator yielding of items found when traversing self
Parameters
e predicate — f(i,d) returns False if item i at depth d should not be included in the result

* prune — {(i,d) return True if the search should stop at item i at depth d. Item i will not be
returned.

* depth — define at which level the iteration should not go deeper if -1, there is no limit if
0, you would effectively only get self, the root of the iteration i.e. if 1, you would only get
the first level of predecessors/successors

* branch_first —if True, items will be returned branch first, otherwise depth first

* visit_once - if True, items will only be returned once, although they might be encoun-
tered several times. Loops are prevented that way.

* ignore_self — if True, self will be ignored and automatically pruned from the result.
Otherwise it will be the first item to be returned. If as_edge is True, the source of the first
edge is None

* as_edge - if True, return a pair of items, first being the source, second the destination,
i.e. tuple(src, dest) with the edge spanning from source to destination

git.objects.util.altz_to_utctz_str (alfz)
As above, but inverses the operation, returning a string that can be used in commit objects

3.10. Objects.Util 37

GitPython Documentation, Release 2.1.3

git.objects.util.utctz_to_altz (ufctz)
we convert utctz to the timezone in seconds, it is the format time.altzone returns. Git stores it as UTC timezone
which has the opposite sign as well, which explains the -1 * (that was made explicit here) :param utctz: git utc
timezone string, i.e. +0200

git.objects.util.verify utctz (offset)
Raises ValueError — if offset is incorrect
Returns offset

class git.objects.util.Actor (name, email)
Actors hold information about a person acting on the repository. They can be committers and authors or anything
with a name and an email as mentioned in the git log entries.

__eq__ (other)

__hash__ ()

__init__ (name, email)
__module___ = ‘git.util’
__ne__ (other)

__repr__ ()

slots__ = (‘name’, ‘email’)

str__ ()

classmethod author (config_reader=None)
Same as committer(), but defines the main author. It may be specified in the environment, but defaults to
the committer

classmethod committer (config_reader=None)

Returns Actor instance corresponding to the configured committer. It behaves similar to the
git implementation, such that the environment will override configuration values of con-
fig_reader. If no value is set at all, it will be generated

Parameters config reader — ConfigReader to use to retrieve the values from in case they
are not set in the environment

conf_email = ‘email’

conf name = ‘name’

email

env_author_email = ‘GIT_AUTHOR_EMAIL’
env_author_ name = ‘GIT_AUTHOR_NAME’
env_committer email = °‘GIT_COMMITTER_EMAIL’
env_committer_name = ‘GIT_COMMITTER_NAME’
name

name_email_regex = <_sre.SRE_Pattern object>
name_only regex = <_sre.SRE_Pattern object>

class git.objects.util.tzoffset (secs_west_of utc, name=None)

__dict__ =dict_proxy({‘__module__’: ‘git.objects.util’, ‘dst’: <function dst>, ‘utcoffset’: <function utcoffset>, ‘tzname

38 Chapter 3. API Reference

GitPython Documentation, Release 2.1.3

__init__ (secs_west_of_utc, name=None)
__module___ = ‘git.objects.util’

__weakref
list of weak references to the object (if defined)

dst (dt)
tzname (dt)

utcoffset (dr)

Index.Base

class git.index.base.IndexFile (repo, file_path=None)
Implements an Index that can be manipulated using a native implementation in order to save git command
function calls wherever possible.

It provides custom merging facilities allowing to merge without actually changing your index or your working
tree. This way you can perform own test-merges based on the index only without having to deal with the working
copy. This is useful in case of partial working trees.

Entries
The index contains an entries dict whose keys are tuples of type IndexEntry to facilitate access.

You may read the entries dict or manipulate it using IndexEntry instance, i.e.:

index.entries[index.entry_key (index_entry_instance)] = index_entry_instance

Make sure you use index.write() once you are done manipulating the index directly before operating on it using
the git command

S_IFGITLINK = 57344

__init__ (repo, file_path=None)
Initialize this Index instance, optionally from the given £ile_path. If no file_path is given, we will be
created from the current index file.
If a stream is not given, the stream will be initialized from the current repository’s index on demand.
__module__ = ‘git.index.base’
b

__slots___ =(‘repo’, ‘version’, ‘entries’, ‘_extension_data’, ‘_file_path’)

add (items, force=True, fprogress=<function <lambda>>, path_rewriter=None, write=True,

write_extension_data=False)
Add files from the working tree, specific blobs or BaseIndexEntries to the index.

Parameters

* items — Multiple types of items are supported, types can be mixed within one call. Dif-
ferent types imply a different handling. File paths may generally be relative or absolute.

— path string strings denote a relative or absolute path into the repository pointing to an
existing file, i.e. CHANGES, lib/myfile.ext, ‘/home/gitrepo/lib/myfile.ext’.

Absolute paths must start with working tree directory of this index’s repository to be
considered valid. For example, if it was initialized with a non-normalized path, like
/root/repo/../repo, absolute paths to be added must start with /root/repo/../repo.

3.11. Index.Base 39

GitPython Documentation, Release 2.1.3

Paths provided like this must exist. When added, they will be written into the object
database.

PathStrings may contain globs, such as ‘lib/__init__*’ or can be directories like ‘lib’,
the latter ones will add all the files within the dirctory and subdirectories.

This equals a straight git-add.
They are added at stage 0

— Blob or Submodule object Blobs are added as they are assuming a valid mode is set.
The file they refer to may or may not exist in the file system, but must be a path
relative to our repository.

If their sha is null (40*0), their path must exist in the file system relative to the git
repository as an object will be created from the data at the path. The handling now
very much equals the way string paths are processed, except that the mode you have
set will be kept. This allows you to create symlinks by settings the mode respectively
and writing the target of the symlink directly into the file. This equals a default
Linux-Symlink which is not dereferenced automatically, except that it can be created
on filesystems not supporting it as well.

Please note that globs or directories are not allowed in Blob objects.
They are added at stage 0

— BaselndexEntry or type Handling equals the one of Blob objects, but the stage may
be explicitly set. Please note that Index Entries require binary sha’s.

e force — CURRENTLY INEFFECTIVE If True, otherwise ignored or excluded files
will be added anyway. As opposed to the git-add command, we enable this flag by default
as the API user usually wants the item to be added even though they might be excluded.

* fprogress — Function with signature f(path, done=False, item=item) called for each
path to be added, one time once it is about to be added where done==False and once after
it was added where done=True. item is set to the actual item we handle, either a Path or a
BaselndexEntry Please note that the processed path is not guaranteed to be present in the
index already as the index is currently being processed.

* path_rewriter — Function with signature (string) func(BaseIndexEntry) function re-
turning a path for each passed entry which is the path to be actually recorded for the object
created from entry.path. This allows you to write an index which is not identical to the
layout of the actual files on your hard-disk. If not None and items contain plain paths,
these paths will be converted to Entries beforehand and passed to the path_rewriter. Please
note that entry.path is relative to the git repository.

* write — If True, the index will be written once it was altered. Otherwise the changes
only exist in memory and are not available to git commands.

e write_extension_data — If True, extension data will be written back to the index.
This can lead to issues in case it is containing the ‘TREE’ extension, which will cause
the git commit command to write an old tree, instead of a new one representing the now
changed index. This doesn’t matter if you use IndexFile.commit(), which ignores the TREE
extension altogether. You should set it to True if you intend to use IndexFile.commit()
exclusively while maintaining support for third-party extensions. Besides that, you can
usually safely ignore the built-in extensions when using GitPython on repositories that
are not handled manually at all. All current built-in extensions are listed here: http://
opensource.apple.com/source/Git/Git-26/src/git-htmldocs/technical/index-format.txt

Returns List(BaseIndexEntries) representing the entries just actually added.

40 Chapter 3. API Reference

http://opensource.apple.com/source/Git/Git-26/src/git-htmldocs/technical/index-format.txt
http://opensource.apple.com/source/Git/Git-26/src/git-htmldocs/technical/index-format.txt

GitPython Documentation, Release 2.1.3

Raises OSError — if a supplied Path did not exist. Please note that BaseIndexEntry Objects
that do not have a null sha will be added even if their paths do not exist.

checkout (*args, **kwargs)
Checkout the given paths or all files from the version known to the index into the working tree.

Note Be sure you have written pending changes using the write method in case you have
altered the enties dictionary directly

Parameters

» paths - If None, all paths in the index will be checked out. Otherwise an iterable of
relative or absolute paths or a single path pointing to files or directories in the index
is expected.

* force - If True, existing files will be overwritten even if they contain local modifi-
cations. If False, these will trigger a CheckoutError.

* fprogress —see Index.add_ for signature and explanation. The provided progress
information will contain None as path and item if no explicit paths are given. Other-
wise progress information will be send prior and after a file has been checked out

* kwargs — Additional arguments to be passed to git-checkout-index

Returns iterable yielding paths to files which have been checked out and are guaranteed to
match the version stored in the index

Raises CheckoutError —If at least one file failed to be checked out. This is a summary,
hence it will checkout as many files as it can anyway. If one of files or directories do not
exist in the index (as opposed to the original git command who ignores them). Raise
GitCommandError if error lines could not be parsed - this truly is an exceptional state

Note: The checkout is limited to checking out the files in the index. Files which are not in the index
anymore and exist in the working tree will not be deleted. This behaviour is fundamentally different to
head.checkout, i.e. if you want git-checkout like behaviour, use head.checkout instead of index.checkout.

commit (message, parent_commits=None, head=True, author=None, committer=None, au-

thor_date=None, commit_date=None, skip_hooks=False)
Commit the current default index file, creating a commit object. For more information on the arguments,

see tree.commit.

Note If you have manually altered the .entries member of this instance, don’t forget to write()
your changes to disk beforehand. Passing skip_hooks=True is the equivalent of using -n
or —no-verify on the command line.

Returns Commit object representing the new commit

diff (*args, **kwargs)
Diff this index against the working copy or a Tree or Commit object

For a documentation of the parameters and return values, see Diffable.diff

Note Will only work with indices that represent the default git index as they have not been
initialized with a stream.

entries
classmethod entry_key (*entry)

classmethod from_tree (repo, *treeish, **kwargs)
Merge the given treeish revisions into a new index which is returned. The original index will remain
unaltered

3.11. Index.Base 41

GitPython Documentation, Release 2.1.3

Parameters
* repo — The repository treeish are located in.

* treeish - One, two or three Tree Objects, Commits or 40 byte hexshas. The result
changes according to the amount of trees. If 1 Tree is given, it will just be read into a
new index If 2 Trees are given, they will be merged into a new index using a two way
merge algorithm. Tree 1 is the ‘current’ tree, tree 2 is the ‘other’ one. It behaves like
a fast-forward. If 3 Trees are given, a 3-way merge will be performed with the first
tree being the common ancestor of tree 2 and tree 3. Tree 2 is the ‘current’ tree, tree
3 is the ‘other’ one

* kwargs — Additional arguments passed to git-read-tree

Returns New IndexFile instance. It will point to a temporary index location which does not
exist anymore. If you intend to write such a merged Index, supply an alternate file_path
to its ‘write’ method.

Note In the three-way merge case, —aggressive will be specified to automatically resolve more
cases in a commonly correct manner. Specify trivial=True as kwarg to override that.

As the underlying git-read-tree command takes into account the current index, it will be
temporarily moved out of the way to assure there are no unsuspected interferences.

iter_blobs (predicate=<function <lambda>>)
Returns Iterator yielding tuples of Blob objects and stages, tuple(stage, Blob)

Parameters predicate — Function(t) returning True if tuple(stage, Blob) should be yielded
by the iterator. A default filter, the BlobFilter, allows you to yield blobs only if they match
a given list of paths.

merge_tree (*args, **kwargs)
Merge the given rhs treeish into the current index, possibly taking a common base treeish into account.

As opposed to the from_tree_ method, this allows you to use an already existing tree as the left side of
the merge

Parameters
¢ rhs — treeish reference pointing to the ‘other’ side of the merge.

* base - optional treeish reference pointing to the common base of ‘rhs’ and this index
which equals lhs

Returns self (containing the merge and possibly unmerged entries in case of conflicts)

Raises GitCommandError — If there is a merge conflict. The error will be raised at the
first conflicting path. If you want to have proper merge resolution to be done by yourself,
you have to commit the changed index (or make a valid tree from it) and retry with a
three-way index.from_tree call.

move (*args, **kwargs)
Rename/move the items, whereas the last item is considered the destination of the move operation. If the
destination is a file, the first item (of two) must be a file as well. If the destination is a directory, it may
be preceded by one or more directories or files.

The working tree will be affected in non-bare repositories.

Parma items Multiple types of items are supported, please see the ‘remove’ method for ref-
erence.

Parameters

42 Chapter 3. API Reference

GitPython Documentation, Release 2.1.3

* skip_errors —If True, errors such as ones resulting from missing source files will
be skipped.

* kwargs — Additional arguments you would like to pass to git-mv, such as dry_run or

force.

:return:List(tuple(source_path_string, destination_path_string), ...) A list of pairs, containing the
source file moved as well as its actual destination. Relative to the repository root.

Raises ValueError — If only one item was given GitCommandError: If git could not handle
your request

classmethod new (repo, *tree_sha)
Merge the given treeish revisions into a new index which is returned. This method behaves like git-read-
tree —aggressive when doing the merge.

Parameters
* repo — The repository treeish are located in.
* tree_sha — 20 byte or 40 byte tree sha or tree objects

Returns New IndexFile instance. Its path will be undefined. If you intend to write such a
merged Index, supply an alternate file_path to its ‘write’ method.

path
Returns Path to the index file we are representing

remove (*args, **kwargs)
Remove the given items from the index and optionally from the working tree as well.

Parameters
* items — Multiple types of items are supported which may be be freely mixed.

— path string Remove the given path at all stages. If it is a directory, you must spec-
ify the r=True keyword argument to remove all file entries below it. If absolute
paths are given, they will be converted to a path relative to the git repository
directory containing the working tree

The path string may include globs, such as *.c.
— Blob Object Only the path portion is used in this case.

— BaseIndexEntry or compatible type The only relevant information here Yis the
path. The stage is ignored.

* working tree - If True, the entry will also be removed from the working tree,
physically removing the respective file. This may fail if there are uncommited changes
init.

* kwargs — Additional keyword arguments to be passed to git-rm, such as ‘r’ to allow
recursive removal of

Returns List(path_string, ...) list of repository relative paths that have been removed effec-
tively. This is interesting to know in case you have provided a directory or globs. Paths
are relative to the repository.

repo

3.11. Index.Base 43

GitPython Documentation, Release 2.1.3

reset (*args, **kwargs)
Reset the index to reflect the tree at the given commit. This will not adjust our HEAD reference as opposed
to HEAD.reset by default.

Parameters

* commit — Revision, Reference or Commit specifying the commit we should repre-
sent. If you want to specify a tree only, use IndexFile.from_tree and overwrite the
default index.

* working tree -If True, the files in the working tree will reflect the changed index.
If False, the working tree will not be touched Please note that changes to the working
copy will be discarded without warning !

* head - If True, the head will be set to the given commit. This is False by default, but
if True, this method behaves like HEAD.reset.

* paths — if given as an iterable of absolute or repository-relative paths, only these
will be reset to their state at the given commit’ish. The paths need to exist at the
commit, otherwise an exception will be raised.

* kwargs — Additional keyword arguments passed to git-reset

Note: IndexFile.reset, as opposed to HEAD.reset, will not delete anyfiles in order to maintain a consistent
working tree. Instead, it will just checkout the files according to their state in the index. If you want git-
reset like behaviour, use HEAD.reset instead.

Returns self

resolve_blobs (iter_blobs)
Resolve the blobs given in blob iterator. This will effectively remove the index entries of the respective
path at all non-null stages and add the given blob as new stage null blob.

For each path there may only be one blob, otherwise a ValueError will be raised claiming the path is
already at stage 0.

Raises ValueError —if one of the blobs already existed at stage 0
Returns self

Note You will have to write the index manually once you are done, i.e. in-
dex.resolve_blobs(blobs).write()

unmerged_blobs ()

Returns Iterator yielding dict(path : list(tuple(stage, Blob, ...))), being a dictionary associat-
ing a path in the index with a list containing sorted stage/blob pairs

Note Blobs that have been removed in one side simply do not exist in the given stage. L.e.
a file removed on the ‘other’ branch whose entries are at stage 3 will not have a stage 3
entry.

update ()
Reread the contents of our index file, discarding all cached information we might have.

Note This is a possibly dangerious operations as it will discard your changes to index.entries
Returns self

version

44

Chapter 3. API Reference

GitPython Documentation, Release 2.1.3

write (file_path=None, ignore_extension_data=False)
Write the current state to our file path or to the given one

Parameters

e file path —If None, we will write to our stored file path from which we have been
initialized. Otherwise we write to the given file path. Please note that this will change
the file_path of this index to the one you gave.

* ignore_extension_data - If True, the TREE type extension data read in the
index will not be written to disk. NOTE that no extension data is actually written.
Use this if you have altered the index and would like to use git-write-tree afterwards
to create a tree representing your written changes. If this data is present in the writ-
ten index, git-write-tree will instead write the stored/cached tree. Alternatively, use
IndexFile.write_tree() to handle this case automatically

Returns self

write_tree()
Writes this index to a corresponding Tree object into the repository’s object database and return it.

Returns Tree object representing this index

Note The tree will be written even if one or more objects the tree refers to does not yet exist
in the object database. This could happen if you added Entries to the index directly.

Raises
e ValueError — if there are no entries in the cache
* UnmergedEntriesError —

exception git.index.base.CheckoutError (message, failed_files, valid_files, failed_reasons)
Thrown if a file could not be checked out from the index as it contained changes.

The .failed_files attribute contains a list of relative paths that failed to be checked out as they contained changes
that did not exist in the index.

The .failed_reasons attribute contains a string informing about the actual cause of the issue.

The .valid_files attribute contains a list of relative paths to files that were checked out successfully and hence
match the version stored in the index

__init_ (message, failed_files, valid_files, failed_reasons)
__module___ = ‘git.exc’
str_ ()

__weakref
list of weak references to the object (if defined)

Index.Functions

git.index.fun.write_cache (entries, stream, extension_data=None, ShaStreamCls=<class

‘git.util.IndexFileSHA I Writer’>)
Write the cache represented by entries to a stream

Parameters
e entries - sorted list of entries

* stream - stream to wrap into the AdapterStreamCls - it is used for final output.

3.12. Index.Functions 45

GitPython Documentation, Release 2.1.3

* ShaStreamCls — Type to use when writing to the stream. It produces a sha while
writing to it, before the data is passed on to the wrapped stream

* extension_data - any kind of data to write as a trailer, it must begin a 4 byte identi-
fier, followed by its size (4 bytes)

git.index.fun.read_cache (stream)
Read a cache file from the given stream :return: tuple(version, entries_dict, extension_data, content_sha) *
version is the integer version number * entries dict is a dictionary which maps IndexEntry instances to a path at
a stage * extension_data is ** or 4 bytes of type + 4 bytes of size + size bytes * content_sha is a 20 byte sha on
all cache file contents

git.index.fun.write_tree_from_cache (entries, odb, sl, si=0)
Create a tree from the given sorted list of entries and put the respective trees into the given object database

Parameters
* entries - sorted list of IndexEntries
* odb — object database to store the trees in
e si — start index at which we should start creating subtrees
* sl - slice indicating the range we should process on the entries list

Returns tuple(binsha, list(tree_entry, ...)) a tuple of a sha and a list of tree entries being a tuple of
hexsha, mode, name

git.index.fun.entry_key (*entry)
Returns Key suitable to be used for the index.entries dictionary
Parameters entry — One instance of type BaseIndexEntry or the path and the stage

git.index.fun.stat_mode_to_index mode (mode)
Convert the given mode from a stat call to the corresponding index mode and return it

git.index.fun.run_commit_hook (name, index)
Run the commit hook of the given name. Silently ignores hooks that do not exist. :param name: name of hook,
like ‘pre-commit’ :param index: IndexFile instance :raises HookExecutionError:

git.index.fun.hook_path (name, git_dir)

Returns path to the given named hook in the given git repository directory

Index.Types

Module with additional types used by the index

class git.index.typ.BlobFilter (paths)
Predicate to be used by iter_blobs allowing to filter only return blobs which match the given list of directories
or files.

The given paths are given relative to the repository.
__call__ (stage_blob)
__init__ (paths)

Parameters paths — tuple or list of paths which are either pointing to directories or to files
relative to the current repository

__module__ = ‘git.index.typ’

46 Chapter 3. API Reference

GitPython Documentation, Release 2.1.3

__slots___ = ‘paths’
paths

class git.index.typ.BaseIndexEntry
Small Brother of an index entry which can be created to describe changes done to the index in which case plenty
of additional information is not requried.

