

 Navigation

 	
 index

 	
 next |

 	psychic-octo-robot .1 documentation

Welcome to Gitlit’s documentation!

Contents:

	Introduction

	Quick Start Guide
	Installing the package

	Create a repository

	Commit a modified file

	Diff the two previous commits

	Merge the output of the diff

	Restore an HTML file from a repo

	Problem Statement
	The Gospel of Git & and Source Control

	What Everyone else does

	Who Cares?

	Place your trust in the mighty Gitlit

	Feature List
	Initialize/Create a repository with a structured document

	Commit a new revision provided a new document

	Commit a new revision provided a changed subsection?

	View differences between revisions of a document

	Accept/Reject capability for merge conflicts

	Line-by-line Pull Requests

	Commit new revisions of a document to a branch

	Using Gitlit
	Getting started

	Creating a repository

	Generating HTML from a repository

	Making a commit

	Setting up the Development Environment
	Initial Setup

	After Initial Setup

	Errors in File Location After Initial Setup

	HTML to Repository Serialization
	Design Issues

	Simple Paragraph Addition

	Nested Nodes

	Node Moves

	Design Decision

	Text Node Name-Tracking

	Method explanation
	Custom HTML Tags with id Info

	XML-style Text & Tail

	Do we even need tags to track text nodes?

	Case 1: Editing A Text Node
	Custom Tags

	XML text tail

	Case 2: Deleting A Text Node
	Custom Tags

	XML text-tail

	Case 3: Inserting A Text Node
	Custom Tags

	XML text-tail

	Case 4: Moving A Text Node
	Custom Tags

	XML text-tail

	Case 5: Moving an Edited Text Node
	Custom Tags

	XML text-tail

	A Note about Diff implementation

	Design Decision

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Ian Hallam, John Kulczak, Sydney Satchwill, and Devon Timaeus.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	psychic-octo-robot .1 documentation

Introduction

This project is a collection of modules that brings the power of git to
structured documents by students Ian Hallam, Devon Timaeus, and Sydney
Satchwill at Rose-Hulman Institute of Technology under the leadership of
Associate Professor Sriram Mohan in addition to Wes Winham and Kyle Gibson
of PolicyStat.

The goal of gitlit is to bring the power for Git, and source
control to the masses for use on documents like .docx, .html, or any other
document format that is structured.

 Copyright 2014, Ian Hallam, John Kulczak, Sydney Satchwill, and Devon Timaeus.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	psychic-octo-robot .1 documentation

Quick Start Guide

Installing the package

Use an npm install to download and globally install the package:

npm install -g gitlit

Create a repository

Create an initial repository off of an HTML page using:

gitlit init <file> <outputPath> <repoName>

Commit a modified file

Commit a modified version of the file to the initiallized repository using:

gitlit commit <file> <pathToRepository> <commitMessage>

Diff the two previous commits

To get the difference between the two previous commit for display or to merge, run the diff command in gitlit:

gitlit diff <repoLocation> <outputLocation>

Now open the file that was saved by the diff step in a browser to use the visual diffing tool. Save the output in somewhere easily accessable for the merge step.

Merge the output of the diff

Run the gitlit merge command to take the changes selected in the diff display and output a commit ready HTML file:

gitlit merge <mergeFile> <outputLocation>

Restore an HTML file from a repo

To get an HTML file from the repo run the gilit write command on the directory with the desired output name for the file:

gitlit write <directory> <outputFile>

 Copyright 2014, Ian Hallam, John Kulczak, Sydney Satchwill, and Devon Timaeus.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	psychic-octo-robot .1 documentation

Problem Statement

The Gospel of Git & and Source Control

Software Developers the world over make use of Git,
SVN, and other source control systems to keep track of their source code,
merge in branches, and generally keep their projects well maintained.

	Most source control systems offer many features that

	make project management a breeze, such as branching,

reverting, committing code changes, and showing
differences between revisions of the code.
There are some idiosyncrasies between each different system,
but the basic functionality mentioned just now is present in all of them.
Having a system like this has almost become second nature to
project management and development in the world of software development.

What Everyone else does

For the most part, source control systems are limited
to strictly software development fields;
it is rare for similar tools to be used by other groups.
That being said, the largest innovation that is
similar to source control systems and is widely used today
are tools like Google Drive, systems where users can edit
documents at the same time, and keep one copy synced between
the entire group.

Google Drive, and other similar applications, work very similarly
to source control at a base level, by keeping one document synced
in a group. Many even have the idea of revisions that are present
in source control systems, however, most lack the full depth of power
that traditional source control systems have. This leaves most casual
users with almost no features that are present in a source control system,
only the basic functionally of simultaneous editing, viewing, and syncing.

Who Cares?

Applications like Google Drive could benefit greatly from having more functionality
that is present in tools like Git, since it would buy users powers like:

	Showing differences between revisions of a document

	Reverting a document to a different revision in case something goes wrong

	Leaving a “paper” trail of who changed what, when

	Branching to allow for changes that don’t block other users

For the most part, people _could_ just use Git for their documents,
even if they aren’t code, but for many document types, Git is not suited
to managing differences very well, as it just treats all documents as text files
(HTML, Microsoft Formats, CSV files, etc.).
Additionally, Git is a tool designed by software developers, for software developers,
and exists almost purely in a command-line form, or at least, to access most functionality,
a command-line must be used. This makes the accessibility of Git to most organizations
and people virtually nonexistent, as they would need to learn a tool that has a high
burden of knowledge, and get used to using command-line tools, which is foreign to
the average user.

