
Git Memo Documentation
Release v1.1

Marc Zonzon

December 25, 2016

Contents

1 Introduction 3

2 Repository Info 5
2.1 Status . 5
2.2 Branches . 5
2.3 Remotes . 5
2.4 Tags . 6
2.5 Describe . 6
2.6 Logs . 7
2.7 Reflogs . 8
2.8 git diff . 8
2.9 Commit tree . 9
2.10 Looking file content in the tree . 9
2.11 Viewing other versions of a file . 9

3 Developping 11
3.1 Adding files to the index . 11
3.2 Adding a part of a file . 11
3.3 Adding a part of a new file . 12
3.4 Well formed commits . 12
3.5 Adding an empty commit at root of a branch. 12

4 Objects names 15
4.1 Naming commits . 15
4.2 Finding the top level directory . 17

5 Sharing development 19
5.1 Git Pull . 19
5.2 Git pull –rebase . 19
5.3 Git push . 19
5.4 Sharing Tags . 20

6 Merge and Patch 23
6.1 Merging . 23
6.2 Submitting patches . 23
6.3 Subtree-merge . 24

7 Remote repositories 25
7.1 Cloning a remote repository . 25
7.2 Adding a new remote . 25
7.3 Fetching from Remote . 25
7.4 Remote configuration . 25
7.5 creating a bare remote repository . 26

i

7.6 push and delete remote branches . 26
7.7 References . 26

8 Remote tracking branches 27
8.1 Tracking or not tracking . 27
8.2 Configuration of upstream branches . 28

9 Rebase 29
9.1 Rebase a topic . 29
9.2 Interactive Rebase . 30
9.3 Checking your rebase and undoing it . 31
9.4 dangling objects . 32

10 Fixing errors 33
10.1 Amend a commit . 33
10.2 Commit a fixup and squash. 34
10.3 splitting a commit . 34

11 Filter branch 35
11.1 References . 35
11.2 Removing an object or a directory . 35

12 Git Subtree 37
12.1 Subtree split . 37
12.2 adding a subtree to a project . 39

13 Repository Backup 41
13.1 file-system copy . 41
13.2 git bundle . 41
13.3 gcrypt remote . 42
13.4 git mirror . 42
13.5 mirror remote . 42
13.6 live mirror . 42

14 Git for site deployment 45

15 Git keyword expansion 47

16 Git Hooks 49
16.1 prepare_commit_msg . 49

17 Garbage Collecting 51
17.1 git fsck . 51
17.2 Automated garbage collection with gc --auto. 52
17.3 Forced garbage collection. 52

18 Miscellaneous operations 53
18.1 switching branches without doing a checkout . 53
18.2 Transparent encryption . 53
18.3 Using git-wip . 55

19 Git annex 57
19.1 Usual operations . 57

20 Indices and tables 61

ii

Git Memo Documentation, Release v1.1

Contents:

Contents 1

Git Memo Documentation, Release v1.1

2 Contents

CHAPTER 1

Introduction

License

This is a collection of notes related to git use. These notes have been taken mainly for my own usage, to help me
to understand some feature or to remember the way of doing common operations.

There are many good tutorials, but this memo is not a tutorial. Most of the key points you have to learn first are
skipped, some points are very easy and common, some are exploring git use more in depth.

This is not either a reference, it’s author is not a git expert.

But If ever you find here something useful for your daily use of git, I am happy to share these notes with you.

Beside this memo I have also put pointers to git documentation in the Git section and subsections of my mzlinux
site.

3

http://www.mzlinux.org/node/265
http://www.mzlinux.org/
http://www.mzlinux.org/

Git Memo Documentation, Release v1.1

4 Chapter 1. Introduction

CHAPTER 2

Repository Info

Ref: git tutorial Git User Manual

2.1 Status

Refs: git-status(1)

Status of the repo: files modified from index, index that differ from the HEAD:

git status

Don’t show untracked files:

git status -u no

Status of the current directory:

git status -- .

2.2 Branches

Refs: git-branch(1),

Local branches:

$ git branch

Remotes branches:

$ git branch -r
$ git branch -a # both local and remotes

Show also what are the tracking branches, if any.:

$ git branch -vv

2.3 Remotes

See also the remote section

• to see remotes

5

https://www.kernel.org/pub/software/scm/git/docs/gittutorial.html
https://www.kernel.org/pub/software/scm/git/docs/user-manual.html
https://www.kernel.org/pub/software/scm/git/docs/git-status.html
https://www.kernel.org/pub/software/scm/git/docs/git-branch.html

Git Memo Documentation, Release v1.1

$ git remote
lighttpd
nx_server
ssh_server
....
$ git rev-parse --symbolic --remotes
lighttpd/master
nx_server/distribution
nx_server/kernoel
nx_server/master
ssh_server/distribution
ssh_server/kernoel
ssh_server/master
ssh_server/tubuntu
....

• remote details

$ git remote show ssh_server

* remote ssh_server
URL: ../ssh_server
Tracked remote branches
kernoel master tubuntu
$ git config --get-regexp remote\\.ssh_server\\..*
remote.ssh_server.url ../ssh_server
remote.ssh_server.fetch +refs/heads/*:refs/remotes/ssh_server/*

2.4 Tags

Refs: git-tag(1),

To know your local tags:

$ git tag
v1
v2

If you want to know the annotation that may come with the tag you have to use the option --list <pattern>
abr. -l<pattern> wich list the tages that match a shell pattern, and n<num> that allow n lines of annotation.

To get all the tags with annotations:

$ git tag -n100 -l *

See also Sharing Tags

2.5 Describe

Refs: git-describe

git-describe show the the most recent tag that is reachable from a commit. By default it uses only annotated
tags, but you can use any tag with --tags option.

Exemple:

$ git tag
v0.2
v0.90
$ git describe
v0.90-3-g8a8e4de

6 Chapter 2. Repository Info

https://www.kernel.org/pub/software/scm/git/docs/git-tag.html
https://www.kernel.org/pub/software/scm/git/docs/git-describe.html

Git Memo Documentation, Release v1.1

You are 3 commits after the version v0.90 at the commit 8a8e4de. The prefix g is added to indicate a git
managed version.

2.6 Logs

Refs: git-log(1), git-show(1), git-diff(1), gitrevisions(7).

git tutorial: Exploring history.

Git User Manual: Browsing revisions, Understanding Commits,

Review changes in the whole repository.

$ git log --name-status
$ git log --summary
$ git log --stat
$ git log --patch # abbrev -p

Changes on some file/directory

$ git log --stat -- Muttrc
$ gitk -- Muttrc
$ gitk --all -- Muttrc

All the commits which add or remove any file data matching the string ’foo()’:

$ git log -S'foo()'

To follow among renames, even crossing directories, use for a single file:

$ git log -p --follow Muttrc

Changes in a commit range:

$ git log v2.6.15..v2.6.16 # ...in v2.6.16, not in v2.6.15
$ git log master..test # ...in branch test, not in branch master
$ git log test..master # ...in branch master, but not in test
$ git log test...master # ...in one branch, not in both
$ git log --since="2 weeks ago"

Changes introduced by the last commit:

$ git log -1 --stat
$ git log -1 -p

Changes introduced by some commit: You need only the initial part of the commit sha.

$ git log -1 --stat 20b0f6e1961d5da
$ git log -1 --stat -p 20b0f6e1961d5da
$ git show 20b0f6e1961d5da
$ git show HEAD
$ git show devel # the tip of the "devel" branch or tag
$ git show HEAD^ # to see the parent of HEAD
$ git show HEAD~4 # 4 commits before HEAD

If the commit is a merge commit git show <commit> give only the difference between <commit> and its
first parent. To get both:

$ git show <commit>^1
$ git show <commit>^2

You can also use git-diff but by suffixing the commit with ^! to mean the commit and nothing in the ancestors
(see gitrevisions)

2.6. Logs 7

https://www.kernel.org/pub/software/scm/git/docs/git-log.html
https://www.kernel.org/pub/software/scm/git/docs/git-show.html
https://www.kernel.org/pub/software/scm/git/docs/git-diff.html
https://www.kernel.org/pub/software/scm/git/docs/gitrevisions.html
https://www.kernel.org/pub/software/scm/git/docs/gittutorial.html#_exploring_history
https://www.kernel.org/pub/software/scm/git/docs/user-manual.html
https://www.kernel.org/pub/software/scm/git/docs/user-manual.html#browsing-revisions
https://www.kernel.org/pub/software/scm/git/docs/user-manual.html#understanding-commits
https://www.kernel.org/pub/software/scm/git/docs/git-diff.html
https://www.kernel.org/pub/software/scm/git/docs/gitrevisions.html

Git Memo Documentation, Release v1.1

$ git diff 20b0f6e1961d5da^!
$ git diff HEAD^!

2.7 Reflogs

Refs: git-reflog(1), git-log(1), git-show(1), user-manual: recovering lost changes, git-notes: reflog

The reflog records each position of HEAD in the last 30 days (or configuration
gc.reflogExpireUnreachable). The reflog history is local to your repository not shared, or cloned.

To show the reflog use:

$ git reflog show --date=relative
$ git log --walk-reflogs
$ git show-branch --reflog

--walk-reflogs and --reflog are abridged in -g. If the rebase and amend don’t appear in a simple log
without -g, when you use the reflog you can see and recover commits that have been amended or let away by a
rebase.

You can attain any past commit not yet pruned by:

$ git log master@{1}
$ git show HEAD@{"1 week ago"}

2.8 git diff

git diff show differences introduced by commits

Refs: git-diff(1), git-difftool(1), gitrevisions(7), git-format-patch(1).

Diff and index:

Changes beetween the index and the working tree;
i.e change in the working tree not yet staged for the next commit.
$ git diff
Changes between your last commit and the index;
what you would be committing if you run "git commit" without "-a" option.
$ git diff --cached
Changes beetween your last commit and the working tree;
what you would be committing if you run "git commit -a"
$ git diff HEAD

diffs between two branches:

$ git diff master..test

You can also use a difftool, if you want to see the diff with meld:

$ git difftool --tool=meld master..test

To know the list of available tools:

$ git difftool --tool-help

To define a new tool you set in your .gitconfig:

[difftool "ediff"]
cmd = emacs --eval \"(ediff-files \\\"$LOCAL\\\" \\\"$REMOTE\\\")\"

8 Chapter 2. Repository Info

https://www.kernel.org/pub/software/scm/git/docs/git-reflog.html
https://www.kernel.org/pub/software/scm/git/docs/git-log.html
https://www.kernel.org/pub/software/scm/git/docs/git-show.html
https://www.kernel.org/pub/software/scm/git/docs/user-manual.html#recovering-lost-changes
http://gitolite.com/reflog.html
https://www.kernel.org/pub/software/scm/git/docs/git-diff.html
https://www.kernel.org/pub/software/scm/git/docs/git-diff.html
https://www.kernel.org/pub/software/scm/git/docs/git-difftool.html
https://www.kernel.org/pub/software/scm/git/docs/gitrevisions.html
https://www.kernel.org/pub/software/scm/git/docs/git-format-patch.html

Git Memo Documentation, Release v1.1

You use a triple dot to get the diff between the common ancestor of master and test and the tip of test. Warning:
The semantic of the triple dot is different with git log:

$ git diff master...test

Patch to apply to master to obtain test:

$ git format-patch master..test

2.9 Commit tree

Refs: gitk(1), tig-manual, git-log(1),

View source commit tree, you can use many GUIs, gitk is provided with git, and tig is a ncurses front-end. .

