
GitComponentVersion Documentation
Release 0.0.1

Kevin Johnson

Apr 12, 2017

Contents:

1 Installation 3
1.1 Nuget . 3
1.2 Chocolatey . 3

2 How it Works 5
2.1 A Short Example . 5

3 Usage 9
3.1 Examples . 9

4 Configuration 13
4.1 Example Configuration File . 13

5 Indices and tables 15

i

ii

GitComponentVersion Documentation, Release 0.0.1

This documentation describes a tool that does not yet exist!

GitComponentVersion is a tool to help you achieve Semantic Versioning for multiple projects in a single repository.

Contents: 1

GitComponentVersion Documentation, Release 0.0.1

2 Contents:

CHAPTER 1

Installation

GitComponentVersion is available on both nuget.org and Chocolatey

Nuget

Available on nuget.org under GitComponentVersion.CommandLine

nuget install GitComponentVersion.CommandLine

Chocolatey

Available on Chocolatey under GitComponentVersion.Portable

choco install GitComponentVersion.Portable

3

GitComponentVersion Documentation, Release 0.0.1

4 Chapter 1. Installation

CHAPTER 2

How it Works

GitComponentVersion uses a combination of a GitComponentVersion.json file at the root of your repository,
and the git history to determine the version for multiple components within a single repository.

A Short Example

If you have never configured your repository for use with GitComponentVersion you will want to run the following
command at root of your repository

> gcv init

This will assist you to set up your initial GitComponentVersion.json file.

The following GitComponentVersion.json file configures a repository with 2 different components (shipping,
and billing). Each of these components has 2 directories, for a total of 4 nuget assemblies that each produce their own
nuget package. There are no history elements in the config file, meaning that there has never been a release of either
of these components.

{
"components": [

{
"name": "shipping",
"next": "1.0.0",
"tag": "alpha",
"dirs": [

"shipping.core",
"shipping.calculations"

]
},
{

"name": "billing",
"next": "1.0.0",
"tag": "beta",
"dirs": [

5

GitComponentVersion Documentation, Release 0.0.1

"billing.core",
"billing.useraccounts"

]
}

]
}

The following command will display the NuGetVersion for each component

> gcv -v NuGetVersion
[

{
"Name": "shipping",
"NuGetVersion":"1.0.0-alpha0169",

},
{

"Name": "billing"
"NuGetVersion":"1.0.0-beta0077",

}
]

This means that there have been 169 commits that modified the shipping component, and 77 that have modified the
billing component.

At this point we are ready to make a release of all the components in this repository. Often this means creating a
release branch and merging that into the master branch. However, it is not important to GitComponentVersion what
workflow you use. From your repository, on the commit you intend to tag as a release, run the following command.

> gcv release

The following things just happened.

1. Each changed component now has a new tag in the format {name}_v{next} In other words, the current
commit has now been tagged with shipping_v1.0.0, and billing_v1.0.0

2. A new release element has been added into each components history section

3. The next variable has been bumped to the next minor version for each released component.

4. The tag variable has been set to alpha

The config file now looks like this:

{
"components": [

{
"name": "shipping",
"next": "1.1.0",
"tag": "alpha",
"dirs": [

"shipping.core",
"shipping.calculations"

],
"history": [

{
"version": "1.0.0",
"sha": "bb2febab25fa1b0312bc61af0116e2de99fa0d5f"

}
]

},

6 Chapter 2. How it Works

GitComponentVersion Documentation, Release 0.0.1

{
"name": "billing",
"next": "1.1.0",
"tag": "alpha",
"dirs": [

"billing.core",
"billing.useraccounts"

],
"history": [

{
"version": "1.0.0",
"sha": "4fe97191cc24cfb1f19e3880b3cffa87d10051c7"

}
]

}
]

}

It is recommended that the change to GitComponentVersion.json should be committed, and the changes should
be pushed to the remote, as well as pushing the new tags

> git add GitComponentVersion.json
> git commit -m "Updating the GitComponentVersion.json with new release information"
> git push
> git push --tags

At this point your release is complete. You now need to make sure that your development branch is up to date. If you
develop against the master branch you are probably already done. However, if you use a master and develop branch
you should merge this change into develop so that new development will begin to version with the new version.

2.1. A Short Example 7

GitComponentVersion Documentation, Release 0.0.1

8 Chapter 2. How it Works

CHAPTER 3

Usage

usage: gcv [<args>]

verbs:
init Sets up the initial GitComponentVersion.json file
release adds a record to the history section for a component,

tags the repostiory with {name}_v{next},
and bumps the [next] version to the next minor version.

update Will recursively search for all 'AssemblyInfo.cs' files
→˓in the component

and update them with the correct version number.

arguments:
-c, --component A comma separated list of component names.

Makes a release entry into the history section for the
→˓named component.
-v, --variable Restricts output to the specified variable
-h, --help Display this help screen.