As the first 4 data members match exactly to the IndexEntry type, methods expecting a BaseIndexEntry can also
handle full IndexEntries even if they use numeric indices for performance reasons.

__dict__ =dict_proxy({‘__module__’: ‘git.index.typ’, ¢__str__’: <function __str__>, ‘binsha’: <property object>, ‘mod
__module___ = ‘git.index.typ’

__repr__ ()

__str__ ()

binsha
binary sha of the blob

flags
Returns flags stored with this entry
classmethod £rom_blob (blob, stage=0)
Returns Fully equipped BaseIndexEntry at the given stage

hexsha
hex version of our sha

mode
File Mode, compatible to stat module constants

path
Returns our path relative to the repository working tree root

stage
Stage of the entry, either:

() = default stage
] = stage before a merge or common ancestor entry in case of a 3 way merge
*2 = stage of entries from the ‘left’ side of the merge
3 = stage of entries from the right side of the merge
Note For more information, see http://www.kernel.org/pub/software/scm/git/docs/
git-read-tree.html
to_blob (repo)
Returns Blob using the information of this index entry

class git.index.typ.IndexEntry
Allows convenient access to IndexEntry data without completely unpacking it.

Attributes usully accessed often are cached in the tuple whereas others are unpacked on demand.
See the properties for a mapping between names and tuple indices.

_ _module__ = ‘git.index.typ’

3.13. Index.Types 47

http://www.kernel.org/pub/software/scm/git/docs/git-read-tree.html
http://www.kernel.org/pub/software/scm/git/docs/git-read-tree.html

GitPython Documentation, Release 2.1.3

ctime
Returns Tuple(int_time_seconds_since_epoch, int_nano_seconds) of the file’s creation time

dev
Device ID

classmethod £rom_base (base)

Returns Minimal entry as created from the given BaselndexEntry instance. Missing values
will be set to null-like values

Parameters base — Instance of type BaselndexEntry
classmethod £rom_blob (blob, stage=0)
Returns Minimal entry resembling the given blob object
gid
Group ID

inode
Inode ID

mtime
See ctime property, but returns modification time

size
Returns Uncompressed size of the blob

uid
User ID

Index.Util

Module containing index utilities

class git.index.util.TemporaryFileSwap (file_path)

Utility class moving a file to a temporary location within the same directory and moving it back on to where on
object deletion.

del ()

__init__ (file_path)

__module___ = ‘git.index.util’
__slots__ =(‘file_path’, ‘tmp_file_path’)
file_path

tmp_file_path

git.index.util.post_clear_cache (func)
Decorator for functions that alter the index using the git command. This would invalidate our possibly existing
entries dictionary which is why it must be deleted to allow it to be lazily reread later.
Note This decorator will not be required once all functions are implemented natively which in fact
is possible, but probably not feasible performance wise.
git.index.util.default_index (func)
Decorator assuring the wrapped method may only run if we are the default repository index. This is as we rely
on git commands that operate on that index only.
48 Chapter 3. API Reference

GitPython Documentation, Release 2.1.3

git.

index.util.git_working dir (func)
Decorator which changes the current working dir to the one of the git repository in order to assure relative paths
are handled correctly

GitCmd

class git.cmd.Git (working_dir=None)

The Git class manages communication with the Git binary.

It provides a convenient interface to calling the Git binary, such as in:

g = Git(git_dir)
g.init () # calls 'git init' program
rval = g.ls_files() # calls 'git ls-files' program

Debugging Set the GIT_PYTHON_TRACE environment variable print each invocation of the command to
stdout. Set its value to ‘full’ to see details about the returned values.

class AutoInterrupt (proc, args)
Kill/Interrupt the stored process instance once this instance goes out of scope. It is used to prevent pro-
cesses piling up in case iterators stop reading. Besides all attributes are wired through to the contained
process object.
The wait method was overridden to perform automatic status code checking and possibly raise.
del ()

__getattr__ (attr)

__init__ (proc, args)

__module__ = ‘git.cmd’
__slots__ =(‘proc’, ‘args’)
args

proc

wait (stderr="")
Wait for the process and return its status code.

Parameters stderr — Previously read value of stderr, in case stderr is already closed.
Warn may deadlock if output or error pipes are used and not handled separately.
Raises GitCommandError — if the return status is not O

class Git .CatFileContentStream (size, stream)
Object representing a sized read-only stream returning the contents of an object. It behaves like a stream,
but counts the data read and simulates an empty stream once our sized content region is empty. If not all
data is read to the end of the objects’s lifetime, we read the rest to assure the underlying stream continues
to work

del ()
__init_ (size, stream)
__diter ()

__module__ = ‘git.cmd’

3.15.

GitCmd 49

GitPython Documentation, Release 2.1.3

_ _slots__ = (‘_stream’, ‘_nbr’, ¢_size’)

next ()

read (size=-1)

readline (size=-1)

readlines (size=-1)
Git.GIT_PYTHON_GIT_ EXECUTABLE = ‘git’
Git .GIT_PYTHON_TRACE = False
Git .USE_SHELL = False

Git.__call__ (**kwargs)
Specify command line options to the git executable for a subcommand call

Parameters kwargs — is a dict of keyword arguments. these arguments are passed as in
_call_process but will be passed to the git command rather than the subcommand.

Examples:: git(work_tree="/tmp’).difftool()

Git.__getattr__ (name)
A convenience method as it allows to call the command as if it was an object. :return: Callable object that
will execute call _call_process with your arguments.

Git.__getstate__ ()

Git.__init__ (working_dir=None)
Initialize this instance with:

Parameters working_dir — Git directory we should work in. If None, we always work
in the current directory as returned by os.getcwd(). It is meant to be the working tree
directory if available, or the .git directory in case of bare repositories.

Git.__module__ = ‘git.cmd’

Git.___setstate_ (d)

Git.__slots__ = (‘_working_dir’, ‘cat_file_all’, ‘cat_file_header’, ‘_version_info’, ‘_git_options’, ‘_persistent_git_opti
Git.cat_file_all

Git.cat_file header

Git.clear_ cache ()
Clear all kinds of internal caches to release resources.

Currently persistent commands will be interrupted.
Returns self

Git.custom_environment (*args, **kwds)
A context manager around the above update_environment method to restore the environment back
to its previous state after operation.

Examples:

with self.custom_environment (GIT_SSH='/bin/ssh_wrapper'):
repo.remotes.origin. fetch ()

Parameters kwargs — see update_environment

50 Chapter 3. API Reference

GitPython Documentation, Release 2.1.3

Git .environment ()

Git .execute (command, istream=None, with_extended_output=False, with_exceptions=True,
as_process=False, output_stream=None, stdout_as_string=True,
kill_after_timeout=None, with_stdout=True, universal_newlines=False, shell=None,

*ksubprocess_kwargs)
Handles executing the command on the shell and consumes and returns the returned information (stdout)

Parameters

* command — The command argument list to execute. It should be a string, or a se-
quence of program arguments. The program to execute is the first item in the args
sequence or string.

¢ istream - Standard input filehandle passed to subprocess.Popen.
* with_extended_output — Whether to return a (status, stdout, stderr) tuple.

* with_exceptions — Whether to raise an exception when git returns a non-zero
status.

* as_process — Whether to return the created process instance directly from
which streams can be read on demand. This will render with_extended_output and
with_exceptions ineffective - the caller will have to deal with the details himself. It
is important to note that the process will be placed into an Autolnterrupt wrapper
that will interrupt the process once it goes out of scope. If you use the command in
iterators, you should pass the whole process instance instead of a single stream.

* output_stream- If set to a file-like object, data produced by the git command will
be output to the given stream directly. This feature only has any effect if as_process
is False. Processes will always be created with a pipe due to issues with subprocess.
This merely is a workaround as data will be copied from the output pipe to the given

output stream directly. Judging from the implementation, you shouldn’t use this flag
!

* stdout_as_string - if False, the commands standard output will be bytes. Oth-
erwise, it will be decoded into a string using the default encoding (usually utf-8). The
latter can fail, if the output contains binary data.

* subprocess_kwargs — Keyword arguments to be passed to subprocess.Popen.
Please note that some of the valid kwargs are already set by this method, the ones you
specify may not be the same ones.

* with_stdout - If True, default True, we open stdout on the created process

* universal_newlines — if True, pipes will be opened as text, and lines are split
at all known line endings.

* shell — Whether to invoke commands through a shell (see Popen(..., shell=True)).
It overrides USE_SHELL if it is not None.

* kill_after_ timeout — To specify a timeout in seconds for the git command,
after which the process should be killed. This will have no effect if as_process is set
to True. It is set to None by default and will let the process run until the timeout
is explicitly specified. This feature is not supported on Windows. It’s also worth
noting that kill_after_timeout uses SIGKILL, which can have negative side effects on
a repository. For example, stale locks in case of git gc could render the repository
incapable of accepting changes until the lock is manually removed.

Returns

* str(output) if extended_output = False (Default)

3.15. GitCmd 51

GitPython Documentation, Release 2.1.3

* tuple(int(status), str(stdout), str(stderr)) if extended_output = True

if ouput_stream is True, the stdout value will be your output stream: * output_stream if
extended_output = False * tuple(int(status), output_stream, str(stderr)) if extended_output
= True

Note git is executed with LC_MESSAGES="C" to ensure consistent output regardless of
system language.

Raises GitCommandError —

Note If you add additional keyword arguments to the signature of this method, you must
update the execute_kwargs tuple housed in this module.

Git.get_object_data (ref)
As get_object_header, but returns object data as well :return: (hexsha, type_string,
size_as_int,data_string) :note: not threadsafe

Git.get_object_header (ref)
Use this method to quickly examine the type and size of the object behind the given ref.

Note The method will only suffer from the costs of command invocation once and reuses the
command in subsequent calls.

Returns (hexsha, type_string, size_as_int)
Git.git_exec_name = ‘git’
classmethod Git .is_cygwin ()
Git .max_chunk_size =8192
classmethod Git .polish_url (url, is_cygwin=None)

Git.set_persistent_git_options (**kwargs)
Specify command line options to the git executable for subsequent subcommand calls

Parameters kwargs — is a dict of keyword arguments. these arguments are passed as in
_call_process but will be passed to the git command rather than the subcommand.

Git.stream_object_data (ref)
As get_object_header, but returns the data as a stream

Returns (hexsha, type_string, size_as_int, stream)

Note This method is not threadsafe, you need one independent Command instance per thread
to be safe !

Git.transform kwarg (name, value, split_single_char_options)

Git.transform_kwargs (split_single_char_options=True, **kwargs)
Transforms Python style kwargs into git command line options.

Git .update_environment (**kwargs)
Set environment variables for future git invocations. Return all changed values in a format that can be
passed back into this function to revert the changes:

Examples:

old_env = self.update_environment (PWD="'/tmp")
self.update_environment (x+xold_env)

Parameters kwargs — environment variables to use for git processes

Returns dict that maps environment variables to their old values

52

Chapter 3. API Reference

GitPython Documentation, Release 2.1.3

Git.version_info

Returns tuple(int, int, int, int) tuple with integers representing the major, minor and additional
version numbers as parsed from git version. This value is generated on demand and is
cached

Git.working dir

Returns Git directory we are working on

Config

Module containing module parser implementation able to properly read and write configuration files

git.config.GitConfigParser
aliasof write

class git.config.SectionConstraint (config, section)
Constrains a ConfigParser to only option commands which are constrained to always use the section we have
been initialized with.

It supports all ConfigParser methods that operate on an option.
Note If used as a context manager, will release the wrapped ConfigParser.
del ()
__enter_ ()
__exit__ (exception_type, exception_value, traceback)

__getattr__ (attr)

__init__ (config, section)

__module__ = ‘git.config’
__slots___ =(‘_config’, ‘_section_name’)
config

return: Configparser instance we constrain

release ()
Equivalent to GitConfigParser.release(), which is called on our underlying parser instance

Diff

class git.diff.Diffable
Common interface for all object that can be diffed against another object of compatible type.

Note Subclasses require a repo member as it is the case for Object instances, for practical reasons
we do not derive from Object.

class Index

__dict__ =dict_proxy({‘__dict__’: <attribute ‘__dict__’ of ‘Index’ objects>, ‘__module__’: ‘git.diff’, ‘__weakref

__module___ = ‘git.diff’

3.16. Config 53

GitPython Documentation, Release 2.1.3

__ _weakref
list of weak references to the object (if defined)

Diffable._ _module__ = ‘git.diff’
Diffable._ slots_ =()

Diffable.diff (other=<class ‘git.diff.Index’>, paths=None, create_patch=False, **kwargs)
Creates diffs between two items being trees, trees and index or an index and the working tree. It will
detect renames automatically.

Parameters

* other —Is the item to compare us with. If None, we will be compared to the working
tree. If Treeish, it will be compared against the respective tree If Index (type), it
will be compared against the index. If git NULL_TREE, it will compare against the
empty tree. It defaults to Index to assure the method will not by-default fail on bare
repositories.

* paths —is a list of paths or a single path to limit the diff to. It will only include at
least one of the given path or paths.

* create_patch - If True, the returned Diff contains a detailed patch that if applied
makes the self to other. Patches are somewhat costly as blobs have to be read and
diffed.

* kwargs — Additional arguments passed to git-diff, such as R=True to swap both sides
of the diff.

Returns git.DiffIndex

Note On a bare repository, ‘other’ needs to be provided as Index or as as Tree/Commit, or a
git command error will occur

class git .diff.DiffIndex
Implements an Index for diffs, allowing a list of Diffs to be queried by the diff properties.

The class improves the diff handling convenience
__dict__ =dict_proxy({‘iter_change_type’: <function iter_change_type>, ‘*__module__’: ‘git.diff’, ‘change_type’: (‘A’,
__module___ = ‘git.diff’

__weakref
list of weak references to the object (if defined)

change_type = (‘A’, ‘D’, ‘R’, ‘M’)
iter_change_type (change_type)
Returns iterator yielding Diff instances that match the given change_type
Parameters change_type — Member of DiffIndex.change_type, namely:
e ‘A’ for added paths
* ‘D’ for deleted paths
* ‘R’ for renamed paths
e ‘M’ for paths with modified data

class git .diff .Diff (repo, a_rawpath, b_rawpath, a_blob_id, b_blob_id, a_mode, b_mode, new_file,
deleted_file, raw_rename_from, raw_rename_to, diff, change_type)
A Diff contains diff information between two Trees.

It contains two sides a and b of the diff, members are prefixed with “a” and “b” respectively to inidcate that.

54 Chapter 3. API Reference

GitPython Documentation, Release 2.1.3

Diffs keep information about the changed blob objects, the file mode, renames, deletions and new files.
There are a few cases where None has to be expected as member variable value:

New File:

a_mode is None
a_blob is None
a_path is None

Deleted File:

b_mode is None
b_blob is None
b_path is None

Working Tree Blobs

When comparing to working trees, the working tree blob will have a null hexsha as a corresponding
object does not yet exist. The mode will be null as well. But the path will be available though. If it
is listed in a diff the working tree version of the file must be different to the version in the index or
tree, and hence has been modified.

NULL_BIN_SHA = “‘x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x 00\x00\x 00’
NULL_HEX_SHA = ‘00’

__eq__ (other)

__hash__ ()

__init__ (repo, a_rawpath, b_rawpath, a_blob_id, b_blob_id, a_mode, b_mode, new_file,
deleted_file, raw_rename_from, raw_rename_to, diff, change_type)

__module___ = ‘git.diff’

__ne__ (other)

__slots__ =(‘a_blob’, ‘b_blob’, ‘a_mode’, ‘b_mode’, ‘a_rawpath’, ‘b_rawpath’, ‘new_file’, ‘deleted_file’, ‘raw_renam
__str__ ()
a_blob
a_mode
a_path
a_rawpath
b_blob

b _mode
b_path
b_rawpath
change_type
deleted file
diff
new_file

raw_rename_from

3.17. Diff 55

GitPython Documentation, Release 2.1.3

raw_rename_to
re_header = <_sre.SRE_Pattern object at 0x1d614d0>
rename_from
rename_to
renamed
Returns True if the blob of our diff has been renamed
Note This property is deprecated, please use renamed_file instead.
renamed_file
Returns True if the blob of our diff has been renamed

Note This property is deprecated, please use renamed_file instead.

Exceptions

Module containing all exceptions thrown throughout the git package,

exception git .exc.CacheError
Base for all errors related to the git index, which is called cache internally

__module___ = ‘git.exc’

__weakref
list of weak references to the object (if defined)

exception git .exc.CheckoutError (message, failed_files, valid_files, failed_reasons)
Thrown if a file could not be checked out from the index as it contained changes.

The .failed_files attribute contains a list of relative paths that failed to be checked out as they contained changes
that did not exist in the index.

The .failed_reasons attribute contains a string informing about the actual cause of the issue.

The .valid_files attribute contains a list of relative paths to files that were checked out successfully and hence
match the version stored in the index

__init__ (message, failed_files, valid_files, failed_reasons)
__module___ = ‘git.exc’
str_ ()

__weakref
list of weak references to the object (if defined)

exception git .exc.CommandError (command, status=None, stderr=None, stdout=None)
Base class for exceptions thrown at every stage of Popen() execution.

Parameters command — A non-empty list of argv comprising the command-line.
__init__ (command, status=None, stderr=None, stdout=None)
__module___ = ‘git.exc’
__unicode__ ()

_ _weakref
list of weak references to the object (if defined)

56 Chapter 3. API Reference

GitPython Documentation, Release 2.1.3

exception git .exc.GitCommandError (command, status, stderr=None, stdout=None)
Thrown if execution of the git command fails with non-zero status code.

__init_ (command, status, stderr=None, stdout=None)
_ _module__ = ‘git.exc’

exception git .exc.GitCommandNotFound (command, cause)
Thrown if we cannot find the git executable in the PATH or at the path given by the
GIT_PYTHON_GIT_EXECUTABLE environment variable

__init_ (command, cause)
__module___ = ‘git.exc’

exception git .exc.HookExecutionError (command, status, stderr=None, stdout=None)
Thrown if a hook exits with a non-zero exit code. It provides access to the exit code and the string returned via
standard output

__init_ (command, status, stderr=None, stdout=None)
__module___ = ‘git.exc’

exception git .exc.InvalidGitRepositoryError
Thrown if the given repository appears to have an invalid format.

__module___ = ‘git.exc’

__weakref
list of weak references to the object (if defined)

exception git .exc.NoSuchPathError
Thrown if a path could not be access by the system.

__module___ = ‘git.exc’

__weakref
list of weak references to the object (if defined)

exception git .exc.RepositoryDirtyError (repo, message)
Thrown whenever an operation on a repository fails as it has uncommited changes that would be overwritten

__init__ (repo, message)
_ _module__ = ‘git.exc’
str_ ()

__weakref
list of weak references to the object (if defined)

exception git .exc.UnmergedEntriesError
Thrown if an operation cannot proceed as there are still unmerged entries in the cache

__module___ = ‘git.exc’

exception git .exc.WorkTreeRepositoryUnsupported
Thrown to indicate we can’t handle work tree repositories

__module__ = ‘git.exc’

3.18. Exceptions 57

GitPython Documentation, Release 2.1.3

Refs.symbolic

class git.refs.symbolic.SymbolicReference (repo, path)
Represents a special case of a reference such that this reference is symbolic. It does not point to a specific
commit, but to another Head, which itself specifies a commit.

A typical example for a symbolic reference is HEAD.
__eq__ (other)

__hash__ ()

__init__ (repo, path)

__module___ = ‘git.refs.symbolic’

__ne__ (other)

__repr_ ()

__slots__ = (‘repo’, ‘path’)

__str_ ()

abspath

commit
Query or set commits directly

classmethod create (repo, path, reference="HEAD’, force=False, logmsg=None)
Create a new symbolic reference, hence a reference pointing to another reference.

Parameters
* repo — Repository to create the reference in

* path — full path at which the new symbolic reference is supposed to be created at,
ie. “NEW_HEAD” or “symrefs/my_new_symref”

* reference — The reference to which the new symbolic reference should point to.
If it is a commit’ish, the symbolic ref will be detached.

» force - if True, force creation even if a symbolic reference with that name already
exists. Raise OSError otherwise

* logmsg — If not None, the message to append to the reflog. Otherwise no reflog
entry is written.

Returns Newly created symbolic Reference

Raises OSError — If a (Symbolic)Reference with the same name but different contents al-
ready exists.

