
GIF Manual Test Documentation
Release latest

Sep 03, 2019

Generic Insurance Framework User Manual

1 User Manual for the Generic Insurance Framework 3
1.1 Terminology . 3

2 Generic Insurance Framework 5

3 Core Smart Contracts 7
3.1 Product Service . 7
3.2 Policy Flow . 9

4 Modules 11

5 The license module 13

6 The policy module 15

7 The query module 19

8 The registry module 23

9 Use Cases for Product Owners 25
9.1 Register a product . 25
9.2 Role assignment by a product . 25

10 Implementing a product policy workflow 27
10.1 Using a generic policy workflow . 27
10.2 Creating a new or update default policy workflow . 32

11 On-chain and off-chain storage 33
11.1 On-chain . 33
11.2 Profiling . 34

12 Make Payouts 35

13 Managing oracles 37
13.1 Actors . 37
13.2 Description . 37
13.3 A workflow . 38

i

14 Upgrading policies 41

15 Notify Clients 43

16 View Ledger of Funds on Different Accounts 47

17 Message Queue 49

18 The @etherisc/microservice npm package 51

19 Message versioning. Publish and Subscribe functions 53

20 User Manual for the GIF sandbox Command Line Interface 55
20.1 Prerequisites . 55
20.2 General description . 56
20.3 A step-by-step guide . 58

21 GIF Tutorial: How to build an insurance product on GIF 73
21.1 Some insurance terminology . 73
21.2 Generic Lifecycle Functions . 74

22 The idea for a new product 75

23 Setting up a development environment 77
23.1 Prerequisites: . 77
23.2 Registration . 77

24 Coding part 79
24.1 Configure a Truffle project . 79

25 Create a smart contract 81

26 Interact with the smart contract 85

ii

GIF Manual Test Documentation, Release latest

This manual explains the key ideas, terms, and principles of the Generic Insurance Framework (GIF) as
a tool that enables to utilize both smart contracts and microservices to create specific insurance products.
You will learn the best ways to interact with this framework, as well as employ the available functionality
to the fullest.

The manual focuses on the needs of product builders and helps them to implement the existing solutions
on top of the Generic Insurance Framework.

Generic Insurance Framework User Manual 1

https://github.com/etherisc/GIF

GIF Manual Test Documentation, Release latest

2 Generic Insurance Framework User Manual

CHAPTER 1

User Manual for the Generic Insurance Framework

1.1 Terminology

Below, you will find a glossary of the technical terms used in this document.

Actor. Any participant of the DIP that uses the ecosystem to perform an activity on it (e.g., a product, a product owner,
an oracle owner, the instance operator, etc.).

Application. Data applied by a customer requesting an insurance policy. An application is the predecessor of a policy.
Not to be confused with software application; in our context we avoid the term “application” in this sense.

Claim. Data related to an insurance claim, which requires approval.

Decentralized Insurance Platform (DIP). An ecosystem supported by the DIP Foundation that unites product
builders, risk pool keepers, resellers, oracle providers, claim adjusters, relayers, and underwriters.

Decentralized Insurance Protocol (DIP Protocol). A set of standards, rules, templates and definitions which define
the interaction of participants in the ecosystem.

DIP Token. The Decentralized Insurance Protocol Token (DIP) is an ERC-20 token on the Ethereum Mainnet (token
contract on etherscan). DIP tokens were issued by the DI Foundation during the DIP Token Generating Event
in 2018, and will be used as a platform token in the DIP platform to incentivize different actors. The DIP token
mechanics paper has more details on the token model.”

Generic Insurance Framework (GIF). A combined codebase, which includes smart contracts and utility services
(core smart contracts and microservices) provided by the DIP Foundation and partners. The codebase can
be extended by product-specific smart contracts and microservices created by product builders. Using this
framework, product builders can develop full-featured DApps.

GIF instance. A deployed set of core smart contracts, operated by an instance operator, in most cases together with
an appropriate set of utility services. A GIF instance is essentially an “Insurance as a Service (IaaS)”.

Instance operator. An Ethereum account which operates an instance of the GIF. An instance operator can be a de-
centralized organization (DAO) or a single account owned by some legal entity.

Metadata. A shared object between all the objects of a particular policy flow.

