
Gitcd Documentation
Release 1.6.16

Claudio Walser

May 07, 2021

Contents:

1 Continuous tool for working with git 1
1.1 Description . 1
1.2 Installation of gitcd . 1
1.3 CLI Usage of gitcd . 3
1.4 Known Issues . 13
1.5 Authors . 13
1.6 Contributing . 13
1.7 License . 14

2 Todo’s and features to implement 15

3 Indices and tables 17

i

ii

CHAPTER 1

Continuous tool for working with git

Development Status

Package Info

1.1 Description

gitcd is a little helper for continuous delivery workflows, using git as scm.

1.2 Installation of gitcd

1.2.1 Pre requisites

Gitcd is written in Python3. Most systems still deliver with Python2 as default. You need to install Python3 in order
to run gitcd properly.

1

https://pypi.org/project/gitcd/
https://travis-ci.org/gitcd-io/gitcd
https://gitcd.readthedocs.org/en/latest/?badge=latest
https://github.com/gitcd-io/gitcd/commits/master
https://pypi.org/project/gitcd/
https://pypi.org/project/gitcd/
https://github.com/gitcd-io/gitcd/blob/master/LICENSE
https://pypi.org/project/gitcd/

Gitcd Documentation, Release 1.6.16

MacOSX

brew install python3

Ubuntu / Debian

sudo apt-get install python3 python3-pip

1.2.2 Installation of gitcd itself

Now you are ready to install gitcd itself, which is quite easy using pip.

pip3 install --user --upgrade gitcd

1.2.3 Trouble using git-cd?

If the command “git-cd” or “git cd” is not available now, you probably need to add the pip binary path to your $PATH
variable.

MacOSX

Open ~/.bash_profile in your favorite editor and add the following lines at the end of the file.

Replace <python-version> with your currently installed python version

if [-d "$HOME/Library/Python/<python-version>/bin"] ; then
PATH="$HOME/Library/Python/<python-version>/bin:$PATH"

fi

Ubuntu / Debian

Open ~/.profile in your favorite editor and add the following lines at the end of the file.

if [-d "$HOME/.local/bin"] ; then
PATH="$HOME/.local/bin:$PATH"

fi

1.2.4 Argument Completion

Gitcd supports argument completion, to activate it execute the following steps.

MacOSX

Under OSX it isn’t that simple unfortunately. Global completion requires bash support for complete -D, which was
introduced in bash 4.2. On OS X or older Linux systems, you will need to update bash to use this feature. Check the
version of the running copy of bash with echo $BASH_VERSION. On OS X, install bash via Homebrew (brew install
bash), add /usr/local/bin/bash to /etc/shells, and run chsh to change your shell.

2 Chapter 1. Continuous tool for working with git

Gitcd Documentation, Release 1.6.16

You might consider reading the docs for argcomplete https://argcomplete.readthedocs.io/en/latest/#global-completion

Activate Global argcomplete

You are now ready to activate global argcompletion for python with the following command.

activate-global-python-argcomplete

1.3 CLI Usage of gitcd

For convenience, you can call gitcd as a git sub command as well as directly. Therefore, you can replace “git cd” in
any of the following commands with “git-cd” if you like it more.

Note: Python argument completion wont work if you use it as a git sub command!

1.3.1 Initializing gitcd

First of all you probably want to initialize one of your local git repositories with gitcd. Change directory to one of your
local git repositories and run git-cd init. Most of the values should be very self-explanatory. Still, here is a complete
list of values you can pass.

• Branch name for production releases?

– This is the branch git-cd is creating a tag from if you execute the release command, you probably want to
go with master here.

• Branch name for feature development?

– This is more kind of a prefix for feature branches, it is empty by default. If you wish your feature branch
has a name like feature/my-new-feature, you can set this prefix to feature/.

• Branch name for test releases?

– Pass your branch name where you want to merge code into while executing git-cd test. Let it empty if you
don’t want to use that feature. At work, we have this for many repositories set to test.

• Version tag prefix?

– Prefix for your release tags, this is v by default which would result in a tag equals to v0.0.1 for example.

• Version type? You can either set your tag number manually, read it from a version file or generate it by
date.

– This is about how git-cd release gets your current version number you want to release.

* manual means you’ll get asked to enter the version number by hand

* file means gitcd reads the version number from a file, you’ll be asked from which file in the next step

* date means you generate a version number from a date scheme, you’ll be asked for the scheme later.
As a date version scheme, you can pass any directive for http://strftime.org/.

• Do you want to execute some additional commands after a release?

– This is useful if you want to execute any cli script after creating a tag, for example, gitcd itself uses
such a script to publish the new release on pypi after creating a new tag. You can see the script here
https://github.com/gitcd-io/gitcd/blob/master/publish.sh.

1.3. CLI Usage of gitcd 3

https://argcomplete.readthedocs.io/en/latest/#global-completion
http://strftime.org/
https://github.com/gitcd-io/gitcd/blob/master/publish.sh

Gitcd Documentation, Release 1.6.16

git cd init

The image below represents the configuration for gitcd itself.