Place your trust in the mighty Gitlit

Our tool is meant to solve some of the problems that crop up with casual users trying
to use Git on non-source-code documents.

Specifically, our goal is to make an application that will operate on structured documents,
such as HTML and XML, offering all of the same operations and functionality that Git offers,
but encapsulated in a way that any user familiar with programs as complex as Microsoft Word
would be able to understand and use with proficiency.

Our application will not only create and manage Git repositories of structured documents
(one document per repository) but will also provide a UI to allow for users to easily view
diffs of revisions, manage merges, and view and manage change requests.

To accommodate the need for client-side Web UI scripting, interfacing with Git repositories,
and server side repo-management, the application will be written in Javascript, making use
of Node.js and js-git.

 Copyright 2014, Ian Hallam, John Kulczak, Sydney Satchwill, and Devon Timaeus.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	psychic-octo-robot .1 documentation

Feature List

Initialize/Create a repository with a structured document

Description

Users should be able to create a Git repository
with gitlit by giving it an HTML document,
and telling it to create the repository.
The user should also be able to configure which remote
(i.e. GitHub, vs. private Git repo) to create,
as well as whether it should be public or private.

Risks

This could run into issues with private repos,
as users may have too many repos to have one document per repo,
especially if they are going to be made private.

Risk Level: Medium
(Large problem, not likely to happen as we are going to address it beforehand)

Priority

1st

This feature is necessary for any of the other features to work properly,
since we need to set up the repo in such a way that all the other operations will be supported.

Commit a new revision provided a new document

Description

A user should be able to submit a new version of the document
(with changes made as they desire) as a commit,
and gitlit will convert that into the appropriate commit changes in Git.

Risks

Having this work when branching off a section could be interesting,
as it would require that certain sections be the only things that are changed.
Though this should be handled neatly once the organization of the repo directory is decided.

Risk Level: Medium
(Should be straightforward how to do it, but possible that there are issues that come up later)

Priority

2nd

This feature is a linchpin feature, without this, the system doesn’t really matter.

Commit a new revision provided a changed subsection?

Description

This may be automatically done in the previous feature,
more requirements gathering needs to be done before we can state more about this feature.

Risks

This feature may be marvellously difficult to do,
as there are issues with identifying the sections that were changed,
as well as determining what to do if there are changes in section that wasn’t branched off of.

Priority

Last
This feature would be nice to have,
but will be rather difficult to pull off;
for now, it would be best to focus on the other functionality.

View differences between revisions of a document

Description

Users should see a well-defined and obvious diff between the old revision and the new revision,
ideally rendering the HTML in a manner that lets them see the webpage before and after the change.
The diff should also be per-section, not per-line

Risks

There could be some difficulty with how we note the changes,
as color changes could be unnoticeable depending on what the CSS of the page is meant to be.

Priority

3rd
If users can’t see the differences between revisions of the document,
then the tool doesn’t really help with managing documents like Git very well,
in fact, it might even be worse.

Accept/Reject capability for merge conflicts

Description

Users should be able to view any conflicts that come up in an attempted merge,
select which version they would like to be used,
and then approve the merge, all via a web-based UI.

Risks

Even current merge conflict tools are confusing,
so there could be some difficulty in making the UI
in such a way that is clear to all users
and yet still has the power that is needed to solve merge conflicts.

Priority

6th

This feature matters,
but users could always just prevent merge conflicts
from ever happening by checking things beforehand.

Line-by-line Pull Requests

Description

Users should be able to send requests
to other contributors of a repository
to review and approve their changes made to a document.
Reviewers should be able to view the changes,
approve, deny, and comment on changes that are in that diff.

Risks

Finding a solid way to turn a GitHub pull request
into a form that is easily view-able via
gitlit’s diff viewer could be an interesting challenge.
That being said, there are plenty of options, so not much risk overall.

Priority

5th

Pull requests and reviews are critical to any form of document creation,
whether they are source code files or something else.
This makes this feature critical right behind basic functionality.

Commit new revisions of a document to a branch

Description

A major function of Git is the ability to branch off of a repo
and make changes that don’t block the pipeline for other people.
As such, we want to allow users to branch off of individual sections,
as well as the document as a whole, and then allow them to make
changes to make individual little changes to these branches.

Risks

Deciding what the right action regarding editing sections
that are in a branch or not in a branch is a bit complex,
so there is some risk that whatever choice we make
might not be intuitive to a large number of people that
we don’t have access to when user-testing.

Priority

4th
Branching is super critical to git and gitlit;
we have to have it right after basic committing and repository setup.

 Copyright 2014, Ian Hallam, John Kulczak, Sydney Satchwill, and Devon Timaeus.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	psychic-octo-robot .1 documentation

Using Gitlit

Getting started

There are two possible use cases for gitlit:

	Using the tool for its purpose of structured document management.

	Using the tool to ensure it is working when developing for it.