$ gitk --all
$ tig --all
$ gitg

You can also use git-log, with the option --graph:

$ git log --graph --pretty=oneline --abbrev-commit --decorate --all --color

2.10 Looking file content in the tree

Refs: git-grep(1), git-log(1)

$ git grep "foo()" # search working directory for "foo()"
$ git grep 'defun.*init *\(.*\)' # search working directory for pattern
$ git grep -E 'defun.*init *(.*)' # use extended regexp (default basic)
$ git grep "foo()" v2.6.15 # search old tree for "foo()"
$ git grep init 6874caeedb3c -- *.el # search "init" in .el files at some commit

To search "foo()" in all files in all commit history:

$ git rev-list --all | xargs git grep "foo()"

To look for the commits that introduced or removed "foo()":

$ git log -p -S "foo()"

To search for commit that introduced or removed an extended regex:

$ git log -p -S pickaxe-regex 'defun.*init *\(.*\)'

To search for commit whose patch text contains added/removed lines that match a regex:

$ git log -p -G 'defun.*init *\(.*\)'

log -G will show a commit that just moved the regexp, without changing its number of occurences, while log
-p -S pickaxe-regex will not retain it.

2.11 Viewing other versions of a file

Refs: git-show(1),

You can use a tag, a branch, or a commit sha.

2.9. Commit tree 9

https://www.kernel.org/pub/software/scm/git/docs/gitk.html
http://jonas.nitro.dk/tig/manual.html
https://www.kernel.org/pub/software/scm/git/docs/git-log.html
http://jonas.nitro.dk/tig/
https://www.kernel.org/pub/software/scm/git/docs/git-log.html
https://www.kernel.org/pub/software/scm/git/docs/git-grep.html
https://www.kernel.org/pub/software/scm/git/docs/git-log.html
https://www.kernel.org/pub/software/scm/git/docs/git-show.html

Git Memo Documentation, Release v1.1

$ git show devel:src/prog.py
$ git show v2.5:src/prog.py
$ git show e05db0fd4f3:src/prog.py

10 Chapter 2. Repository Info

CHAPTER 3

Developping

Ref: User-manual: Developing with git

3.1 Adding files to the index

To add file to the index do:

$ git add file1 file2 file3

To undo it:

$ git reset -- file1 file2 file3

the previous command do not work before the first commit because you have no HEAD, but you can remove the
files from the index while keeping it in the working tree with:

git rm --cached file1 file2 file3

3.1.1 glob expansion

There is a difference in the way the patterns are interpreted by git:

$ git add *.txt

is a shell glob expansion it will add file.txt but not subdir/other.txt while:

$ git add *.txt

is expanded by git and it will add both.

3.2 Adding a part of a file

Ref: git-add(1), git book: Interactive Staging

For a registered file, that has changed since last commit you can use git add --interactive or -i to
select the patch to add to the index:

$ git add -i
1: +0/-0 +65/-0 source/developping.rst
2: unchanged +1/-1 source/error_fix.rst

*** Commands ***
1: status 2: update 3: revert 4: add untracked
5: patch 6: diff 7: quit 8: help

11

https://www.kernel.org/pub/software/scm/git/docs/user-manual.html#Developing-With-git
https://www.kernel.org/pub/software/scm/git/docs/git-add.html
http://git-scm.com/book/en/Git-Tools-Interactive-Staging

Git Memo Documentation, Release v1.1

What now> p
........
Stage this hunk [y,n,q,a,d,/,e,?]? e
Waiting for Emacs...
....
What now> s

staged unstaged path
1: +7/-0 +58/-0 source/developping.rst
2: unchanged +1/-1 source/error_fix.rst
.....
What now> q
Bye.

Here the patch has be selected by editing the patch in emacs.

You can also use tools like git-gui(1), magit, or one of the many guis availables to select the hunks you want to
stage.

3.3 Adding a part of a new file

Now if the file is yet unregistered you cannot add only a part with git add -i.

But you can use the sequence:

$ git add -N new_file
$ git add -i

git add -N create an entry for new-file in the index with no content.

Then the interactive add is done like above.

3.4 Well formed commits

Summary of A Note About Git Commit Messages :

1. Short (50 chars or less) summary

2. Blank line.

3. More detailed explanatory text wrapped to about 72 cols.

4. Further paragraphs come after blank lines.

5. You can use bulleted text with a hyphen or asterisk preceded by a single space

6. Use the present tense.

3.5 Adding an empty commit at root of a branch.

Refs: git symbolic-ref, git checkout, git clean

$ #store inexistent ref: newroot in HEAD
$ git symbolic-ref HEAD refs/heads/newroot
$ # wipe the index
$ git rm --cached -r .
$ # clean the worktree
$ git clean -df
$ #create the branch newroot with an empty commit
$ git commit --allow-empty -m 'root commit'

12 Chapter 3. Developping

https://www.kernel.org/pub/software/scm/git/docs/git-gui.html
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html
https://www.kernel.org/pub/software/scm/git/docs/git-symbolic-ref.html
https://www.kernel.org/pub/software/scm/git/docs/git-checkout.html
https://www.kernel.org/pub/software/scm/git/docs/git-clean.html

Git Memo Documentation, Release v1.1

$ # rebase everything over newroot
$ git rebase newroot master

• repeat for other branches you want to rebase on the same newroot

• You can then move to some branch and remove newroot with git branch -d newroot.

Recent git have the --orphan option to checkout to create a new branch starting from nowhere. You can also
do:

$ git checkout --orphan newroot
$ clear the index and the working tree
$ git rm -rf .
$ git commit --allow-empty -m 'root commit'
$ git rebase newroot master

3.5. Adding an empty commit at root of a branch. 13

Git Memo Documentation, Release v1.1

14 Chapter 3. Developping

CHAPTER 4

Objects names

4.1 Naming commits

See git-rev-parse, gitrevisions(7), git-name-rev(1), git-describe(1), git-reflog(1)

• To inspect your repository (and in scripts)

$ pwd
/home/marc/bash/lib
$ git rev-parse --is-inside-git-dir
false
$ git rev-parse --is-inside-work-tree
true
$ git rev-parse --git-dir
/shared/home/marc/bash/.git
$ git rev-parse --show-cdup
../
$ git rev-parse --show-prefix
lib/

• translating symbolic <-> sha

$ git rev-parse --symbolic-full-name HEAD
refs/heads/master
$ git symbolic-ref HEAD
refs/heads/master
$ git name-rev --name-only HEAD
master
$ git rev-parse HEAD~3
25f4b1d58e20f2026a36d80073654f52b055537b
$ git name-rev --name-only 25f4b1d58e20
master~3

• Where is this commit sha?

Sometime you have a commit given by a revision sha number, say 1fc1148f, like the one you find in a
cherry-pick crossref. You may want to know where it is in your repository.

A simple describe will only succeed if it is referenced by a tag. but you can use –all to match also all
branches, and –contains to find not only the branch but all the contained refs.

$ git describe --all --contains 1fc1148f86
remotes/origin/distrib~11

name-rev will also give the same symbolic ref.

$ git name-rev --name-only 1fc1148f86
remotes/origin/distrib~11

15

https://www.kernel.org/pub/software/scm/git/docs/git-rev-parse.html
https://www.kernel.org/pub/software/scm/git/docs/gitrevisions.html
https://www.kernel.org/pub/software/scm/git/docs/git-name-rev.html
https://www.kernel.org/pub/software/scm/git/docs/git-describe.html
https://www.kernel.org/pub/software/scm/git/docs/git-reflog.html
https://www.kernel.org/pub/software/scm/git/docs/git-describe.html
https://www.kernel.org/pub/software/scm/git/docs/git-name-rev.html

Git Memo Documentation, Release v1.1

We know that 1fc1148f86 is the eleventh commit from the remotes/origin/distrib branch, but
I prefer to name it relative to the local distrib branch.

We can use the –refs option yo limit the refs name, but using:

$ name-rev --name-only --refs=distrib 1fc1148f867
origin/distrib~11

give the same answer than previously because origin-distrib is also matched.

To be more specific we use:

$ git name-rev --name-only --refs=heads/distrib 1fc1148f867
distrib~12

If we want to see both the message and a symbolic ref we can do:

git log -1 distrib~12 | git name-rev --stdin
commit 1fc1148f867ee644f9c039fd3614ae5c48171276 (remotes/origin/distrib~11)
Author:
....

• version/most recent tag

$ git describe HEAD
init-1.0-29-gcb97cd9
$ git name-rev --name-only cb97cd9
master
$ git describe HEAD~14
init-1.0-15-g84aeca4
$ git name-rev --name-only 84aeca4
master~14
$ git describe HEAD~29
init-1.0
$ git describe --long HEAD~29
init-1.0-0-ge23c217

• past tips of branches

We use the reflog, be careful that the reflog is local to your repository, and is pruned by git reflog
expire or by git gc HEAD@{25} is the 25th older head of branch, this is not always the same than
HEAD~25 which is the 25th ancestor of the actual head.

$ git name-rev HEAD@{25}
HEAD@{25} b3distrib~11
$ git rev-parse HEAD@{25}
2518dd006de12f8357e9694bf51a27bbd5bb5c7a
$ git rev-parse HEAD~11
2518dd006de12f8357e9694bf51a27bbd5bb5c7a
$ git name-rev 2518dd0
2518dd0 b3distrib~11
$ git rev-parse HEAD@{18}
0c4c8c0ea9ab54b92a2a6d2fed51d19c50cd3d76
$ git name-rev HEAD@{18}
HEAD@{18} undefined
$ git rev-parse HEAD@{14}~4
0c4c8c0ea9ab54b92a2a6d2fed51d19c50cd3d76
$ git rev-parse HEAD@{13}~5
24c85381f6d7420366e7a5e305c544a44f34fb0f
git log -1 -g --oneline HEAD@{13}
a1b9b5c HEAD@{13}: checkout: moving from b3distrib to a1b9b5c

In the previous example The 13th ancestor from the HEAD is a checkout at the beginning of a rebase so
HEAD@{14} is now dangling, and HEAD@{18} the fourth predecessor (HEAD@{14}~4) of HEAD@{14}
is unreachable from a ref.

16 Chapter 4. Objects names

Git Memo Documentation, Release v1.1

Nevertheless HEAD@{25} has been rebased as HEAD~11 and can be reached.

. Finding the sha of a file ————————-

Refs: git ls-files(1), git ls-tree(1), git-rev-parse(1), gitrevisions(7), git hash-object(1).

