
gevent-tools Documentation
Release 0.6.0

Jeff Lindsay

May 17, 2014

Contents

i

ii

gevent-tools Documentation, Release 0.6.0

Release: v0.6.0 (Installation)
License: MIT

Ginkgo is a lightweight framework for writing network service daemons in Python. It currently focuses on gevent as
its core networking and concurrency layer.

The core idea behind Ginkgo is the “service model”, where your primary building block or component of applications
are composable services. A service is a mostly self-contained module of your application that can start/stop/reload,
contain other services, manage async operations, and expose configuration.

class ExampleService(Service):
setting = Setting("example.setting", default="Foobar")

def __init__(self):
logging.info("Service is initializing.")

self.child_service = AnotherService()
self.add_service(self.child_service)

def do_start(self):
logging.info("Service is starting.")

self.spawn(self.something_async)

def do_stop(self):
logging.info("Service is stopping.")

def do_reload(self):
logging.info("Service is reloading.")

...

Around this little bit of structure and convention, Ginkgo provides just a few baseline features to make building both
complex and simple network daemons much easier:

• Service class primitive for composing daemon apps from simple components

• Dynamic configuration loaded from regular Python source files

• Runner and service manager tool for easy, consistent usage and deployment

• Integrated support for standard Python logging

Contents 1

gevent-tools Documentation, Release 0.6.0

2 Contents

CHAPTER 1

User Guide

1.1 Introduction

1.1.1 Origin

Ginkgo evolved from a project called “gevent_tools” that started as a collection of common features needed when
building gevent applications. The author had previously made a habit of building lots of interesting little servers as
a hobby, and then at work found himself writing and dealing with lots more given the company’s service oriented
architecture. Accustomed to using the application framework in Twisted, when he finally saw the light and discovered
gevent, there was no such framework for that paradigm.

Dealing with so many projects, it was not practical to reinvent the same basic features and architecture over and over
again. The same way web frameworks made it easy to “throw together” a web application, there needed to be a way
to quickly “throw together” network daemons. Not just simple one-off servers, but large-scale, complex applications
– often part of a larger distributed system.

Through the experience of building large systems, a pattern emerged that was like a looser, more object-oriented
version of the actor model based around the idea of services. This became the main feature of gevent_tools and it
was later renamed gservice. However, with the hope of supporting other async mechanisms other than gevent’s green
threads (such as actual threads or processes, or other similar network libraries), the project was renamed Ginkgo.

1.1.2 Vision

The Ginkgo microframework is a minimalist foundation for building very large systems, beyond individual daemons.
There were originally plans for gevent_tools to include higher-level modules to aid in developing distributed applica-
tions, such as service discovery and messaging primitives.

While Ginkgo will remain focused on “baseline” features common to pretty much all network daemons, a supplemen-
tary project to act as a “standard library” for Ginkgo applications is planned. Together with Ginkgo, the vision would
be to quickly “throw together” distributed systems from simple primitives.

1.1.3 Inspiration

Most of Ginkgo was envisioned by taking good ideas from other projects, simplifying to their essential properties, and
integrating them together. A lot of thanks goes out to these projects.

Twisted is the first great Python evented daemon framework. The two big ideas borrowed from Twisted are their
application framework and twistd. They directly inspired the service model and the Ginkgo runner.

3

gevent-tools Documentation, Release 0.6.0

Trac is known for the problem it solves, and not so much for its great architecture. However, its component model and
configuration API were a big influence on Ginkgo. Trac components are how we think of Ginkgo services, and the
way Ginkgo defines configuration settings is directly inspired by the Trac configuration API.

These projects also had some influence on Ginkgo’s design and philosophy: Gunicorn, Mongrel, Apache, Django,
Flask, python-daemon, Diesel, Tornado, Erlang/OTP, Typeface, Akka, Configgy, Ostrich, and others.

1.2 Installation

Ginkgo is currently only available via GitHub, as it won’t be released on PyPI until it reaches a stable 1.0 release.