In the former case, currently, the means of installing it
would be through NPM. If NPM is installed on they system,
simply run:

npm install -g gitlit

To run any of the commands discussed here, simply use:

gitlit <command info>

If contributing to the project, then inside the GitHub
project folder, at the root (where the package.json file
is), simply run:

node ./cli/gitlit.js <command info>

	Alternatively:

	./cli/gitlit.js <command info>

Note

For all of the sections following this, the information
given will be what is meant to go into <command info>.
So, if you were using the tool for it’s purpose, and you
wanted to initialize a repository, the command might be
given as:

init source-file . outputRepo

but note that this is prefixed by the necessary command
to run the tool based on why you are trying to run it.

Creating a repository

The command for creating a repository given an HTML document
is:

init <file> <location for repo to be made> <repo name>

So an example command might look like:

gitlit init test.html /usr/root/docs first-repo

Take note that the 2nd argument needs to be a location that
already exists, as what actually happens is a directory
is made at that location with the name <repo name>

So, if the above command was run, the directory
/usr/root/docs/first-repo would then be made.

If it existed before, an error will be thrown stating as such.

Note

If there are missing tags in the HTML document, such as a
missing opening tag, the parser used by gitlit
will take it’s best guess as to what was intended. Since
there are most likely many possibilities, the possibility
chosen may not be what the user meant. If you want to be
certain this doesn’t happen, ensure that the HTML is valid,
preferably through
The W3C Validator [http://validator.w3.org/#validate_by_input+with_options].

Generating HTML from a repository

To generate a file from a repository, simply run:

write <path to repository directory> <path of output file>

An example command might look like:

gitlit write /usr/root/docs/first-repo ./test.html

Which would generate an HTML file called “test.html” in the current
directory, with its source being the repository “first-repo”
at /user/root/docs.

If the output file existed before, its contents will be overwritten
so take caution.

Note

The contents of the HTML file will be pretty-printed as
reasonably as possible. Due to the complex nature of HTML
and the fact that gitlit wants to make only
meaningful notes about differences between different versions
of a document, some quantity of formatting (i.e. whitespace)
is lost, and as such, the formatting is not kept exactly
the same. That being said, the formatting is still decent,
and is quite readable.

Note

After generating the file, you likely noticed the attributes
that got added to many of the tags called “por-id”.
These attributes are tracking ID’s used to aid in recognition
of sections even if the subsections or text is changed. As
such, don’t alter or remove the por-id’s unless the document
is completely finished being developed, as this will cause
gitlit to give very unhelpful diffs when
comparing different versions of a document.

Making a commit

Once a repository is created, a new revision can be tracked in the
repository through making a new commit. Just like git, and
differences will be stored into a new commit and the repository
will be at this new revision, with the history stored in the
commit history.

Since gitlit works on a document as a whole, commits
are made by providing a new document. This removes the need for
users to edit the files split by the tool, and makes it easier
to view the document as a whole will editing.

To make a commit, just run:

commit <file for new revision> <path to repo directory> <commit message>

An example command would look like:

gitlit commit ./test.html /usr/root/docs/first-repo "Changed page title"

After this command is made, the Git repository that is the basis
for that gitlit repository will have a new commit, and
the whole directory structure will be in a state the reflects the
new revision.

If a write command is run on this repository now, the outputted
document will look nearly identical to the input document given
in the above command. (Nearly identical because of some likely
formatting of the document, and perhaps por-id’s added for new
sections).

 Copyright 2014, Ian Hallam, John Kulczak, Sydney Satchwill, and Devon Timaeus.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	psychic-octo-robot .1 documentation

Setting up the Development Environment

Initial Setup

This assumes that the repository location is already cloned locally, and there is some from of vm software available.

Starting off, download vagrant http://www.vagrantup.com/downloads.html as appropriate to the local system, and install it.
Launch a terminal window [if on windows use the git bash], and navigate to the repository location.
The correct directory should have a subfolder within it called ‘.vagrant’.
While in that directory call the command ‘vagrant up’. This will download the necessary image and set it up with the environment used for testing.
Use ‘vagrant ssh’ after the command has successfully finished to enter the vm and then use ‘cd /vagrant/’ to get to the directory it was launched from.
The command ‘exit’ will logout from the vagrant vm.
When use or testing is complete, run ‘vagrant halt’ to shut down the vm gracefully.

After Initial Setup

Once the development has been setup initially, the vm can be re-entered by simply using the ‘vagrant ssh’ command again, assuming it has not been ended with halt.
If it has been ended, calling ‘vagrant up’ will check for updates and then launch the vm for use.

Errors in File Location After Initial Setup

There is an error that occasionally arises with vagrant where it points to an incorrect location for the vm.
The generic fix for this is to delete or remove the vm from the vm software being used, and use ‘vagrant up’ to restablish the vm.

 Copyright 2014, Ian Hallam, John Kulczak, Sydney Satchwill, and Devon Timaeus.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	psychic-octo-robot .1 documentation

HTML to Repository Serialization

In order to store meaningful changes in git,
PSO serializes HTML
to a folder/file structure.
This makes change and move detection
behave similar to how git expects
and reduces the chances of merge conflicts.

Note

Almost all of these
would make great test cases.

Design Issues

How do we represent text nodes?

For representing text nodes, just having a
text file for the information would
adequately store what was necessary, and
then filenames can be generated arbitrarily,
likely using any id attributes that already
exist.

So, if we had:

<p GUID=1>hello stuff goodbye </p>

This would become something organized like this:

* GUID1
 * metadata.json
 * 1.txt
 * GUID2 (this is a dir)
 * 1.txt
 * 2.txt

	There is the issue of:

	
	
	What if “goodbye” was moved to

	be before the span?