Pro Git: Git Objects, Discussion by Linus Torvald

To show the blog sha associated with a file in the index:

$ git ls-files --stage somefile
100644 a8ca07da52ba219e2c76685b7e59b34da435a007 0 somefile

This is not the sha1 sum of the raw content, but you can get it from any file even unknown in your repository with:

$ git hash-object somefile
a8ca07da52ba219e2c76685b7e59b34da435a007
$ cat somefile | git hash-object --stdin
a8ca07da52ba219e2c76685b7e59b34da435a007

The sha is derived from the content, and the size of the file, you can get it without using git from the sha1sum
command with:

$ (/usr/bin/stat --printf "blob %s\0" somefile; cat somefile) | \
sha1sum

a8ca07da52ba219e2c76685b7e59b34da435a007

While git ls-file use by default the cached content, by using plumbing commands, you can also look at any object.

To show the blog sha of the object associated with a relative path in the HEAD:

$ git ls-tree HEAD <path>

You can also use path starting from the git worktree directory. If the root of your are in a directory subdir you get
the same result with:

$ git ls-tree HEAD somefile
100644 blob 1a8bedab89a0689886cad63812fca9918d194a98 somefile
$ git ls-tree HEAD :somefile
100644 blob 1a8bedab89a0689886cad63812fca9918d194a98 somefile
$ git ls-tree HEAD :./somefile
100644 blob 1a8bedab89a0689886cad63812fca9918d194a98 somefile
git ls-tree HEAD :/subdir/file #note initial slash
100644 blob 1a8bedab89a0689886cad63812fca9918d194a98 somefile

you can also use git rev-parse with:

$ git rev-parse HEAD:subdir/somefile # no leading slash
1a8bedab89a0689886cad63812fca9918d194a98
$ git rev-parse HEAD:./somefile
1a8bedab89a0689886cad63812fca9918d194a98
$ git rev-parse :./somefile # index cached content
a8ca07da52ba219e2c76685b7e59b34da435a007
$ git rev-parse :0:./somefile
a8ca07da52ba219e2c76685b7e59b34da435a007
$ git hash-object somefile # the unregisterd worktree version
67a21c581328157099e8eac97b063cff2fb1a807 somefile

4.2 Finding the top level directory

Ref: git-rev-parse(1)

To show the absolute path of the top-level directory.:

4.2. Finding the top level directory 17

https://www.kernel.org/pub/software/scm/git/docs/git-ls-tree.html
https://www.kernel.org/pub/software/scm/git/docs/git-ls-tree.html
https://www.kernel.org/pub/software/scm/git/docs/git-rev-parse.html
https://www.kernel.org/pub/software/scm/git/docs/gitrevisions.html
https://www.kernel.org/pub/software/scm/git/docs/git-hash-object.html
http://git-scm.com/book/en/Git-Internals-Git-Objects
http://article.gmane.org/gmane.comp.version-control.git/44849
http://manpages.debian.org/cgi-bin/man.cgi?query=sha1sum
https://www.kernel.org/pub/software/scm/git/docs/git-ls-files.html
https://www.kernel.org/pub/software/scm/git/docs/git-rev-parse.html
https://www.kernel.org/pub/software/scm/git/docs/git-rev-parse.html

Git Memo Documentation, Release v1.1

$git rev-parse --show-toplevel

To show the relative path of the top-level repository:

$git rev-parse --show-cdup

or to show the path of the current directory relative to the top-level:

$git rev-parse --show-prefix

I use it to have a default message showing paths relative to top-level with:

$git commit :/$(git rev-parse --show-prefix)<relative-name>

To show the git directory:

$git rev-parse --git-dir

If $GIT_DIR is defined it is returned otherwise when we are in Git directory return the .git directory, if not
exit with nonzero status after printing an error message.

To know if you are in a work-tree:

$git rev-parse --is-inside-work-tree

Note also that an alias expansion prefixed with an exclamation point will be executed from the top-level directory
of a repository i.e. from git rev-parse --show-toplevel.

18 Chapter 4. Objects names

CHAPTER 5

Sharing development

Refs: git manual:Sharing development with others

5.1 Git Pull

Refs: git pull(1), git fetch(1)

To pull your master branch with the remote tracking branch in origin:

$ git pull origin master

It is equivalent t:

$ git fetch
$ git merge origin/master

5.2 Git pull –rebase

Refs: gitolite: git-pull –rebase

Instead of merging the remote repository after fetching, git pull --rebase rebase the current branch on
top of the upstream branch. But it uses relog information to avoid to rebase commits previously pulled from the
remote.

When you develop in a topic branch, you usually want to do git-pull --rebase instead of a mere pull, to
get a clean patch above master.

If master has progressed in an incompatible way with your work you may have to fix the conflict during rebase.

If you want to always do a rebase when pulling you can set the config option branch.<name>.rebase to
true.

If you need to do a simple pull (fast-forward or merge) once you have to use the option --no-rebase to
annihilate the effect of your config.

See the options branch.autosetuprebase and pull.rebase in git config(1) to set automatic rebase to
all branches, or a wide category of branches.

5.3 Git push

Refs: git push(1), git manual: Pushing changes

To push your master branch to the origin repo:

19

https://www.kernel.org/pub/software/scm/git/docs/user-manual.html#sharing-development
https://www.kernel.org/pub/software/scm/git/docs/git-pull.html
https://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://gitolite.com/git-pull--rebase.html
https://www.kernel.org/pub/software/scm/git/docs/git-config.html
https://www.kernel.org/pub/software/scm/git/docs/git-push.html
https://www.kernel.org/pub/software/scm/git/docs/user-manual.html#pushing-changes-to-a-public-repository

Git Memo Documentation, Release v1.1

git push origin master

The origin should be ref:configured as remote <remote_config>.

5.4 Sharing Tags

5.4.1 Listing remote tags

Refs: git ls-remote(1), git fetch(1), git show-ref(1)

We have seen how to List local tags, but the remote repository can have a different set of tags. Usually we want
to have the tags of a remote origin bare repository, but if we include also in our remotes the repo of a fellow
developper it is usually inapropriate to import all his tags.

To list the remote tags we use:

$ git ls-remote --tags somerepo
da4412bf6edd0d99c8149a205d78b6a0a6f8f091 refs/tags/torepair
4a7f903017e22d0effb4b233f99548fd3abdac11 refs/tags/torepair^{}
17b3e9b93faf30e59fe9910de2da208d018bba7a refs/tags/v1
4a7f903017e22d0effb4b233f99548fd3abdac11 refs/tags/v1^{}

Here the objects da4412b and 17b3e9b are the tags object, and 4a7f9030 is the commit pointed to by the two
tags. The notation <rev>^{} dereference the tag recursively until a non-tag object is found (see gitrevisions)

The lightweight tags are also shown by this command. But lightweight tags are not object, but only an alias for a
commit, so only the commit appear in the list.

To differenciate between lightweight and anotated tags you can git-cat-file -t <tag> it output tag for a
rag object, but commit for a lightweight tag.

Tags are fetched by default, unless you spectify --no-tags or have set the option remote.<name>.tagopt.
If you don’t change defaults you get the remote tags from the repository you fetch from; but they are not pushed
by default, that allow to have tags for local use in your repo.

You can also use:

$ git ls-remote --tags .

to get the local tags.

It is equivallent to:

$ git show-ref --tags --dereference

5.4.2 Fetching remote tags

Refs: git fetch(1), git show(1).

To fetch an individual remote tag:

$ git fetch somerepo tags/torepair

Then you can examine it with git tag, or with:

$ git show torepair
tag torepair
Tagger: Some Body <some.body@git.org>
Date: Sun Oct 19 11:45:13 2014 +0200

defective commit

20 Chapter 5. Sharing development

https://www.kernel.org/pub/software/scm/git/docs/git-ls-remote.html
https://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
https://www.kernel.org/pub/software/scm/git/docs/git-show-ref.html
https://www.kernel.org/pub/software/scm/git/docs/gitrevisions.html
https://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
https://www.kernel.org/pub/software/scm/git/docs/git-show.html

Git Memo Documentation, Release v1.1

commit 4a7f903017e22d0effb4b233f99548fd3abdac11
........

5.4.3 Pushing Tags to remote

Refs: git push(1).

To push an individual tag:

$ git push origin tags/v1
To git@github.com:me/testrepo.git

* [new tag] v1 -> v1

To push and include all tags:

$ git push --tags origin
Counting objects ...
...
[new tag] v1 -> v1

5.4.4 Changing the tag message

Modifying a shared tag is strongly discouraged by git-tag(1). But changing only the message while keeping an
unchanged date and commit reference is not too harmfull, but you have to know that your change will not be
automatically propagated to people that pull from you.

If you want to keep the original date use:

GIT_COMMITTER_DATE="2014-09-28 11:52" git tag -a -f \
-m "new description" tag v0.90 v0.90

5.4. Sharing Tags 21

https://www.kernel.org/pub/software/scm/git/docs/git-push.html
https://www.kernel.org/pub/software/scm/git/docs/git-tag.html

Git Memo Documentation, Release v1.1

22 Chapter 5. Sharing development

CHAPTER 6

Merge and Patch

6.1 Merging

• The two parents and their common base form the three stages of the merge:

– git show :1:file is the base we have the difference as git diff -1 or git diff
--base

– git show :2:file is ours we have the difference as git diff -2 or git diff --ours

– git show :3:file is theirs we have the difference as git diff -3 or git diff
--theirs

• In a failed merge an unmerged path file contains the combined unmerged file, and git diff will show a
combined diff which show differences with the two parents.

• git log --merge -p <path> will show diffs first for the HEAD version and then the
MERGE_HEAD version.

• git log ..otherbranch show the changes that will be merged in the current branch.

• git diff ...otherbranch is the diff from common ancestor (merge base) to graphical representa-
tion of the branches since they were merged last time.

• git mergetool launch a graphical mergetool which will work you through the merge.

6.1.1 Keeping one branch

If in your repo you have a conflict in a file, but want to adopt either ours or theirs version of the file, you don’t
need to manually edit the merge, you can checkout the chosen file:

$ git checkout --theirs <file>
$ git add <file>

Refs:

• git doc: git-merge.html

6.2 Submitting patches

Use git format-patch

$ git format-patch origin

Or with a commit range:

23

https://www.kernel.org/pub/software/scm/git/docs/git-merge.html
https://www.kernel.org/pub/software/scm/git/docs/git-format-patch.html

Git Memo Documentation, Release v1.1

$ git format-patch before..end

Produces in the current directory a sequence of patches, with names from each commit log.

You can apply them one by one or as a whole with:

$ git am patches.mbox

git-am will fail if the patch does not apply, you can instead use a 3 ways merge with:

$ git am -3 patches.mbox

You can fix conflicts, add the fixed files to the index and commit with:

$ git am --resolved

Refs:

• Applying / Merging Changes From One Git Repository To Another

• git – applying patches

• Pro Git: Maintaining a Project

• gitready: pick out individual commits compare git cherry-pick, git format-patch with
git am, or with git apply, and git merge.