Note This does not alter the current HEAD, index or Working Tree

classmethod delete (repo, path)
Delete the reference at the given path

Parameters
* repo — Repository to delete the reference from

e path — Short or full path pointing to the reference, i.e. refs/myreference or just
“myreference”, hence ‘refs/” is implied. Alternatively the symbolic reference to be
deleted

58 Chapter 3. API Reference

GitPython Documentation, Release 2.1.3

classmethod dereference_recursive (repo, ref_path)

Returns hexsha stored in the reference at the given ref_path, recursively dereferencing all
intermediate references as required

Parameters repo — the repository containing the reference at ref_path
classmethod £rom_path (repo, path)
Parameters path — full .git-directory-relative path name to the Reference to instantiate
Note use to_full_path() if you only have a partial path of a known Reference Type
Returns Instance of type Reference, Head, or Tag depending on the given path
is_detached

Returns True if we are a detached reference, hence we point to a specific commit instead to
another reference

is remote ()
Returns True if this symbolic reference points to a remote branch
is_wvalid()

Returns True if the reference is valid, hence it can be read and points to a valid object or
reference.

classmethod iter_items (repo, common_path=None)
Find all refs in the repository

Parameters
* repo —is the Repo

e common_path — Optional keyword argument to the path which is to be shared by
all returned Ref objects. Defaults to class specific portion if None assuring that only
refs suitable for the actual class are returned.

Returns

git.SymbolicReferencel[], each of them is guaranteed to be a symbolic ref which is not
detached and pointing to a valid ref

List is lexicographically sorted The returned objects represent actual subclasses, such as
Head or TagReference

log ()

Returns ReflLog for this reference. Its last entry reflects the latest change applied to this
reference

Note: As the log is parsed every time, its recommended to cache it for use instead of calling this method
repeatedly. It should be considered read-only.

log_append (oldbinsha, message, newbinsha=None)
Append a logentry to the logfile of this ref

Parameters
* oldbinsha - binary sha this ref used to point to

* message — A message describing the change

3.19. Refs.symbolic 59

GitPython Documentation, Release 2.1.3

* newbinsha — The sha the ref points to now. If None, our current commit sha will
be used

Returns added RefLogEntry instance
log_entry (index)
Returns RefLogEntry at the given index

Parameters index — python list compatible positive or negative index

Note: This method must read part of the reflog during execution, hence it should be used sparringly, or
only if you need just one index. In that case, it will be faster than the 1og () method

name
Returns In case of symbolic references, the shortest assumable name is the path itself.
object
Return the object our ref currently refers to
path
ref

Returns the Reference we point to

reference
Returns the Reference we point to

rename (new_path, force=False)
Rename self to a new path

Parameters

* new_path - Either a simple name or a full path, i.e. new_name or fea-
tures/new_name. The prefix refs/ is implied for references and will be set as needed.
In case this is a symbolic ref, there is no implied prefix

* force - If True, the rename will succeed even if a head with the target name already
exists. It will be overwritten in that case

Returns self
Raises OSError — In case a file at path but a different contents already exists
repo

set_commit (commit, logmsg=None)
As set_object, but restricts the type of object to be a Commit

Raises ValueError — If commit is not a Commit object or doesn’t point to a commit
Returns self

set_object (object, logmsg=None)
Set the object we point to, possibly dereference our symbolic reference first. If the reference does not
exist, it will be created

Parameters

* object — a refspec, a SymbolicReference or an Object instance. SymbolicRefer-
ences will be dereferenced beforehand to obtain the object they point to

60 Chapter 3. API Reference

GitPython Documentation, Release 2.1.3

* logmsg — If not None, the message will be used in the reflog entry to be written.
Otherwise the reflog is not altered

Note plain SymbolicReferences may not actually point to objects by convention
Returns self

set_reference (ref, logmsg=None)
Set ourselves to the given ref. It will stay a symbol if the ref is a Reference. Otherwise an Object, given as

Object instance or refspec, is assumed and if valid, will be set which effectively detaches the refererence
if it was a purely symbolic one.

Parameters

* ref — SymbolicReference instance, Object instance or refspec string Only if the ref is
a SymbolicRef instance, we will point to it. Everything else is dereferenced to obtain
the actual object.

* logmsg — If set to a string, the message will be used in the reflog. Otherwise, a reflog
entry is not written for the changed reference. The previous commit of the entry will
be the commit we point to now.

See also: log_append()
Returns self

Note This symbolic reference will not be dereferenced. For that, see set_object (.. .)

classmethod to_full_path (path)

Returns string with a full repository-relative path which can be used to initialize a Reference
instance, for instance by using Reference. from_path

Refs.reference

class git.refs.reference.Reference (repo, path, check_path=True)

Represents a named reference to any object. Subclasses may apply restrictions though, i.e. Heads can only point
to commits.

__init__ (repo, path, check_path=True)
Initialize this instance :param repo: Our parent repository

Parameters

e path — Path relative to the .git/ directory pointing to the ref in question, i.e.
refs/heads/master

e check_path - if False, you can provide any path. Otherwise the path must start
with the default path prefix of this type.

__module__ = ‘git.refs.reference’
__slots_ =()
str_ ()

classmethod iter_items (repo, common_path=None)
Equivalent to SymbolicReference.iter_items, but will return non-detached references as well.

name

Returns (shortest) Name of this reference - it may contain path components

3.20. Refs.reference 61

GitPython Documentation, Release 2.1.3

remote_head
remote_name

set_object (object, logmsg=None)
Special version which checks if the head-log needs an update as well :return: self

Refs.head

class git.refs.head.HEAD (repo, path="HEAD’)
Special case of a Symbolic Reference as it represents the repository’s HEAD reference.

__init__ (repo, path="HEAD’)
__module___ = ‘git.refs.head’
__slots_ =()

orig_ head()

Returns SymbolicReference pointing at the ORIG_HEAD, which is maintained to contain
the previous value of HEAD

reset (commit="HEAD’, index=True, working_tree=False, paths=None, **kwargs)
Reset our HEAD to the given commit optionally synchronizing the index and working tree. The reference
we refer to will be set to commit as well.

Parameters

e commit — Commit object, Reference Object or string identifying a revision we
should reset HEAD to.

* index — If True, the index will be set to match the given commit. Otherwise it will
not be touched.

* working_ tree — If True, the working tree will be forcefully adjusted to match
the given commit, possibly overwriting uncommitted changes without warning. If
working_tree is True, index must be true as well

* paths — Single path or list of paths relative to the git root directory that are to be
reset. This allows to partially reset individual files.

* kwargs — Additional arguments passed to git-reset.
Returns self

class git.refs.head.Head (repo, path, check_path=True)
A Head is a named reference to a Commit. Every Head instance contains a name and a Commit object.

Examples:

>>> repo = Repo ("/path/to/repo")
>>> head = repo.heads[0]

>>> head.name
'master’

>>> head.commit
<git.Commit "1c09f116cbc2cb4100fb6935bbl62daad723£455">

>>> head.commit.hexsha
'1c09f116cbc2cb4100fb6935bbl62daad723£455"

62 Chapter 3. API Reference

GitPython Documentation, Release 2.1.3

[]

__dict__ =dict_proxy({‘rename’: <function rename>, ‘__module__’: ‘git.refs.head’, ‘_common_path_default’: ‘refs/he
__module___ = ‘git.refs.head’
_ _weakref

list of weak references to the object (if defined)

checkout (force=False, **kwargs)
Checkout this head by setting the HEAD to this reference, by updating the index to reflect the tree we
point to and by updating the working tree to reflect the latest index.

The command will fail if changed working tree files would be overwritten.
Parameters

* force — If True, changes to the index and the working tree will be discarded. If
False, GitCommandError will be raised in that situation.

* kwargs — Additional keyword arguments to be passed to git checkout, i.e.
b="new_branch’ to create a new branch at the given spot.

Returns The active branch after the checkout operation, usually self unless a new branch has
been created. If there is no active branch, as the HEAD is now detached, the HEAD
reference will be returned instead.

Note By default it is only allowed to checkout heads - everything else will leave the HEAD
detached which is allowed and possible, but remains a special state that some tools might
not be able to handle.

config_reader ()

Returns A configuration parser instance constrained to only read this instance’s values
config writer ()

Returns A configuration writer instance with read-and write access to options of this head

classmethod delete (repo, *heads, **kwargs)
Delete the given heads

Parameters force — If True, the heads will be deleted even if they are not yet merged into
the main development stream. Default False

k_config remote = ‘remote’
k_config remote_ref = ‘merge’

rename (new_path, force=False)
Rename self to a new path

Parameters

* new_path — Fither a simple name or a path, i.e. new_name or features/new_name.
The prefix refs/heads is implied

e force - If True, the rename will succeed even if a head with the target name already
exists.

Returns self
Note respects the ref log as git commands are used

set_tracking_branch (remote_reference)

3.21. Refs.head 63

GitPython Documentation, Release 2.1.3

Configure this branch to track the given remote reference. This will alter this branch’s configura-
tion accordingly.

Parameters remote_reference — The remote reference to track or None to untrack any
references

Returns self

tracking branch ()

Returns The remote_reference we are tracking, or None if we are not a tracking branch

Refs.tag

class git.refs.tag.TagReference (repo, path, check_path=True)
Class representing a lightweight tag reference which either points to a commit ,a tag object or any other object.
In the latter case additional information, like the signature or the tag-creator, is available.

This tag object will always point to a commit object, but may carry additional information in a tag object:

tagref = TagReference.list_items (repo) [0]
print (tagref.commit .message)
if tagref.tag is not None:

print (tagref.tag.message)

__module___ = ‘git.refs.tag’
__slots_ =)
commit
Returns Commit object the tag ref points to
Raises ValueError — if the tag points to a tree or blob

classmethod create (repo, path, ref="HEAD’, message=None, force=False, **kwargs)
Create a new tag reference.

Parameters
e path — The name of the tag, i.e. 1.0 or releases/1.0. The prefix refs/tags is implied
» ref — A reference to the object you want to tag. It can be a commit, tree or blob.

* message — If not None, the message will be used in your tag object. This will also
create an additional tag object that allows to obtain that information, i.e.:

tagref.tag.message

» force - If True, to force creation of a tag even though that tag already exists.
* kwargs — Additional keyword arguments to be passed to git-tag
Returns A new TagReference

classmethod delete (repo, *tags)
Delete the given existing tag or tags

object

Returns The object our ref currently refers to. Refs can be cached, they will always point to
the actual object as it gets re-created on each query

64 Chapter 3. API Reference

GitPython Documentation, Release 2.1.3

tag
Returns Tag object this tag ref points to or None in case we are a light weight tag

git.refs.tag.Tag
alias of TagReference

Refs.remote

class git.refs.remote.RemoteReference (repo, path, check_path=True)
Represents a reference pointing to a remote head.

__module___ = ‘git.refs.remote’

classmethod create (*args, **kwargs)
Used to disable this method

classmethod delete (repo, *refs, **kwargs)
Delete the given remote references

Note kwargs are given for comparability with the base class method as we should not narrow
the signature.

classmethod iter_items (repo, common_path=None, remote=None)
Iterate remote references, and if given, constrain them to the given remote

Refs.log

class git.refs.log.RefLog (filepath=None)
A reflog contains reflog entries, each of which defines a certain state of the head in question. Custom query
methods allow to retrieve log entries by date or by other criteria.

Reflog entries are orded, the first added entry is first in the list, the last entry, i.e. the last change of the head or
reference, is last in the list.

__init__ (filepath=None)
Initialize this instance with an optional filepath, from which we will initialize our data. The path is also
used to write changes back using the write() method

__module___ = ‘git.refs.log’
static __new___ (filepath=None)
_ slots__ =(‘_path’,)

classmethod append_entry (config_reader, filepath, oldbinsha, newbinsha, message)
Append a new log entry to the revlog at filepath.

Parameters

* config_reader - configuration reader of the repository - used to obtain user in-
formation. May also be an Actor instance identifying the committer directly. May
also be None

e filepath — full path to the log file
* oldbinsha — binary sha of the previous commit

* newbinsha — binary sha of the current commit

3.23. Refs.remote 65

GitPython Documentation, Release 2.1.3

* message — message describing the change to the reference

* write — If True, the changes will be written right away. Otherwise the change will
not be written

Returns RefLogEntry objects which was appended to the log

Note As we are append-only, concurrent access is not a problem as we do not interfere with
readers.

classmethod entry_at (filepath, index)
Returns RefLogEntry at the given index
Parameters
* filepath — full path to the index file from which to read the entry

* index — python list compatible index, i.e. it may be negative to specifiy an entry
counted from the end of the list

Raises IndexError — If the entry didn’t exist

Note: This method is faster as it only parses the entry at index, skipping all other lines. Nonetheless, the
whole file has to be read if the index is negative

classmethod from_file (filepath)
Returns a new RefLLog instance containing all entries from the reflog at the given filepath
Parameters filepath — path to reflog
Raises ValueError - If the file could not be read or was corrupted in some way
classmethod iter_entries (stream)

Returns Iterator yielding RefLogEntry instances, one for each line read sfrom the given
stream.

Parameters stream - file-like object containing the revlog in its native format or basestring
instance pointing to a file to read

classmethod path (ref)

Returns string to absolute path at which the reflog of the given ref instance would be found.
The path is not guaranteed to point to a valid file though.

Parameters ref — SymbolicReference instance

to_f£file (filepath)
Write the contents of the reflog instance to a file at the given filepath. :param filepath: path to file, parent
directories are assumed to exist

write ()
Write this instance’s data to the file we are originating from :return: self

class git.refs.log.RefLogEntry
Named tuple allowing easy access to the revlog data fields

__module___ = ‘git.refs.log’

__repr__ ()
Representation of ourselves in git reflog format

__slots_ =()

66 Chapter 3. API Reference

GitPython Documentation, Release 2.1.3

actor
Actor instance, providing access

format ()
Returns a string suitable to be placed in a reflog file
classmethod £from_1line (line)
Returns New RefLogEntry instance from the given revlog line.
Parameters line - line bytes without trailing newline
Raises ValueError - If line could not be parsed

message
Message describing the operation that acted on the reference

classmethod new (oldhexsha, newhexsha, actor, time, tz_offset, message)
Returns New instance of a RefLogEntry

newhexsha
The hexsha to the commit the ref now points to, after the change

oldhexsha
The hexsha to the commit the ref pointed to before the change

time
time as tuple:

*[0] = int(time)

¢[1] = int(timezone_offset) in time.altzone format

Remote

class git . remote.RemoteProgress
Handler providing an interface to parse progress information emitted by git-push and git-fetch and to dispatch
callbacks allowing subclasses to react to the progress.

BEGIN=1
CHECKING_OUT = 256
COMPRESSING = 8
COUNTING = 4
DONE_TOKEN = ‘done.’
END =2
FINDING_SOURCES = 128
OP_MASK = -4
RECEIVING = 32
RESOLVING = 64
STAGE_MASK =3
TOKEN_SEPARATOR = ¢, ¢

WRITING = 16

3.25. Remote 67

GitPython Documentation, Release 2.1.3

__init_ ()
__module__ = ‘gitutil’
__slots__ = (‘_cur_line’, ‘_seen_ops’, ‘error_lines’, ‘other_lines’)

error_lines

line_dropped (line)
Called whenever a line could not be understood and was therefore dropped.

new_message_handler ()

Returns a progress handler suitable for handle_process_output(), passing lines on to this
Progress handler in a suitable format

other_lines
re_op_absolute = <_sre.SRE_Pattern object>
re_op_relative = <_sre.SRE_Pattern object at 0x1d14e40>

update (op_code, cur_count, max_count=None, message="")
Called whenever the progress changes

Parameters
* op_code - Integer allowing to be compared against Operation IDs and stage IDs.

Stage IDs are BEGIN and END. BEGIN will only be set once for each Operation ID
as well as END. It may be that BEGIN and END are set at once in case only one
progress message was emitted due to the speed of the operation. Between BEGIN
and END, none of these flags will be set

Operation IDs are all held within the OP_MASK. Only one Operation ID will be
active per call.

¢ cur_count — Current absolute count of items

* max_count — The maximum count of items we expect. It may be None in case there
is no maximum number of items or if it is (yet) unknown.

* message — In case of the “‘WRITING’ operation, it contains the amount of bytes
transferred. It may possibly be used for other purposes as well.

You may read the contents of the current line in self._cur_line

x=8

class git . remote.PushInfo (flags, local_ref, remote_ref string, remote, old_commit=None, sum-

¢

mary="")
Carries information about the result of a push operation of a single head:

info = remote.push() [0]
info.flags # bitflags providing more information about the result
info.local_ref # Reference pointing to the local reference that was pushed

It is None if the ref was deleted.

info.remote_ref_string # path to the remote reference located on the remote side
info.remote_ref # Remote Reference on the local side corresponding to

the remote_ref string. It can be a TagReference as well.
info.old_commit # commit at which the remote_ ref was standing before we pushed

it to local_ref.commit. Will be None if an error was indicated
info.summary # summary line providing human readable english text about the,
—push

68

Chapter 3. API Reference

GitPython Documentation, Release 2.1.3

DELETED = 64

ERROR = 1024

FAST FORWARD = 256
FORCED_UPDATE = 128
NEW_HEAD = 2
NEW_TAG =1
NO_MATCH = 4
REJECTED = §
REMOTE_FAILURE = 32
REMOTE_REJECTED = 16
UP_TO_DATE = 512

__init__ (flags, local_ref, remote_ref_string, remote, old_commit=None, summary="")
Initialize a new instance

__module__ = ‘git.remote’
__slots__ = (‘local_ref’, ‘remote_ref string’, ‘flags’, ‘°_old_commit_sha’, ‘¢_remote’, ‘summary’)
flags

local_ref
old _commit
remote_ref

Returns Remote Reference or TagReference in the local repository corresponding to the re-
mote_ref_string kept in this instance.

remote_ref string
summary
x=10

class git . remote.FetchInfo (ref, flags, note="", old_commit=None, remote_ref_path=None)
Carries information about the results of a fetch operation of a single head:

info = remote.fetch
info.ref

() [0]

Symbolic Reference or RemoteReference to the changed
remote head or FETCH_HEAD

info.flags # additional flags to be & with enumeration members,
i.e. info.flags & info.REJECTED

is 0 if ref is SymbolicReference

info.note #
info.old_commit ¥
#

additional notes given by git-fetch intended for the user
if info.flags & info.FORCED_UPDATE|info.FAST FORWARD,

field is set to the previous location of ref, otherwise None
info.remote_ref_path # The path from which we fetched on the remote. It's the_
—remote's version of our info.ref

ERROR = 128
FAST_FORWARD = 64

FORCED_UPDATE = 32

3.25. Remote 69

GitPython Documentation, Release 2.1.3

HEAD_UPTODATE =4
NEW_HEAD =2
NEW_TAG=1
REJECTED = 16
TAG_UPDATE =8

__init__ (ref, flags, note="", old_commit=None, remote_ref_path=None)
Initialize a new instance

__module___ = ‘git.remote’

__slots__ = (‘ref’, ‘old_commit’, ‘flags’, ‘note’, ‘remote_ref_path’)
__str__ ()

commit

Returns Commit of our remote ref
flags
name
Returns Name of our remote ref
note
old commit
re_fetch_result = <_sre.SRE_Pattern object at 0x1d7fb50>
ref
remote_ref_ path

x=7

class git . remote.Remote (repo, name)

Provides easy read and write access to a git remote.

Everything not part of this interface is considered an option for the current remote, allowing constructs like
remote.pushurl to query the pushurl.

NOTE: When querying configuration, the configuration accessor will be cached to speed up subsequent accesses.

__eq__ (other)

__getattr__ (attr)
Allows to call this instance like remote.special(*args, **kwargs) to call git-remote special self.name

__hash__ ()

__init__ (repo, name)
Initialize a remote instance

Parameters
* repo — The repository we are a remote of
* name — the name of the remote, i.e. ‘origin’
__module___ = ‘git.remote’

__ne__ (other)

70

Chapter 3. API Reference

GitPython Documentation, Release 2.1.3

__repr__ ()
__slots___ =(‘repo’, ‘name’, ‘_config_reader’)
_str ()

classmethod add (repo, name, url, **kwargs)
Create a new remote to the given repository :param repo: Repository instance that is to receive the new
remote :param name: Desired name of the remote :param url: URL which corresponds to the remote’s
name :param kwargs: Additional arguments to be passed to the git-remote add command :return: New
Remote instance :raise GitCommandError: in case an origin with that name already exists

add_url (url, **kwargs)
Adds a new url on current remote (special case of git remote set_url)

This command adds new URLSs to a given remote, making it possible to have multiple URLs for a single
remote.

Parameters url — string being the URL to add as an extra remote URL
Returns self
config_ reader

Returns GitConfigParser compatible object able to read options for only our remote. Hence
you may simple type config.get(“pushurl”) to obtain the information

config writer
Returns GitConfigParser compatible object able to write options for this remote.