But there isn’t much that can be done here;
it is likely that the parser used for parsing
the HTML will result in one file for each of
“goodbye” and “hello” so long as the span
separates them.

Without the span, the text would be treated as
one file, thus, if it was moved, then it would
result in a removed file and another file being
modified.

To solve this, there would need to be a
decision of where to stop in parsing the HTML,
so that a file doesn’t get removed, but this
would require quite a bit of extra information.

This isn’t insurmountable, as the old version
could just be read, read the file, and keep
track of where it “ends” and then just parse
to that, or the first child node, and split
the files accordingly.

That being said, this could result in some file
directories that look very strange, but would
likely work better in diffs.

How do we represent ordering of text nodes mixed with other nodes?

This could just be done with naming in lexicographic
-based construction, and the table in the table
-based construction. Basically, just have the
names of directories and the files that hold
content be what we use to determine what is
what. That is, if a table says:

	GUID1

	GUID2

	GUID3

Regardless if any of those are directories,
just recursively build that directory into
a node, and then paste it in during construction.

For name based, same idea, but with names.

How do we store node type?

This could be done in the metadata file,
since there will be one one either way.

How do we store node attributes (src, href, etc)?

Same as node type, metadata file would
work well for this.

Simple Paragraph Addition

Initial Content

<p>p1</p>
<p>p2</p>

After GUID-ization

The first pass adds GUIDs
to any nodes that don’t have them.
Since this is initial,
they all get new GUIDs.
Further examples will ignore GUIDs.
Assume they’re there.

<p data-por-guid="GUID1">p1</p>
<p data-por-guid="GUID2">p2</p>

Lexicographical Representation

Table Representation

Edit 1: Additional 2nd Paragraph

<p>p1</p>
<p>p3</p>
<p>p2</p>

Lexicographical Representation

Conflicts: No

Table Representation

Conflicts: No

Edit 2: Additional Last Paragraph

From the initial content,
we’ll add a 4th paragraph.

<p>p1</p>
<p>p2</p>
<p>p4</p>

Lexicographical Representation

Conflicts: No

Table Representation

Conflicts: No

Merged Edit 1 and Edit 2

Those two edits
should merge in without conflicts.

<p>p1</p>
<p>p3</p>
<p>p2</p>
<p>p4</p>

Lexicographical Representation

Conflicts: No

Table Representation

Conflicts: Yes. In metadata.json.

Nested Nodes

Initial Content

<p>p1s1stillp1</p>
<p>p2</p>

Node Moves

Initial Content

<p>p1</p>
<p>p2</p>
<p>p3</p>
<p>p4</p>

Lexicographical Representation

Table Representation

Edit 1: Last to First

<p>p4</p>
<p>p1</p>
<p>p2</p>
<p>p3</p>

Lexicographical Representation

Conflicts: No

Table Representation

Conflicts: No

Edit 2: Last to First with content change

<p>p4new</p>
<p>p1</p>
<p>p2</p>
<p>p3</p>

Lexicographical Representation

Conflicts: No

Table Representation

Conflicts: No

Merged Edit 1 and Edit 2

Those two edits
should merge in without conflicts.

<p>p4new</p>
<p>p1</p>
<p>p2</p>
<p>p3</p>

Lexicographical Representation

Conflicts: No. Not if content and move
are separate commits.

Table Representation

Conflicts: No

Design Decision

Gitlit keeps track of the
order that the nodes should be constructed
via the table-method. This has the simplest
base case, and stays simple even when
complexity is added through commits.

For any in-depth discussion of why, see
this git issue [https://github.com/PolicyStat/gitlit/issues/18]

 Copyright 2014, Ian Hallam, John Kulczak, Sydney Satchwill, and Devon Timaeus.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	psychic-octo-robot .1 documentation

Text Node Name-Tracking

When gitlit is tracking
a document, there will be files that
are generated that are purely made of
text, and contain the actual written
content of the document.

However, there is an issue that can
arise with regards of how to keep track
of the differences between each section.
Given that we have chosen to keep track
of document order via a table, we need
a way to consistently generate names
so that if a section is left in the
document (changed or not), we recognize
it, and name the file accordingly so
that doing file diffs are done
appropriately.

For HTML elements, this
is easy, since we can just add some
arbitrary attribute to each tag that
only we will look at. For text nodes,
this becomes more difficult. Given
something like this:

 First Text
 <div>
 div Text
 </div>
 Second Text

The obvious thing to do for tags is
to add an attribute that will keep
track of what the element is for
easier diffing.

 First Text
 <div por-id="76F7BEE8A2001AC7144D">
 div Text
 </div>
 Second Text

Now, we are well aware of when the
sections get moved or are changed.
However, if we generate a filename
for the text nodes, we would have
no way to map a new commit of this
document to the files without doing
a text comparison (which we would
like to avoid). Thus, we either
need a consistent way to name the
files (e.g. first file is named 1.txt,
second file 2.txt, etc.) or a way
to store the filename/id when we
generate the document for users to
re-commit to us.

If we did a consistent naming format,
that would somewhat defeat the
purpose of a table, additionally,
if there was ever an insert of a new
element that had a text node near it,
there could be problems with
miss-identification with old sections.