6.3 Subtree-merge

Subtree merge is a very useful strategy to import a subtree from an other repository in a branch of our repository.

It is presented in a very concise way in Git howto: How to use the subtree merge strategy from which I extract the
following code that illustrates the merging of a project B in the subdirectory dir-B of our project.

$ git remote add -f Bproject /path/to/B
$ git merge -s ours --no-commit Bproject/master
$ git read-tree --prefix=dir-B/ -u Bproject/master
$ git commit -m "Merge B project as our subdirectory"

To follow the changes in the B project you use:

$ git pull -s subtree Bproject master

This strategy ia applied to a bigger example in GitHub Help: Working with subtree merge

A different technique, doing the merge after the read-tree is in Scott Chacon Pro Git: Subtree Merging and used
in this Git Subtree Workflow by David S Anderson and in Git Subtree Merge –The Quick Version by John Atten.

24 Chapter 6. Merge and Patch

http://factore.ca/on-the-floor/51-applying-merging-changes-from-one-git-repository-to-another
http://www.winksaville.com/blog/linux/git-applying-patches/
http://git-scm.com/book/en/Distributed-Git-Maintaining-a-Project
http://gitready.com/intermediate/2009/03/04/pick-out-individual-commits.html
https://www.kernel.org/pub/software/scm/git/docs/howto/using-merge-subtree.html
https://help.github.com/articles/working-with-subtree-merge
http://git-scm.com/book/en/Git-Tools-Subtree-Merging
https://github.com/ande3577/Git-Subtree-Workflow-Proposal/wiki/Subtree-Based-Workflow
http://www.codeproject.com/Articles/562950/GitplusSubtreeplusMergeplus-e2-80-93TheplusQuickpl

CHAPTER 7

Remote repositories

7.1 Cloning a remote repository

Ref: git-clone(1).

To clone a remote repository:

$ git clone git://github.com/cramz/git-memo.git

This create a local git-memo repository with a copy of the remote and check-out the current branch.

All the remotes branches are copied in the local repository, and the local branch are ref:tracking the remote ones
<remote_tracking>

If you add the --mirror option you create a bare repository and maps all remote refs in the local repository.

7.2 Adding a new remote

In my local git-memo repository:

git remote add myserver git://myserver.com/cramz/git-memo.git

add a new remote called myserver, this does not fetch or push, or checkout anything, but the next:

git fetch

Will fetch refs/remotes/myserver/master. This remote tracking branch is updated also by:

git remote update myserver

By default all the remote branches are tracked, but you can use -track <branch> (abbrev -t) to select only
some branches.

7.3 Fetching from Remote

To fetch all remotes:

$ git remote update

7.4 Remote configuration

To get remotes configuration we can edit .git/config or

25

https://www.kernel.org/pub/software/scm/git/docs/git-clone.html

Git Memo Documentation, Release v1.1

$ git config --get-regexp 'remote'
remote.etc.url /shared/home/marc/crypt/gits/etc_shared.git
remote.etc.fetch +refs/remotes/etc/*:refs/remotes/etc/*
remote.etc.tagopt --no-tags

or add options with gitdoc:git-config(1)<git-config.html> like:

$ git config --add remote.etc.tagopt --no-tags

7.5 creating a bare remote repository

You can either transfer a local bare repository or create an empty remote and push your branches.

1. copy local bare repo

$ git clone --bare ~/proj proj.git
$ scp proj.git myserver.com/var/git/proj.git
$ cd proj
$ git remote add origin ssh://myserver.com/var/git/proj.git

2. push a branch to an empty repository

We can also create it empty and push on the remote server

• on the remote server:

$ mkdir /var/git/proj.git && cd /var/git/proj.git
$ git --bare init

• on the client:

$ cd proj
$ git remote add origin ssh://myserver.com/var/git/proj.git
$ git push origin master

These operations can also be used to create an ordinary remote, you simply omit the --bare option.

7.6 push and delete remote branches

To push a new branch:

$ git push origin newfeature

To delete the branch on the remote:

$ git push origin :newfeature

It means push an empty branch to newfeature

7.7 References

• github: remotes

• git-remote(1)

• Setting up a new remote git repository

26 Chapter 7. Remote repositories

http://help.github.com/remotes
https://www.kernel.org/pub/software/scm/git/docs/git-remote.html
http://toolmantim.com/articles/setting_up_a_new_remote_git_repository

CHAPTER 8

Remote tracking branches

8.1 Tracking or not tracking

When you clone a remote repository all the remote branches are tracked and set as upstream branch for the new
checked out master, then git-pull(1) will appropriately merge from the starting point branch.

But it is not special to cloning, when a local branch is started off a remote-tracking branch, the remote branch is
tracked, with the default value of the global branch.autosetupmerge configuration flag.

If you want to override this global setting, you can use the option --track or --no-track.

To start a local branch from origin/mywork and track the origin, you issue:

git branch mywork origin/mywork

The new branch is created, but the HEAD is unchanged, to move HEAD to mywork you have to issue:

git checkout mywork

both command can be summarized in only one:

git checkout mywork

because when the branch is not existing, git will look for a matching name for a remote tracking branch.

Creating a branch from a remote tracking branch will set the following config options:

branch.mywork.remote=origin
branch.mywork.merge=refs/heads/mywork

These options will cause a git pull from origin to merge origin/mywork in mywork.

You can also use non matching names:

git branch devel origin/mywork
git checkout devel

is also done with:

git checkout -b devel --track origin/mywork

or simply, since branch from a remote are implicitely tracked:

git checkout -b devel origin/mywork

To start a local branch from origin/mywork but not track the origin, you issue:

git branch --no-track mywork origin/mywork

Note that for two local branches the default, is no tracking, so with:

27

https://www.kernel.org/pub/software/scm/git/docs/git-pull.html
https://www.kernel.org/pub/software/scm/git/docs/git-pull.html

Git Memo Documentation, Release v1.1

git branch develop master

or:

git checkout -b develop master

develop will not track master, unless you have used:

git branch --track develop master

or:

git checkout -b --track develop master

You can add a tracking of an upstream branch with:

git branch --set-upstream-to=origin/mywork mywork

This is specially usefull whan you first created mywork and then pushed it to origin as:

git push origin mywork

will not set origin/mywork as remote tracking branch for mywork, except if you explicitly issue:

git push --set-upstream origin mywork

or have set branch.autosetupmerge to always.

--set-upstream is abridged in -u.

8.2 Configuration of upstream branches

A branch is registered as upstream for another one by setting the two configuration variables
branch.<name>.remote and branch.<name>.merge.

The previous tracking branch will result in a configuration including:

[branch "mywork"]
remote = origin
merge = refs/heads/mywork

[remote "origin"]
url = <url>
fetch = +refs/heads/*:refs/remotes/origin/*

see the documentation of these two configuration options in git-config(1) to learn the configuration setting a local
branch as upstream for an other local branch.

28 Chapter 8. Remote tracking branches

https://www.kernel.org/pub/software/scm/git/docs/git-config.html

CHAPTER 9

Rebase

Reference: git-rebase(1)

The introduction is a condensed presentation of examples in git-rebase(1)

9.1 Rebase a topic

Suppose you have this situation:

A---B---C---D---E topic
/

D---E---A---F master

And you are on topic.

Then the command:

git rebase master

will apply on master all commit in topic that where not yet there, A will be skipped, and the result is:

B'--C'---D'---E' topic
/

D---E---A---F master

If you where not on topic but on master then you should have used instead:

git rebase master topic

That will do the successive operations:

git checkout topic
git rebase master

If you want only to use the commits starting with D you use:

git rebase --onto master C topic

to get:

D'---E' topic
/

D---E---A---F master

In all these example the rebase let you on topic.

29

https://www.kernel.org/pub/software/scm/git/docs/git-rebase.html
https://www.kernel.org/pub/software/scm/git/docs/git-rebase.html

Git Memo Documentation, Release v1.1

9.2 Interactive Rebase

Reference: git-rebase interactive mode

The --interactive switch is used to reorder or merge patches.

$ git rebase --interactive HEAD~8
pick f08daa2 modified: moin/farmconfig.py configured for moinmoin notebook and marcwiki
pick 802071d moin/notebook.py: added config for notebook
pick 65802dc moin/farmconfig.py added mail_smarthost
pick ee35e7d changed fstab and hosts
pick 9913667 /etc/fstab: fixed cifs and nfs shares
pick 54055e3 fstab: crypt cannot be fscked at boot, disabled fsck
pick 1470a45 fstab: changed mountpoint
pick afbb0b8 passwd group mailcap state of etc/kernoel/master

Rebase 15b369f..afbb0b8 onto 15b369f
#
Commands:
p, pick = use commit
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit,
and edit the sum of commit messages
If you remove a line here THAT COMMIT WILL BE LOST.

The option are:

delete: if you delete the commit line, it will be omitted from the rebase.

reorder: You can change the orders of the commit pick lines, they will be processed in the new order.

pick, or reword (shortcuts c and r): Include the commit silently, reword is similar to pick, but rebase will open
the commit message in an editor to allow you to fix it.

edit (shortcut e): For each edit the commit is applied, then the rebase pause to allow you to use git commit
--amend to change the commit message, or change the commit, or split it in many smaller commits.

squash and fixup (shortcuts s and f): squash merge the commit in the previous one, then the rebase pause to
let you edit the merged commits. If you instead use fixup, the second commit message is discarded and the
first one is used.

exec (shortcut x): exec command launches the command in a shell spawn from the root of the working tree. The
rebase will continue if the shell exit with a 0 status, and pause when the command fail, to let you fix teh
error and git rebase --continue or git rebase --abort.

reorder + squash + delete is a very powerful tool to clean a suite of patches.

For each edit, squash, failed exec or conflict rebase will stop until you edit or merge comments (in case of a
squash), or fix the conflict, then you just need to:

$ git rebase --continue

or:

$ git rebase --abort

9.2.1 Interactive rebase example

You have made a small error in the file SmtplibExample.py, and corrected it, You don’t want to make a new
commit for this tiny fix, but make it part of your previous commit.

You stash your current work

30 Chapter 9. Rebase

https://www.kernel.org/pub/software/scm/git/docs/git-rebase.html#_interactive_mode

Git Memo Documentation, Release v1.1

$ git stash --quiet

You look at the last commit for the file

$ git log -n 1 --pretty=oneline --abbrev-commit TD/Smtp/SmtplibExample.py
9c091e6 SmtplibExample.py: refactored to a function and a main.

You rebase from the previous commit:

$ git rebase --interactive 9c091e6^

You get the rebase list to edit:

pick 9c091e6 SmtplibExample.py: refactored to a function and a main.
pick 3d3f53e SmtplibExample2.py: 2to3, switched to argparse, minor fixes
pick 0c4f2cf Cours/SocketTcp.mdn: sockets lectures now in markdown
pick aa34250 index.mdn: added sockets
....