Note You can only own one writer at a time - delete it to release the configuration file and
make it usable by others.

To assure consistent results, you should only query options through the writer. Once you
are done writing, you are free to use the config reader once again.

classmethod create (repo, name, url, **kwargs)
Create a new remote to the given repository :param repo: Repository instance that is to receive the new
remote :param name: Desired name of the remote :param url: URL which corresponds to the remote’s
name :param kwargs: Additional arguments to be passed to the git-remote add command :return: New
Remote instance :raise GitCommandError: in case an origin with that name already exists

delete_url (url, **kwargs)
Deletes a new url on current remote (special case of git remote set_url)

This command deletes new URLS to a given remote, making it possible to have multiple URLs for a single
remote.

Parameters url — string being the URL to delete from the remote
Returns self
exists ()

Returns True if this is a valid, existing remote. Valid remotes have an entry in the repository’s
configuration

fetch (refspec=None, progress=None, **kwargs)
Fetch the latest changes for this remote

Parameters

3.25. Remote 4

GitPython Documentation, Release 2.1.3

* refspec — A ‘“refspec” is used by fetch and push to describe the mapping be-
tween remote ref and local ref. They are combined with a colon in the for-
mat <src>:<dst>, preceded by an optional plus sign, +. For example: git fetch
$URL refs/heads/master:refs/heads/origin means “grab the master branch head
from the $URL and store it as my origin branch head”. And git push $URL
refs/heads/master:refs/heads/to-upstream means “publish my master branch head as
to-upstream branch at SURL”. See also git-push(1).

Taken from the git manual

Fetch supports multiple refspecs (as the underlying git-fetch does) - supplying a list
rather than a string for ‘refspec’ will make use of this facility.

e progress — See ‘push’ method
* kwargs — Additional arguments to be passed to git-fetch

Returns IterableList(FetchInfo, ...) list of FetchInfo instances providing detailed information
about the fetch results

Note As fetch does not provide progress information to non-ttys, we cannot make it available
here unfortunately as in the ‘push’ method.

classmethod iter_ items (repo)
Returns Iterator yielding Remote objects of the given repository
name

pull (refspec=None, progress=None, **kwargs)
Pull changes from the given branch, being the same as a fetch followed by a merge of branch with your
local branch.

Parameters

* refspec - see ‘fetch’ method

* progress — see ‘push’ method

* kwargs — Additional arguments to be passed to git-pull
Returns Please see ‘fetch’ method

push (refspec=None, progress=None, **kwargs)
Push changes from source branch in refspec to target branch in refspec.

Parameters
* refspec - see ‘fetch’ method
» progress — Can take one of many value types:
— None to discard progress information
— A function (callable) that is called with the progress information.
Signature: progress (op_code, cur_count, max_count=None,
message="").

Click here for a description of all arguments given to the function.

— An instance of a class derived from git.RemoteProgress that overrides the
update () function.

* kwargs — Additional arguments to be passed to git-push

72 Chapter 3. API Reference

http://goo.gl/NPa7st

GitPython Documentation, Release 2.1.3

Note No further progress information is returned after push returns.

Returns IterableList(Pushlnfo, ...) iterable list of PushInfo instances, each one informing
about an individual head which had been updated on the remote side. If the push contains
rejected heads, these will have the PushInfo.ERROR bit set in their flags. If the operation
fails completely, the length of the returned IterableList will be null.

refs

Returns IterableList of RemoteReference objects. It is prefixed, allowing you to
omit the remote path portion, i.e.:: remote.refs.master # yields RemoteRefer-
ence(‘/refs/remotes/origin/master’)

classmethod remove (repo, name)
Remove the remote with the given name :return: the passed remote name to remove

rename (new_name)
Rename self to the given new_name :return: self

repo

classmethod rm (repo, name)
Remove the remote with the given name :return: the passed remote name to remove

set_url (new_url, old_url=None, **kwargs)
Configure URLs on current remote (cf command git remote set_url)

This command manages URLSs on the remote.
Parameters
* new_url - string being the URL to add as an extra remote URL
* 0ld_url — when set, replaces this URL with new_url for the remote
Returns self
stale_refs
Returns

IterableList RemoteReference objects that do not have a corresponding head in the remote
reference anymore as they have been deleted on the remote side, but are still available
locally.

The IterableList is prefixed, hence the ‘origin’ must be omitted. See ‘refs’ property for an
example.

To make things more complicated, it can be possible for the list to include other kinds of
references, for example, tag references, if these are stale as well. This is a fix for the issue
described here: https://github.com/gitpython-developers/GitPython/issues/260

update (**kwargs)
Fetch all changes for this remote, including new branches which will be forced in (in case your local
remote branch is not part the new remote branches ancestry anymore).

Parameters kwargs — Additional arguments passed to git-remote update
Returns self
urls

Returns Iterator yielding all configured URL targets on a remote as strings

3.25. Remote 73

https://github.com/gitpython-developers/GitPython/issues/260

GitPython Documentation, Release 2.1.3

Repo.Base

class git.repo.base.Repo (path=None, odbt=<class ‘git.db.GitCmdObjectDB’>,

search_parent_directories=False)
Represents a git repository and allows you to query references, gather commit information, generate diffs, create

and clone repositories query the log.
The following attributes are worth using:

‘working_dir’ is the working directory of the git command, which is the working tree directory if available or
the .git directory in case of bare repositories

‘working_tree_dir’ is the working tree directory, but will raise AssertionError if we are a bare repository.
‘git_dir’ is the .git repository directory, which is always set.
DAEMON_EXPORT_FILE = ‘git-daemon-export-ok’

GitCommandWrapperType
alias of Git

del ()

__dict__ =dict_proxy({‘create_submodule’: <function create_submodule>, ‘_working_tree_dir’: None, ‘config_reader
__enter__ ()

__eq _ (rhs)

__exit__ (exc_type, exc_value, traceback)

__hash__ ()

__dinit__ (path=None, odbt=<class ‘git.db.GitCmdObjectDB’>, search_parent_directories=False)
Create a new Repo instance

Parameters

* path — the path to either the root git directory or the bare git repo:

repo = Repo ("/Users/mtrier/Development/git—-python™)

(
repo = Repo ("/Users/mtrier/Development/git-python.git")
repo = Repo ("~/Development/git-python.git")
repo = Repo ("SREPOSITORIES/Development/git-python.git")

— In Cygwin, path may be a ‘cygdrive/...” prefixed path.
— If it evaluates to false, GIT_DIR is used, and if this also evals to false, the current-

directory is used.

* odbt - Object DataBase type - a type which is constructed by providing the directory
containing the database objects, i.e. .git/objects. It will be used to access all object
data

* search_parent_directories —if True, all parent directories will be searched
for a valid repo as well.

Please note that this was the default behaviour in older versions of GitPython, which
is considered a bug though.

Raises

* InvalidGitRepositoryError —

74 Chapter 3. API Reference

GitPython Documentation, Release 2.1.3

* NoSuchPathError —
Returns git.Repo
__module___ = ‘git.repo.base’
__ne__ (rhs)
__repr__ ()

__weakref
list of weak references to the object (if defined)

active_branch
The name of the currently active branch.

Returns Head to the active branch

alternates
Retrieve a list of alternates paths or set a list paths to be used as alternates

archive (ostream, treeish=None, prefix=None, **kwargs)
Archive the tree at the given revision.

Parm ostream file compatible stream object to which the archive will be written as bytes
Parm treeish is the treeish name/id, defaults to active branch

Parm prefix is the optional prefix to prepend to each filename in the archive

Parm kwargs Additional arguments passed to git-archive

e Use the ‘format’ argument to define the kind of format. Use specialized ostreams to
write any format supported by python.

* You may specify the special path keyword, which may either be a repository-relative
path to a directory or file to place into the archive, or a list or tuple of multipe paths.

Raises GitCommandError — in case something went wrong
Returns self

bare
Returns True if the repository is bare

blame (rev, file, incremental=False, **kwargs)
The blame information for the given file at the given revision.

Parm rev revision specifier, see git-rev-parse for viable options.

Returns list: [git.Commit, list: [<line>]] A list of tuples associating a Commit object with a
list of lines that changed within the given commit. The Commit objects will be given in
order of appearance.

blame_incremental (rev, file, **kwargs)
Iterator for blame information for the given file at the given revision.

Unlike .blame(), this does not return the actual file’s contents, only a stream of BlameEntry tuples.
Parm rev revision specifier, see git-rev-parse for viable options.

Returns lazy iterator of BlameEntry tuples, where the commit indicates the commit to blame
for the line, and range indicates a span of line numbers in the resulting file.

If you combine all line number ranges outputted by this command, you should get a continuous range
spanning all line numbers in the file.

3.26. Repo.Base 75

GitPython Documentation, Release 2.1.3

branches
A list of Head objects representing the branch heads in this repo

Returns git.IterablelList (Head, ...)

clone (path, progress=None, **kwargs)
Create a clone from this repository.

Parameters
* path - is the full path of the new repo (traditionally ends with ./<name>.git).
* progress — See ‘git.remote.Remote.push’.
* kwargs —

— odbt = ObjectDatabase Type, allowing to determine the object database implemen-
tation used by the returned Repo instance

— All remaining keyword arguments are given to the git-clone command
Returns git.Repo (the newly cloned repo)

classmethod clone_from (url, to_path, progress=None, env=None, **kwargs)
Create a clone from the given URL

Parameters

e url — valid git url, see http://www.kernel.org/pub/software/scm/git/docs/git-clone.
htmI#URLS

* to_path — Path to which the repository should be cloned to
* progress — See ‘git.remote.Remote.push’.
* env — Optional dictionary containing the desired environment variables.
* kwargs — see the clone method
Returns Repo instance pointing to the cloned directory
close ()

commit (rev=None)

The Commit object for the specified revision :param rev: revision specifier, see git-rev-parse for viable

options. :return: git.Commit
config_level = (‘system’, ‘user’, ‘global’, ‘repository’)
config_reader (config_level=None)
Returns
GitConfigParser allowing to read the full git configuration, but not to write it

The configuration will include values from the system, user and repository configuration
files.

Parameters config_level - For possible values, see config_writer method If None, all
applicable levels will be used. Specify a level in case you know which exact file you whish
to read to prevent reading multiple files for instance

Note On windows, system configuration cannot currently be read as the path is unknown,
instead the global path will be used.

config_writer (config_level="repository’)

76 Chapter 3. API Reference

http://www.kernel.org/pub/software/scm/git/docs/git-clone.html#URLS
http://www.kernel.org/pub/software/scm/git/docs/git-clone.html#URLS

GitPython Documentation, Release 2.1.3

Returns GitConfigParser allowing to write values of the specified configuration file level.
Config writers should be retrieved, used to change the configuration, and written right
away as they will lock the configuration file in question and prevent other’s to write it.

Parameters config level — One of the following values system = sytem wide config-
uration file global = user level configuration file repository = configuration file for this
repostory only

create_head (path, commit="HEAD’, force=False, logmsg=None)
Create a new head within the repository. For more documentation, please see the Head.create method.

Returns newly created Head Reference

create_remote (name, url, **kwargs)
Create a new remote.

For more information, please see the documentation of the Remote.create methods
Returns Remote reference

create_submodule (*args, **kwargs)
Create a new submodule

Note See the documentation of Submodule.add for a description of the applicable parameters
Returns created submodules

create_tag (path, ref="HEAD’, message=None, force=False, **kwargs)
Create a new tag reference. For more documentation, please see the TagReference.create method.

Returns TagReference object

daemon_export
If True, git-daemon may export this repository

delete_head (*heads, **kwargs)
Delete the given heads

Parameters kwargs — Additional keyword arguments to be passed to git-branch

delete_remote (remote)
Delete the given remote.

delete_tag (*tags)
Delete the given tag references

description
the project’s description

git = None
git_dir = None
has_separate_working tree()

Returns True if our git_dir is not at the root of our working_tree_dir, but a .git file with a
platform agnositic symbolic link. Our git_dir will be whereever the .git file points to

Note bare repositories will always return False here
head
Returns HEAD Object pointing to the current head reference

heads
A list of Head objects representing the branch heads in this repo

3.26. Repo.Base 77

GitPython Documentation, Release 2.1.3

Returns git.Iterablelist (Head, ...)
index
Returns IndexFile representing this repository’s index.

Note This property can be expensive, as the returned IndexFile will be reinitialized. It’s
recommended to re-use the object.

classmethod init (path=None, mkdir=True, odbt=<class ‘git.db.GitCmdObjectDB’>, **kwargs)
Initialize a git repository at the given path if specified

Parameters

* path — is the full path to the repo (traditionally ends with /<name>.git) or None in
which case the repository will be created in the current working directory

* odbt — Object DataBase type - a type which is constructed by providing the directory
containing the database objects, i.e. .git/objects. It will be used to access all object
data

Parm mkdir if specified will create the repository directory if it doesn’t already exists. Cre-
ates the directory with a mode=0755. Only effective if a path is explicitly given

Parm kwargs keyword arguments serving as additional options to the git-init command
Returns git.Repo (the newly created repo)

is_ancestor (ancestor_rev, rev)
Check if a commit is an ancestor of another

Parameters
* ancestor_ rev — Rev which should be an ancestor
e rev — Rev to test against ancestor_rev
Returns True, ancestor_rev is an accestor to rev.
is_dirty (index=True, working_tree=True, untracked_files=False, submodules=True, path=None)

Returns True, the repository is considered dirty. By default it will react like a git-status
without untracked files, hence it is dirty if the index or the working copy have changes.

iter_commits (rev=None, paths="", **kwargs)
A list of Commit objects representing the history of a given ref/commit

Parm rev revision specifier, see git-rev-parse for viable options. If None, the active branch
will be used.

Parm paths is an optional path or a list of paths to limit the returned commits to Commits
that do not contain that path or the paths will not be returned.

Parm kwargs Arguments to be passed to git-rev-list - common ones are max_count and skip

Note to receive only commits between two named revisions, use the “revA...revB” revision
specifier

Returns git.Commit []

iter_submodules (*args, **kwargs)
An iterator yielding Submodule instances, see Traversable interface for a description of args and kwargs
:return: Iterator

iter_trees (*args, **kwargs)

Returns Iterator yielding Tree objects

78 Chapter 3. API Reference

GitPython Documentation, Release 2.1.3

Note Takes all arguments known to iter_commits method

merge_base (*rev, **kwargs)
Find the closest common ancestor for the given revision (e.g. Commits, Tags, References, etc)

Parameters
e rev — At least two revs to find the common ancestor for.

* kwargs — Additional arguments to be passed to the repo.git.merge_base() command
which does all the work.

Returns A list of Commit objects. If —all was not specified as kwarg, the list will have at max
one Commit, or is empty if no common merge base exists.

Raises ValueError — If not at least two revs are provided
re_author_ committer start =<_sre.SRE_Pattern object>
re_hexsha_only = <_sre.SRE_Pattern object>
re_hexsha_shortened = <_sre.SRE_Pattern object>
re_tab_full_line = <_sre.SRE_Pattern object>
re_whitespace = <_sre.SRE_Pattern object>

references
A list of Reference objects representing tags, heads and remote references.

Returns IterableList(Reference, ...)

refs
A list of Reference objects representing tags, heads and remote references.

Returns IterableList(Reference, ...)
remote (name="origin’)
Returns Remote with the specified name

Raises ValueError — if no remote with such a name exists

remotes
A list of Remote objects allowing to access and manipulate remotes :return: git.
Iterablelist (Remote, ...)

rev_parse (repo, rev)
Returns Object at the given revision, either Commit, Tag, Tree or Blob

Parameters rev — git-rev-parse compatible revision specification as string, please see http:
/Iwww kernel.org/pub/software/scm/git/docs/git-rev-parse.html for details

Raises
* BadObject - if the given revision could not be found
* ValueError - If rev couldn’t be parsed
* IndexError — If invalid reflog index is specified
submodule (name)
Returns Submodule with the given name

Raises ValueError — If no such submodule exists

3.26. Repo.Base 79

http://www.kernel.org/pub/software/scm/git/docs/git-rev-parse.html
http://www.kernel.org/pub/software/scm/git/docs/git-rev-parse.html

GitPython Documentation, Release 2.1.3

submodule_update (*args, **kwargs)
Update the submodules, keeping the repository consistent as it will take the previous state into considera-
tion. For more information, please see the documentation of RootModule.update

submodules

Returns git.IterableList(Submodule, ...) of direct submodules available from the current head
tag (path)

Returns TagReference Object, reference pointing to a Commit or Tag

Parameters path - path to the tag reference, i.e. 0.1.5 or tags/0.1.5

tags
A list of Tag objects that are available in this repo :return: git.IterableList (TagReference,
-)

tree (rev=None)
The Tree object for the given treeish revision Examples:

repo.tree (repo.heads[0])

Parameters rev —is a revision pointing to a Treeish (being a commit or tree)

Returns git.Tree

Note If you need a non-root level tree, find it by iterating the root tree. Otherwise it cannot
know about its path relative to the repository root and subsequent operations might have
unexpected results.

untracked files

Returns

list(str,...)

Files currently untracked as they have not been staged yet. Paths are relative to the current
working directory of the git command.

Note ignored files will not appear here, i.e. files mentioned in .gitignore

Note This property is expensive, as no cache is involved. To process the result, please consider
caching it yourself.

working_ dir = None
working_ tree_dir

Returns The working tree directory of our git repository. If this is a bare repository, None is
returned.

Repo.Functions

Package with general repository related functions
git.repo.fun.rev_parse (repo, rev)
Returns Object at the given revision, either Commit, Tag, Tree or Blob

Parameters rev — git-rev-parse compatible revision specification as string, please see http://www.
kernel.org/pub/software/scm/git/docs/git-rev-parse.html for details

80 Chapter 3. API Reference

http://www.kernel.org/pub/software/scm/git/docs/git-rev-parse.html
http://www.kernel.org/pub/software/scm/git/docs/git-rev-parse.html

GitPython Documentation, Release 2.1.3

Raises
* BadObject - if the given revision could not be found
* ValueError - If rev couldn’t be parsed
* IndexError - If invalid reflog index is specified

git.repo.fun.is_git_dir (d)
This is taken from the git setup.c:is_git_directory function.

@throws WorkTreeRepositoryUnsupported if it sees a worktree directory. It’s quite hacky to do that here,
but at least clearly indicates that we don’t support it. There is the unlikely danger to throw if we see
directories which just look like a worktree dir, but are none.

git.repo. fun.touch (filename)

git.repo.fun.find_submodule_git_dir (d)
Search for a submodule repo.

git.repo.fun.name_to_object (repo, name, return_ref=False)

Returns object specified by the given name, hexshas (short and long) as well as references are
supported

Parameters return_ref — if name specifies a reference, we will return the reference instead of
the object. Otherwise it will raise BadObject or BadName

git.repo.fun.short_to_long (odb, hexsha)

Returns long hexadecimal shal from the given less-than-40 byte hexsha or None if no candidate
could be found.

Parameters hexsha — hexsha with less than 40 byte

git.repo.fun.deref_tag(tag)
Recursively dereference a tag and return the resulting object

git.repo.fun.to_commit (0bj)
Convert the given object to a commit if possible and return it

Util

git.util.stream_copy (source, destination, chunk_size=524288)
Copy all data from the source stream into the destination stream in chunks of size chunk_size

Returns amount of bytes written

git.util.join_path (a, *p)
Join path tokens together similar to osp.join, but always use ‘/’ instead of possibly ** on windows.

git.util.to_native_path_linux (path)
git.util.Jjoin_path_native (a, *p)

As join path, but makes sure an OS native path is returned. This is only needed to play it safe on my dear
windows and to assure nice paths that only use *’

class git.util.Stats (fotal, files)
Represents stat information as presented by git at the end of a merge. It is created from the output of a diff
operation.

Example:

3.28. Util 81

GitPython Documentation, Release 2.1.3

c = Commit (shal)

s = c.stats

s.total # full-stat-dict

s.files # dict(filepath : stat-dict)
stat-dict

A dictionary with the following keys and values:

deletions = number of deleted lines as int
insertions = number of inserted lines as int
lines = total number of lines changed as int, or deletions + insertions

full-stat-dict

In addition to the items in the stat-dict, it features additional information:

files = number of changed files as int

__init__ (total, files)
__module__ = ‘git.util’

_ slots__ = (‘total’, ‘files’)
files

total

class git.util.IndexFileSHAlWriter (f)
Wrapper around a file-like object that remembers the SHA1 of the data written to it. It will write a sha when the
stream is closed or if the asked for explicitly using write_sha.