3

https://etherscan.io/token/0xc719d010b63e5bbf2c0551872cd5316ed26acd83
https://etherscan.io/token/0xc719d010b63e5bbf2c0551872cd5316ed26acd83
https://blog.etherisc.com/etherisc-dip-token-generating-event-is-finished-summary-and-next-steps-2bd0bdda3686
https://blog.etherisc.com/etherisc-dip-token-generating-event-is-finished-summary-and-next-steps-2bd0bdda3686
https://etherisc.com/files/token_mechanics_1.0_en.pdf
https://etherisc.com/files/token_mechanics_1.0_en.pdf

GIF Manual Test Documentation, Release latest

Oracle. A service used to provide information to smart contracts from external resources, confirm certain events, and
deliver particular data to a product.

Oracle owner. An Ethereum account registered on the DIP with a set of permissions for creating oracles and oracle
types and performing operations on them.

Oracle type. A type of request to an oracle containing attributes that describe a request and respond to it. Oracles
join an oracle type.

Payout. Data related to the expected and actual payout for a claim.

Policy. Technical representation of the legal agreement between a policy buyer and a carrier.

Policy flow. A core smart contract that represents a workflow of insurance policy life cycle, involving such steps as
application underwriting, risk assessment, claim review, and payouts.

Policy token. A ERC1521 token (extension of a ERC 721 NFT Token), which represents a policy as a set of particular
fields.

Product. A registered smart contract with permissions to create and manage policy flows.

Product owner. An Ethereum account registered on the GIF with a set of permissions allowing to create and manage
product contracts and oracle types.

4 Chapter 1. User Manual for the Generic Insurance Framework

CHAPTER 2

Generic Insurance Framework

The Generic Insurance Framework represents a combined codebase for the Decentralized Insurance Platform, a basic
implementation that enables users to develop blockchain-based applications.

The basic idea behind the GIF is to abstract the generic parts shared across multiple different products and leave only
product-specific parts, such as risk model, pricing, and payout configurations, to be adjusted. The goal is to enable
quick and easy deployment of working products.

In its core, the GIF accumulates a number of componets: - core smart contracts - core microservices - product-specific
smart contracts - product-specific microservices

Essentially, the GIF has two major layers — a smart contracts one and a utility one — with DIP Foundation and
partners being able to contribute to both.

The smart contracts layer is designed in the way that any blockchain product built on top of the GIF can be easily
implemented into any network supporting the Ethereum Virtual Machine. Any product owner is able to create a full-
featured decentralized app by adding a couple of simple domain-specific contracts to a number of generic ones that
the framework provides.

The core contracts are deployed on-chain and operate by an instance operator as a shared service for many different
products. The instance operator can be a decentralized organization (DAO) or a more traditional legal entity. A
product, working on top of the GIF, is a smart contract (or set of smart contracts) connected to the framework’s core
contracts through a unique entry point.

The DIP Protocol declares the underlying principles and requirements based on which the architecture of smart con-
tracts is developed:

• Generic Insurance Framework provides a unified interface, which connects a product to data and decision
providers (oracles).

• A product contract utilizes a simple and clear interface for integration with the GIF.

• Once the agreement is signed and a policy token is issued, parties cannot change the expected policy flow
behavior. A policy life cycle should operate on the contracts, which this policy was issued by.

• Core contracts can be upgraded. This is needed to make bug fixes and add new features.

The smallest building blocks are called “modules.” A “module” is a pair of a “storage” contract and a “controller.”
They share the same storage model and interface objects. The “storage” contract is a proxy, which delegates calls from

5

GIF Manual Test Documentation, Release latest

a “storage” to a “controller,” which implements basic logic (i.e., a method to change a state). This mechanism ensures
that the module can be upgraded.

A “service” contract contains business logic details and defines rules (i.e., “Underwritten” is the next state after “Ap-
plied”). The “service” contract manages modules by calling controllers from storages. It is also an entry point for
actors (products, oracles, product owners, etc.).

“Controllers” serve as entry points for “services.” It is important to differentiate “services” behavior from that of
“controllers.”

The utility layer can contain any number of off-chain utility services supplementing the on-chain functionality. For
example, statistical monitoring of events triggered by contracts, making e-mail or instant messenger notifications,
accepting fiat payments for policies, as well as making fiat payouts. As a result, any product app can be fully functional
on chain even without any support from the utility layer, as well as can provide a full spectrum of the required features.

The key feature to have in a framework is the ability to upgrade and replace individual elements of the system. For
this purpose, the Generic Insurance Framework employs a microservices-based architecture approach for its utility
layer. The GIF organizes off-chain operations as a collection of loosely coupled services, each implementing a single
independent function — a state known as “decomposition by business capabilities.”