You change the first pick to edit valid it, then rebase pause at:

Stopped at 9c091e6... SmtplibExample.py: refactored to a function and a main.
You can amend the commit now, with
git commit --amend
Once you are satisfied with your changes, run
git rebase --continue

You checkout your amended file from the stash:

git checkout stash@{0} -- : TD/Smtp/SmtplibExample.py

You add it and amend the commit:

git add TD/Smtp/SmtplibExample.py
git commit --amend

You continue the rebase:

[detached HEAD eae8d29] SmtplibExample.py: refactored to a function and a main.
1 files changed, 22 insertions(+), 14 deletions(-)
Successfully rebased and updated refs/heads/master.

See also the Interactive rebase help at github

9.3 Checking your rebase and undoing it

The rebase can be a dangerous operation, sometime I lost a file by deleting a commit that add a file within an
interactive rebase. The head before a rebase is stored in ORIG_HEAD. All dangerous operations like rebase,
merge, pull, am modify this reference, so you can only use it to refer to the HEAD before the last dangerous
operation (but a simple commit don’t change it).

To see what you have changed in the repository since last dangerous operation:

git diff ORIG_HEAD HEAD

If it was an interactive rebase to clean your history you expect that you preserved the global state of your repository,
and to have an empty answer.

To see what commits are in HEAD and not in ORIG_HEAD:

git log ORIG_HEAD..HEAD

.. index:: gitk

9.3. Checking your rebase and undoing it 31

https://help.github.com/articles/interactive-rebase

Git Memo Documentation, Release v1.1

You can also use visualization tools like tig ou gitk:

gitk ORIG_HEAD HEAD
gitk ORIG_HEAD --not --all
tig ORIG_HEAD..HEAD

Or:

tig ORIG_HEAD...HEAD

and you may want to toggle revision graph visualization with g key.

After an interactive rebase you may want to check the commits since the begining of the rebase in both branches.
You will use:

git log --boundary --pretty=oneline --left-right ORIG_HEAD...HEAD

And if your rebase went wrong you restore the previous state with:

git reset --hard ORIG_HEAD

If you have lost your ORIG_HEAD after a rebase because you did an other operation that reset it, you can still
find the previous head which is now a dangling ref, unless you have garbage collected it.

You need to inspect your reflog and find the first commit before the rebase, in an interactive rebase the process
begin with a checkout of the commit on which you rebase, so the previous commit was the head before the rebase:

git reflog

....
95512de HEAD@{7}: rebase -i (pick): fixin typos
a1b9b5c HEAD@{8}: checkout: moving from master to a1b9b5c
c819a90 HEAD@{9}: commit: adding myfile.txt

In this example the previous head was the ninth older commit HEAD@{9} with an abbreviated commit c819a90.

9.4 dangling objects

The main section is the garbage collection section

After rebasing the old branch head is no longer in a branch and so it is dangling, it will be garbage collected when
it will be no more referenced.

As explained in the previous section it is used in the reflog, so it will be garbage collected after expiring the reflog.

Sometime, when we are certain our rebase is correct and we will never want to come back to previous state, we
want to clean these dangling objects. We use:

$ git prune

If we want to do the opposite, i.e. preventing this dangling commit to be lost some next garbage collection away
we can point a new branch at it:

$ git branch <recovery-branch> <dangling-commit-sha>

32 Chapter 9. Rebase

CHAPTER 10

Fixing errors

10.1 Amend a commit

To amend the last commit:

$ #correct the errors, then
$ git add file
$ git commit --amend
$ # fix the commit message if necessary

To amend a past commit on a clean working directory, you need to come back to the erroneous commit, fix it and
rebase: the latter commits on the the new fixed state.

An example adapted from user-manual: Rewriting a single commit

$ git log --stat -- badfile
$ git tag bad mywork~5
$ git checkout bad
$ # make changes here and update the index
$ git commit --amend
$ git rebase --onto HEAD bad mywork
$ git tag -d bad

The use of the tag is optional you can also do

$ BAD="7c2c66b71b"
$ git checkout $BAD
$ # make changes here and update the index
$ git commit --amend
$ git rebase --onto HEAD $BAD mywork

When you want to amend past commits with changes in the working tree, you cannot checkout the past commit
because the worktree is dirty.

You can use git stash to come back to the original worktree or work in a linked temporary working directory:

$ git-new-workdir <repository> <temporary_workdir>
$ cd <temporary_workdir>
find the commit to amend
$ git log --stat
$ BAD="<commit>"
$ git reset --hard $BAD
edit the wrong file may be copying from <repository>
$ git add <changed file>
$ git commit --amend
$ git rebase --onto HEAD $BAD mywork

You can also use git rebase --interactive as indicated in the rebase section. where you find an example
of fixing an old error with interactive rebase.

33

https://www.kernel.org/pub/software/scm/git/docs/user-manual.html#rewriting-one-commit
https://www.kernel.org/pub/software/scm/git/docs/git-stash.html

Git Memo Documentation, Release v1.1

10.2 Commit a fixup and squash.

The interactive rebase can be made a lot simpler for fixing errors with the git commit --fixup or git
commit --squash command.

On a clean worktree, or cleaned by a git stash, you change your erroneous file(s) and commit it (them) with

$ git commit --fixup=a0b1c2d3

Where you give the erroneous commit number, then you fixup the error with:

$ git rebase --interactive --autosquash a0b1c2d3^

The first command just use the original message prefixed by fixup!, the second one squash the original and next
commit discarding the message of the fixup commit.

You can also do a simple commit and begin your message by fixup! followed by an initial section of the original
commit message.

If instead of fixup you use squash the process is similar but the commit message for the folded commit is the
concatenation of the messages of the first commit and of those with the squash command.

10.3 splitting a commit

ref: git-rebase: splitting commits, git gui

To split a commit, you first rebase interactively to the commit or one of its ancestor

$ git rebase -i <commit>

Then you mark the commit with the action edit, and when it comes to editing:

$ git reset HEAD^

Then you can examine the status with:

$ git status

and add some files and stage the appropriate hunks. It can be easy to use:

$ git gui

to commit the appropriate hunks in individual commits

Then you can as usual do:

$ git rebase --continue.

34 Chapter 10. Fixing errors

https://www.kernel.org/pub/software/scm/git/docs/git-rebase.html#_splitting_commits
https://www.kernel.org/pub/software/scm/git/docs/git-gui.html

CHAPTER 11

Filter branch

This chapter describe some uses of git filter-branch before using it you should be aware that this com-
mand is destructive, and even the untouched commits end up with different object names so your new branch is
separate from the original one. If ever you repository was shared anyone downstream is forced to manually fix
their history, by rebasing all their topic branches over the new HEAD. More details in git-rebase(1) - recovering
from upstream rebase

When filtering branches the original refs, are stored in the namespace refs/original/, you can always re-
cover your work from there, but if you want to delete the previous state, after checking the new one is coherent,
you need to delete these refs otherwise the original object will not be garbage collected. If you want to make
experiments without the trouble to recovering from refs/original you should get a copy of your repository
with:

git clone path_of_origin path_of_copy
cd path_of_copy
git branch --unset-upstream
git reset --hard

11.1 References

• The main reference is git documentation: filter-branch

• It is introduced in S. Chacon Pro-Git Rewriting History chapter and in Maintenance and Data Recovery -
removing objects.

11.2 Removing an object or a directory

This can be done with --tree-filter or -index-filter as the second one does not check out the tree, it
is a lot quicker.

When filtering branches you may remove all the changes introduced by some commit and ends up with empty
commit. Some of these emty commits are useful because they have many parents, i.e. they record a merge.

To avoid such situation you can use --prune-empty (but it is incompatible with --commit-filter.

Your command will be:

git filter-branch --prune-empty --index-filter \
'git rm --cached --ignore-unmatch badfile' HEAD

Here the git rm command has the option --cached since we are working on the index and
--ignore-unmatch because the file can be absent in the index for some commits, like those anterior to the
first occurrence of the file.

If you rather want to delete a full directory content, you will add the -r option to make the remove recursive.:

35

https://www.kernel.org/pub/software/scm/git/docs/git-rebase.html#_recovering_from_upstream_rebase
https://www.kernel.org/pub/software/scm/git/docs/git-rebase.html#_recovering_from_upstream_rebase
https://www.kernel.org/pub/software/scm/git/docs/git-filter-branch.html
http://git-scm.com/book/ch6-4.html#The-Nuclear-Option:-filter-branch
http://git-scm.com/book/ch9-7.html#Removing-Objects
http://git-scm.com/book/ch9-7.html#Removing-Objects

Git Memo Documentation, Release v1.1

git filter-branch --prune-empty --index-filter \
'git rm -r --cached --ignore-unmatch baddir' HEAD

If your object or directory is in many branch, cleaning HEAD will not get read of it, you should in this case clean
all refs and filter all tags with:

git filter-branch --prune-empty --index-filter \
'git rm --cached --ignore-unmatch badfile' \
-tag-name-filter cat -- --all

If your unwanted blob has changed name along the history, it will still be kept with the olders name, but if you
take care to find them with:

git log --name-only --follow --all -- badfile

After that your history no longer contains a reference to badfile but all the refs/original/branch and
the reflog still do. You have to options, if you have no backup you should do:

git clone file:///path/to/cleanrepo

It is quick since done with hardlinks and the clone will not have the removed objects.

If you have yet done a backup as proposed above you can clean before repacking. After a filter-branch git keep
original refs, that prevent the previously referenced object to become loose and be cleaned by garbage collection.
If you want to get rid of them you delete these refs, on the other side if you want to keep them longer, you better
rename them to prevent them to be overrode by some next operation (even if you can also control the original
namespace with --original option).

git for-each-ref --format='%(refname)' refs/original | \
xargs -n 1 git update-ref -d

Then your logs:

git reflog expire --expire=now --all

And you garbage collect all unreferenced objects with:

git gc --prune=now

More details in the section garbage collection.

Note: Many collaborative hosted repositories like GitHub, BitBucket and others, will not let you push back your
deletes, so if you really want to be sure nobody can get your old file, you will have to delete these repos an push
new ones.

36 Chapter 11. Filter branch

CHAPTER 12

Git Subtree

Reference git-subtree(1) in contrib directory

Git subtree is an alternative from submodules, but while submodules are mainly aimed at putting in a directory
of your repository an other project maintained somewhere else, and keeping the foreign repo in sync; git-subtree
allow to keep separate a subproject and allow bidirectional collaboration between your main repo and the subpro-
jects.