1.2.1 Get the Code

You can either clone the public repository:

$ git clone git://github.com/progrium/ginkgo.git

Download the tarball:

$ curl -OL https://github.com/progrium/ginkgo/tarball/master

Or, download the zipball:

$ curl -OL https://github.com/progrium/ginkgo/zipball/master

Once you have a copy of the source, you can embed it in your Python package, or install it into your site-packages
easily:

$ python setup.py install

1.3 Quickstart

Before you get started, be sure you have Ginkgo installed.

1.3.1 Hello World Service

The simplest service you could write looks something like this:

from ginkgo import Service

class HelloWorld(Service):
def do_start(self):

self.spawn(self.hello_forever)

def hello_forever(self):
while True:

print "Hello World"
self.async.sleep(1)

If you save this as hello.py you can run it with the Ginkgo runner:

$ ginkgo hello.HelloWorld

4 Chapter 1. User Guide

gevent-tools Documentation, Release 0.6.0

This should run your service, giving you a stream of “Hello World” lines.

To stop your service, hit Ctrl+C.

1.3.2 Writing a Server

A service is not a server until you make it one. Using gevent, this is easy using the StreamServer service to do the
work of running a TCP server:

from ginkgo import Service
from ginkgo.async.gevent import StreamServer

class HelloWorldServer(Service):
def __init__(self):

self.add_service(StreamServer((’0.0.0.0’, 7000), self.handle))

def handle(self, socket, address):
while True:

socket.send("Hello World\n")
self.async.sleep(1)

Save this as quickstart.py and run with:

$ ginkgo quickstart.HelloWorldServer

It will start listening on port 7000. We can connect with netcat:

$ nc localhost 7000

Again we see a stream of “Hello World” lines, but this time being sent over TCP. You can open more netcat connections
to see it running concurrently just fine.

Notice our HelloWorldServer implementation is composed of a generic StreamServer and doesn’t need to implement
anything else other than a handler for that StreamServer.

1.3.3 Writing a Client

A client that maintains a persistent connection (or maybe pool of connections) to a server also makes sense to be
modeled as a Service. Let’s add a client to our HelloWorldServer in our quickstart module. Now it looks like this:

from ginkgo import Service
from ginkgo.async.gevent import StreamServer
from ginkgo.async.gevent import StreamClient

class HelloWorldServer(Service):
def __init__(self):

self.add_service(StreamServer((’0.0.0.0’, 7000), self.handle))

def handle(self, socket, address):
while True:

socket.send("Hello World\n")
self.async.sleep(1)

class HelloWorldClient(Service):
def __init__(self):

self.add_service(StreamClient((’0.0.0.0’, 7000), self.handle))

1.3. Quickstart 5

gevent-tools Documentation, Release 0.6.0

def handle(self, socket):
fileobj = socket.makefile()
while True:

print fileobj.readline().strip()

Save and run the server first with:

$ ginkgo quickstart.HelloWorldServer

Let that run, switch to a new terminal and run the client with:

$ ginkgo quickstart.HelloWorldClient

As you’d expect, the client connects to the server and prints all the “Hello World” lines it receives.

1.3.4 Service Composition

We’ve already been doing service composition by using generic TCP server and client services to build our HelloWorld
services. These primitives are services themselves, just like the ones you’ve been making. So you can compose and
aggregate your own services the same way.

Let’s combine our client and server by add a HelloWorld service in our quickstart module. It now looks like this:

from ginkgo import Service
from ginkgo.async.gevent import StreamServer
from ginkgo.async.gevent import StreamClient

class HelloWorldServer(Service):
def __init__(self):

self.add_service(StreamServer((’0.0.0.0’, 7000), self.handle))

def handle(self, socket, address):
while True:

socket.send("Hello World\n")
self.async.sleep(1)

class HelloWorldClient(Service):
def __init__(self):

self.add_service(StreamClient((’0.0.0.0’, 7000), self.handle))

def handle(self, socket):
fileobj = socket.makefile()
while True:

print fileobj.readline().strip()

class HelloWorld(Service):
def __init__(self):

self.add_service(HelloWorldServer())
self.add_service(HelloWorldClient())

Save and we can run our new aggregate service:

$ ginkgo quickstart.HelloWorld

Now the client and server are both running, giving us effectively what we came in with.