6 Chapter 2. Generic Insurance Framework

CHAPTER 3

Core Smart Contracts

Core smart contracts represent a number of key contracts and modules. The product service, policy flow, and modules
are described below. Core smart contracts are deployed and operated by an instance operator - a DAO or some other
(legal) entity. The instance operator publishes the entry points to its instance of the GIF (e.g. the address of the Product
Service) and registers actors in the instance.

3.1 Product Service

The product service is an entry point for a product contract. During smart contract deployment, the address of the
product service should be passed as one of the constructor arguments.

All product service methods are used by a product contract.

Below, you will find a list of the methods invoked by the product service:

• register is used to register new product contracts by providing a product name and specifying a policy flow. On
approval, a product contract obtains access to call entry methods.

• newApplication is employed to store new application data, which contains such fields as premium amount,
currency, payout options, risk definition, etc. A policy buyer signs a policy agreement using this method.

• underwrite is used to sign a policy agreement by an insurance company.

• decline declines an application.

• newClaim declares a new claim.

• confirmClaim confirms a claim. A new payout object is created after this.

• declineClaim declines a claim.

• payout declares payout that was handled off-chain or on-chain based on the policy currency.

• expire sets a policy expiration.

• request is used to communicate with oracles when a smart contract requires data or a decision by a particular
actor.

7

GIF Manual Test Documentation, Release latest

• getPayoutOptions checks payout options data.

• getPremium checks a premium per application.

On the diagram below, you can see the actions a product service performs.

The code below illustrates how the above-mentioned methods can be invoked.

1 interface IProductService {
2 function register(bytes32 _productName, bytes32 _policyFlow)
3 external
4 returns (uint256 _registrationId);
5

6 function newApplication(
7 bytes32 _bpExternalKey,
8 uint256 _premium,
9 bytes32 _currency,

10 uint256[] calldata _payoutOptions
11) external returns (uint256 _applicationId);

(continues on next page)

8 Chapter 3. Core Smart Contracts

GIF Manual Test Documentation, Release latest

(continued from previous page)

12

13 function underwrite(uint256 applicationId)
14 external
15 returns (uint256 _policyId);
16

17 function decline(uint256 _applicationId) external;
18

19 function newClaim(uint256 _policyId) external returns (uint256 _claimId);
20

21 function confirmClaim(uint256 _claimId, uint256 _sum)
22 external
23 returns (uint256 _payoutId);
24

25 function declineClaim(uint256 _claimId) external;
26

27 function expire(uint256 _policyId) external;
28

29 function payout(uint256 _payoutId, uint256 _sum)
30 external
31 returns (uint256 _remainder);
32

33 function getPayoutOptions(uint256 _applicationId)
34 external
35 returns (uint256[] memory _payoutOptions);
36

37 function getPremium(uint256 _applicationId)
38 external
39 returns (uint256 _premium);
40

41 function request(
42 bytes calldata _input,
43 string calldata _callbackMethodName,
44 address _callabackContractAddress,
45 bytes32 _oracleTypeName,
46 uint256 _responsibleOracleId
47) external returns (uint256 _requestId);
48 }

3.2 Policy Flow

The policy flow contract implements business logic for a policy life cycle. A product contract should specify a desired
policy flow contract during registration. The policy flow contract has permissions to manage modules.

A policy life cycle could be defined as a “state machine.” By this definition, a policy flow contract specifies transition
rules between states of core objects (applications, policies, claims, and payouts) and a sequence of actions that manage
the “state machine.”

A policy flow contract contains the logic of how to handle the GIF contract modules and operate application, policy,
claim and payout entities.

3.2. Policy Flow 9

GIF Manual Test Documentation, Release latest

10 Chapter 3. Core Smart Contracts

CHAPTER 4

Modules

A module represents a group of smart contracts, with each module containing at least one storage and one controller
contract.

A storage contract acts as a database for the core objects. A controller contract includes an implementation that helps
to manage core objects in a storage contract. In its turn, a storage contract delegates methods and makes calls to a
controller contract, which modifies the state of a storage contract.

Here is the list of the modules behind the Generic Insurance Framework:

• a policy module (manages applications, policies, claims, payouts, and metadata objects)

• a registry module (registers sets of the core contracts used in a policy flow lifecycle in release groups)

• a license module (manages products)

• a query module (manages queries made to oracles and delivers responses from them).