Only useful to the indexfile
Note Based on the dulwich project

__init__ (f)

__module__ = ‘git.util’

__slots__ =(‘f’, ‘shal’)

close ()

£

shal

tell ()

write (data)

write_sha()

class git.util.Iterable
Defines an interface for iterable items which is to assure a uniform way to retrieve and iterate items within the
git repository

__module___ = ‘git.util’
__slots_ =)

classmethod iter_items (repo, *args, **kwargs)
For more information about the arguments, see list_items :return: iterator yielding Items

82 Chapter 3. API Reference

GitPython Documentation, Release 2.1.3

classmethod 1ist_items (repo, *args, **kwargs)
Find all items of this type - subclasses can specify args and kwargs differently. If no args are given,
subclasses are obliged to return all items if no additional arguments arg given.

Note Favor the iter_items method as it will
:return:list(Item,...) list of item instances

class git.util.Iterablelist (id_attr, prefix="")
List of iterable objects allowing to query an object by id or by named index:

heads = repo.heads
heads.master
heads|['master']
heads[0]

It requires an id_attribute name to be set which will be queried from its contained items to have a means for
comparison.

A prefix can be specified which is to be used in case the id returned by the items always contains a prefix that
does not matter to the user, so it can be left out.

__contains__ (attr)
__delitem_ _ (index)
__getattr__ (attr)
__getitem__ (index)

__init__ (id_attr, prefix="")
__module__ = ‘git.util’

static __new___ (id_attr, prefix="")
__slots__ = (‘_id_attr’, ‘_prefix’)

class git.util.BlockingLockFile (file_path, check_interval_s=0.3,

max_block_time_s=9223372036854775807)
The lock file will block until a lock could be obtained, or fail after a specified timeout.

Note If the directory containing the lock was removed, an exception will be raised during the
blocking period, preventing hangs as the lock can never be obtained.

__init__ (file_path, check_interval_s=0.3, max_block_time_s=9223372036854775807)
Configure the instance

Parm check_interval_s Period of time to sleep until the lock is checked the next time. By
default, it waits a nearly unlimited time

Parm max_block_time_s Maximum amount of seconds we may lock
__module___ = ‘git.util’
__slots__ = (‘_check_interval’, *_max_block_time’)

class git.util.LockFile (file_path)
Provides methods to obtain, check for, and release a file based lock which should be used to handle concurrent
access to the same file.

As we are a utility class to be derived from, we only use protected methods.
Locks will automatically be released on destruction

del ()

3.28. Util 83

GitPython Documentation, Release 2.1.3

__init__ (file_path)
__module__ = ‘git.util’
__slots__ =(‘_file_path’, ‘°_owns_lock’)

class git.util.Actor (name, email)
Actors hold information about a person acting on the repository. They can be committers and authors or anything
with a name and an email as mentioned in the git log entries.

__eq__ (other)

__hash__ ()

__init__ (name, email)
__module___ = ‘gitautil’
__ne__ (other)

__repr_ ()

__slots__ =(‘name’, ‘email’)
__str__ ()

classmethod author (config_reader=None)
Same as committer(), but defines the main author. It may be specified in the environment, but defaults to
the committer

classmethod committer (config_reader=None)

Returns Actor instance corresponding to the configured committer. It behaves similar to the
git implementation, such that the environment will override configuration values of con-
fig_reader. If no value is set at all, it will be generated

Parameters config_reader — ConfigReader to use to retrieve the values from in case they
are not set in the environment

conf email = ‘email’

conf name = ‘name’

email

env_author_email = ‘GIT_AUTHOR_EMAIL’

env_author name = ‘GIT_AUTHOR_NAME’

env_committer_email = ‘GIT_COMMITTER_EMAIL’

env_committer_name = ‘GIT_COMMITTER_NAME’

name

name_email_regex = <_sre.SRE_Pattern object>

name_only_regex = <_sre.SRE_Pattern object>
git.util.get_user_id()

Returns string identifying the currently active system user as name @node

git.util.assure_directory_exists (path, is_file=False)
Assure that the directory pointed to by path exists.

Parameters is_file — If True, path is assumed to be a file and handled correctly. Otherwise it
must be a directory

84 Chapter 3. API Reference

mailto:name@node

GitPython Documentation, Release 2.1.3

Returns True if the directory was created, False if it already existed

class git.util.RemoteProgress

Handler providing an interface to parse progress information emitted by git-push and git-fetch and to dispatch

callbacks allowing subclasses to react to the progress.
BEGIN=1
CHECKING_OUT = 256
COMPRESSING =8
COUNTING =4
DONE_TOKEN = ‘done.’
END =2
FINDING_SOURCES = 128
OP_MASK = -4
RECEIVING = 32
RESOLVING = 64
STAGE_MASK =3
TOKEN_SEPARATOR = ¢, ¢

WRITING =16

__init_ ()
__module__ = ‘git.util’
__slots___ =(‘_cur_line’, ‘_seen_ops’, ‘error_lines’, ‘other_lines’)

error_lines

line_dropped (line)
Called whenever a line could not be understood and was therefore dropped.

new_message_handler ()

Returns a progress handler suitable for handle_process_output(), passing lines on to this
Progress handler in a suitable format

other lines
re_op_absolute = <_sre.SRE_Pattern object>
re_op_relative = <_sre.SRE_Pattern object at 0x1d14e40>

update (op_code, cur_count, max_count=None, message="")
Called whenever the progress changes

Parameters
* op_code - Integer allowing to be compared against Operation IDs and stage IDs.

Stage IDs are BEGIN and END. BEGIN will only be set once for each Operation ID
as well as END. It may be that BEGIN and END are set at once in case only one
progress message was emitted due to the speed of the operation. Between BEGIN
and END, none of these flags will be set

Operation IDs are all held within the OP_MASK. Only one Operation ID will be
active per call.

3.28. Util

85

GitPython Documentation, Release 2.1.3

¢ cur_count — Current absolute count of items

* max_count — The maximum count of items we expect. It may be None in case there
is no maximum number of items or if it is (yet) unknown.

* message — In case of the “WRITING’ operation, it contains the amount of bytes
transferred. It may possibly be used for other purposes as well.

You may read the contents of the current line in self._cur_line
x=8

class git.util.CallableRemoteProgress (fn)
An implementation forwarding updates to any callable

__init__ (fn)
__module__ = ‘gitautil’
__slots__ =°_callable’

update (*args, **kwargs)

git.util.rmtree (path)
Remove the given recursively.

Note we use shutil rmtree but adjust its behaviour to see whether files that couldn’t be deleted are
read-only. Windows will not remove them in that case

git.util.unbare_repo (func)
Methods with this decorator raise InvalidGitRepositoryError if they encounter a bare repository

git.util.HIDE_WINDOWS_KNOWN_ERRORS = False
We need an easy way to see if Appveyor TCs start failing, so the errors marked with this var are considered
“acknowledged” ones, awaiting remedy, till then, we wish to hide them.

86 Chapter 3. API Reference

CHAPTER 4

Roadmap

The full list of milestones including associated tasks can be found on github: https://github.com/gitpython-developers/
GitPython/issues

Select the respective milestone to filter the list of issues accordingly.

87

https://github.com/gitpython-developers/GitPython/issues
https://github.com/gitpython-developers/GitPython/issues

GitPython Documentation, Release 2.1.3

88 Chapter 4. Roadmap

CHAPTER B

Changelog

2.1.3 - Bugfixes

All issues and PRs can be viewed in all detail when following this URL: https://github.com/gitpython-developers/
GitPython/milestone/21?closed=1

2.1.1 - Bugfixes

All issues and PRs can be viewed in all detail when following this URL: https://github.com/gitpython-developers/
GitPython/issues?q=is%3Aclosed+milestone%3A%22v2.1.1+-+Bugfixes %22

2.1.0 - Much better windows support!

Special thanks to @ankostis, who made this release possible (nearly) single-handedly. GitPython is run by its users,
and their PRs make all the difference, they keep GitPython relevant. Thank you all so much for contributing !

Notable fixes

e The GIT_DIR environment variable does not override the path argument when initializing a Repo object any-
more. However, if said path unset, GIT_DIR will be used to fill the void.

All issues and PRs can be viewed in all detail when following this URL: https://github.com/gitpython-developers/
GitPython/issues?q=is%3 Aclosed+milestone %3 A %22v2.1.0+-+proper+windows+support %22

2.0.9 - Bugfixes

* tag.commit will now resolve commits deeply.

89

https://github.com/gitpython-developers/GitPython/milestone/21?closed=1
https://github.com/gitpython-developers/GitPython/milestone/21?closed=1
https://github.com/gitpython-developers/GitPython/issues?q=is%3Aclosed+milestone%3A%22v2.1.1+-+Bugfixes%22
https://github.com/gitpython-developers/GitPython/issues?q=is%3Aclosed+milestone%3A%22v2.1.1+-+Bugfixes%22
https://github.com/gitpython-developers/GitPython/issues?q=is%3Aclosed+milestone%3A%22v2.1.0+-+proper+windows+support%22
https://github.com/gitpython-developers/GitPython/issues?q=is%3Aclosed+milestone%3A%22v2.1.0+-+proper+windows+support%22

GitPython Documentation, Release 2.1.3

* Repo objects can now be pickled, which helps with multi-processing.
e Head.checkout() now deals with detached heads, which is when it will return the HEAD reference instead.

* DiffIndex.iter_change_type(...) produces better results when diffing

2.0.8 - Features and Bugfixes

* DiffIndex.iter_change_type(...) produces better results when diffing an index against the working tree.

* Repo().is_dirty(...) now supports the path parameter, to specify a single path by which to filter the output.
Similar to git status <path>

» Symbolic refs created by this library will now be written with a newline character, which was previously missing.
* blame() now properly preserves multi-line commit messages.

* No longer corrupt ref-logs by writing multi-line comments into them.

2.0.7 - New Features

* IndexFile.commit(...,skip_hooks=False) added. This parameter emulates the behaviour of —no-verify on the
command-line.

2.0.6 - Fixes and Features

* Fix: remote output parser now correctly matches refs with non-ASCII chars in them

API: Diffs now have a_rawpath, b_rawpath, raw_rename_from, raw_rename_to properties, which are the raw-
bytes equivalents of their unicode path counterparts.

* Fix: TypeError about passing keyword argument to string decode() on Python 2.6.

¢ Feature: setUrl API on Remotes

2.0.5 - Fixes

* Fix: parser of fetch info lines choked on some legitimate lines

2.0.4 - Fixes

 Fix: parser of commit object data is now robust against cases where commit object contains invalid bytes. The
invalid characters are now replaced rather than choked on.

* Fix: non-ASCII paths are now properly decoded and returned in .diff () output

* Fix: RemoteProgress will now strip the °, * prefix or suffix from messages.

API: Remote.[fetchlpushlpull](...) methods now allow the progress argument to be a callable. This saves you
from creating a custom type with usually just one implemented method.

90 Chapter 5. Changelog

https://github.com/gitpython-developers/GitPython/pull/446#issuecomment-224670539

GitPython Documentation, Release 2.1.3

2.0.3 - Fixes

» Fix: bugin git-blame —--incremental output parser that broken when commit messages contained \r
characters

* Fix: progress handler exceptions are not caught anymore, which would usually just hide bugs previously.

e Fix: The Git.execute method will now redirect stdout to devnull if with_stdout is false, which is the intended
behaviour based on the parameter’s documentation.

2.0.2 - Fixes

* Fix: source package does not include *.pyc files

* Fix: source package does include doc sources

2.0.1 - Fixes

* Fix: remote output parser now correctly matches refs with “@” in them

2.0.0 - Features

Please note that due to breaking changes, we have to increase the major version.

¢ IMPORTANT: This release drops support for python 2.6, which is officially deprecated by the python main-
tainers.

* CRITICAL: Diff objects created with patch output will now not carry the — and +++ header lines anymore.
All diffs now start with the @ @ header line directly. Users that rely on the old behaviour can now (reliably)
read this information from the a_path and b_path properties without having to parse these lines manually.

* Commit now has extra properties authored_datetime and committer_datetime (to get Python datetime instances
rather than timestamps)

* Commit.diff() now supports diffing the root commit via Commit.diff NULL_TREE).

* Repo.blame() now respects incremental=True, supporting incremental blames. Incremental blames are slightly
faster since they don’t include the file’s contents in them.

« Fix: Diff objects created with patch output will now have their a_path and b_path properties parsed out correctly.
Previously, some values may have been populated incorrectly when a file was added or deleted.

 Fix: diff parsing issues with paths that contain “unsafe” chars, like spaces, tabs, backslashes, etc.

1.0.2 - Fixes

e IMPORTANT: Changed default object database of Repo objects to GitCmdObjectDB. The pure-python imple-
mentation used previously usually fails to release its resources (i.e. file handles), which can lead to problems
when working with large repositories.

e CRITICAL: fixed incorrect Commit object serialization when authored or commit date had timezones which
were not divisiblej by 3600 seconds. This would happen if the timezone was something like +0530 for instance.

5.10. 2.0.3 - Fixes 91

GitPython Documentation, Release 2.1.3

* A list of all additional fixes can be found on github

* CRITICAL: Tree.cache was removed without replacement. It is technically impossible to change individual
trees and expect their serialization results to be consistent with what git expects. Instead, use the IndexFile
facilities to adjust the content of the staging area, and write it out to the respective tree objects using Index-
File.write_tree() instead.

1.0.1 - Fixes

* A list of all issues can be found on github

1.0.0 - Notes

This version is equivalent to v0.3.7, but finally acknowledges that GitPython is stable and production ready.

It follows the semantic version scheme, and thus will not break its existing API unless it goes 2.0.

0.3.7 - Fixes

¢ IndexFile.add() will now write the index without any extension data by default. However, you may override this
behaviour with the new write_extension_data keyword argument.

— Renamed ignore_tree_extension_data keyword argument in IndexFile.write(...) to ignore_extension_data

« If the git command executed during Remote.push(...)|fetch(...) returns with an non-zero exit code and GitPython
didn’t obtain any head-information, the corresponding GitCommandError will be raised. This may break pre-
vious code which expected these operations to never raise. However, that behavious is undesirable as it would
effectively hide the fact that there was an error. See this issue for more information.

* If the git executable can’t be found in the PATH or at the path provided by GIT_PYTHON_GIT_EXECUTABLE,
this is made obvious by throwing GitCommandNotFound, both on unix and on windows.

— Those who support GUI on windows will now have to set git. Git. USE_SHELL = True to get the previous
behaviour.

A list of all issues can be found on github

0.3.6 - Features

* DOCS

— special members like __initr__ are now listed in the API documentation

— tutorial section was revised entirely, more advanced examples were added.
* POSSIBLY BREAKING CHANGES

— Asrev_parse will now throw BadName as well as BadObject, client code will have to catch both exception
types.

— Repo.working_tree_dir now returns None if it is bare. Previously it raised AssertionError.

— IndexFile.add() previously raised AssertionError when paths where used with bare repository, now it
raises InvalidGitRepositoryError

92 Chapter 5. Changelog

https://github.com/gitpython-developers/GitPython/issues?q=milestone%3A%22v1.0.2+-+Fixes%22+is%3Aclosed
https://github.com/gitpython-developers/GitPython/issues?q=milestone%3A%22v1.0.1+-+Fixes%22+is%3Aclosed
http://semver.org
https://github.com/gitpython-developers/GitPython/issues/271
https://github.com/gitpython-developers/GitPython/issues?q=milestone%3A%22v0.3.7+-+Fixes%22+is%3Aclosed

GitPython Documentation, Release 2.1.3

Added Repo.merge_base() implementation. See the respective issue on github

¢ [include] sections in git configuration files are now respected

Added GitConfigParser.rename_section()
Added Submodule.rename()

A list of all issues can be found on github

0.3.5 - Bugfixes

* push/pull/fetch operations will not block anymore

* diff() can now properly detect renames, both in patch and raw format. Previously it only worked when cre-
ate_patch was True.

* repo.odb.update_cache() is now called automatically after fetch and pull operations. In case you did that in your
own code, you might want to remove your line to prevent a double-update that causes unnecessary 10.

* Repo(path) will not automatically search upstream anymore and find any git directory on its way up. If you need
that behaviour, you can turn it back on using the new search_parent_directories=True flag when constructing a
Repo object.

¢ IndexFile.commit() now runs the pre-commit and post-commit hooks. Verified to be working on posix systems
only.

e A list of all fixed issues can be found here: https://github.com/gitpython-developers/GitPython/issues?q=
milestone%3A%22v0.3.5+-+bugfixes %22+

0.3.4 - Python 3 Support

* Internally, hexadecimal SHAI are treated as ascii encoded strings. Binary SHA1 are treated as bytes.

¢ Id attribute of Commit objects is now hexsha, instead of binsha. The latter makes no sense in python 3 and I see
no application of it anyway besides its artificial usage in test cases.

e IMPORTANT: If you were using the config_writer(), you implicitly relied on __del__ to work as expected to
flush changes. To be sure changes are flushed under PY3, you will have to call the new release() method to
trigger a flush. For some reason, __del__ is not called necessarily anymore when a symbol goes out of scope.

* The Tree now has a .join(‘name’) method which is equivalent to tree / ‘name’

0.3.3

* When fetching, pulling or pushing, and an error occurs, it will not be reported on stdout anymore. However,
if there is a fatal error, it will still result in a GitCommandError to be thrown. This goes hand in hand with
improved fetch result parsing.

¢ Code Cleanup (in preparation for python 3 support)
— Applied autopep8 and cleaned up code

— Using python logging module instead of print statements to signal certain kinds of errors

5.19. 0.3.5 - Bugfixes 93

https://github.com/gitpython-developers/GitPython/issues/169
https://github.com/gitpython-developers/GitPython/issues?q=milestone%3A%22v0.3.6+-+Features%22+
https://github.com/gitpython-developers/GitPython/issues?q=milestone%3A%22v0.3.5+-+bugfixes%22+
https://github.com/gitpython-developers/GitPython/issues?q=milestone%3A%22v0.3.5+-+bugfixes%22+

GitPython Documentation, Release 2.1.3

0.3.2.1

¢ Fix for #207

0.3.2

* Release of most recent version as non-RC build, just to allow pip to install the latest version right away.

e Have a look at the milestones (https://github.com/gitpython-developers/GitPython/milestones) to see what’s
next.

0.3.2 RC1

* git command wrapper
* Added version_info property which returns a tuple of integers representing the installed git version.

e Added GIT_PYTHON_GIT_EXECUTABLE environment variable, which can be used to set the desired git
executable to be used. despite of what would be found in the path.

* Blob Type

* Added mode constants to ease the manual creation of blobs
* IterableList

e Added _ contains___and __ delitem__ methods

¢ More Changes

» Configuration file parsing is more robust. It should now be able to handle everything that the git command can
parse as well.

¢ The progress parsing was updated to support git 1.7.0.3 and newer. Previously progress was not enabled for the
git command or only worked with ssh in case of older git versions.

* Parsing of tags was improved. Previously some parts of the name could not be parsed properly.
* The rev-parse pure python implementation now handles branches correctly if they look like hexadecimal sha’s.

e GIT_PYTHON_TRACE is now set on class level of the Git type, previously it was a module level global
variable.

e GIT_PYTHON_GIT_EXECUTABLE is a class level variable as well.

0.3.1 Beta 2

* Added reflog support (reading and writing)
* New types: RefLog and RefLogEntry
* Reflog is maintained automatically when creating references and deleting them

* Non-intrusive changes to SymbolicReference, these don’t require your code to change. They
allow to append messages to the reflog.

— abspath property added, similar to abspath of Object instances

94 Chapter 5. Changelog

https://github.com/gitpython-developers/GitPython/issues/207
https://github.com/gitpython-developers/GitPython/milestones

GitPython Documentation, Release 2.1.3

log () method added

log_append (. ..) method added
— set_reference (...) method added (reflog support)

— set_commit (...) method added (reflog support)

set_object (...) method added (reflog support)
¢ Intrusive Changes to Head type

* create (...) method now supports the reflog, but will not raise Git CommandError anymore
as it is a pure python implementation now. Instead, it raises OSError.

* Intrusive Changes to Repo type

* create_head(...) method does not support kwargs anymore, instead it supports a logmsg
parameter

* Repo.rev_parse now supports the [ref]@ {n} syntax, where 7 is the number of steps to look into the reference’s
past

* BugFixes
— Removed incorrect ORIG_HEAD handling

Flattened directory structure to make development more convenient.

Note: This alters the way projects using git-python as a submodule have to adjust their sys.path to be able to
import git-python successfully.

* Misc smaller changes and bugfixes

0.3.1 Beta 1

Full Submodule-Support

* Added unicode support for author names. Commit.author.name is now unicode instead of string.
* Head Type changes

* config_reader() & config_writer() methods added for access to head specific options.

* tracking_branch() & set_tracking_branch() methods added for easy configuration of tracking branches.