Examples

Display the specified variable for info for a single component

> gcv -c core -v NuGetVersion
3.2.0-alpha0169

Display the specified variable for info for all components

> gcv -v NuGetVersionV2
[

{
"Name": "core",
"NuGetVersionV2":"3.2.0-alpha0169",

9

GitComponentVersion Documentation, Release 0.0.1

},
{

"Name": "billing"
"NuGetVersionV2":"3.1.0-alpha0077",

}
]

Display the version info for a single component

> gcv -c core
{

"Major":3,
"Minor":2,
"Patch":0,
"PreReleaseTag":"alpha.169",
"PreReleaseTagWithDash":"-alpha.169",
"PreReleaseLabel":"alpha",
"PreReleaseNumber":169,
"BuildMetaData":"",
"BuildMetaDataPadded":"",
"FullBuildMetaData":"Branch.develop.Sha.88563159817f8ff73897f47119bdb542ef9121db",
"MajorMinorPatch":"3.2.0",
"SemVer":"3.2.0-alpha.169",
"AssemblySemVer":"3.2.0.0",
"FullSemVer":"3.2.0-alpha.169",
"InformationalVersion":"3.2.0-alpha0169",
"BranchName":"develop",
"Sha":"88563159817f8ff73897f47119bdb542ef9121db",
"NuGetVersion":"3.2.0-alpha0169",
"CommitsSinceVersionSource":169,
"CommitsSinceVersionSourcePadded":"0169",
"CommitDate":"2017-04-10"

}

Display the version info for all components

> gcv
[

{
"Name": "core",
"Major":3,
"Minor":2,
"Patch":0,
"PreReleaseTag":"alpha.169",
"PreReleaseTagWithDash":"-alpha.169",
"PreReleaseLabel":"alpha",
"PreReleaseNumber":169,
"BuildMetaData":"",
"BuildMetaDataPadded":"",
"FullBuildMetaData":"Branch.develop.Sha.

→˓88563159817f8ff73897f47119bdb542ef9121db",
"MajorMinorPatch":"3.2.0",
"SemVer":"3.2.0-alpha.169",
"AssemblySemVer":"3.2.0.0",
"FullSemVer":"3.2.0-alpha.169",
"InformationalVersion":"3.2.0-alpha0169",
"BranchName":"develop",
"Sha":"88563159817f8ff73897f47119bdb542ef9121db",

10 Chapter 3. Usage

GitComponentVersion Documentation, Release 0.0.1

"NuGetVersion":"3.2.0-alpha0169",
"CommitsSinceVersionSource":169,
"CommitsSinceVersionSourcePadded":"0169",
"CommitDate":"2017-04-10"

},
{

"Name": "billing"
"Major":3,
"Minor":1,
"Patch":0,
"PreReleaseTag":"alpha.77",
"PreReleaseTagWithDash":"-alpha.77",
"PreReleaseLabel":"alpha",
"PreReleaseNumber":77,
"BuildMetaData":"",
"BuildMetaDataPadded":"",
"FullBuildMetaData":"Branch.develop.Sha.

→˓378037291d0debe840a7cf917ca7e90a914ad390",
"MajorMinorPatch":"3.1.0",
"SemVer":"3.1.0-alpha.77",
"AssemblySemVer":"3.1.0.0",
"FullSemVer":"3.1.0-alpha.77",
"InformationalVersion":"3.1.0-alpha0077",
"BranchName":"develop",
"Sha":"378037291d0debe840a7cf917ca7e90a914ad390",
"NuGetVersion":"3.1.0-alpha0077",
"CommitsSinceVersionSource":77,
"CommitsSinceVersionSourcePadded":"0077",
"CommitDate":"2017-04-07"

}
]

release

When no arguments are supplied it is assumed that all changed components should be released. Optionally you can
specify which components should be considered for release.

The release verb will tag the git repo with the format {name}_v{next} and it will add a record to the history section
for a component. Then it will bump the next version to the next minor version. If the next version should be a major
version bump the appropriate component will need to be modified to reflect the correct next version.

usage: gcv release [<args>]

-c, --component A comma separated list of component names.
Makes a release entry into the history section for the

→˓named component.
-n, --dry-run Don't actually make a release, just show what components
→˓would be released.

update

Recursively search for all AssemblyInfo.cs files in the component and update them with the correct version
number.

3.1. Examples 11

GitComponentVersion Documentation, Release 0.0.1

usage: gcv update [<args>]

-c, --component A comma separated list of component names.
Specifies the components that will have their assemblyinfo

→˓files updated.

12 Chapter 3. Usage

CHAPTER 4

Configuration

Example Configuration File

{
"components": [

{
"name": "calculations",
"next": "2.0.0",
"tag": "alpha",
"dirs": [

"Calculations",
"Calculations.Core"

],
"assemblyinfo": [

"AssemblyInfo.cs",
"SharedAssemblyInfo.cs"

],
"history": [

{
"version": "1.1.0",
"sha": "8c8b84ae9f1c7791b69340f3cdb90025822ba77e",
"notes": "blah blah blah"

},
{

"version": "1.0.0",
"sha": "8c8b84ae9f1c7791b69340f3cdb90025822ba77e",
"notes": "blah blah blah"

}
]

},
{

"name": "billing",
"next": "1.0.0",
"tag": "beta",

13

GitComponentVersion Documentation, Release 0.0.1

"dirs": [
"Billing.Core",
"Billing.Customer"

]
}

]
}

14 Chapter 4. Configuration

CHAPTER 5

Indices and tables

• genindex

• search

15

	Installation
	Nuget
	Chocolatey

	How it Works
	A Short Example

	Usage
	Examples

	Configuration
	Example Configuration File

	Indices and tables

