

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/gitelephant/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/gitelephant/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

 [image: GitElephant]

[image: Latest Stable Version] [https://packagist.org/packages/cypresslab/GitElephant] [image: License] [https://packagist.org/packages/cypresslab/gitelephant] [image: Total Downloads] [https://packagist.org/packages/cypresslab/GitElephant] [image: Montly Downloads] [https://packagist.org/packages/cypresslab/gitelephant]

[image: Build Status] [https://travis-ci.org/matteosister/GitElephant] [image: Dependency Status] [https://www.versioneye.com/user/projects/53da38094b3ac86052000019] [image: Scrutinizer Quality Score] [https://scrutinizer-ci.com/g/matteosister/GitElephant/] [image: Code Coverage] [https://scrutinizer-ci.com/g/matteosister/GitElephant/] [image: SensioLabsInsight] [https://insight.sensiolabs.com/projects/d6da541e-d928-4f70-868a-dd0b6426a7b5]

GitElephant is an abstraction layer to manage your git repositories with php

This library officially supports git >= 1.8, older version are supported as well, but with some caveat.

Watch a live example [http://gitelephant.cypresslab.net] of what you can do with GitElephant, Symfony2 and a git repository...

How it works

GitElephant mostly rely on the git binary to retrieve information about the repository, read the output and create an OOP layer to interact with

Some parts are (or will be) implemented by reading directly inside the .git folder

The api is completely transparent to the end user. You don’t have to worry about which method is used.

Requirements

	php >= 5.3.0

	*nix system with git installed

I work on linux, but the lib should work well with every unix system, as far as a git binary is available.
I don’t have a windows installation to test...if someone want to help...

Installation

composer

To install GitElephant with composer you simply need to create a composer.json in your project root and add:

{
 "require": {
 "cypresslab/gitelephant": "~1.0"
 }
}

Then run

$ curl -s https://getcomposer.org/installer | php
$ composer install

You have now GitElephant installed in vendor/cypresslab/gitelephant

And an handy autoload file to include in you project in vendor/autoload.php

How to use

use GitElephant\Repository;
$repo = new Repository('/path/to/git/repository');
// or the factory method
$repo = Repository::open('/path/to/git/repository');

By default GitElephant try to use the git binary on your system.

the Repository class is the main class where you can find every method you need...

Read repository

// get the current status
$repo->getStatusOutput(); // returns an array of lines of the status message

branches

$repo->getBranches(); // return an array of Branch objects
$repo->getMainBranch(); // return the Branch instance of the current checked out branch
$repo->getBranch('master'); // return a Branch instance by its name
$develop = Branch::checkout($repo, 'develop');
$develop = Branch::checkout($repo, 'develop', true); // create and checkout

tags

$repo->getTags(); // array of Tag instances
$repo->getTag('v1.0'); // a Tag instance by name
Tag::pick($repo, 'v1.0'); // a Tag instance by name

// last tag by date
$repo->getLastTag();

commits

$repo->getCommit(); // get a Commit instance of the current HEAD
$repo->getCommit('v1.0'); // get a Commit instance for a tag
$repo->getCommit('1ac370d'); // full sha or part of it
// or directly create a commit object
$commit = new Commit($repo, '1ac370d');
$commit = new Commit($repo, '1ac370d'); // head commit

// count commits
$repo->countCommits('1ac370d'); // number of commits to arrive at 1ac370d
// commit is countable, so, with a commit object, you can do
$commit->count();
// as well as
count($commit);

remotes

$repo->getRemote('origin'); // a Remote object
$repo->getRemotes(); // array of Remote objects

// Log contains a collection of commit objects
// syntax: getLog(<tree-ish>, path = null, limit = 15, offset = null)
$log = $repo->getLog();
$log = $repo->getLog('master', null, 5);
$log = $repo->getLog('v0.1', null, 5, 10);
// or directly create a log object
$log = new Log($repo);
$log = new Log($repo, 'v0.1', null, 5, 10);

// countable
$log->count();
count($log);

// iterable
foreach ($log as $commit) {
 echo $commit->getMessage();
}

status

If you build a GitElephant\Status\Status class, you will get a nice api for getting the actual state of the working tree and staging area.