0.3.0 Beta 2

* Added python 2.4 support

0.3.0 Beta 1

Renamed Modules

* For consistency with naming conventions used in sub-modules like gitdb, the following modules have been
renamed

5.26. 0.3.1 Beta 1 95

GitPython Documentation, Release 2.1.3

— git.utils -> git.util
— git.errors -> git.exc

— git.objects.utils -> git.objects.util

General

* Object instances, and everything derived from it, now use binary sha’s internally. The ‘sha’ member was re-
moved, in favor of the ‘binsha’ member. An ‘hexsha’ property is available for convenient conversions. They
may only be initialized using their binary shas, reference names or revision specs are not allowed anymore.

* IndexEntry instances contained in IndexFile.entries now use binary sha’s. Use the .hexsha property to obtain
the hexadecimal version. The .sha property was removed to make the use of the respective sha more explicit.

« If objects are instantiated explicitly, a binary sha is required to identify the object, where previously any rev-spec
could be used. The ref-spec compatible version still exists as Object.new or Repo.commitIRepo.tree respectively.

* The .data attribute was removed from the Object type, to obtain plain data, use the data_stream property instead.
* ConcurrentWriteOperation was removed, and replaced by LockedFD
¢ IndexFile.get_entries_key was renamed to entry_key

* IndexFile.write_tree: removed missing_ok keyword, its always True now. Instead of raising GitCommandEr-
ror it raises UnmergedEntriesError. This is required as the pure-python implementation doesn’t support the
missing_ok keyword yet.

* diff.Diff.null_hex_sha renamed to NULL_HEX_SHA, to be conforming with the naming in the Object base
class

0.2 Beta 2

* Commit objects now carry the ‘encoding’ information of their message. It wasn’t parsed previously, and defaults
to UTF-8

¢ Commit.create_from_tree now uses a pure-python implementation, mimicking git-commit-tree

0.2

General

* file mode in Tree, Blob and Diff objects now is an int compatible to definitions in the stat module, allowing you
to query whether individual user, group and other read, write and execute bits are set.

* Adjusted class hierarchy to generally allow comparison and hash for Objects and Refs

* Improved Tag object which now is a Ref that may contain a tag object with additional Information
* id_abbrev method has been removed as it could not assure the returned short SHA’s where unique
» removed basename method from Objects with path’s as it replicated features of os.path

» from_string and list_from_string methods are now private and were renamed to _from_string and
_list_from_string respectively. As part of the private API, they may change without prior notice.

96

Chapter 5. Changelog

GitPython Documentation, Release 2.1.3

Renamed all find_all methods to list_items - this method is part of the Iterable interface that also provides a
more efficients and more responsive iter_items method

All dates, like authored_date and committer_date, are stored as seconds since epoch to consume less memory -
they can be converted using time.gmtime in a more suitable presentation format if needed.

Named method parameters changed on a wide scale to unify their use. Now git specific terms are used every-
where, such as “Reference” (ref) and “Revision” (rev). Previously multiple terms where used making it harder
to know which type was allowed or not.

Unified diff interface to allow easy diffing between trees, trees and index, trees and working tree, index and
working tree, trees and index. This closely follows the git-diff capabilities.

Git.execute does not take the with_raw_output option anymore. It was not used by anyone within the project
and False by default.

Item lteration

* Previously one would return and process multiple items as list only which can hurt performance and memory

consumption and reduce response times. iter_items method provide an iterator that will return items on demand
as parsed from a stream. This way any amount of objects can be handled.

* list_items method returns IterableList allowing to access list members by name

objects Package

* blob, tree, tag and commit module have been moved to new objects package. This should not affect you though

unless you explicitly imported individual objects. If you just used the git package, names did not change.

Blob

» former ‘name’ member renamed to path as it suits the actual data better

GitCommand

* git.subcommand call scheme now prunes out None from the argument list, allowing to be called more comfort-

ably as None can never be a valid to the git command if converted to a string.

* Renamed ‘git_dir’ attribute to ‘working_dir’ which is exactly how it is used

Commit

¢ ‘count’ method is not an instance method to increase its ease of use

* ‘name_rev’ property returns a nice name for the commit’s sha

Config

The git configuration can now be read and manipulated directly from within python using the GitConfigParser

Repo.config_reader() returns a read-only parser

Repo.config_writer() returns a read-write parser

5.30.

0.2 97

GitPython Documentation, Release 2.1.3

Diff
* Members a a_commit and b_commit renamed to a_blob and b_blob - they are populated with Blob objects if
possible
* Members a_path and b_path removed as this information is kept in the blobs

* Diffs are now returned as DiffIndex allowing to more quickly find the kind of diffs you are interested in

Diffing

* Commit and Tree objects now support diffing natively with a common interface to compare against other Com-
mits or Trees, against the working tree or against the index.

Index

¢ A new Index class allows to read and write index files directly, and to perform simple two and three way merges
based on an arbitrary index.

References

* References are object that point to a Commit
» SymbolicReference are a pointer to a Reference Object, which itself points to a specific Commit

* They will dynamically retrieve their object at the time of query to assure the information is actual. Recently
objects would be cached, hence ref object not be safely kept persistent.

Repo

* Moved blame method from Blob to repo as it appeared to belong there much more.
* active_branch method now returns a Head object instead of a string with the name of the active branch.
* tree method now requires a Ref instance as input and defaults to the active_branch instead of master
* is_dirty now takes additional arguments allowing fine-grained control about what is considered dirty
* Removed the following methods:
— ‘log’ method as it as effectively the same as the ‘commits’ method
— ‘commits_since’ as it is just a flag given to rev-list in Commit.iter_items
— ‘commit_count’ as it was just a redirection to the respective commit method
— ‘commits_between’, replaced by a note on the iter_commits method as it can achieve the same thing

— ‘commit_delta_from’ as it was a very special case by comparing two different repjrelated repositories, i.e.
clones, git-rev-list would be sufficient to find commits that would need to be transferred for example.

— ‘create’ method which equals the ‘init’ method’s functionality
— ‘diff’ - it returned a mere string which still had to be parsed
— ‘commit_diff’ - moved to Commit, Tree and Diff types respectively

* Renamed the following methods:

98 Chapter 5. Changelog

GitPython Documentation, Release 2.1.3

commits to iter_commits to improve the performance, adjusted signature

init_bare to init, implying less about the options to be used

fork_bare to clone, as it was to represent general clone functionality, but implied a bare clone to be more
versatile

archive_tar_gz and archive_tar and replaced by archive method with different signature
e ‘commits’ method has no max-count of returned commits anymore, it now behaves like git-rev-list

* The following methods and properties were added

‘untracked_files’ property, returning all currently untracked files
— ‘head’, creates a head object
— ‘tag’, creates a tag object
— ‘iter_trees’ method
— ‘config_reader’ method
— ‘config_writer’ method
— ‘bare’ property, previously it was a simple attribute that could be written
* Renamed the following attributes
— ‘path’ is now ‘git_dir’
- ‘wd’ is now ‘working_dir’
¢ Added attribute

— ‘working_tree_dir’ which may be None in case of bare repositories

Remote

* Added Remote object allowing easy access to remotes
* Repo.remotes lists all remotes

* Repo.remote returns a remote of the specified name if it exists

Test Framework

* Added support for common TestCase base class that provides additional functionality to receive repositories
tests can also write to. This way, more aspects can be tested under real-world (un-mocked) conditions.

Tree

 former ‘name’ member renamed to path as it suits the actual data better

¢ added traverse method allowing to recursively traverse tree items

* deleted blob method

¢ added blobs and trees properties allowing to query the respective items in the tree
* now mimics behaviour of a read-only list instead of a dict to maintain order.

* content_from_string method is now private and not part of the public API anymore

5.30. 0.2 99

GitPython Documentation, Release 2.1.3

0.1.6

General

* Added in Sphinx documentation.

¢ Removed ambiguity between paths and treeishs. When calling commands that accept treeish and path arguments
and there is a path with the same name as a treeish git cowardly refuses to pick one and asks for the command
to use the unambiguous syntax where ‘—‘ separates the treeish from the paths.

* Repo.commits, Repo.commits_between, Repo.commits_since, Repo.commit_count,
Repo.commit, Commit.count and Commit.find_all all now optionally take a path argument which
constrains the lookup by path. This changes the order of the positional arguments in Repo.commits and
Repo.commits_since.

Commit

* Commit .message now contains the full commit message (rather than just the first line) and a new property
Commit . summary contains the first line of the commit message.

* Fixed a failure when trying to lookup the stats of a parentless commit from a bare repo.

Diff

* The diff parser is now far faster and also addresses a bug where sometimes b_mode was not set.

* Added support for parsing rename info to the diff parser. Addition of new properties Diff.renamed, Diff.
rename_from,and Diff.rename_to.

Head

 Corrected problem where branches was only returning the last path component instead of the entire path com-
ponent following refs/heads/.

Repo

* Modified the gzip archive creation to use the python gzip module.

¢ Corrected commits_between always returning None instead of the reversed list.

0.1.5

General

* upgraded to Mock 0.4 dependency.
* Replace GitPython with git in repr() outputs.

* Fixed packaging issue caused by ez_setup.py.

100 Chapter 5. Changelog

GitPython Documentation, Release 2.1.3

Blob

* No longer strip newlines from Blob data.

Commit

 Corrected problem with git-rev-list —bisect-all. See http://groups.google.com/group/git-python/browse_thread/
thread/aed1d5¢c4b31d5027

Repo

* Corrected problems with creating bare repositories.

* Repo.tree no longer accepts a path argument. Use:

>>> dict(k, o for k, o in tree.items() if k in paths)

* Made daemon export a property of Repo. Now you can do this:

>>> exported = repo.daemon_export
>>> repo.daemon_export = True

* Allows modifying the project description. Do this:

>>> repo.description = "Foo Bar"
>>> repo.description
'Foo Bar'

* Added a read-only property Repo.is_dirty which reflects the status of the working directory.

* Added a read-only Repo.active_branch property which returns the name of the currently active branch.

Tree
» Switched to using a dictionary for Tree contents since you will usually want to access them by name and order
is unimportant.
* Implemented a dictionary protocol for Tree objects. The following:
child = tree.contents[’ grit’]
becomes:
child = tree[grit’]

* Made Tree.content_from_string a static method.

0.1.4.1

e removed method_missing stuff and replaced witha __getattr__ override in Git.

5.33. 0.1.4.1 101

http://groups.google.com/group/git-python/browse_thread/thread/aed1d5c4b31d5027
http://groups.google.com/group/git-python/browse_thread/thread/aed1d5c4b31d5027

GitPython Documentation, Release 2.1.3

0.14

» renamed git_python to git. Be sure to delete all pyc files before testing.

Commit

* Fixed problem with commit stats not working under all conditions.

Git
* Renamed module to cmd.
* Removed shell escaping completely.

¢ Added support for stderr, stdin,and with_status.

* git_dir is now optional in the constructor for git . Git. Git now falls back to os.getcwd () when git_dir
is not specified.

* addawith_exceptions keyword argument to git commands. Git CommandError is raised when the exit
status is non-zero.

¢ add support for a GIT_PYTHON_TRACE environment variable. GIT_PYTHON_TRACE allows us to debug
GitPython’s usage of git through the use of an environment variable.

Tree

* Fixed up problem where name doesn’t exist on root of tree.

Repo

* Corrected problem with creating bare repo. Added Repo . create alias.

0.1.2

Tree

* Corrected problem with Tree.___div__ not working with zero length files. Removed ___l1en__ override and
replaced with size instead. Also made size cache properly. This is a breaking change.

0.1.1

Fixed up some urls because I'm a moron

0.1.0

initial release

102 Chapter 5. Changelog

CHAPTER O

Indices and tables

* genindex
* modindex

e search

103

GitPython Documentation, Release 2.1.3

104 Chapter 6. Indices and tables

Python Module Index

git
git
git
git
git
git

git
git
git
git

git
git
git
git

git.
git.
.refs.reference, 61
.refs.remote, 65

.refs.symbolic, 58

git
git
git

git.
git.
.repo.base, 74
.repo. fun, 80
.util, 81

git
git
git

.cmd, 49
.config, 53
.diff, 53
.exc, 56
.index.base, 39
.index. fun, 45
git.
git.
git.
.objects.blob, 23
.objects.commit, 23
.objects. fun, 29

index.typ, 46
index.util, 48
objects.base, 21

.objects.
git.
.objects.
.objects
.objects
.objects

objects.

submodule.base, 29
submodule. root, 34
submodule.util, 36

.tag, 26
.tree, 27
.util, 36

refs.head, 62
refs.log, 65

refs.tagqg, 64
remote, 67

105

GitPython Documentation, Release 2.1.3

106 Python Module Index

Index

Symbols

__abstractmethods__ (git.obj ects.submodule.util.Submodule@&’?f?éf‘ars@r

attribute), 36

__call__() (git.cmd.Git method), 50

__call__() (git.index.typ.BlobFilter method), 46

__contains__() (git.objects.tree.Tree method), 28

__contains__() (git.util.IterableList method), 83

__del__() (git.cmd.Git.AutoInterrupt method), 49

__del__() (git.cmd.Git.CatFileContentStream method),
49

__del__() (git.config.SectionConstraint method), 53

__del__() (git.index.util. TemporaryFileSwap method), 48

__del__() (git.repo.base.Repo method), 74

__del__() (git.util.LockFile method), 83

__delitem__() (git.objects.tree. TreeModifier method), 27

__delitem__() (git.util.IterableList method), 83

__dict__ (git.diff.DiffIndex attribute), 54

__dict__ (git.diff.Diffable.Index attribute), 53

__dict__ (git.index.typ.BaselndexEntry attribute), 47

__dict__ (git.objects.util.tzoffset attribute), 38

__dict__ (git.refs.head.Head attribute), 63

__dict__ (git.repo.base.Repo attribute), 74

__div__() (git.objects.tree.Tree method), 28

__enter__() (git.config.SectionConstraint method), 53

__enter__ () (git.repo.base.Repo method), 74

__eq__() (git.diff. Diff method), 55

__eq__() (git.objects.base.Object method), 21

_eq_0 (git.objects.submodule.base.Submodule
method), 29

__eq__() (git.objects.util. Actor method), 38

__eq__() (git.refs.symbolic.SymbolicReference method),
58

__eq__() (git.remote.Remote method), 70

__eq__() (git.repo.base.Repo method), 74

__eq__() (git.util. Actor method), 84

__exit__() (git.config.SectionConstraint method), 53

__exit__() (git.repo.base.Repo method), 74

__getattr__ () (git.cmd.Git method), 50

__getattr__ () (git.cmd.Git.Autolnterrupt method), 49

__getattr__ () (git.config.SectionConstraint method), 53

(git.objects.util.ProcessStreamAdapter
method), 37

__getattr__ () (git.remote.Remote method), 70

__getattr__() (git.util.IterableList method), 83

__getitem__() (git.objects.tree. Tree method), 28

__getitem__() (git.util.IterableList method), 83

__getslice__() (git.objects.tree.Tree method), 28

__getstate__ () (git.cmd.Git method), 50

__hash__ () (git.diff.Diff method), 55

__hash__ () (git.objects.base.IndexObject method), 22

__hash__ () (git.objects.base.Object method), 21

__hash_ () (git.objects.submodule.base.Submodule
method), 29

__hash__ () (git.objects.util. Actor method), 38

__hash_ () (git.refs.symbolic.SymbolicReference
method), 58

__hash__ () (git.remote.Remote method), 70

__hash__ () (git.repo.base.Repo method), 74

__hash__ () (git.util. Actor method), 84

__init__() (git.cmd.Git method), 50

__init__() (git.cmd.Git.Autolnterrupt method), 49

__init__() (git.cmd.Git.CatFileContentStream method),
49

__init__() (git.config.SectionConstraint method), 53

__init__() (git.diff.Diff method), 55

__init__() (git.exc.CheckoutError method), 56

__init__() (git.exc.CommandError method), 56

__init__() (git.exc.GitCommandError method), 57

__init__() (git.exc.GitCommandNotFound method), 57

__init__() (git.exc.HookExecutionError method), 57

__init__() (git.exc.RepositoryDirtyError method), 57

__init__() (git.index.base.CheckoutError method), 45

__init__() (git.index.base.IndexFile method), 39

__init__() (git.index.typ.BlobFilter method), 46

__init__ () (git.index.util. TemporaryFileSwap method), 48

__init__() (git.objects.base.IndexObject method), 22

__init__() (git.objects.base.Object method), 21

__init__() (git.objects.commit.Commit method), 23

107

GitPython Documentation, Release 2.1.3

__init__() (git.objects.submodule.base.Submodule __module__ (git.exc.RepositoryDirtyError attribute), 57

method), 29 __module__ (git.exc.UnmergedEntriesError attribute), 57
__init__() (git.objects.submodule.root.RootModule __module__ (git.exc. WorkTreeRepositoryUnsupported

method), 34 attribute), 57
__init__() (git.objects.submodule.util.SubmoduleConfigParsermodule__ (git.index.base.CheckoutError attribute), 45

method), 36 __module__ (git.index.base.IndexFile attribute), 39
__init__() (git.objects.tag. TagObject method), 26 __module__ (git.index.typ.BaseIndexEntry attribute), 47
__init__() (git.objects.tree.Tree method), 28 __module__ (git.index.typ.BlobFilter attribute), 46
__init__() (git.objects.tree. TreeModifier method), 27 __module__ (git.index.typ.IndexEntry attribute), 47
__init__() (git.objects.util. Actor method), 38 __module__ (git.index.util. TemporaryFileSwap at-
__init__() (git.objects.util.ProcessStreamAdapter tribute), 48

method), 37 __module__ (git.objects.base.IndexObject attribute), 22
__init__() (git.objects.util.tzoffset method), 38 __module__ (git.objects.base.Object attribute), 2 1
__init__() (git.refs.head. HEAD method), 62 __module__ (git.objects.blob.Blob attribute), 23
__init__() (git.refs.log.RefLog method), 65 __module__ (git.objects.commit.Commit attribute), 24
__init__() (git.refs.reference.Reference method), 61 __module__ (git.objects.submodule.base.Submodule at-
init () (git.refs.symbolic.SymbolicReference tribute), 30

method), 58 __module__ (git.objects.submodule.base.UpdateProgress
__init__() (git.remote.FetchInfo method), 70 attribute), 34
__init__() (git.remote.PushInfo method), 69 __module__ (git.objects.submodule.root.RootModule at-
__init__() (git.remote.Remote method), 70 tribute), 34
__init__() (git.remote.RemoteProgress method), 67 __module__ (git.objects.submodule.root.RootUpdateProgress
__init__() (git.repo.base.Repo method), 74 attribute), 35
__init__() (git.util. Actor method), 84 __module__ (git.objects.submodule.util. SubmoduleConfigParser
__init__() (git.util. BlockinglLockFile method), 83 attribute), 36
__init__() (git.util.CallableRemoteProgress method), 86 __module__ (git.objects.tag. TagObject attribute), 27
__init__() (git.util.IndexFileSHA 1Writer method), 82 __module__ (git.objects.tree.Tree attribute), 28
__init__() (git.util.IterableList method), 83 __module__ (git.objects.tree. TreeModifier attribute), 27
__init__() (git.util.LockFile method), 83 __module__ (git.objects.util. Actor attribute), 38
__init__() (git.util. RemoteProgress method), 85 __module__ (git.objects.util.ProcessStreamAdapter at-
__init__() (git.util.Stats method), 82 tribute), 37
__iter__() (git.cmd.Git.CatFileContentStream method), __module__ (git.objects.util. Traversable attribute), 37

49 __module__ (git.objects.util.tzoffset attribute), 39
__iter__() (git.objects.tree. Tree method), 28 __module__ (git.refs.head. HEAD attribute), 62
__len__() (git.objects.tree. Tree method), 28 __module__ (git.refs.head.Head attribute), 63
__module__ (git.cmd.Git attribute), 50 __module__ (git.refs.log.RefLog attribute), 65
__module__ (git.cmd.Git.Autolnterrupt attribute), 49 __module__ (git.refs.log.RefLogEntry attribute), 66
__module__ (git.cmd.Git.CatFileContentStream at- __module__ (git.refs.reference.Reference attribute), 61

tribute), 49 __module__ (git.refs.remote.RemoteReference attribute),
__module__ (git.config.SectionConstraint attribute), 53 65
__module__ (git.diff.Diff attribute), 55 __module__ (git.refs.symbolic.SymbolicReference at-
__module__ (git.diff.DiffIndex attribute), 54 tribute), 58
__module__ (git.diff.Diffable attribute), 54 __module__ (git.refs.tag. TagReference attribute), 64
__module__ (git.diff.Diffable.Index attribute), 53 __module__ (git.remote.Fetchlnfo attribute), 70
__module__ (git.exc.CacheError attribute), 56 __module__ (git.remote.PushInfo attribute), 69
__module__ (git.exc.CheckoutError attribute), 56 __module__ (git.remote.Remote attribute), 70
__module__ (git.exc.CommandError attribute), 56 __module__ (git.remote.RemoteProgress attribute), 68
__module__ (git.exc.GitCommandError attribute), 57 __module__ (git.repo.base.Repo attribute), 75
__module__ (git.exc.GitCommandNotFound attribute), __module__ (git.util. Actor attribute), 84