6 Chapter 1. User Guide

gevent-tools Documentation, Release 0.6.0

1.3.5 Using a Web Framework

Adding a web server our HelloWorld service is quite trivial. Here we use gevent’s WSGI server implementation:

from ginkgo import Service
from ginkgo.async.gevent import StreamServer
from ginkgo.async.gevent import StreamClient
from ginkgo.async.gevent import WSGIServer

class HelloWorldServer(Service):
def __init__(self):

self.add_service(StreamServer((’0.0.0.0’, 7000), self.handle))

def handle(self, socket, address):
while True:

socket.send("Hello World\n")
self.async.sleep(1)

class HelloWorldClient(Service):
def __init__(self):

self.add_service(StreamClient((’0.0.0.0’, 7000), self.handle))

def handle(self, socket):
fileobj = socket.makefile()
while True:

print fileobj.readline().strip()

class HelloWorldWebServer(Service):
def __init__(self):

self.add_service(WSGIServer((’0.0.0.0’, 8000), self.handle))

def handle(self, environ, start_response):
start_response(’200 OK’, [(’Content-Type’, ’text/html’)])
return ["Hello World"]

class HelloWorld(Service):
def __init__(self):

self.add_service(HelloWorldServer())
self.add_service(HelloWorldClient())
self.add_service(HelloWorldWebServer())

Running quickstart.HelloWorld with Ginkgo will run a server, a client, and a web server. The client will be printing
our stream of “Hello World” lines. Our server is also available to be connected to via netcat. And we can also connect
to our web server with curl:

$ curl http://localhost:8000

And we see a strong declaration of “Hello World”.

In that example our web server implements a small WSGI application, but you can also use any WSGI compatible
web framework. Here is an example of the Flask Hello World runnable with Ginkgo using AppServer:

from flask import Flask
from ginkgo.async.gevent import WSGIServer

app = Flask(__name__)

@app.route("/")
def hello():

1.3. Quickstart 7

gevent-tools Documentation, Release 0.6.0

return "Hello World!"

def AppServer():
return WSGIServer((’0.0.0.0’, 8000), app)

Notice AppServer a callable that returns a service, in this case a pre-configured WSGIServer.

1.3.6 Using Configuration

TODO

1.4 Ginkgo Manual

1.4.1 Service Model

A service is an application component that starts and stops. It manages its own concurrency primitives and sub-service
components. Creating a service just involves inheriting from the Service class and implementing any of the hooks
needed of the service protocol:

Service.do_start()
The do_start hook is where you implement what happens when the service is starting. Often this is where you
bind to ports, open connectins, or spawn async loops. It should not be where actual service work is done, only
the start up tasks.

Before do_start is run, all child services are started, so you can assume they have been started. If you wish to
make do_start run before child services, you can set the start_before class variable to True.

Service.do_stop()
The do_stop hook is where you implement what happens when the service is stopping. This is often manipulat-
ing state in order to shutdown and clean up. It does not need to kill async operations or stop child services since
that is taken care of by Ginkgo.

Service.do_reload()
The do_reload hook is called when a parent service receives a reload call. In most cases, this is ultimately
attached to SIGHUP signals. It is not meant to be a restart, which is a full stop and stop. Instead, you can use
reload to reload state while running, such as configuration.

Otherwise, a class that inherits from Service is like any other class and should be thought of as the primary interface
to the component it represents. If the code for a component is too much to live in one service class, it’s good practice
to split it into sub-component services. In these cases, the parent service often doesn’t do any work itself, but is just a
container and API facade for the child component services.