11

GIF Manual Test Documentation, Release latest

12 Chapter 4. Modules

CHAPTER 5

The license module

The license module stores registration data and the data related to the registered products. The module is responsible
for authorization of a particular contract address and rejects calls from unauthorized senders.

The approval or disapproval of calls is managed by the responsible methods invoked by the instance operator. A
product contract can be managed by any Ethereum account, be it a single account, a multisig, or a DAO.

Product contracts are registered in a smart contract, and its registration proposal is on review for the instance operator,
which can then perform certain actions related to the registration of product contracts.

All license controller methods are used by the instance operator, except for the register method, which can be called
by product owners only.

The methods invoked by the license controller include:

• register is used to register a proposal by a product contract.

• declineRegistration is called by the instance operator to decline registration.

• approveRegistration is called by the instance operator to approve registration.

• disapproveProduct is called when the instance operator wants to decline the registration, which was previously
approved by it.

• reapproveProduct is used to approve the registration after it was declined by the instance operator.

• pauseProduct is employed by the instance operator to pause a product contract.

• unpauseProduct is used by the instance operator to unpause a product contract.

• isApprovedProduct is used by the instance operator to check if a product contract is approved.

• isPausedProduct is used by the instance operator to check if a product contract is paused.

• isValidCall is used by the instance operator to check if a product contract call is valid.

• authorize is used by the instance operator to check if a product contract address is authorized and what policy
flow it uses.

• getProductId is used by the instance operator to check a product contract ID.

Below, you can see how to invoke all the above-mentioned methods available through the license controller.

13

GIF Manual Test Documentation, Release latest

1 interface ILicenseController {
2 function register(bytes32 _name, address _addr, bytes32 _policyFlow)
3 external
4 returns (uint256 _id);
5

6 function approveProduct(uint256 _id) external;
7

8 function disapproveProduct(uint256 _id) external;
9

10 function pauseProduct(uint256 _id) external;
11

12 function unpauseProduct(uint256 _id) external;
13

14 function isApprovedProduct(address _addr)
15 external
16 view
17 returns (bool _approved);
18

19 function isPausedProduct(address _addr)
20 external
21 view
22 returns (bool _paused);
23

24 function isValidCall(address _addr) external view returns (bool _valid);
25

26 function authorize(address _sender)
27 external
28 view
29 returns (bool _authorized, address _policyFlow);
30

31 function getProductId(address _addr)
32 external
33 view
34 returns (uint256 _productId);
35 }

14 Chapter 5. The license module

CHAPTER 6

The policy module

The policy module is responsible for managing applications, policies, claims, payouts, and metadata objects. The
policy module is managed by a policy flow contract.

The methods invoked by the policy controller are as follows:

• createPolicyFlow is called to create a new policy flow.

• setPolicyFlowState is employed to set a policy flow state.

• createApplication is used to create a new application.

• setApplicationState sets an application state.

• getApplicationData helps to view application data per application ID.

• getPayoutOptions is called to view payout options per application ID.

• getPremium is invoked to view a premium amount per application ID.

• createPolicy creates a new policy.

• setPolicyState automatically sets a policy state.

• createClaim creates a new claim.

• setClaimState automatically sets a claim state.

• createPayout creates a new payout.

• payOut is called to get data on a payout remainder.

• setPayoutState automatically sets a payout state.

The code below illustrates how to invoke the above-mentioned methods of the policy module.

1 interface IPolicyController {
2 function createPolicyFlow(uint256 _productId, bytes32 _bpExternalKey)
3 external
4 returns (uint256 _metadataId);
5

(continues on next page)

15

GIF Manual Test Documentation, Release latest

(continued from previous page)

6 function setPolicyFlowState(
7 uint256 _productId,
8 uint256 _metadataId,
9 IPolicy.PolicyFlowState _state

10) external;
11

12 function createApplication(
13 uint256 _productId,
14 uint256 _metadataId,
15 uint256 _premium,
16 bytes32 _currency,
17 uint256[] calldata _payoutOptions
18) external returns (uint256 _applicationId);
19

20 function setApplicationState(
21 uint256 _productId,
22 uint256 _applicationId,
23 IPolicy.ApplicationState _state
24) external;
25

26 function createPolicy(uint256 _productId, uint256 _metadataId)
27 external
28 returns (uint256 _policyId);
29

30 function setPolicyState(
31 uint256 _productId,
32 uint256 _policyId,
33 IPolicy.PolicyState _state
34) external;
35

36 function createClaim(uint256 _productId, uint256 _policyId, bytes32 _data)
37 external
38 returns (uint256 _claimId);
39