57 __module__ (git.util.BlockinglLockFile attribute), 83
__module__ (git.exc.HookExecutionError attribute), 57 __module__ (git.util.CallableRemoteProgress attribute),
_module__ (git.exc.InvalidGitRepositoryError at- 86

tribute), 57 __module__ (git.util.IndexFileSHA 1 Writer attribute), 82
__module__ (git.exc.NoSuchPathError attribute), 57 __module__ (git.util.Iterable attribute), 82

108 Index

GitPython Documentation, Release 2.1.3

__module__ (git.util.IterableList attribute), 83 __slots__ (git.objects.tree. TreeModifier attribute), 27
__module__ (git.util.LockFile attribute), 84 __slots__ (git.objects.util.Actor attribute), 38
__module__ (git.util.RemoteProgress attribute), 85 __slots__ (git.objects.util.ProcessStreamAdapter at-
__module__ (git.util.Stats attribute), 82 tribute), 37
__ne__() (git.diff. Diff method), 55 __slots__ (git.objects.util. Traversable attribute), 37
__ne__() (git.objects.base.Object method), 21 __slots__ (git.refs.head. HEAD attribute), 62
ne () (git.objects.submodule.base.Submodule __slots__ (git.refs.log.RefLog attribute), 65
method), 30 __slots__ (git.refs.log.RefLogEntry attribute), 66
__ne__() (git.objects.util. Actor method), 38 __slots__ (git.refs.reference.Reference attribute), 61
__ne__() (git.refs.symbolic.SymbolicReference method), _ slots__ (git.refs.symbolic.SymbolicReference at-
58 tribute), 58
__ne__() (git.remote.Remote method), 70 __slots__ (git.refs.tag. TagReference attribute), 64
__ne__() (git.repo.base.Repo method), 75 __slots___ (git.remote.Fetchlnfo attribute), 70
__ne__() (git.util. Actor method), 84 __slots__ (git.remote.PushInfo attribute), 69
__new__() (git.refs.log.RefLog static method), 65 __slots__ (git.remote.Remote attribute), 71
__new__() (git.util.IterableList static method), 83 __slots__ (git.remote.RemoteProgress attribute), 68
__repr__() (git.index.typ.BaseIndexEntry method), 47 __slots__ (git.util. Actor attribute), 84
__repr__() (git.objects.base.Object method), 21 __slots__ (git.util.BlockingLockFile attribute), 83
_repr__() (git.objects.submodule.base.Submodule __slots__ (git.util.CallableRemoteProgress attribute), 86
method), 30 __slots__ (git.util.IndexFileSHA1Writer attribute), 82
__repr__() (git.objects.util. Actor method), 38 __slots__ (git.util.Iterable attribute), 82
__repr__() (git.refs.log.RefLogEntry method), 66 __slots__ (git.util.IterableList attribute), 83
_repr__() (git.refs.symbolic.SymbolicReference __slots__ (git.util.LockFile attribute), 84
method), 58 __slots__ (git.util.RemoteProgress attribute), 85
__repr__() (git.remote.Remote method), 70 __slots__ (git.util.Stats attribute), 82
__repr__() (git.repo.base.Repo method), 75 __str__() (git.diff.Diff method), 55
__repr__() (git.util. Actor method), 84 __str__() (git.exc.CheckoutError method), 56
__reversed__() (git.objects.tree. Tree method), 28 __str__() (git.exc.RepositoryDirtyError method), 57
__setstate__() (git.cmd.Git method), 50 __str__() (git.index.base.CheckoutError method), 45
__slots__ (git.cmd.Git attribute), 50 __str__() (git.index.typ.BaseIndexEntry method), 47
__slots__ (git.cmd.Git.Autolnterrupt attribute), 49 __str__() (git.objects.base.Object method), 21
__slots__ (git.cmd.Git.CatFileContentStream attribute), __str_ () (git.objects.submodule.base.Submodule
49 method), 30
__slots__ (git.config.SectionConstraint attribute), 53 __str__() (git.objects.util. Actor method), 38
__slots__ (git.diff.Diff attribute), 55 __str__() (git.refs.reference.Reference method), 61
__slots__ (git.diff.Diffable attribute), 54 __str__() (git.refs.symbolic.SymbolicReference method),
__slots__ (git.index.base.IndexFile attribute), 39 58
__slots__ (git.index.typ.BlobFilter attribute), 46 __str__() (git.remote.FetchInfo method), 70
__slots__ (git.index.util. TemporaryFileSwap attribute), __str__ () (git.remote.Remote method), 71
48 __str__() (git.util. Actor method), 84
__slots__ (git.objects.base.IndexObject attribute), 23 __truediv__() (git.objects.tree. Tree method), 28
__slots__ (git.objects.base.Object attribute), 21 __unicode__() (git.exc.CommandError method), 56
__slots__ (git.objects.blob.Blob attribute), 23 __weakref__ (git.diff.DiffIndex attribute), 54
__slots__ (git.objects.commit.Commit attribute), 24 __weakref__ (git.diff.Diffable.Index attribute), 53
__slots__ (git.objects.submodule.base.Submodule at- __weakref _ (git.exc.CacheError attribute), 56
tribute), 30 __weakref__ (git.exc.CheckoutError attribute), 56
__slots__ (git.objects.submodule.base.UpdateProgress __weakref _ (git.exc.CommandError attribute), 56
attribute), 34 __weakref__ (git.exc.InvalidGitRepositoryError at-
__slots__ (git.objects.submodule.root.RootModule tribute), 57
attribute), 34 __weakref__ (git.exc.NoSuchPathError attribute), 57
__slots__ (git.objects.submodule.root.RootUpdateProgress __weakref _ (git.exc.RepositoryDirtyError attribute), 57
attribute), 35 __weakref__ (git.index.base.CheckoutError attribute), 45
__slots__ (git.objects.tag. TagObject attribute), 27 __weakref__ (git.objects.submodule.base.Submodule at-
__slots__ (git.objects.tree. Tree attribute), 28 tribute), 30

Index 109

GitPython Documentation, Release 2.1.3

__weakref__ (git.objects.util.tzoffset attribute), 39
__weakref__ (git.refs.head.Head attribute), 63
__weakref__ (git.repo.base.Repo attribute), 75

A

a_blob (git.diff. Diff attribute), 55

a_mode (git.diff.Diff attribute), 55

a_path (git.diff.Diff attribute), 55

a_rawpath (git.diff. Diff attribute), 55

abspath (git.objects.base.IndexObject attribute), 23

abspath (git.refs.symbolic.SymbolicReference attribute),
58

active_branch (git.repo.base.Repo attribute), 75

Actor (class in git.objects.util), 38

Actor (class in git.util), 84

actor (git.refs.log.RefLogEntry attribute), 66

add() (git.index.base.IndexFile method), 39

add() (git.objects.submodule.base.Submodule
method), 30

add() (git.objects.tree. TreeModifier method), 27

add() (git.remote.Remote class method), 71

add_unchecked() (git.objects.tree. TreeModifier method),
27

add_url() (git.remote.Remote method), 71

alternates (git.repo.base.Repo attribute), 75

altz_to_utctz_str() (in module git.objects.util), 37

append_entry() (git.refs.log.RefLog class method), 65

archive() (git.repo.base.Repo method), 75

args (git.cmd.Git.Autolnterrupt attribute), 49

assure_directory_exists() (in module git.util), 84

author (git.objects.commit.Commit attribute), 24

author() (git.objects.util. Actor class method), 38

author() (git.util. Actor class method), 84

author_tz_offset (git.objects.commit.Commit attribute),
24

authored_date (git.objects.commit.Commit attribute), 24

authored_datetime (git.objects.commit.Commit at-
tribute), 24

class

B

b_blob (git.diff.Diff attribute), 55

b_mode (git.diff.Diff attribute), 55

b_path (git.diff.Diff attribute), 55

b_rawpath (git.diff.Diff attribute), 55

bare (git.repo.base.Repo attribute), 75
BaselndexEntry (class in git.index.typ), 47
BEGIN (git.remote.RemoteProgress attribute), 67
BEGIN (git.util. RemoteProgress attribute), 85
binsha (git.index.typ.BaseIndexEntry attribute), 47
binsha (git.objects.base.Object attribute), 22
blame() (git.repo.base.Repo method), 75
blame_incremental() (git.repo.base.Repo method), 75
Blob (class in git.objects.blob), 23

blob_id (git.objects.tree. Tree attribute), 28

BlobFilter (class in git.index.typ), 46

blobs (git.objects.tree. Tree attribute), 28

BlockinglockFile (class in git.util), 83

branch (git.objects.submodule.base.Submodule attribute),
30

branch_name (git.objects.submodule.base.Submodule at-
tribute), 30

branch_path (git.objects.submodule.base.Submodule at-
tribute), 30

BRANCHCHANGE (git.objects.submodule.root.RootUpdateProgress

attribute), 35
branches (git.repo.base.Repo attribute), 75

C

cache (git.objects.tree.Tree attribute), 28

CacheError, 56

CallableRemoteProgress (class in git.util), 86

cat_file_all (git.cmd.Git attribute), 50

cat_file_header (git.cmd.Git attribute), 50

change_type (git.diff.Diff attribute), 55

change_type (git.diff.DiffIndex attribute), 54

CHECKING_OUT (git.remote.RemoteProgress at-
tribute), 67

CHECKING_OUT (git.util. RemoteProgress attribute), 85

checkout() (git.index.base.IndexFile method), 41

checkout() (git.refs.head.Head method), 63

CheckoutError, 45, 56

children() (git.objects.submodule.base.Submodule
method), 31

clear_cache() (git.cmd.Git method), 50

CLONE (git.objects.submodule.base.UpdateProgress at-
tribute), 34

clone() (git.repo.base.Repo method), 76

clone_from() (git.repo.base.Repo class method), 76

close() (git.repo.base.Repo method), 76

close() (git.util.IndexFileSHA 1 Writer method), 82

CommandError, 56

Commit (class in git.objects.commit), 23

commit (git.refs.symbolic.SymbolicReference attribute),
58

commit (git.refs.tag. TagReference attribute), 64

commit (git.remote.FetchInfo attribute), 70

commit() (git.index.base.IndexFile method), 41

commit() (git.repo.base.Repo method), 76

commit_id (git.objects.tree. Tree attribute), 28

committed_date (git.objects.commit.Commit attribute),
24

committed_datetime
tribute), 24

committer (git.objects.commit.Commit attribute), 24

committer() (git.objects.util. Actor class method), 38

committer() (git.util. Actor class method), 84

committer_tz_offset (git.objects.commit.Commit at-
tribute), 24

(git.objects.commit.Commit at-

110

Index

GitPython Documentation, Release 2.1.3

COMPRESSING (git.remote.RemoteProgress attribute),
67

COMPRESSING (git.util. RemoteProgress attribute), 85

conf_email (git.objects.util. Actor attribute), 38

conf_email (git.util. Actor attribute), 84

conf_encoding (git.objects.commit.Commit attribute), 24

conf_name (git.objects.util. Actor attribute), 38

conf_name (git.util. Actor attribute), 84

config (git.config.SectionConstraint attribute), 53

config_level (git.repo.base.Repo attribute), 76

config_reader (git.remote.Remote attribute), 71

config_reader() (git.objects.submodule.base.Submodule
method), 31

config_reader() (git.refs.head.Head method), 63

config_reader() (git.repo.base.Repo method), 76

config_writer (git.remote.Remote attribute), 71

config_writer() (git.objects.submodule.base.Submodule
method), 31

config_writer() (git.refs.head.Head method), 63

config_writer() (git.repo.base.Repo method), 76

count() (git.objects.commit.Commit method), 24

COUNTING (git.remote.RemoteProgress attribute), 67

COUNTING (git.util. RemoteProgress attribute), 85

create() (git.refs.remote.RemoteReference class method),

65

(git.refs.symbolic.SymbolicReference

method), 58

create() (git.refs.tag. TagReference class method), 64

create() (git.remote.Remote class method), 71

create_from_tree() (git.objects.commit.Commit
method), 25

create_head() (git.repo.base.Repo method), 77

create_remote() (git.repo.base.Repo method), 77

create_submodule() (git.repo.base.Repo method), 77

create_tag() (git.repo.base.Repo method), 77

ctime (git.index.typ.IndexEntry attribute), 47

custom_environment() (git.cmd.Git method), 50

D

daemon_export (git.repo.base.Repo attribute), 77

DAEMON_EXPORT_FILE (git.repo.base.Repo at-
tribute), 74

data_stream (git.objects.base.Object attribute), 22

default_encoding (git.objects.commit.Commit attribute),
25

default_index() (in module git.index.util), 48

DEFAULT_MIME_TYPE (git.objects.blob.Blob at-
tribute), 23

delete() (git.refs.head.Head class method), 63

delete() (git.refs.remote.RemoteReference class method),

65

(git.refs.symbolic.SymbolicReference
method), 58
delete() (git.refs.tag. TagReference class method), 64

create() class

class

delete() class

delete_head() (git.repo.base.Repo method), 77
delete_remote() (git.repo.base.Repo method), 77
delete_tag() (git.repo.base.Repo method), 77
delete_url() (git.remote.Remote method), 71
DELETED (git.remote.Pushlnfo attribute), 68
deleted_file (git.diff.Diff attribute), 55
deref_tag() (in module git.repo.fun), 81

dereference_recursive() (git.refs.symbolic.SymbolicReference

class method), 58

description (git.repo.base.Repo attribute), 77

dev (git.index.typ.IndexEntry attribute), 48

Diff (class in git.diff), 54

diff (git.diff.Diff attribute), 55

diff() (git.diff.Diffable method), 54

diff() (git.index.base.IndexFile method), 41

Diffable (class in git.diff), 53

Diffable.Index (class in git.diff), 53

DiffIndex (class in git.diff), 54

DONE_TOKEN (git.remote.RemoteProgress attribute),
67

DONE_TOKEN (git.util. RemoteProgress attribute), 85

dst() (git.objects.util.tzoffset method), 39

E

email (git.objects.util. Actor attribute), 38
email (git.util. Actor attribute), 84
encoding (git.objects.commit.Commit attribute), 25
END (git.remote.RemoteProgress attribute), 67
END (git.util.RemoteProgress attribute), 85
entries (git.index.base.IndexFile attribute), 41
entry_at() (git.refs.log.RefLog class method), 66
entry_key() (git.index.base.IndexFile class method), 41
entry_key() (in module git.index.fun), 46
env_author_date (git.objects.commit.Commit attribute),
25
env_author_email (git.objects.util. Actor attribute), 38
env_author_email (git.util. Actor attribute), 84
env_author_name (git.objects.util. Actor attribute), 38
env_author_name (git.util. Actor attribute), 84
env_committer_date (git.objects.commit.Commit at-
tribute), 25
env_committer_email (git.objects.util. Actor attribute), 38
env_committer_email (git.util. Actor attribute), 84
env_committer_name (git.objects.util. Actor attribute), 38
env_committer_name (git.util. Actor attribute), 84
environment variable
GIT_DIR, 74
environment() (git.cmd.Git method), 50
ERROR (git.remote.FetchlInfo attribute), 69
ERROR (git.remote.PushlInfo attribute), 69
error_lines (git.remote.RemoteProgress attribute), 68
error_lines (git.util. RemoteProgress attribute), 85
executable_mode (git.objects.blob.Blob attribute), 23
execute() (git.cmd.Git method), 51

Index

111

GitPython Documentation, Release 2.1.3

exists() (git.objects.submodule.base.Submodule method), git.exc (module), 56

31 git.index.base (module), 39
exists() (git.remote.Remote method), 71 git.index.fun (module), 45
git.index.typ (module), 46
F git.index.util (module), 48
f (git.util. IndexFileSHA 1 Writer attribute), 82 git.objects.base (module), 21

FAST_FORWARD (git.remote.FetchInfo attribute), 69 git.objects.blob (module), 23
FAST_FORWARD (git.remote.PushInfo attribute), 69 g¥t.obj.ects.comm1t (module), 23
FETCH (git.objects.submodule.base.UpdateProgress at- git.objects.fun (module), 29

tribute), 34 git.objects.submodule.base (module), 29
fetch() (git.remote.Remote method), 71 git.objects.submodule.root (module), 34
FetchInfo (class in git.remote), 69 git.objects.submodule.util (module), 36
file_mode (git.objects.blob.Blob attribute), 23 git.objects.tag (module), 26
file_path (git.index.util. TemporaryFileSwap attribute), 48 ~ git.objects.tree (module), 27
files (git.util.Stats attribute), 82 git.objects.util (module), 36
find_first_remote_branch() (in module git.refs.head (module), 62

git.objects.submodule.util), 36 git.refs.log (module), 65
find_submodule_git_dir() (in module git.repo.fun), 81 gitrefs.reference (module), 61
FINDING_SOURCES (git.remote.RemoteProgress at- git.refs.remote (module), 65

tribute), 67 git.refs.symbolic (module), 58
FINDING_SOURCES (git.util.RemoteProgress ~ at- git.refs.tag (module), 64

tribute), 85 git.remote (module), 67
flags (git.index.typ.BaselndexEntry attribute), 47 git.repo.base (module), 74
flags (git.remote.FetchInfo attribute), 70 git.repo.fun (module), 80
flags (git.remote.PushInfo attribute), 69 git.util (module), 81
flush_to_index() (git.objects.submodule.util. SubmoduleConfiaddR, 74

method), 36 git_dir (git.repo.base.Repo attribute), 77

FORCED_UPDATE (git.remote.FetchInfo attribute), 69 git_exec_name (git.cmd.Git attribute), 52
FORCED_UPDATE (git.remote.PushInfo attribute), 69 ~ GIT_PYTHON_GIT_EXECUTABLE (git.cmd.Git at-
format() (git.refs.log.RefLogEntry method), 67 tribute), 50

from_base() (git.index.typ.IndexEntry class method), 48 ~ GIT_PYTHON_TRACE (git.cmd.Git attribute), 50
from_blob() (git.index.typ.BaseIndexEntry ~ class git_working_dir() (in module git.index.util), 48

method), 47 GitCommandError, 56
from_blob() (git.index.typ.IndexEntry class method), 48 GitCommandNotFound, 57
from_file() (git.refs.log.RefLog class method), 66 GitCommandWrapperType (git.repo.base.Repo at-
from_line() (git.refs.log.RefLogEntry class method), 67 tribute), 74
from_path() (git.refs.symbolic.SymbolicReference class GitConfigParser (in module git.config), 53

method), 59 gpgsig (git.objects.commit.Commit attribute), 25
from_tree() (git.index.base.IndexFile class method), 41 H
G has_separate_working_tree() (git.repo.base.Repo
get_object_data() (git.cmd.Git method), 52 method), 77
get_object_header() (git.cmd.Git method), 52 HEAD (class in git.refs.head), 62
get_object_type_by_name() (in module git.objects.util), Head (class in git.refs.head), 62