$status = $repo->getStatus();
$status = GitElephant\Status\Status::get($repo); // it's the same...

$status->all(); // A PhpCollection of StatusFile objects
$status->untracked();
$status->modified();
$status->added();
$status->deleted();
$status->renamed();
$status->copied();

all this methods returns a PhpCollection [https://github.com/schmittjoh/php-collection] of StatusFile objects

a StatusFile instance has all the information about the tree node changes. File names (and new file names for renamed objects), index and working tree status, and also a “git style” description like: added to index or deleted in work tree

Manage repository

You could also use GitElephant to manage your git repositories via PHP.

Your web server user (like www-data) needs to have access to the folder of the git repository

$repo->init(); // init
$repo->cloneFrom("git://github.com/matteosister/GitElephant.git"); // clone

// stage changes
$repo->stage('file1.php');
$repo->stage(); // stage all

// commit
$repo->commit('my first commit');
$repo->commit('my first commit', true); // commit and stage every pending changes in the working tree

// remotes
$repo->addRemote('awesome', 'git://github.com/matteosister/GitElephant.git');

// checkout
$repo->checkout($repo->getTag('v1.0')); // checkout a tag
$repo->checkout('master'); // checkout master

// manage branches
$repo->createBranch('develop'); // create a develop branch from current checked out branch
$repo->createBranch('develop', 'master'); // create a develop branch from master
$repo->deleteBranch('develop'); // delete the develop branch
$repo->checkoutAllRemoteBranches('origin'); // checkout all the branches from the remote repository

// manage tags
// create a tag named v1.0 from master with the given tag message
$repo->createTag('v1.0', 'master', 'my first release!');
// create a tag named v1.0 from the current checked out branch with the given tag message
$repo->createTag('v1.0', null, 'my first release!');
// create a tag from a Commit object
$repo->createTag($repo->getCommit());

Remote repositories

If you need to access remote repository you have to install the ssh2 extension [http://www.php.net/manual/en/book.ssh2.php] and pass a new Caller to the repository. this is a new feature...consider this in a testing phase

$repo = new Repository('/path/to/git/repository');
$connection = ssh_connect('host', 'port');
// authorize the connection with the method you want
ssh2_auth_password($connection, 'user', 'password');
$caller = new CallerSSH2($connection, '/path/to/git/binary/on/server');
$repo = Repository::open('/path/to/git/repository');
$repo->setCaller($caller);

A versioned tree of files

A git repository is a tree structure versioned in time. So if you need to represent a repository in a, let’s say, web browser, you will need
a tree representation of the repository, at a given point in history.

Tree class

$tree = $repo->getTree(); // retrieve the actual *HEAD* tree
$tree = $repo->getTree($repo->getCommit('1ac370d')); // retrieve a tree for a given commit
$tree = $repo->getTree('master', 'lib/vendor'); // retrieve a tree for a given path
// generate a tree
$tree = new Tree($repo);

The Tree class implements ArrayAccess, Countable and Iterator interfaces.

You can use it as an array of git objects.

foreach ($tree as $treeObject) {
 echo $treeObject;
}

A Object instance is a php representation of a node in a git tree

echo $treeObject; // the name of the object (folder, file or link)
$treeObject->getType(); // one class constant of Object::TYPE_BLOB, Object::TYPE_TREE and Object::TYPE_LINK
$treeObject->getSha();
$treeObject->getSize();
$treeObject->getName();
$treeObject->getSize();
$treeObject->getPath();

You can also pass a tree object to the repository to get its subtree

$subtree = $repo->getTree('master', $treeObject);

Diffs

If you want to check a Diff between two commits the Diff class comes in

// get the diff between the given commit and it parent
$diff = $repo->getDiff($repo->getCommit());
// get the diff between two commits
$diff = $repo->getDiff($repo->getCommit('1ac370d'), $repo->getCommit('8fb7281'));
// same as before for a given path
$diff = $repo->getDiff($repo->getCommit('1ac370d'), $repo->getCommit('8fb7281'), 'lib/vendor');
// or even pass a Object
$diff = $repo->getDiff($repo->getCommit('1ac370d'), $repo->getCommit('8fb7281'), $treeObject);
// alternatively you could directly use the sha of the commit
$diff = $repo->getDiff('1ac370d', '8fb7281');
// manually generate a Diff object
$diff = Diff::create($repo); // defaults to the last commit
// or as explained before
$diff = Diff::create($repo, '1ac370d', '8fb7281');