This leaves us with trying to store
the id of the text node somehow so
that in future commits we can identify
the name the new files should be.

There are 2 main ways we are considering
doing this:

	XML-style Text & Tail

	Custom HTML tags with id information.

The rest of this page will be exploring
how each would be done, working through
example cases that would need to be handled
and deciding on which method gives the
best coverage.

Note

Almost all of these
would make great test cases.

Method explanation

Custom HTML Tags with id Info

The first method we thought of to solve
the id issue was to create our own HTML
tag and use that with our metadata file
to keep track of the id of each text
node.

For example, the input:

 First Text
 <div por-id="76F7BEE8A2001AC7144D">
 div Text
 </div>
 Second Text

Would become something like:

 <por por-id="39E1D62AADCF588B873C ">First Text</por>
 <div por-id="76F7BEE8A2001AC7144D">
 <por por-id="56ADFDCAACEB1FDBCEA1">div Text</por>
 </div>
 <por por-id="3CED92A56695A78653ED">Second Text</por>

This works because HTML just ignores
any tags that it doesn’t recognize, so,
this should be fine to do.

Pros

	Very Easy to do

	Both HTML generation and Repo
generation becomes straightforward

	High Consistency

	Very clear mapping

	If the id existed before, just
compare against the old.

	Easy to understand

	Only needs to be done once

	Still needs to be read each time

Cons

	Standards are weird

	HTML might misbehave if we inject our own tags

	Fragile

	If a user deletes the tag, it will look like an insert.

	Gives the User responsibility

	The user has to keep track of the new tags

	More work for the user

XML-style Text & Tail

The next method of storing the
ids for text nodes took some
inspiration from XML. In XML,
each tag has a text attribute
and a tail attribute.
The text attribute just
has the first text of the node
that isn’t a child’s tail.
The tail attribute has any
text that falls after the current
node and before the next tag.

For example, the input:

 First Text
 <div por-id="76F7BEE8A2001AC7144D">
 div Text
 </div>
 Second Text

Would have a mapping of something like this:

{
 por-id: "40E36DB5C0AD13957351",
 text: "First Text",
 children: {
 por-id: "76F7BEE8A2001AC7144D",
 text: "div Text",
 tail: "Second Text"
 },
 tail: ""
}

Alternatively, instead of keeping
track of the actual text, it could
just note the por-id of the object:

{
 por-id: "40E36DB5C0AD13957351",
 text: "39E1D62AADCF588B873C",
 children: {
 por-id: "76F7BEE8A2001AC7144D",
 text: "56ADFDCAACEB1FDBCEA1",
 tail: "3CED92A56695A78653ED"
 },
 tail: ""
}

This would provide a good mapping of
text nodes to ids while avoiding
placing any extra tags around text.

Pros

	Easy to do

	High Consistency

	Very clear mapping

	If the id existed before, just compare against the old.

	Only new attributes added to nodes

	Consistent with XML, another markup language

	
	More robust

	
	No tags to move around

Cons

	
	Still fairly fragile

	
	If the user moves the text and not the id in the text or tail attribute, then no point.

Do we even need tags to track text nodes?

The reason why we need tags to keep track
of which text nodes are which is so that
we can know which sections are which, and
know if they have been moved without having
to do a text comparison on the contents of
the text node.

This is important because if we were to
do a text comparison, we would have to
ask, “How accurate/sensitive is good enough?”
Because this is complex, if we can avoid
text comparison altogether that would be
preferable.

That being said, if we don’t care about
differentiating between additions, deletions,
and moves, then we could just ignore tags
and do text-comparison. The reason this is
alright is because at some basic level
text comparison needs to happen for a diff,
but if we don’t care about tracking moves,
then we don’t need to keep track of moves
and changes, thus, if a section was both
moved and changed, we could just say it
was an addition and be done with it.

Case 1: Editing A Text Node

Consider the case of editing a pre-existing
text node. The document before the edit might
look like this:

 First Text
 <div por-id="76F7BEE8A2001AC7144D">
 div Text
 </div>
 Second Text

After the edit, the document might look like
this:

 First Text that has been altered
 <div por-id="76F7BEE8A2001AC7144D">
 div Text
 </div>
 Second Text

Note that the first text section has been edited,
but not moved or had any other changes applied to
it.

In this case, the functionality we would like
is just saying that the first section was changed,
with no other perceived changes or moves.

Custom Tags

Assuming the repository already existed, if we made
the change with Custom tags, then there are 2 cases.

	The text nodes already had custom tags around them

	The text nodes didn’t have any custom tags.

In the second case, the commit would just put custom
tags around anything that didn’t, in which case, they
would be seen as new files if there was a diff (likely).

So, for this case, we really only care about if there were tags already.

 <por por-id="39E1D62AADCF588B873C ">First Text</por>
 <div por-id="76F7BEE8A2001AC7144D">
 <por por-id="56ADFDCAACEB1FDBCEA1">div Text</por>
 </div>
 <por por-id="3CED92A56695A78653ED">Second Text</por>

After the edit, the document might look like
this:

 <por por-id="39E1D62AADCF588B873C ">First Text that has been altered</por>
 <div por-id="76F7BEE8A2001AC7144D">
 <por por-id="56ADFDCAACEB1FDBCEA1">div Text</por>
 </div>
 <por por-id="3CED92A56695A78653ED">Second Text</por>

In this situation, since the text was edited in the same
text node (which is defined by the custom tags), the new
text would just fall into a file that already exits:
39E1D62AADCF588B873C.txt (or something similar). Because
of this, Git would perceive this purely as a change in the
file/section, which is what we wanted. Even if we did diff
logic ourselves, it would be easy to see that the text was
edited, so it is just a text change.