36 head (git.repo.base.Repo attribute), 77
get_user_id() (in module git.util), 84 HEAD_UPTODATE (git.remote.FetchInfo attribute), 69
gid (git.index.typ.IndexEntry attribute), 48 heads (git.repo.base.Repo attribute), 77
Git (class in git.cmd), 49 hexsha (git.index.typ.BaseIndexEntry attribute), 47
git (git.repo.base.Repo attribute), 77 hexsha (git.objects.base.Object attribute), 22
Git.AutoInterrupt (class in git.cmd), 49 HIDE_WINDOWS_KNOWN_ERRORS (in module
Git.CatFileContentStream (class in git.cmd), 49 git.util), 86
git.cmd (module), 49 hook_path() (in module git.index.fun), 46
git.config (module), 53 HookExecutionError, 57

git.diff (module), 53

112 Index

GitPython Documentation, Release 2.1.3

index (git.repo.base.Repo attribute), 78

IndexEntry (class in git.index.typ), 47

IndexFile (class in git.index.base), 39

IndexFileSHA 1 Writer (class in git.util), 82

IndexObject (class in git.objects.base), 22

init() (git.repo.base.Repo class method), 78

inode (git.index.typ.IndexEntry attribute), 48

InvalidGitRepositoryError, 57

is_ancestor() (git.repo.base.Repo method), 78

is_cygwin() (git.cmd.Git class method), 52

is_detached (git.refs.symbolic.SymbolicReference
attribute), 59

is_dirty() (git.repo.base.Repo method), 78

is_git_dir() (in module git.repo.fun), 81

is_remote() (git.refs.symbolic.SymbolicReference
method), 59

is_valid() (git.refs.symbolic.SymbolicReference method),
59

iter_blobs() (git.index.base.IndexFile method), 42

iter_change_type() (git.diff.DiffIndex method), 54

iter_commits() (git.repo.base.Repo method), 78

iter_entries() (git.refs.log.RefLog class method), 66

iter_items() (git.objects.commit.Commit class method),
25

iter_items() (git.objects.submodule.base.Submodule class
method), 31

iter_items() (git.refs.reference.Reference class method),
61

iter_items() (git.refs.remote.RemoteReference
method), 65

iter_items() (git.refs.symbolic.SymbolicReference class
method), 59

iter_items() (git.remote.Remote class method), 72

iter_items() (git.util.Iterable class method), 82

iter_parents() (git.objects.commit.Commit method), 26

iter_submodules() (git.repo.base.Repo method), 78

iter_trees() (git.repo.base.Repo method), 78

Iterable (class in git.util), 82

IterableList (class in git.util), 83

J

join() (git.objects.tree. Tree method), 28
join_path() (in module git.util), 81
join_path_native() (in module git.util), 81

K

k_config_remote (git.refs.head.Head attribute), 63

k_config_remote_ref (git.refs.head.Head attribute), 63

k_default_mode (git.objects.submodule.base.Submodule
attribute), 31

k_head_default (git.objects.submodule.base.Submodule
attribute), 31

class

k_head_option (git.objects.submodule.base.Submodule
attribute), 31

k_modules_file (git.objects.submodule.base.Submodule
attribute), 31

k_root_name (git.objects.submodule.root.RootModule
attribute), 34

L

line_dropped() (git.remote.RemoteProgress method), 68

line_dropped() (git.util. RemoteProgress method), 85

link_mode (git.objects.blob.Blob attribute), 23

list_items() (git.util.Iterable class method), 82

list_traverse() (git.objects.util. Traversable method), 37

local_ref (git.remote.PushlInfo attribute), 69

LockFile (class in git.util), 83

log() (git.refs.symbolic.SymbolicReference method), 59

log_append() (git.refs.symbolic.SymbolicReference
method), 59

log_entry() (git.refs.symbolic.SymbolicReference
method), 60

M

max_chunk_size (git.cmd.Git attribute), 52

merge_base() (git.repo.base.Repo method), 79

merge_tree() (git.index.base.IndexFile method), 42

message (git.objects.commit.Commit attribute), 26

message (git.objects.tag. TagObject attribute), 27

message (git.refs.log.RefLogEntry attribute), 67

mime_type (git.objects.blob.Blob attribute), 23

mkhead() (in module git.objects.submodule.util), 36

mode (git.index.typ.BaseIndexEntry attribute), 47

mode (git.objects.base.IndexObject attribute), 23

module() (git.objects.submodule.base.Submodule

method), 31
(git.objects.submodule.root.RootModule

method), 34

module_exists() (git.objects.submodule.base.Submodule

method), 31
move() (git.index.base.IndexFile method), 42
move() (git.objects.submodule.base.Submodule method),
32
mtime (git.index.typ.IndexEntry attribute), 48

N

name (git.objects.base.IndexObject attribute), 23

name (git.objects.submodule.base.Submodule attribute),
32

name (git.objects.util. Actor attribute), 38

name (git.refs.reference.Reference attribute), 61

name (git.refs.symbolic.SymbolicReference attribute), 60

name (git.remote.Fetchlnfo attribute), 70

name (git.remote.Remote attribute), 72

name (git.util.Actor attribute), 84

name_email_regex (git.objects.util. Actor attribute), 38

module()

Index

113

GitPython Documentation, Release 2.1.3

name_email_regex (git.util. Actor attribute), 84

name_only_regex (git.objects.util. Actor attribute), 38

name_only_regex (git.util. Actor attribute), 84

name_rev (git.objects.commit.Commit attribute), 26

name_to_object() (in module git.repo.fun), 81

new() (git.index.base.IndexFile class method), 43

new() (git.objects.base.Object class method), 22

new() (git.refs.log.RefLogEntry class method), 67

new_file (git.diff.Diff attribute), 55

new_from_sha() (git.objects.base.Object class method),
22

NEW_HEAD (git.remote.Fetchlnfo attribute), 70

NEW_HEAD (git.remote.PushInfo attribute), 69

new_message_handler() (git.remote.RemoteProgress
method), 68

new_message_handler()
method), 85

NEW_TAG (git.remote.FetchInfo attribute), 70

NEW_TAG (git.remote.PushlInfo attribute), 69

newhexsha (git.refs.log.RefLogEntry attribute), 67

next() (git.cmd.Git.CatFileContentStream method), 50

NO_MATCH (git.remote.PushInfo attribute), 69

NoSuchPathError, 57

note (git.remote.FetchInfo attribute), 70

NULL_BIN_SHA (git.diff.Diff attribute), 55

NULL_BIN_SHA (git.objects.base.Object attribute), 21

NULL_HEX_SHA (git.diff.Diff attribute), 55

NULL_HEX_SHA (git.objects.base.Object attribute), 21

O

Object (class in git.objects.base), 21

object (git.objects.tag. TagObject attribute), 27

object (git.refs.symbolic.SymbolicReference attribute),
60

object (git.refs.tag. TagReference attribute), 64

old_commit (git.remote.Fetchlnfo attribute), 70

old_commit (git.remote.PushInfo attribute), 69

oldhexsha (git.refs.log.RefLogEntry attribute), 67

OP_MASK (git.remote.RemoteProgress attribute), 67

OP_MASK (git.util. RemoteProgress attribute), 85

orig_head() (git.refs.head. HEAD method), 62

other_lines (git.remote.RemoteProgress attribute), 68

other_lines (git.util. RemoteProgress attribute), 85

P

parent_commit (git.objects.submodule.base.Submodule
attribute), 32

parents (git.objects.commit.Commit attribute), 26

parse_actor_and_date() (in module git.objects.util), 37

parse_date() (in module git.objects.util), 36

path (git.index.base.IndexFile attribute), 43

path (git.index.typ.BaseIndexEntry attribute), 47

path (git.objects.base.IndexObject attribute), 23

path (git.refs.symbolic.SymbolicReference attribute), 60

(git.util. RemoteProgress

path() (git.refs.log.RefLog class method), 66

PATHCHANGE (git.objects.submodule.root.RootUpdateProgress

attribute), 35
paths (git.index.typ.BlobFilter attribute), 47
polish_url() (git.cmd.Git class method), 52
post_clear_cache() (in module git.index.util), 48
proc (git.cmd.Git.Autolnterrupt attribute), 49
ProcessStreamAdapter (class in git.objects.util), 37
pull() (git.remote.Remote method), 72
push() (git.remote.Remote method), 72
PushlInfo (class in git.remote), 68

R

raw_rename_from (git.diff.Diff attribute), 55

raw_rename_to (git.diff. Diff attribute), 55

re_author_committer_start (git.repo.base.Repo attribute),
79

re_fetch_result (git.remote.FetchInfo attribute), 70

re_header (git.diff.Diff attribute), 56

re_hexsha_only (git.repo.base.Repo attribute), 79

re_hexsha_shortened (git.repo.base.Repo attribute), 79

re_op_absolute (git.remote.RemoteProgress attribute), 68

re_op_absolute (git.util.RemoteProgress attribute), 85

re_op_relative (git.remote.RemoteProgress attribute), 68

re_op_relative (git.util. RemoteProgress attribute), 85

re_tab_full_line (git.repo.base.Repo attribute), 79

re_whitespace (git.repo.base.Repo attribute), 79

read() (git.cmd.Git.CatFileContentStream method), 50

read_cache() (in module git.index.fun), 46

readline() (git.cmd.Git.CatFileContentStream method),
50

readlines() (git.cmd.Git.CatFileContentStream method),
50

RECEIVING (git.remote.RemoteProgress attribute), 67

RECEIVING (git.util. RemoteProgress attribute), 85

ref (git.refs.symbolic.SymbolicReference attribute), 60

ref (git.remote.Fetchlnfo attribute), 70

Reference (class in git.refs.reference), 61

reference (git.refs.symbolic.SymbolicReference at-
tribute), 60

references (git.repo.base.Repo attribute), 79

RefLog (class in git.refs.log), 65

RefLogEntry (class in git.refs.log), 66

refs (git.remote.Remote attribute), 73

refs (git.repo.base.Repo attribute), 79

REJECTED (git.remote.Fetchlnfo attribute), 70

REJECTED (git.remote.PushInfo attribute), 69

release() (git.config.SectionConstraint method), 53

Remote (class in git.remote), 70

remote() (git.repo.base.Repo method), 79

REMOTE_FAILURE (git.remote.PushlInfo attribute), 69

remote_head (git.refs.reference.Reference attribute), 61

remote_name (git.refs.reference.Reference attribute), 62

remote_ref (git.remote.Pushlnfo attribute), 69

114

Index

GitPython Documentation, Release 2.1.3

remote_ref_path (git.remote.FetchlInfo attribute), 70

remote_ref_string (git.remote.PushInfo attribute), 69

REMOTE_REJECTED (git.remote.PushInfo attribute),
69

RemoteProgress (class in git.remote), 67

RemoteProgress (class in git.util), 85

RemoteReference (class in git.refs.remote), 65

remotes (git.repo.base.Repo attribute), 79

set_parent_commit() (git.objects.submodule.base.Submodule

method), 33
set_persistent_git_options() (git.cmd.Git method), 52
set_reference() (git.refs.symbolic.SymbolicReference
method), 61

set_submodule() (git.objects.submodule.util.SubmoduleConfigParser

method), 36
set_tracking_branch() (git.refs.head.Head method), 63

REMOVE (git.objects.submodule.root.RootUpdateProgress set_url() (git.remote.Remote method), 73

attribute), 35

remove() (git.index.base.IndexFile method), 43

remove() (git.objects.submodule.base.Submodule
method), 32

remove() (git.remote.Remote class method), 73

rename() (git.objects.submodule.base.Submodule
method), 33

rename() (git.refs.head.Head method), 63

rename() (git.refs.symbolic.SymbolicReference method),
60

rename() (git.remote.Remote method), 73

rename_from (git.diff.Diff attribute), 56

rename_to (git.diff.Diff attribute), 56

renamed (git.diff. Diff attribute), 56

renamed_file (git.diff.Diff attribute), 56

Repo (class in git.repo.base), 74

repo (git.index.base.IndexFile attribute), 43

repo (git.objects.base.Object attribute), 22

repo (git.refs.symbolic.SymbolicReference attribute), 60

repo (git.remote.Remote attribute), 73

RepositoryDirtyError, 57

reset() (git.index.base.IndexFile method), 43

reset() (git.refs.head. HEAD method), 62

resolve_blobs() (git.index.base.IndexFile method), 44

RESOLVING (git.remote.RemoteProgress attribute), 67

RESOLVING (git.util. RemoteProgress attribute), 85

rev_parse() (git.repo.base.Repo method), 79

rev_parse() (in module git.repo.fun), 80

rm() (git.remote.Remote class method), 73

rmtree() (in module git.util), 86

RootModule (class in git.objects.submodule.root), 34

RootUpdateProgress (class in
git.objects.submodule.root), 35

run_commit_hook() (in module git.index.fun), 46

S

S_IFGITLINK (git.index.base.IndexFile attribute), 39

SectionConstraint (class in git.config), 53

set_commit() (git.refs.symbolic.SymbolicReference
method), 60

set_done() (git.objects.tree. TreeModifier method), 27

set_object() (git.refs.reference.Reference method), 62

set_object() (git.refs.symbolic.SymbolicReference
method), 60

shal (git.util.IndexFileSHA 1 Writer attribute), 82

short_to_long() (in module git.repo.fun), 81

size (git.index.typ.IndexEntry attribute), 48

size (git.objects.base.Object attribute), 22

sm_name() (in module git.objects.submodule.util), 36

sm_section() (in module git.objects.submodule.util), 36

stage (git.index.typ.BaselndexEntry attribute), 47

STAGE_MASK (git.remote.RemoteProgress attribute),
67

STAGE_MASK (git.util. RemoteProgress attribute), 85

stale_refs (git.remote.Remote attribute), 73

stat_mode_to_index_mode() (in module git.index.fun),
46

Stats (class in git.util), 81

stats (git.objects.commit.Commit attribute), 26

stream_copy() (in module git.util), 81

stream_data() (git.objects.base.Object method), 22

stream_object_data() (git.cmd.Git method), 52

Submodule (class in git.objects.submodule.base), 29

submodule() (git.repo.base.Repo method), 79

submodule_update() (git.repo.base.Repo method), 79

SubmoduleConfigParser (class in
git.objects.submodule.util), 36

submodules (git.repo.base.Repo attribute), 80

summary (git.objects.commit.Commit attribute), 26

summary (git.remote.PushInfo attribute), 69

SymbolicReference (class in git.refs.symbolic), 58

symlink_id (git.objects.tree.Tree attribute), 28

T

tag (git.objects.tag. TagObject attribute), 27

tag (git.refs.tag. TagReference attribute), 65

Tag (in module git.refs.tag), 65

tag() (git.repo.base.Repo method), 80
TAG_UPDATE (git.remote.FetchInfo attribute), 70
tagged_date (git.objects.tag. TagObject attribute), 27
tagger (git.objects.tag. TagObject attribute), 27
tagger_tz_offset (git.objects.tag. TagObject attribute), 27
TagObject (class in git.objects.tag), 26
TagReference (class in git.refs.tag), 64

tags (git.repo.base.Repo attribute), 80

tell() (git.util.IndexFileSHA1Writer method), 82
TemporaryFileSwap (class in git.index.util), 48
time (git.refs.log.RefLogEntry attribute), 67

Index

115

GitPython Documentation, Release 2.1.3

tmp_file_path (git.index.util. TemporaryFileSwap at-
tribute), 48

to_blob() (git.index.typ.BaselndexEntry method), 47

to_commit() (in module git.repo.fun), 81

to_file() (git.refs.log.RefLLog method), 66

to_full_path() (git.refs.symbolic.SymbolicReference
class method), 61

to_native_path_linux() (in module git.util), 81

TOKEN_SEPARATOR (git.remote.RemoteProgress at-
tribute), 67

TOKEN_SEPARATOR
tribute), 85

total (git.util.Stats attribute), 82

touch() (in module git.repo.fun), 81

tracking_branch() (git.refs.head.Head method), 64

transform_kwarg() (git.cmd.Git method), 52

transform_kwargs() (git.cmd.Git method), 52

Traversable (class in git.objects.util), 37

traverse() (git.objects.tree.Tree method), 28

traverse() (git.objects.util. Traversable method), 37

traverse_tree_recursive() (in module git.objects.fun), 29

traverse_trees_recursive() (in module git.objects.fun), 29

Tree (class in git.objects.tree), 27

tree (git.objects.commit.Commit attribute), 26

tree() (git.repo.base.Repo method), 80

tree_entries_from_data() (in module git.objects.fun), 29

tree_id (git.objects.tree. Tree attribute), 28

tree_to_stream() (in module git.objects.fun), 29

TreeModifier (class in git.objects.tree), 27

trees (git.objects.tree. Tree attribute), 28

type (git.objects.base.Object attribute), 22

type (git.objects.blob.Blob attribute), 23

type (git.objects.commit.Commit attribute), 26

type (git.objects.submodule.base.Submodule attribute),
33

type (git.objects.tag. TagObject attribute), 27

type (git.objects.tree. Tree attribute), 29

TYPES (git.objects.base.Object attribute), 21

tzname() (git.objects.util.tzoffset method), 39

tzoffset (class in git.objects.util), 38

U

uid (git.index.typ.IndexEntry attribute), 48

unbare_repo() (in module git.util), 86

unmerged_blobs() (git.index.base.IndexFile method), 44

UnmergedEntriesError, 57

untracked_files (git.repo.base.Repo attribute), 80

UP_TO_DATE (git.remote.PushInfo attribute), 69

update() (git.index.base.IndexFile method), 44

update() (git.objects.submodule.base.Submodule

method), 33
(git.objects.submodule.root.RootModule

method), 34

update() (git.remote.Remote method), 73

(git.util. RemoteProgress at-

update()

update() (git.remote.RemoteProgress method), 68

update() (git.util.CallableRemoteProgress method), 86

update() (git.util. RemoteProgress method), 85

update_environment() (git.cmd.Git method), 52

UpdateProgress (class in git.objects.submodule.base), 34

UPDWKTREE (git.objects.submodule.base.UpdateProgress
attribute), 34

url (git.objects.submodule.base.Submodule attribute), 34

URLCHANGE (git.objects.submodule.root.RootUpdateProgress
attribute), 35

urls (git.remote.Remote attribute), 73

USE_SHELL (git.cmd.Git attribute), 50

utcoffset() (git.objects.util.tzoffset method), 39

utctz_to_altz() (in module git.objects.util), 37

Vv

verify_utctz() (in module git.objects.util), 38
version (git.index.base.IndexFile attribute), 44
version_info (git.cmd.Git attribute), 53

W

wait() (git.cmd.Git.AutolInterrupt method), 49

working_dir (git.cmd.Git attribute), 53

working_dir (git.repo.base.Repo attribute), 80

working_tree_dir (git.repo.base.Repo attribute), 80

WorkTreeRepositoryUnsupported, 57

write() (git.index.base.IndexFile method), 44

write() (git.objects.submodule.util.SubmoduleConfigParser
method), 36

write() (git.refs.log.RefLog method), 66

write() (git.util.IndexFileSHA 1 Writer method), 82

write_cache() (in module git.index.fun), 45

write_sha() (git.util.IndexFileSHA 1 Writer method), 82

write_tree() (git.index.base.IndexFile method), 45

write_tree_from_cache() (in module git.index.fun), 46

WRITING (git.remote.RemoteProgress attribute), 67

WRITING (git.util. RemoteProgress attribute), 85

X

X (git.objects.submodule.base.UpdateProgress attribute),
34

X (git.objects.submodule.root.RootUpdateProgress
attribute), 35

x (git.remote.Fetchlnfo attribute), 70

x (git.remote.PushlInfo attribute), 69

x (git.remote.RemoteProgress attribute), 68

x (git.util. RemoteProgress attribute), 86

116

Index

	Overview / Install
	Requirements
	Installing GitPython
	Limitations
	Getting Started
	API Reference
	Source Code
	Questions and Answers
	Issue Tracker
	License Information

	GitPython Tutorial
	Meet the Repo type
	Examining References
	Modifying References
	Understanding Objects
	The Commit object
	The Tree object
	The Index Object
	Handling Remotes
	Submodule Handling
	Obtaining Diff Information
	Switching Branches
	Initializing a repository
	Using git directly
	Object Databases
	Git Command Debugging and Customization
	And even more ...

	API Reference
	Objects.Base
	Objects.Blob
	Objects.Commit
	Objects.Tag
	Objects.Tree
	Objects.Functions
	Objects.Submodule.base
	Objects.Submodule.root
	Objects.Submodule.util
	Objects.Util
	Index.Base
	Index.Functions
	Index.Types
	Index.Util
	GitCmd
	Config
	Diff
	Exceptions
	Refs.symbolic
	Refs.reference
	Refs.head
	Refs.tag
	Refs.remote
	Refs.log
	Remote
	Repo.Base
	Repo.Functions
	Util

	Roadmap
	Changelog
	2.1.3 - Bugfixes
	2.1.1 - Bugfixes
	2.1.0 - Much better windows support!
	2.0.9 - Bugfixes
	2.0.8 - Features and Bugfixes
	2.0.7 - New Features
	2.0.6 - Fixes and Features
	2.0.5 - Fixes
	2.0.4 - Fixes
	2.0.3 - Fixes
	2.0.2 - Fixes
	2.0.1 - Fixes
	2.0.0 - Features
	1.0.2 - Fixes
	1.0.1 - Fixes
	1.0.0 - Notes
	0.3.7 - Fixes
	0.3.6 - Features
	0.3.5 - Bugfixes
	0.3.4 - Python 3 Support
	0.3.3
	0.3.2.1
	0.3.2
	0.3.2 RC1
	0.3.1 Beta 2
	0.3.1 Beta 1
	0.3.0 Beta 2
	0.3.0 Beta 1
	0.2 Beta 2
	0.2
	0.1.6
	0.1.5
	0.1.4.1
	0.1.4
	0.1.2
	0.1.1
	0.1.0

	Indices and tables
	Python Module Index