12.1 Subtree split

12.1.1 Extracting the branch

First you split a new branch from your history containing only the subtree rooted at <prefix>. The new history
includes only the commits (including merges) that affected <prefix>. The commit in which where previously
rooted in the subdirectory <prefix> are now at the root of the project.

git subtree split -P <prefix> -b <name-of-new-branch>

12.1.2 Importing the branch in another repository

This is the simpler alternative, in the repository you pull your new branch:

git pull </path/to/old-repo> <name-of-new-branch>

12.1.3 Using the branch as master branch of a new repo

Then you create a new repo <new-repo> for the splitted branch:

cd <new-repo>
git init

You fetch the original branch and it is referred as a detached FETCH_HEAD.

git fetch </path/to/old-repo> <name-of-new-branch>

If you want to get it as master branch:

git checkout -b master FETCH_HEAD

37

http://git.kernel.org/cgit/git/git.git/plain/contrib/subtree/git-subtree.txt

Git Memo Documentation, Release v1.1

12.1.4 Rebasing the branch in the new repo.

I show the example of rebasing on the top of the master, you can easily adapt it to an other rebase.

In this example I have an old repo unix-memo and I want to extract some part split as git-extract and include it on
the top of the repo git-memo.

In git-memo I fetch the split branch:

$ git fetch ../unix-memo/ git-extract
....
From ../unix-memo

* branch git-extract -> FETCH_HEAD

I can examine the situation:

$ git log FETCH_HEAD
$ gitk master FETCH_HEAD

I want to rebase, but as some of my commits refer to the old repo unix-memo, I also want to amend them.

$ git rebase --interactive --onto HEAD --root FETCH_HEAD

I then mark as edit the commit I want to amend, then when the rebase is complete:

$ git rebase --continue
Successfully rebased and updated detached HEAD.

Now this HEAD is detached I can show it with:

$ git rev-parse HEAD
bb7d9a2a871e39e7f2f262f805221a41a4354f98

But it is easier to work on it with a temporary tag, then fast forward above master.

$ git tag detached
$ git checkout master
Previous HEAD position was bb7d9a2...
Switched to branch 'master'
$ git merge --ff-only detached
Updating 755786a..bb7d9a2
Fast-forward
....

$ git tag -d detached
Deleted tag 'detached' (was bb7d9a2)

12.1.5 Getting rid of the split branch.

You probably don’t want anymore the split branch in your original directory, if you still want to keep the history
(because it has influenced the past history of other files) you just remove in the original repo.:

git rm -rf <prefix>
git commit -m'moved new development of <name-of-new-branch>

in a new repository'

If you truly want to extract from the root of history of the original repository the split branch, and you can afford
the cost of recovering from upstream rebase

38 Chapter 12. Git Subtree

https://www.kernel.org/pub/software/scm/git/docs/git-rebase.html#_recovering_from_upstream_rebase

Git Memo Documentation, Release v1.1

12.2 adding a subtree to a project

We have a main project, with some commits in the master branch, and a remote project that we add to our repo
with:

git remote add -f git-memo https://github.com/marczz/git-memo.git

Now our repository look like this.

g: masterfedc

v: git-memo/masterutsr

We want to add the remote in a subtree of our main repo rooted at ./gitmemo. We have to choose how we will
mix the commits of the two branches, either they can be intermixed, or we can squash all the commits in one,
before adding them. As the first option would mixe in the commit timeline completely foreign works, wechoose
to squash with:

git subtree add --prefix gitmemo --squash git-memo master

And we obtain:

Later you can pull change from the remote repository with:

git subtree pull --prefix=git --squash git-memo

If you have one more commit on the remote, your commit tree is now like this:

12.2. adding a subtree to a project 39

Git Memo Documentation, Release v1.1

40 Chapter 12. Git Subtree

CHAPTER 13

Repository Backup

13.1 file-system copy

A git repository can be safely copied to an other directory, or put in an archive file. This is a very basic way of
keeping a backup of your repo.

cp -r myrepo backup_copy
tar -czf backup_copy.tgz myrepo

But such a frozen copy can not be updated.

13.2 git bundle

Git bundle let you pack the references of your repository as a single file, but unlike the tar command above the
bundle is a recognized git source. You can fetch, pull clone from it.

$ git bundle create /path/to/mybundle master branch2 branch3

or to get all refs

$ git bundle create /path/to/mybundle --all

You can then check what is in your bundle:

$ git bundle list-heads /path/to/mybundle

After moving the bundle on any location you can get a new repository by:

$ git clone -b master /path/to/mybundle newrepo

If you want to continue your development in the first repository you can do as follow:

$ git tag lastsent master
#.... do some commits
$ git bundle create /path/to/newcommitbundle lastsent..master

Then send it by email or any dumb transport, and in the repository on the other side:

$ git bundle verify /path/to/newcommitbundle
$ git pull /path/to/newcommitbundle master

More details in git-bundle(1) Manual Page and Git’s Little Bundle of Joy

A discussion is in Stackoverflow: Backup a Local Git Repository

41

https://www.kernel.org/pub/software/scm/git/docs/git-bundle.html
http://git-scm.com/2010/03/10/bundles.html
http://stackoverflow.com/questions/2129214/backup-a-local-git-repository

Git Memo Documentation, Release v1.1

13.3 gcrypt remote

Joey Hess gcrypt remote offer a great solution to backup to an unsecure location.

You should first install git-remote-gcrypt from his repository https://github.com/joeyh/git-remote-
gcrypt.git

Then create the encrypted remote by pushing to it:

git remote add cryptremote gcrypt::rsync://example.com:repo
git push cryptremote master

More information in the GitHub repository

and in Joey Hess: fully encrypted git repositories with gcrypt and git-annex special remote: gcrypt

13.4 git mirror

It is more interesting to use git do do backups.

You can mirror your repository to a bare repository with:

git clone –mirror myrepo repo_backup.git

repo_backup.git has the same branches than myrepo an an “origin” remote pointing to myrepo. You can update
the copy from repo_backup.git by pulling origin.

13.5 mirror remote

In the previous solution the backup repository track its origin, but the original repository knows nothing about its
backup. It ca be solved by using instead a mirror remote.

You first create an empty bare repository:

git init --bare /path/to/reposave.git

Then in myrepo:

git remote add --mirror=push backup file:///path/to/reposave.git
git push backup

The backup repository will be updated by repeating the last command.

If you want to be able to recover in the backup from a bad push, you may want the backup to keep a reflog. As
reflog are disabled by default in bare repository you shoul set it in reposave.git:

git config core.logAllRefUpdates true

13.6 live mirror

Sometime you may want a mirror to experiment a dangerous operation. In this case the mirror is not a backup we
can better think as the origin as the backup. The clone --mirror is not the solution since it creates a bare
repository. And a simple clone is not either even if it as all reference, because it has only one branch, the other
branch are just registered as remotes/origin/name. *

As you what to make experiments in this repository you probably don’t even want to track the origin, if you
succeed you will replace the original one, if you fail you will remove the repository.

You first do a simple clone:

42 Chapter 13. Repository Backup

https://github.com/joeyh/git-remote-gcrypt.git
https://github.com/joeyh/git-remote-gcrypt.git
https://github.com/joeyh/git-remote-gcrypt/
http://git-annex.branchable.com/tips/fully_encrypted_git_repositories_with_gcrypt/
http://git-annex.branchable.com/special_remotes/gcrypt/

Git Memo Documentation, Release v1.1

git clone myrepo /path/to/experimental

Then create all missing branches:

cd /path/to/experimental
git branch --no-track branch2 remotes/origin/branch2
git branch --no-track branch3 remotes/origin/branch3

Delete the refs to origin:

git branch -d remotes/origin/master remotes/origin/branch2 \
remotes/origin/branch3 remotes/origin/HEAD

git remote remove origin

And play with experimental

13.6. live mirror 43

Git Memo Documentation, Release v1.1

44 Chapter 13. Repository Backup

CHAPTER 14

Git for site deployment

On the remote:

$ mkdir website.git && cd website.git
$ git init --bare
Initialized empty Git repository in /home/user/website.git/

Define a post-receive hook:

$ cat > hooks/post-receive
#!/bin/sh
GIT_WORK_TREE=/var/www/www.example.org git checkout --force
$ chmod +x hooks/post-receive

On the main site define a remote:

$ git remote add web ssh://server.example.org/home/user/website.git
$ git config remote.web.push "+master:refs/heads/master"
$ git push web

Reference: Using Git to manage a web site by Abhijit Menon-Sen

Ian Bicking does not like this strategy and prefer to:

copy the working directory to a new location (minus .git/), commit that, and push the result to your
deployment remote. You can send modified and untracked files, and you can run a build script before
committing and push the result of the build script, all without sullying your “real” source control.

—Ian Bicking in this blog

He writed git-sync automating this task

45

http://toroid.org/ams/git-website-howto
http://blog.ianbicking.org/2012/02/14/git-as-sync-not-source-control-as-deployment/
https://github.com/ianb/git-sync

Git Memo Documentation, Release v1.1

46 Chapter 14. Git for site deployment

CHAPTER 15

Git keyword expansion

We can archive the files using keywords defined in gitattributes by using the command git archive.

We archive files by:

git archive --format=tgz --worktree-attributes HEAD file1 file2 ...

The attributes are taken from the tree, and with the option --worktree-attributes in the checked out
worktree.

Git also look at the repository local file $GIT_DIR/info/attributes

If the attribute export-subst is set for a file then git will expand several placeholders with the syntax
$Format:PLACEHOLDERS$.

The place holders are defined in git log pretty formats

I use in my C source files:

/* @date $Format: %ci$

* @version Commit: $Format: %h$

* Tree: $Format: %t$

*/

To exports the committer date %ci, the abbreviated tree hash <%t, and the abbreviated commit hash %h

47

https://www.kernel.org/pub/software/scm/git/docs/gitattributes.html
https://www.kernel.org/pub/software/scm/git/docs/git-archive.html
https://www.kernel.org/pub/software/scm/git/docs/gitattributes.html
https://www.kernel.org/pub/software/scm/git/docs/git-log.html#_pretty_formats

Git Memo Documentation, Release v1.1

48 Chapter 15. Git keyword expansion

CHAPTER 16

Git Hooks

Hooks are little scripts you can place in $GIT_DIR/hooks directory

refs: githooks, Pro Git: Git Hooks

16.1 prepare_commit_msg

Ref: gitdoc: prepare_commit_msg

This hook is invoked by git commit after preparing the default message, and before the editor is started. It takes
one to three parameters.

• The name of the file that contains the prepared message.

• The second is message if a -m or -F option was given, template with a -t option or configuration
commit.template, commit if a -c, -C or --amend option was given, merge for a merge commit or
with a .git/MERGE_MSG file; and squash if a .git/SQUASH_MSG file exists.

• The third is only for a commit and is the commit SHA-1.

A non-zero exit means a failure of the hook and aborts the commit.

#!/bin/sh
num_messages=5
format="# %h %s [%an]"
log="$(git log --pretty="${format}" -${num_messages})"
header="#
last ${num_messages} messages
----------------------"
template() {

echo "${header}"
echo "${log}"

}
case "$2" in
merge|template|squash) ;;
""|commit) template >> $1;;

*) echo "error in prepare-commit-msg hook" >&2
exit 1
;;

esac

49

https://www.kernel.org/pub/software/scm/git/docs/githooks.html
http://git-scm.com/book/en/Customizing-Git-Git-Hooks
https://www.kernel.org/pub/software/scm/git/docs/githooks.html#_prepare_commit_msg

Git Memo Documentation, Release v1.1

50 Chapter 16. Git Hooks

CHAPTER 17

Garbage Collecting

Refs: Git user manual: dangling-objects

git-gc(1), git-fsck(1) git-prune(1), git-pack-refs(1), git-repack(1), git-prune-packed(1), git-reflog(1).