XML text tail

Assuming the repository already existed, if we made
the change with XML text-tail, then the relationships
of text & tail would already be stored in the HTML’s
attributes, otherwise, there would be issues similar to
custom tags: the change would be perceived as completely
new text.

 First Text
 <div por-id="76F7BEE8A2001AC7144D" text="56ADFDCAACEB1FDBCEA1" tail="3CED92A56695A78653ED">
 div Text
 </div>
 Second Text

After the edit, the document might look like
this:

 First Text that has been altered
 <div por-id="76F7BEE8A2001AC7144D" text="56ADFDCAACEB1FDBCEA1" tail="3CED92A56695A78653ED">
 div Text
 </div>
 Second Text

In this case, literally nothing but the text got changed.
This is as ideal as we can get, as the user then doesn’t need
to navigate around more tags. Granted, there are attributes
to deal with, but this is likely to be seen as less of an
issue for users.

Case 2: Deleting A Text Node

Consider the case of deleting a pre-existing
text node. The document before the edit might
look like this:

 First Text
 <div por-id="76F7BEE8A2001AC7144D">
 div Text
 </div>
 Second Text

After the edit, the document might look like
this:

 <div por-id="76F7BEE8A2001AC7144D">
 div Text
 </div>
 Second Text

Note that the first text section has been deleted,
but not moved or had any other changes applied to
it.

In this case, the functionality we would like
is just saying that the first section was deleted,
with no other perceived changes or moves.

Custom Tags

For this case, we really only care about if there
already tags.

 <por por-id="39E1D62AADCF588B873C ">First Text</por>
 <div por-id="76F7BEE8A2001AC7144D">
 <por por-id="56ADFDCAACEB1FDBCEA1">div Text</por>
 </div>
 <por por-id="3CED92A56695A78653ED">Second Text</por>

After the edit, the document might look like
this:

 <por por-id="39E1D62AADCF588B873C "></por>
 <div por-id="76F7BEE8A2001AC7144D">
 <por por-id="56ADFDCAACEB1FDBCEA1">div Text</por>
 </div>
 <por por-id="3CED92A56695A78653ED">Second Text</por>

Or, it might look like this, depending on what the user did

 <div por-id="76F7BEE8A2001AC7144D">
 <por por-id="56ADFDCAACEB1FDBCEA1">div Text</por>
 </div>
 <por por-id="3CED92A56695A78653ED">Second Text</por>

In either situation, we could easily identify that there
is now no text for the object that was the first text node.
This would be identified by it either the node not being
there or the node containing no text. Both are reasonable
to have happen, but the fact that there could be either
case means there is a bit more decision making to be made
that for editing.

XML text-tail

Document before change

 First Text
 <div por-id="76F7BEE8A2001AC7144D" text="56ADFDCAACEB1FDBCEA1" tail="3CED92A56695A78653ED">
 div Text
 </div>
 Second Text

After the edit, the document might look like
this:

 <div por-id="76F7BEE8A2001AC7144D" text="56ADFDCAACEB1FDBCEA1" tail="3CED92A56695A78653ED">
 div Text
 </div>
 Second Text

The user could also get rid of the text attribute as well

 <div por-id="76F7BEE8A2001AC7144D" text="56ADFDCAACEB1FDBCEA1" tail="3CED92A56695A78653ED">
 div Text
 </div>
 Second Text

Similar to custom tags, we need to have checking to
see if the text actually exists if there is a text
attribute. If not, then the section was deleted,
if there isn’t even a text attribute, then if there
isn’t any text, it was deleted.

In the case of tails, the same idea would happen,
which creates 4 cases really:

	Text

	Tag there but no text

	No text & no tag

	Tail

	Tag there but no text

	No text & no tag

Note

If there was no tag and then
text, in both systems, the text
would be recognized as an insertion.

Case 3: Inserting A Text Node

Consider the case of inserting a new text
node. The document before the edit might
look like this:

 <div por-id="76F7BEE8A2001AC7144D">
 div Text
 </div>
 Second Text

After the edit, the document might look like
this:

 First Text
 <div por-id="76F7BEE8A2001AC7144D">
 div Text
 </div>
 Second Text

Note that a text section was added at the beginning,
but that no other changes were made.

In this case, the functionality we would like
is just saying that the first section was deleted,
with no other perceived changes or moves.

Note

If there was text added to a pre-existing section,
it would not be recognized as a separate text node.
It would just be an edit.

Custom Tags

Before the edit

 <div por-id="76F7BEE8A2001AC7144D">
 <por por-id="56ADFDCAACEB1FDBCEA1">div Text</por>
 </div>
 <por por-id="3CED92A56695A78653ED">Second Text</por>

After the edit, the document might look like
this:

 <por por-id="39E1D62AADCF588B873C ">First Text</por>
 <div por-id="76F7BEE8A2001AC7144D">
 <por por-id="56ADFDCAACEB1FDBCEA1">div Text</por>
 </div>
 <por por-id="3CED92A56695A78653ED">Second Text</por>

Custom tags here behave exactly as we would want and expect.
Since there is completely new text where there wasn’t a tag,
then a tag (and therefore a file) will be made, so it’s
completely new.