The Diff class implements ArrayAccess, Countable and Iterator interfaces

You can iterate over DiffObject

foreach ($diff as $diffObject) {
 // mode is a constant of the DiffObject class
 // DiffObject::MODE_INDEX an index change
 // DiffObject::MODE_MODE a mode change
 // DiffObject::MODE_NEW_FILE a new file change
 // DiffObject::MODE_DELETED_FILE a deleted file change
 echo $diffObject->getMode();
}

A DiffObject is a class that implements ArrayAccess, Countable and Iterator interfaces. It represent a file, folder or submodule changed in the Diff.

Every DiffObject can have multiple chunks of changes. For example:

 added 3 lines at line 20
 deleted 4 lines at line 560

You can iterate over DiffObject to get DiffChunks. DiffChunks are the last steps of the Diff process, they are a collection of DiffChunkLine Objects

foreach ($diffObject as $diffChunk) {
 if (count($diffChunk) > 0) {
 echo "change detected from line ".$diffChunk->getDestStartLine()." to ".$diffChunk->getDestEndLine();
 foreach ($diffChunk as $diffChunkLine) {
 echo $diffChunkLine; // output the line content
 }
 }
}

Testing

The library is fully tested with PHPUnit.

Go to the base library folder and install the dev dependencies with composer, and then run the phpunitt test suite

$ composer --dev install
$./vendor/bin/phpunit # phpunit test suite

If you want to run the test suite you should have all the dependencies loaded.

Symfony2

There is a GitElephantBundle [https://github.com/matteosister/GitElephantBundle] to use this library inside a Symfony2 project.

Dependencies

	symfony/process [https://packagist.org/packages/symfony/process]

	symfony/filesystem [https://packagist.org/packages/symfony/filesystem]

	symfony/finder [https://packagist.org/packages/symfony/finder]

	phpcollection/phpcollection [https://github.com/schmittjoh/php-collection]

for tests

	PHPUnit [https://github.com/sebastianbergmann/phpunit]

Code style

	GitElephant follows the PSR-2 Coding Standard [https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md]

	I’m using gitflow [https://github.com/nvie/gitflow]

Want to contribute?

You are my new hero!

Just remember:

	PSR2 coding standard

	test everything you develop with phpunit

	if you don’t use gitflow, just remember to branch from “develop” and send your PR there. Please do not send pull requests on the master branch.

Author

Matteo Giachino (twitter [https://twitter.com/spicy_sake])

Many thanks to all the contributors [https://github.com/matteosister/GitElephant/graphs/contributors]

Thanks

Many thanks to Linus and all those who have worked/contributed in any way to git.
Because it’s awesome!!! I can’t imagine being a developer without it.

Logo design by Stefano Lodovico [http://it.linkedin.com/pub/stefano-lodovico/49/a04/261]

[image: Analytics] [https://github.com/igrigorik/ga-beacon]

0.9.19

	Renamed some classes, GitAuthor becomes Author, TreeBranch becomes Branch, TreeTag becomes Tag and TreeObject becomes Object

todo

0.8.*

	add interface for caller DONE

	commits count DONE

0.9.*

	isolate objects like grit, clean constructor of Commit, Log, Tag, Tree, Diff by accepting the repository as mandatory argument DONE

	find a way to populate object props from the sha inside the objects DONE

	inject the caller and the command to the objects to populate props DONE

	use sha (default to HEAD) whenever it’s possible inside constructors DONE

	remove the dependency-injection and config dependency DONE

	rewrite the tree implementation to not use recursion on every request DONE

	git pull

1.0.0

	remotes DONE

	better status handling with –porcelain DONE

	named exceptions DONE

	unstage DONE

next

	git blame

	blobs management

	submodules management

	signed tags

	SSH to execute command on remote server

 nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/down.png

_static/up.png

_static/minus.png

_static/comment-close.png