Maintenance and Data Recovery has some examples of repository cleaning.

In a repository, some object become unreachable by any refs, during some operations, like deleting a branch,
deleting an unreachable tag, rebasing, expiring entries in the reflog ... These unreachable objects can be reported
by git-fsck.

17.1 git fsck

If you use the default options:

$ git fsck
dangling tree 4df800e6a1c6ba57821e4e20680566492bbb5e81

report only the dangling objects.

You can add the object unreachable by any reference with:

$ git fsck --unreachable
unreachable tree 6e946512b1b4841dff713bb65e78a8ddbf0171d3
unreachable tree 4df800e6a1c6ba57821e4e20680566492bbb5e81
unreachable tree 125a284a7a428d91e199a3c9d7f7a834613d1d13

Both commands above use also the reflog. If you want to look at the object which are dangling except from the
reflog or object unreachable except the reflog you do:

$ git fsck --dangling --no-reflogs
dangling commit 2b21a6a8e775a43eafbe1b9e8b1fb5debe77b2ee
dangling commit c3e1ecc9f0e7a67c9a05db92d6c6548a1c965830
dangling commit 1702677e8ca31c0536745b36280397457bf20002
dangling commit b746f71fa14416e22920f38b8439bbb1972481a3
dangling commit 408c05cafd2bfdb861676dd54a0ed083f7fdfcaa
dangling commit 6c92fe1d7f47e397c3ccd2713ddd9c3b8239d1c8
...
$ git fsck --unreachable --no-reflogs
unreachable commit 2b21a6a8e775a43eafbe1b9e8b1fb5debe77b2ee
unreachable tree 39610cc0e1126a2bb73cb3345b9228f1ccb374d9
unreachable commit c3e1ecc9f0e7a67c9a05db92d6c6548a1c965830
unreachable tree e981cec3e50cf10b59b544d86be681a7030cb0a6
...

51

https://www.kernel.org/pub/software/scm/git/docs/user-manual.html#dangling-objects
https://www.kernel.org/pub/software/scm/git/docs/git-gc.html
https://www.kernel.org/pub/software/scm/git/docs/git-fsck.html
https://www.kernel.org/pub/software/scm/git/docs/git-prune.html
https://www.kernel.org/pub/software/scm/git/docs/git-pack-refs.htm
https://www.kernel.org/pub/software/scm/git/docs/git-repack.html
https://www.kernel.org/pub/software/scm/git/docs/git-prune-packed.html
https://www.kernel.org/pub/software/scm/git/docs/git-reflog.html
http://git-scm.com/book/en/Git-Internals-Maintenance-and-Data-Recovery
https://www.kernel.org/pub/software/scm/git/docs/git-reflog.html
https://www.kernel.org/pub/software/scm/git/docs/git-fsck.html

Git Memo Documentation, Release v1.1

17.2 Automated garbage collection with gc --auto.

Git stores the objects either one by one as loose objects, or with a very efficient method in packs. But if the size
of packs is a lot lesser than the cumulated loose objects, the access time in a pack is longer. So git does not pack
the objects after each operations, but only check the state of the repository with gc --auto.

gc --auto look if the number of loose objects exceeds gc.auto (default 6700) and then run git repack
-d -l which in turn run git-prune-packed. setting gc.auto to 0 disables repacking. When the numbers of
packs is greater than gc.autopacklimit (default 50, 0 disable it) git gc --auto consolidates them into
one larger pack.

When doing a git gc --aggressive the efficiency of git-repack depends of gc.aggressiveWindow (default
250).

git gc --auto also pack refs when gc.packrefs has its default value of true, the refs are then placed in
a single file $GIT_DIR/packed-refs, each modification of a ref again create a new ref in GIT_DIR/refs
hierarchy that override the corresponding packed ref.

The gc command also run by default with the --prune option, which clean unreachable loose objects that
are older than gc.pruneExpire (default 14 days). If you want to use an other date you have to add
--prune=<date>, --prune=all prunes loose objects regardless of their age. Note that it may not be what
you want on a shared repository, where an other operation could be run concurrently.

An unreachable commit is never pruned as long it is in a reflog(1), but gc --auto run git reflog expire
to prune reflog entries that are older than gc.reflogExpire (default 90 days) or unreachable entries older than
gc.reflogExpireUnreachable (default 30 days). These values can be also configured for each individual
ref see git-config(1).

Records of conflicted merge are also kept gc.rerereresolved (default 60 days) or
gc.rerereunresolved (default 15 days) for unresolved merges.

17.3 Forced garbage collection.

You can have an idea of the state of your repository by issuing git count-objects -vH

After some operation that creates a lot of unreachables objects, like rebasing or filtering branches you may want
to run git gc without waiting the three months of expirability. This is also a necessity if you have to delete an
object, now unreachable, but that contains some sensible data, or a very big object that was added and then deleted
from the history (see the filter branch section).

As the operation is recorded in the reflog, you expire it with:

git reflog expire --expire=now --all

And you garbage collect all unreferenced objects with:

git gc --aggressive --prune=now

52 Chapter 17. Garbage Collecting

https://www.kernel.org/pub/software/scm/git/docs/git-prune-packed.html
https://www.kernel.org/pub/software/scm/git/docs/git-repack.html
https://www.kernel.org/pub/software/scm/git/docs/git-reflog.html
https://www.kernel.org/pub/software/scm/git/docs/git-config.html

CHAPTER 18

Miscellaneous operations

18.1 switching branches without doing a checkout

Refs: git symbolic-ref, git reset,

$ git symbolic-ref HEAD refs/heads/otherbranch

For every work on the branch you must get a fresh index with:

$ git reset

The script git-new-workdir in the contrib directory creates a symlink to a repository, optionally with a new
checked out branch:

$ git-new-workdir <repository> <newworkdir> [<branch>]

18.2 Transparent encryption

There are two different use of encryption, the first is when your un-encrypted repository tree is convenient on your
own server but you don’t want to push un-encrypted data on remote. You have to alternative, either you encrypt the
sensible files in the repository, and then you can push freely the repository content, or you don’t push to unsecure
remote but with a backend like the gcrypt encrypted remote or even you store encrypted bundles.

If your data is truly sensible, you should not let it un-encrypted even on your preferred server, you can then
either encrypt it in the repository tree, and nothing else is necessary, or have the repository and working tree in
an encrypted filesystem, and apply one of the previous solution to backup your repo, or to encrypt the data in
the repository in the unencrypted filesystem, and decrypt it on-the-fly in the working-tree which is itself in an
encrypted filesystem.

You have to be aware that encrypted files can lead to a very inefficient storing because close versions of a file when
encrypted do not have a delta allowing packing. See git-pack-objects(1) Manual Page for details

I show an elementary example of transparent encryption.

In a new repository I put a big text, and look at the repo size:

$ git add DavidCopperfield.txt
$ git commit -m'added DavidCopperfield.txt'
$ du -sk DavidCopperfield.txt
1968 DavidCopperfield.txt
$ du -sk .git
1052 .git

Now I change a sentence in the text, and check in my work:

53

https://www.kernel.org/pub/software/scm/git/docs/git-symbolic-ref.html
https://www.kernel.org/pub/software/scm/git/docs/git-reset.html
https://www.kernel.org/pub/software/scm/git/docs/git-pack-objects.html

Git Memo Documentation, Release v1.1

$ git diff --numstat
1 0 DavidCopperfield.txt

Now I look at the size of my repo:

$ du -sk DavidCopperfield.txt
1968 DavidCopperfield.txt
$ du -sk .git
1960 .git

My repo is nearly twice as big as previously, not very nice. But I remember that git use loose object until told to
pack, so I do:

$ git gc
Counting objects: 8, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (5/5), done.
Writing objects: 100% (8/8), done.
Total 8 (delta 1), reused 0 (delta 0)
$ du -sk .git
892 .git

A lot, better.

Now I do the same experiment with an encrypted file.

I first create some script ~/gitencrypt/passphrase:

pass="my secret passphrase"

~/gitencrypt/clean_filter:

#!/bin/sh

salt=82acb021e056fc9e8f75a5fe # 24 or less hex characters
. ${0%/*}/passphrase
openssl enc -base64 -aes-256-cbc -S $salt -k "$pass"

~/gitencrypt/smudge_filter:

#!/bin/sh

. ${0%/*}/passphrase
openssl enc -d -base64 -aes-256-cbc -k "$salt"

~/gitencrypt/diff_filter:

!/bin/sh

. ${0%/*}/passphrase
openssl enc -d -base64 -aes-256-ecb -k "$pass" -in "$1"

and in my .git/config I add:

[filter "openssl"]
smudge = /tmp/gitencrypt/smudge_filter
clean = /tmp/gitencrypt/clean_filter

[diff "openssl"]
textconv = /tmp/gitencrypt/diff_filter

[merge]
renormalize = true

Then I add the same file I did previously:

54 Chapter 18. Miscellaneous operations

Git Memo Documentation, Release v1.1

$ git add DavidCopperfield.txt
$ du -sk .git
1036 .git

I do the same sentence change than previously, then:

$ git diff --numstats
1 0 DavidCopperfield.txt
$ git add DavidCopperfield.txt
$ du -sk .git
1928 .git
$ git gc --prune
Counting objects: 2, done.
Writing objects: 100% (2/2), done.
Total 2 (delta 0), reused 0 (delta 0)
$ du -sk .git
1928 .git

Git cannot pack gpg encoded files because even if only a sentence differ every block of encrypted file is completely
different.

The approach used here is almost identical to the one proposed by Woody Gilk in Transparent Git Encryption
accompanied with a set of scripts git-encrypt

A similar, more polished approach is Andrew Ayer git-crypt.

The inability to pack an encrypted directory was signaled by Junio Hamano in the article: Re: Transparently
encrypt repository contents with GPG or look at the article thread.

18.3 Using git-wip

Refs: git-wip repository and README

git-wip is a script that will manage Work In Progress branches.

To show the log of the commits in wip/master and not in master:

$ git log master..wip/master

You can add -p to see what is added:

$ git log -p master..wip/master

Here as usual for a git revision range master..wip/master means all the commit in wip/master which
are not in master.

To see the what is in wip and not committed to master you do:

$ git diff master...wip/master

This shows the diff between the common ancestor of master and wip/master and master.

$ git diff master..wip/master

is the same than:

$ git diff master wip/master

And represent the difference beetween master and wip/master, this is probably not what you want because if you
have committed something since the last wip, master is not an ancestor of wip/master, so this diff will also undo
whatever is committed since the common ancestor.