One additionally “cool” thing that could be done, is
using custom tags for change tracking granularity. As
an example, if the insertion was instead after the
custom tag with “Second Text”, it would be recognized
as a new text node, despite it normally not being so.
This could be useful or something users want, since
in further applications (for example, docx files)
insertions of new paragraphs might be nicely tracked
by allowing something like this.

XML text-tail

Document before change

 <div por-id="76F7BEE8A2001AC7144D" text="56ADFDCAACEB1FDBCEA1" tail="3CED92A56695A78653ED">
 div Text
 </div>
 Second Text

After the edit, the document might look like
this:

 First Text
 <div por-id="76F7BEE8A2001AC7144D" text="56ADFDCAACEB1FDBCEA1" tail="3CED92A56695A78653ED">
 div Text
 </div>
 Second Text

The user could also add the text after the div

 <div por-id="76F7BEE8A2001AC7144D" text="56ADFDCAACEB1FDBCEA1" tail="3CED92A56695A78653ED">
 div Text
 </div>
 Second Text
 First Text

In the first case, there would just now be a text
attribute where there wasn’t before, so it’s easy
to see the insertion. This also applies to if it
ended up creating a tail attribute.

Unlike with custom tags, there would not be a way
to keep track of multiple text nodes in a row.
The second case would just be viewed as an edit
of that text node.

Case 4: Moving A Text Node

Consider the case of moving a pre-existing
text node. The document before the edit might
look like this:

 First Text
 <div por-id="76F7BEE8A2001AC7144D">
 div Text
 </div>
 <div por-id="placeholder">
 </div>
 Second Text

After the edit, the document might look like
this:

 <div por-id="76F7BEE8A2001AC7144D">
 div Text
 </div>
 First Text
 <div por-id="placeholder">
 </div>
 Second Text

Note that a text section was moved, without any
edits to the content of the text node being made.

In this case, the functionality we would like
is just saying that the first section was moved
to be after the first div.

Note

Again, if this was moved to be part
of another pre-existing text node,
it would just be noted as a change
to the destination node and a deletion
of the old node.

Custom Tags

Before the edit

 <por por-id="39E1D62AADCF588B873C ">First Text</por>
 <div por-id="76F7BEE8A2001AC7144D">
 <por por-id="56ADFDCAACEB1FDBCEA1">div Text</por>
 </div>
 <div por-id="placeholder">
 </div>
 <por por-id="3CED92A56695A78653ED">Second Text</por>

After the edit, the document might look like
this:

 <div por-id="76F7BEE8A2001AC7144D">
 <por por-id="56ADFDCAACEB1FDBCEA1">div Text</por>
 </div>
 <por por-id="39E1D62AADCF588B873C ">First Text</por>
 <div por-id="placeholder">
 </div>
 <por por-id="3CED92A56695A78653ED">Second Text</por>

Custom tags handle this incredibly well, as the only thing to note
would be that the order of the nodes is different during the parsing,
so the only difference would be a change in the metadata file.

However, one thing to note, the user would need to also move the tag
that the text was in. Otherwise, the text node would be shown to be
new, and the old tag would say it was edited in some manner, or perhaps
deleted.

XML text-tail

Document before change

 First Text
 <div por-id="76F7BEE8A2001AC7144D" text="56ADFDCAACEB1FDBCEA1">
 div Text
 </div>
 <div por-id="placeholder" tail="3CED92A56695A78653ED">
 </div>
 Second Text

After the edit, the document might look like
this:

 <div por-id="76F7BEE8A2001AC7144D" text="56ADFDCAACEB1FDBCEA1" tail="39E1D62AADCF588B873C">
 div Text
 </div>
 First Text
 <div por-id="placeholder" tail="3CED92A56695A78653ED">
 </div>
 Second Text

Similar to custom tags, moves are adequately represented,
as the text and tails can be scene to be added or removed.
If the text or tail is missing or added, just look for if
they were missing elsewhere to match up.

The only downside, is that while in custom tags, users need
only move the whole tagged object, here, users need to move
the individual attributes. The hard part here, is that there
are possibly more things to move, and the users would need to
move them to the proper place, which is harder to make clear
for the user.

Case 5: Moving an Edited Text Node

Consider the case of moving a text node that
has also been edited. The document before
the edit might look like this:

 First Text
 <div por-id="76F7BEE8A2001AC7144D">
 div Text
 </div>
 <div por-id="placeholder">
 </div>
 Second Text

After the edit, the document might look like
this:

 <div por-id="76F7BEE8A2001AC7144D">
 div Text
 </div>
 This is my new First Text
 <div por-id="placeholder">
 </div>
 Second Text

Here, the text was both moved and edited. Because
the extent of edits can be quite large (meaning
that edits can change as little as one character,
or as much as all of the text), attempting to track
whether a section was moved would be entirely based
on either:

	The section being tagged in some way as being

a section that already existed, thus making any
amount of change trackable as a move
* A heuristic-based text comparison, where we
base the decision of if the edit was a move or
an insertion based on the quantity of text changed.

In the first case, we would need one of our tracking
methods, and would require the user to use the method
properly, which might not happen. However, if we chose
to do that, the actual process for checking for a move
would be quite easy.