Here is a typical service implementation:

from ginkgo import Service

class MyService(Service):
def __init__(self):

self.subcomponent = SubcomponentService()
self.add_service(self.subcomponent)

def do_start(self):

TODO

8 Chapter 1. User Guide

gevent-tools Documentation, Release 0.6.0

1.4.2 Using Configuration

Add the -h argument flag to our runner call:

$ ginkgo service.HelloWorld -h

You’ll see that the ginkgo runner command itself is very simple, but what’s interesting is the last section:

config settings:
daemon True or False whether to daemonize [False]
group Change to a different group before running [None]
logconfig Configuration of standard Python logger. Can be dict for basicConfig,

dict with version key for dictConfig, or ini filepath for fileConfig. [None]
logfile Path to primary log file. Ignored if logconfig is set. [/tmp/HelloWorld.log]
loglevel Log level to use. Valid options: debug, info, warning, critical

Ignored if logconfig is set. [debug]
pidfile Path to pidfile to use when daemonizing [None]
rundir Change to a directory before running [None]
umask Change file mode creation mask before running [None]
user Change to a different user before running [None]

These are builtin settings and their default values. If you want to set any of these, you have to create a configuration
file. But you can also create your own settings, so let’s first change our Hello World service to be configurable:

from ginkgo import Service, Setting

class HelloWorld(Service):
message = Setting("message", default="Hello World",

help="Message to print out while running")

def do_start(self):
self.spawn(self.message_forever)

def message_forever(self):
while True:

print self.message
self.async.sleep(1)

Running ginkgo service.HelloWorld -h again should now include your new setting. Let’s create a config-
uration file now called service.conf.py:

import os
daemon = bool(os.environ.get("DAEMONIZE", False))
message = "Services all the way down."
service = "service.HelloWorld"

A configuration file is simply a valid Python source file. In it, you define variables of any type using the setting name
to set them.

There’s a special setting calling service that must be set, which is the class path target telling it what service to run.
To run with this configuration, you just point ginkgo to the configuration file:

$ ginkgo service.conf.py

And it should start and you should see “Services all the way down” repeating.

You don’t have direct access to set config settings from the ginkgo tool, but you can set values in your config to
pull from the environment. For example, our configuration above lets us force our service to daemonize by setting the
DAEMONIZE environment variable:

1.4. Ginkgo Manual 9

gevent-tools Documentation, Release 0.6.0

$ DAEMONIZE=yes ginkgo service.conf.py

To stop the daemonized process, you can manually kill it or use the service management tool ginkgoctl:

$ ginkgoctl service.conf.py stop

1.4.3 Service Manager

Running and stopping your service is easy with ginkgo, but once you daemonize, it gets harder to interface with it.
The ginkgoctl utility is for managing a daemonized service process.

$ ginkgoctl -h
usage: ginkgoctl [-h] [-v] [-p PID]

[target] {start,stop,restart,reload,status,log,logtail}

positional arguments:
target service class path to use (modulename.ServiceClass) or

configuration file path to use (/path/to/config.py)
{start,stop,restart,reload,status,log,logtail}

optional arguments:
-h, --help show this help message and exit
-v, --version show program’s version number and exit
-p PID, --pid PID pid or pidfile to use instead of target

Like ginkgo it takes a target class path or configuration file. For stop, reload, and status it can also just take
a pid or pidfile with the pid argument.

Using ginkgoctl will always force your service to daemonize when you use the start action.

1.4.4 Service Model and Reloading

Our service model lets you implement three main hooks on services: do_start(), do_stop(), and
do_reload(). We’ve used do_start(), which is run when a service is starting up. Not surprisingly,
do_stop() is run when a service is shutting down. When is do_reload() run? Well, whenever reload()
is called. :)

Services are designed to contain other services like object composition. Though after adding services to a service,
when you call any of the service interface methods, they will propogate down to child services. This is done in the
actual start(), stop(), and reload() methods. The do_ methods are for you to implement specifically what
happens for that service to start/stop/reload.

So when is reload() called? Okay, I’ll skip ahead and just say it gets called when the process receives a SIGHUP
signal. As you may have guessed, for convenience, this is exposed in ginkgoctl with the reload action.

The semantics of reload are up to you and your application or service. Though one thing happens automatically
when a process gets a reload signal: configuration is reloaded.

One use of do_reload() is to take new configuration and perform any operations to apply that configuration to your
running service. However, as long as you access a configuration setting by reference via the Setting descriptor, you
may not need to do anything – the value will just update in real-time.