18.3. Using git-wip 55

https://gist.github.com/shadowhand/873637
https://github.com/shadowhand/git-encrypt
https://github.com/AGWA/git-crypt
http://article.gmane.org/gmane.comp.version-control.git/113221
http://article.gmane.org/gmane.comp.version-control.git/113221
http://thread.gmane.org/gmane.comp.version-control.git/113124/focus=113221
https://github.com/bartman/git-wip

Git Memo Documentation, Release v1.1

56 Chapter 18. Miscellaneous operations

CHAPTER 19

Git annex

19.1 Usual operations

More on this topic in Git annex walkthrough.

19.1.1 Adding an annex to git repository.

$ git annex init

19.1.2 Adding one file.

$ git annex add myfile
add myfile ok
(recording state in git...)
$ git commit -m"myfile added to annex"

When you add a file to the annex the content itself is stored in git-annex’s backend, .git/annex/ and the
symlink is added to git.

When you commit it, a symlink to the content is committed to git.

19.1.3 Adding files in directory.

$ git annex add .
add foo.txt
add bigdoc.pdf
$ git commit -a -m added

all the unregistered files are added to the annex; but if annex.largefiles is configured only matched files
are added to the annex other files are added directly to the git repository.

19.1.4 Removing the symlink from git.

$ git rm myfile

The annexed content is still in the annex, but git mark the file as removed, you can checkout the previous link or
revert, and you file is back again.

57

https://git-annex.branchable.com/walkthrough/

Git Memo Documentation, Release v1.1

19.1.5 Droping the file content.

$ git annex drop myfile

Thi will remove myfile from your annex, but only if some exemplar exist in a remote annex. The symlink registered
in git is unchanged, but will become broken, and is repaired if you do again a git annex get.

You can force to drop a file without checking a backup with:

$ git annex drop --force myfile

By default annex try to keep one exemplar of each file in some repository, but you can tweak the number with
numcopies.

19.1.6 Modifying files.

In order to modify a file you have to replace the symlink by a copy of the file, it is the unlock operation.

$ git annex unlock myfile

Then you can modify your file, and register the modification with git.

$ git commit myfile -m"new version of myfile"

and git annex will record the new file, and git commit the change, the file stay in unlocked mode until you run

$ git annex lock myfile

If before comitting you add your new version of the file to the annex.

$ git annex add myfile

annex lock it again by replacing it by a symlink.

Refs: git-annex: unlocked files <tips/unlocked_files/, git-annex: git-annex-unlock, git-annex: git-annex-lock,
git-annex: git-annex-add.

19.1.7 Defining which files are stored in annex.

If you put in your .gitattributes file:

* annex.largefiles=((largerthan=100kb)and(not(mimetype=text/*)))or(mimetype=application/*)

or set your git config with

$ git config annex.largefiles '(largerthan=100kb and not mimetype=text/*) or mimetype=application/*'

Then when adding files

$ git annex add .
add foo.txt (non-large file; adding content to git repository) ok
add bigdoc.pdf
$ git commit -a -m added

Refs: largefiles

19.1.8 Which annexed files are no longer used.

58 Chapter 19. Git annex

https://git-annex.branchable.com/unlocked files \T1\textless {}tips/unlocked_files/
https://git-annex.branchable.com/git-annex-unlock
https://git-annex.branchable.com/git-annex-lock
https://git-annex.branchable.com/git-annex-add
https://git-annex.branchable.com/tips/largefiles

Git Memo Documentation, Release v1.1

$ git annex unused
unused . (checking for unused data...) (checking master...)
Some annexed data is no longer used by any files:
NUMBER KEY
1 SHA256E-s27--8c20c91f834dabcf6b9ba5de670572136ce8382b2ebf897fa86c8d2d71f081ef.txt
2 SHA256E-s5--819f04e5706f509de5a6b833d3f561369156820b4240c7c26577b223e59aae97.txt
3 SHA256E-s18--12a4f82f1286e21ee87c63a14efb3e96d25ff26f82128377b87c8c34fc071499.txt

As the key is part of the commit message you can inspect which symlink in some commit had this key for target.

$ git log --name-status -S'SHA256E-s5--819f04e5706f509de5a6b833d3f561369156820b4240c7c26577b223e59aae97.txt'

If you want to drop extra copies of unused files you can do

$ git annex dropunused 1

to drop the file n° 1 or

$ git annex dropunused

to drop all unsused files, but the drop is effective only if git-annex can find in some remote with an other copy of
the file. If you want to bypass checks and deleting without condition the file

$ git annex dropunused --force

of course you can no longer checkout some commit which used the file.

19.1.9 Adding a remote.

Any git remote can be also used as an annex remote. Either ordinary remotes or bare remotes. You create the
remote repository with either ref:cloning your repo <remote_clone> or ref:creating a bare remote from scratch
<creating_bare_remote>.

If you want to use the remote as an annex remote you declare it on the server with:

$ git annex init origin

where origin is the description you have choosen for the remote annex, usually you would choose either the same
name than the remote name, or a derived explicit name. You can change description with git-annex describe

In any case you have added the remote to your local repository with:

$ git remote add origin myserver.org:bare-annex.git

It is also a good practive to add the local repo on the server

$ git remote add laptop mylaptop.org:myrepo

then you do an initial push from local repo to the origin remote

$ git push origin master git-annex

Then your remote appear on both repo

git annex info
$ git annex info
repository mode: indirect
trusted repositories: 0
semitrusted repositories: 4

00000000-0000-0000-0000-000000000001 -- web
00000000-0000-0000-0000-000000000002 -- bittorrent
143a9c6a-99cd-4e60-8d66-277990d99d94 -- laptop [here]
39e9aa8a-d369-4b2e-aa37-d6c4d3282ad5 -- [origin]

19.1. Usual operations 59

https://git-annex.branchable.com/git-annex-describe/

Git Memo Documentation, Release v1.1

The content of the annex is not yet on origin you can synchronize it with git-annex get --all you can
also use git-annex sync --content.

It is also possible to work on the local repo an do:

$ git annex copy --all --to=origin

If you do want to organize where is stored your annex files you can get a view of the present situation on all
accessible servers by:

$ git annex whereis
whereis SHA256E-s1561353--2052371eabac0cb7eda1a8056d003060a7043274e4593e1091e5acacb1c96096.pdf (2 copies)

143a9c6a-99cd-4e60-8d66-277990d99d94 -- [laptop]
39e9aa8a-d369-4b2e-aa37-d6c4d3282ad5 -- origin [here]

ok
whereis SHA256E-s9407097--ee52bc1e983d0b1b1cb7a23e5cc280b94f798bb764ae2bea7c5f5460949fa56e.pdf (2 copies)

143a9c6a-99cd-4e60-8d66-277990d99d94 -- [laptop]
39e9aa8a-d369-4b2e-aa37-d6c4d3282ad5 -- origin [here]

You find in git-annex documentation how to handle special remotes such S3, rsync, webdav, and more than thirty
remotes in the list of special remotes.

Refs: centralized repo on your own server, using ssh remotes, git-annex: bare_repositories, git-annex: git-annex-
sync, git-annex: git-annex-get, git-annex: git-annex-copy, git-annex: git-annex-whereis.

60 Chapter 19. Git annex

https://git-annex.branchable.com/walkthrough/#index12h2
https://git-annex.branchable.com/special_remotes
https://git-annex.branchable.com/tips/centralized_git_repository_tutorial/on_your_own_server/
https://git-annex.branchable.com/walkthrough/#index11h2
https://git-annex.branchable.com/bare_repositories
https://git-annex.branchable.com/git-annex-sync
https://git-annex.branchable.com/git-annex-sync
https://git-annex.branchable.com/git-annex-get
https://git-annex.branchable.com/git-annex-copy
https://git-annex.branchable.com/git-annex-whereis

CHAPTER 20

Indices and tables

• genindex

• search

61

Git Memo Documentation, Release v1.1

62 Chapter 20. Indices and tables

Index

A
amend, 33
archive, 47

B
branch, 26

filter, 34
upstream, 26

branches, 5

C
commit

split, 34

D
dangling objects, 32
describe

git, 16
diff, 31

F
file

sha, 17
filter

branch, 34
fixup, 33

G
git

am, 24
archive, 47
branch, 5, 26
clone, 25
commit –amend, 33
commit –fixup, 33
commit –squash, 33
describe, 6, 16
diff, 7, 8
difftool, 8
filter-branch, 34
format-patch, 8, 23
grep, 9
hash-object, 17
log, 7, 9, 23

log -g, 8
ls-files, 17
ls-tree, 17
merge, 23
name-ref, 15
name-rev, 16
rebase –autosquash, 33
reflog, 8
remote, 5, 24
rev-parse, 15, 17
show, 7, 9
show-branch -g, 8
status, 5
symbolic-ref, 15
tag, 6

gitk, 7, 9, 31
gitrevisions, 7, 8

H
hash, 17
hook

post-receive, 45

L
log, 7

M
merge, 23

N
name-rev

git, 16

O
ORIG_HEAD, 31

P
pair object

sha, 17
post-receive

hook, 45

R
rebase, 29, 33

63

Git Memo Documentation, Release v1.1

interactive, 30
reflog, 8, 32
remote, 5, 24

bare, 26
clone, 25
config, 25
delete branch, 26
push, 26
tracking, 26

S
split

commit, 34
squash, 33
symbolic name, 15
symbolic reference, 15

T
tag

list, 6
tig, 9, 31

U
upstream

branch, 26

V
version, 6

64 Index

	Introduction
	Repository Info
	Status
	Branches
	Remotes
	Tags
	Describe
	Logs
	Reflogs
	git diff
	Commit tree
	Looking file content in the tree
	Viewing other versions of a file

	Developping
	Adding files to the index
	Adding a part of a file
	Adding a part of a new file
	Well formed commits
	Adding an empty commit at root of a branch.

	Objects names
	Naming commits
	Finding the top level directory

	Sharing development
	Git Pull
	Git pull –rebase
	Git push
	Sharing Tags

	Merge and Patch
	Merging
	Submitting patches
	Subtree-merge

	Remote repositories
	Cloning a remote repository
	Adding a new remote
	Fetching from Remote
	Remote configuration
	creating a bare remote repository
	push and delete remote branches
	References

	Remote tracking branches
	Tracking or not tracking
	Configuration of upstream branches

	Rebase
	Rebase a topic
	Interactive Rebase
	Checking your rebase and undoing it
	dangling objects

	Fixing errors
	Amend a commit
	Commit a fixup and squash.
	splitting a commit

	Filter branch
	References
	Removing an object or a directory

	Git Subtree
	Subtree split
	adding a subtree to a project

	Repository Backup
	file-system copy
	git bundle
	gcrypt remote
	git mirror
	mirror remote
	live mirror

	Git for site deployment
	Git keyword expansion
	Git Hooks
	prepare_commit_msg

	Garbage Collecting
	git fsck
	Automated garbage collection with gc --auto.
	Forced garbage collection.

	Miscellaneous operations
	switching branches without doing a checkout
	Transparent encryption
	Using git-wip

	Git annex
	Usual operations

	Indices and tables