40 function setClaimState(
41 uint256 _productId,
42 uint256 _claimId,
43 IPolicy.ClaimState _state
44) external;
45

46 function createPayout(uint256 _productId, uint256 _claimId, uint256 _amount)
47 external
48 returns (uint256 _payoutId);
49

50 function payOut(uint256 _productId, uint256 _payoutId, uint256 _amount)
51 external
52 returns (uint256 _remainder);
53

54 function setPayoutState(
55 uint256 _productId,
56 uint256 _payoutId,
57 IPolicy.PayoutState _state
58) external;
59

60 function getApplicationData(uint256 _productId, uint256 _applicationId)
61 external
62 view

(continues on next page)

16 Chapter 6. The policy module

GIF Manual Test Documentation, Release latest

(continued from previous page)

63 returns (
64 uint256 _metadataId,
65 uint256 _premium,
66 bytes32 _currency,
67 IPolicy.ApplicationState _state
68);
69

70 function getPayoutOptions(uint256 _productId, uint256 _applicationId)
71 external
72 view
73 returns (uint256[] memory _payoutOptions);
74

75 function getPremium(uint256 _productId, uint256 _applicationId)
76 external
77 view
78 returns (uint256 _premium);
79

80 function getApplicationState(uint256 _productId, uint256 _applicationId)
81 external
82 view
83 returns (IPolicy.ApplicationState _state);
84

85 function getPolicyState(uint256 _productId, uint256 _policyId)
86 external
87 view
88 returns (IPolicy.PolicyState _state);
89

90 function getClaimState(uint256 _productId, uint256 _claimId)
91 external
92 view
93 returns (IPolicy.ClaimState _state);
94

95 function getPayoutState(uint256 _productId, uint256 _payoutId)
96 external
97 view
98 returns (IPolicy.PayoutState _state);
99 }

17

GIF Manual Test Documentation, Release latest

18 Chapter 6. The policy module

CHAPTER 7

The query module

The query module allows any product contract to use oracles and access risk model data or get a confirmation about
a particular real-world event off-chain.

The methods invoked by the query module include:

• proposeOracleType is called by oracle owners or product owners to submit a data input, a callback format, and
definitions for a particular oracle type.

• activateOracleType is used by the instance operator to activate an oracle type.

• deactivateOracleType is employed by the instance operator to deactivate an oracle type.

• removeOracleType is used by the instance operator to remove an oracle type.

• proposeOracle is called by oracle owners or product owners to propose a particular oracle.

• updateOracleContract is called by oracle owners or product owners to update an oracle contract for a particular
oracle.

• activateOracle is used by the instance operator to activate an oracle.

• deactivateOracle is used by the instance operator to deactivate an oracle.

• proposeOracleToType is called by oracle or product owners to propose a particular oracle to a specific oracle
type.

• revokeOracleToTypeProposal is called by oracle owners or product owners to remove a proposal before it is
approved.

• assignOracleToOracleType is used by the instance operator to assign an oracle to an oracle type.

• removeOracleFromOracleType is used by the instance operator to remove an oracle from an oracle type.

• request is called by a product to request data from an oracle by an oracle type.

• respond is called by the Oracle Service after an oracle response to respond to the request of a product.

Below, you can see how the above-mentioned methods can be invoked.

19

GIF Manual Test Documentation, Release latest

1 interface IQueryController {
2 function proposeOracleType(
3 bytes32 _oracleTypeName,
4 string calldata _inputFormat,
5 string calldata _callbackFormat,
6 string calldata _description
7) external;
8

9 function activateOracleType(bytes32 _oracleTypeName) external;
10

11 function deactivateOracleType(bytes32 _oracleTypeName) external;
12

13 function removeOracleType(bytes32 _oracleTypeName) external;
14

15 function proposeOracle(
16 address _sender,
17 address _oracleContract,
18 string calldata _description
19) external returns (uint256 _oracleId);
20

21 function updateOracleContract(
22 address _sender,
23 address _newOracleContract,
24 uint256 _oracleId
25) external;
26

27 function activateOracle(uint256 _oracleId) external;
28

29 function deactivateOracle(uint256 _oracleId) external;
30

31 function removeOracle(uint256 _oracleId) external;
32

33 function proposeOracleToType(
34 address _sender,
35 bytes32 _oracleTypeName,
36 uint256 _oracleId
37) external returns (uint256 _proposalId);
38