In the second case, there would be quite a bit that
needs to be decided, such as, how much of the text
needs to be the same to count as a move. The process
would also take more work, but, if we did it this way,
the user just wouldn’t need tracking to identify both
the move and then change.

Custom Tags

Before the edit

 <por por-id="39E1D62AADCF588B873C ">First Text</por>
 <div por-id="76F7BEE8A2001AC7144D">
 <por por-id="56ADFDCAACEB1FDBCEA1">div Text</por>
 </div>
 <div por-id="placeholder">
 </div>
 <por por-id="3CED92A56695A78653ED">Second Text</por>

After the edit, the document might look like
this:

 <div por-id="76F7BEE8A2001AC7144D">
 <por por-id="56ADFDCAACEB1FDBCEA1">div Text</por>
 </div>
 <por por-id="39E1D62AADCF588B873C ">This is my new First Text</por>
 <div por-id="placeholder">
 </div>
 <por por-id="3CED92A56695A78653ED">Second Text</por>

Custom tags track this just fine, but the entire basis
of tracking this type of change is that the user actually
properly moves and keeps the custom tags. If they do that,
tracking moves & changes would be straightforward, as we can
just look at the section itself and the order of the metadata.

XML text-tail

Document before change

 First Text
 <div por-id="76F7BEE8A2001AC7144D" text="56ADFDCAACEB1FDBCEA1">
 div Text
 </div>
 <div por-id="placeholder" tail="3CED92A56695A78653ED">
 </div>
 Second Text

After the edit, the document might look like
this:

 <div por-id="76F7BEE8A2001AC7144D" text="56ADFDCAACEB1FDBCEA1" tail="39E1D62AADCF588B873C">
 div Text
 </div>
 This is my new First Text
 <div por-id="placeholder" tail="3CED92A56695A78653ED">
 </div>
 Second Text

Again, text-tail keeps track of this change reasonably,
so long as the user moves the tracking information as
well. If they don’t, then there is no “free” way for
us to track this, as we dont’ necessarily know what
was in each text node without comparing all of the
text nodes in the document against each other text node.

A Note about Diff implementation

The only reason why we care about tracking text nodes & what
they are named is so that we can reasonably identify moved
text nodes across the document whenever we look at doing a
diff.

If we didn’t care about noting which sections moved, then
we could just state that each time there was a missing
section, regardless of the content, it was deleted, if there
was a new section, it was an addition, and if the sections
line up, but are different text-wise, it was a modification.
This would still give visibility of the change, it just wouldn’t
explicitly state it was move.

Because of this, and the fact that we will likely need to
do at least some text comparison while doing our diff
(whether it be git diff, us, or some other library doing
it), the tagging information might seem superfluous. In
addition to this, it might be smarter to just do a
heuristic-based regardless since that is a manner that
makes sense, after all: If almost all of the text was
changed, and only ~20% of the text is the same, couldn’t
it just possibly be coincidence?

Design Decision

As of right now, both Custom tags and XML-style text-tail
would properly track all the changes, considering that they
were used properly.

The real issue comes with that last statement: “considering
they were used properly”. The thing is, we don’t have any
guarantees that our users will.

The best we can hope for is explain what the tracking method
does, what it’s used for, and how to make use of the tracking
method so they don’t accidentally break the text-node tracking.
However, there is still the chance for user error, or misunderstanding.

In the case of custom tags, every time the user wants to move
a text node, they would need to also move the surrounding
custom tag, which could be a pain to do. However, with text-tail,
they would not only have to move the text, but also:

	
	The text attribute for the parent node

	
	Also know which node the attribute needs to move to

	
	The tail attribute if it follows the

	
	Also when to add it to a node

Thus, text-tail tends to be a bit cleaner from a user *view*point,
but it is much messier to work with, and has a larger chance
for user-failure.

Custom tags do have another downside though: they could possible
break other applications (browsers included) that use HTML, since
the tags we add aren’t part of the standard. However, there is a
very simple way to get around this. We just add some sort of “release”
feature for the document, where we create the HTML doc, but don’t
add the custom tags for tracking, that way any things that we use
for tracking purposes (this includes por-ids), would be removed,
and thus guaranteeing that the HTML does not contain any unknown
elements.

Because of this, its higher visibility, and easier understandability
for users, for now, we recommend and are going to go with custom tags.

Note

Again, note that we only really need tracking for text nodes
if we want to do easy, non-text-comparison-based move detection.
If we decided that text-comparison-based move detection is what
we should do, or that move detection is not important, we would
likely not do any sort of tagging to ensure that there is no
possible problems injected into the HTML.

 Copyright 2014, Ian Hallam, John Kulczak, Sydney Satchwill, and Devon Timaeus.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	psychic-octo-robot .1 documentation

Index

 Copyright 2014, Ian Hallam, John Kulczak, Sydney Satchwill, and Devon Timaeus.
 Created using Sphinx 1.3.1.

 _static/file.png

_static/minus.png

_static/down-pressed.png

_static/comment.png

_static/comment-close.png

_static/comment-bright.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		psychic-octo-robot .1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Ian Hallam, John Kulczak, Sydney Satchwill, and Devon Timaeus.
 Created using Sphinx 1.3.1.

_static/down.png

_static/plus.png

_static/up.png

_static/up-pressed.png