Let’s see this in action. We’ll change our Hello World service to have a rate_per_minute setting that will be used
for our delay between messages:

10 Chapter 1. User Guide

gevent-tools Documentation, Release 0.6.0

from ginkgo import Service, Setting

class HelloWorld(Service):
message = Setting("message", default="Hello World",

help="Message to print out while running")

rate = Setting("rate_per_minute", default=60,
help="Rate at which to emit message")

def do_start(self):
self.spawn(self.message_forever)

def message_forever(self):
while True:

print self.message
self.async.sleep(60.0 / self.rate)

The default is 60 messages a minute, which results in the same behavior as before. So let’s change our configuration
to use a different rate:

import os
daemon = bool(os.environ.get("DAEMONIZE", False))
message = "Services all the way down."
rate_per_minute = 180
service = "service.HelloWorld"

Use ginkgo to start the service:

$ ginkgo service.conf.py

As you can see, it’s emitting messages a bit faster now. About 3 per second. Now while that’s running, open the
configuration file and change rate_per_minute to some other value. Then, in another terminal, change to that directory
and reload:

$ ginkgoctl service.conf.py reload

Look back at your running service to see that it’s now using the new emit rate.

1.4.5 Using Logging

Logging with Ginkgo is based on standard Python logging. We make sure it works with daemonization and provide
Ginkgo-friendly ways to configure it with good defaults. We even support reloading logging configuration.

Out of the box, you can just start logging. We encourage you to use the common convention of module level loggers,
but obviously there is a lot of freedom in how you use Python logging. Let’s add some logging to our Hello World,
including changing our print call to a logger call as it’s better practice:

import logging
from ginkgo import Service, Setting

logger = logging.getLogger(__name__)

class HelloWorld(Service):
message = Setting("message", default="Hello World",

help="Message to print out while running")

rate = Setting("rate_per_minute", default=60,
help="Rate at which to emit message")

1.4. Ginkgo Manual 11

gevent-tools Documentation, Release 0.6.0

def do_start(self):
logger.info("Starting up!")
self.spawn(self.message_forever)

def do_stop(self):
logger.info("Goodbye.")

def message_forever(self):
while True:

logger.info(self.message)
self.async.sleep(60.0 / self.rate)

Let’s run it with our existing configuration for a bit and then stop:

$ ginkgo service.conf.py
Starting process with service.conf.py...
2012-04-28 17:21:32,608 INFO service: Starting up!
2012-04-28 17:21:32,608 INFO service: Services all the way down.
2012-04-28 17:21:33,609 INFO service: Services all the way down.
2012-04-28 17:21:34,610 INFO service: Services all the way down.
2012-04-28 17:21:35,714 INFO service: Goodbye.
2012-04-28 17:21:35,714 INFO runner: Stopping.

Running -h will show you that the default logfile is going to be /tmp/HelloWorld.log, which logging will create and
append to if you daemonize.

To configure logging, Ginkgo exposes two settings for simple case configuration: logfile and loglevel. If that’s
not enough, you can use logconfig, which will override any value for logfile and loglevel.

Using logconfig you can configure logging as expressed by logging.basicConfig. By default, if you set
logconfig to a dictionary, it will apply those keyword arguments to logging.basicConfig. You can learn
more about logging.basicConfig here.

For advanced configuration, we also let you use logging.config from the logconfig setting. If logconfig
is a dictionary with a version key, we will load it into logging.config.dictConfig. If logconfig is a
path to a file, we load it into logging.config.fileConfig. Both of these are ways to define a configuration
structure that lets you create just about any logging configuration. Read more about logging.config here.

1.5 Advanced Usage and Patterns

1.5.1 Service State Machine

TODO

1.5.2 Service Factory in Config

TODO

1.5.3 Using Configuration Groups

TODO

12 Chapter 1. User Guide

http://docs.python.org/library/logging.html#logging.basicConfig
http://docs.python.org/library/logging.config.html#module-logging.config

gevent-tools Documentation, Release 0.6.0

1.5.4 Using ZeroMQ

TODO

1.5.5 Async Backends

TODO

1.5. Advanced Usage and Patterns 13

gevent-tools Documentation, Release 0.6.0

14 Chapter 1. User Guide

CHAPTER 2

API Reference

15

gevent-tools Documentation, Release 0.6.0

16 Chapter 2. API Reference

CHAPTER 3

Developer Guide

17