1.3.2 Check current version

You want to know which version of gitcd you are currently running?

git cd version

1.3.3 Upgrade gitcd itself

Gitcd is able to check your local version with the one published on pypi and upgrade itself if you wish so.

git cd upgrade

4 Chapter 1. Continuous tool for working with git

Gitcd Documentation, Release 1.6.16

1.3.4 Clean up local branches

The tool is able to cleanup all local branches which doesn’t exist on remotes. This is done with the clean command.

git cd clean

1.3. CLI Usage of gitcd 5

Gitcd Documentation, Release 1.6.16

1.3.5 Start a new feature

Starts a new feature branch from your master branch. If you don’t pass a branch name, you will be asked later.

git cd start <branchname>

6 Chapter 1. Continuous tool for working with git

Gitcd Documentation, Release 1.6.16

1.3.6 Updating a feature with the master branch

Merges the remote master branch into your current feature branch. If you don’t pass a branch name, your current
branch will be taken.

git cd refresh <branchname>

1.3.7 Testing a feature

You might have a testing environment or want to run some integration test on a shared or common branch without the
need to push out your feature with the next release. Therefore you can’t merge it into the master. That’s exactly why
the git-cd test command exists. You might even have some dedicated tester checking the new feature on this specific
branch. So to merge your new feature into your testing branch you call this command, if you don’t pass a branch
name, your current feature branch will be merged.

git cd test <branchname>

1.3. CLI Usage of gitcd 7

Gitcd Documentation, Release 1.6.16

1.3.8 Open a pull request for code review

Opens a pull request to your master branch. If you don’t pass a branch name, your current branch will be taken.

git cd review <branchname>

8 Chapter 1. Continuous tool for working with git

Gitcd Documentation, Release 1.6.16

1.3.9 See the status of a pull request

You can see the status of a pull request directly in the command line. If you don’t pass a branch name, your current
branch will be taken.

git cd status <branchname>

1.3. CLI Usage of gitcd 9

Gitcd Documentation, Release 1.6.16

1.3.10 Finish a feature branch

If your pull request got approved by a fellow developer and all your tests were running properly, you probably want to
merge your feature into the master branch. If you don’t pass a branch name, your current branch will be taken.

git cd finish <branchname>

10 Chapter 1. Continuous tool for working with git

Gitcd Documentation, Release 1.6.16

1.3.11 Compare different branches or tags

By now, your code is in the master branch. Personally, I always like to see what I am going to release by comparing
the current branch (which is master after the finish) against the latest tag. If you don’t pass a branch or tag name, the
latest tag will be taken.

git cd compare <branchname>||<tagname>

1.3. CLI Usage of gitcd 11

Gitcd Documentation, Release 1.6.16

1.3.12 Release a new version

Now your feature is merged and you made sure you know the changes going out, you are ready to ship it. This
command creates a new tag from the master branch and executes any command you’ve setup in the initialize command.

git cd release

12 Chapter 1. Continuous tool for working with git

Gitcd Documentation, Release 1.6.16

1.4 Known Issues

If you discover any bugs, feel free to create an issue on GitHub or fork this repository and send us a pull request.

Issues List.

1.5 Authors

• Claudio Walser (https://github.com/claudio-walser)

• Phil Christen (https://github.com/pchr-srf)

• Urban Etter (https://github.com/mms-uret)

• Gianni Carafa (https://github.com/mms-gianni)

1.6 Contributing

1. Fork it

2. Add this repository as an origin (git remote add upstream https://github.com/gitcd-io/
gitcd.git)

1.4. Known Issues 13

https://github.com/gitcd-io/gitcd/issues
https://github.com/claudio-walser
https://github.com/pchr-srf
https://github.com/mms-uret
https://github.com/mms-gianni

Gitcd Documentation, Release 1.6.16

3. Create your feature branch (git cd start my-new-feature)

4. Commit your changes (git commit -am 'Add some feature')

5. Push to the branch (git push origin feature/my-new-feature)

6. Create new Pull Request against upstream (git cd review my-new-feature)

1.7 License

Apache License 2.0 see https://github.com/gitcd-io/gitcd/blob/master/LICENSE

14 Chapter 1. Continuous tool for working with git

https://github.com/gitcd-io/gitcd/blob/master/LICENSE

CHAPTER 2

Todo’s and features to implement

• Check for updates initially on every command - not even sure if this is smart

• implement all the assertions mentioned in the ./travis bash scripts

• test it with different remotes if possible

15

Gitcd Documentation, Release 1.6.16

16 Chapter 2. Todo’s and features to implement

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

17

	Continuous tool for working with git
	Description
	Installation of gitcd
	CLI Usage of gitcd
	Known Issues
	Authors
	Contributing
	License

	Todo’s and features to implement
	Indices and tables