39 function revokeOracleToTypeProposal(
40 address _sender,
41 bytes32 _oracleTypeName,
42 uint256 _proposalId
43) external;
44

45 function assignOracleToOracleType(
46 bytes32 _oracleTypeName,
47 uint256 _proposalId
48) external;
49

50 function removeOracleFromOracleType(
51 bytes32 _oracleTypeName,
52 uint256 _oracleId
53) external;
54

55 function request(
56 bytes calldata _input,
57 string calldata _callbackMethodName,

(continues on next page)

20 Chapter 7. The query module

GIF Manual Test Documentation, Release latest

(continued from previous page)

58 address _callabackContractAddress,
59 bytes32 _oracleTypeName,
60 uint256 _responsibleOracleId
61) external returns (uint256 _requestId);
62

63 function respond(
64 uint256 _requestId,
65 address _responder,
66 bytes calldata _data
67) external returns (uint256 _responseId);
68 }

21

GIF Manual Test Documentation, Release latest

22 Chapter 7. The query module

CHAPTER 8

The registry module

The registry module is responsible for registering sets of core contracts, which are used in a policy flow life cycle in
release groups. The registry module is managed by the instance operator.

The functions available through this module are the following:

• registerInRelease is used to register new policies in a new release version.

• register is used to register a contract in the last release.

• deregisterInRelease is used to delete a contract from a release.

• deregister is used to delete a contract in the last release.

• prepareRelease is called to create a new release, move contracts from the last release to a new one, and update
a release version.

• getInContractRelease is used to get a contract address depending on a release version.

• getContract is used to get a contract address in the last release.

• getRelease is used to get the last release’s number.

• registerService is used to register a new service.

• getService is used to view a new service.

The code below illustrates how to invoke the functions of the registry module listed above.

1 interface IRegistryController {
2 function registerInRelease(
3 uint256 _release,
4 bytes32 _contractName,
5 address _contractAddress
6) external;
7

8 function register(
9 bytes32 _contractName,

10 address _contractAddress

(continues on next page)

23

GIF Manual Test Documentation, Release latest

(continued from previous page)

11) external;
12

13 function registerService(
14 bytes32 _name,
15 address _addr
16) external;
17

18 function deregisterInRelease(
19 uint256 _release,
20 bytes32 _contractName
21) external;
22

23 function deregister(
24 bytes32 _contractName
25) external;
26

27 function prepareRelease(
28) external returns (uint256 _release);
29

30 function getContractInRelease(
31 uint256 _release,
32 bytes32 _contractName
33) external
34 view
35 returns (address _contractAddress);
36

37 function getContract(bytes32 _contractName
38) external
39 view
40 returns (address _contractAddress);
41

42 function getService(bytes32 _contractName
43) external
44 view
45 returns (address _contractAddress);
46

47 function getRelease(
48) external view returns (uint256 _release);
49 }

24 Chapter 8. The registry module

CHAPTER 9

Use Cases for Product Owners

9.1 Register a product

For any product that expects to perform certain actions, it is crucial to register its product contract within the GIF
instance.

The registration of a product contract takes place on a smart contract level.

A product creates a contract and inherits one of the GIF contracts — a product contract. After inheriting, a product
contract is able to use the GIF functions to describe its business process.

The register function (see the code below) is used to register a new product contract. After approval, a contract obtains
access to call entry methods.

1 function _register(
2 bytes32 _productName,
3 bytes32 _policyFlow
4) internal

9.2 Role assignment by a product

To assign roles to specific contracts or people, role-based access control (RBAC) is used. A product contract should
set up roles and specify what method can be called and by which role.

A lot depends on a business process, but there are two possible cases.

In the first scenario, actions can be called by people. It means a product contract may create a role, assign it to
particular person, and this person will call a function (i.e., underwrite an application).

In the second scenario, actions perform a product contract. An oracle may respond with certain data, then a product
contract will need to create a function of an oracle response handler, write certain logic, and automatically call the
underwrite function.

A product owner defines necessary roles for its product contract and those who will be appointed to the created roles.

25

GIF Manual Test Documentation, Release latest

The data related to the roles is kept by a product contract. It inherits the “Product” contract and, after that, gets access
to the RBAC methods. So, the roles belonging to the accounts and account data are stored in the product’s account
(without storage on the GIF).

The code below illustrates the contract details and function calls available.

1 contract RBAC {
2 mapping(bytes32 => uint256) public roles;
3 bytes32[] public rolesKeys;
4 mapping(address => uint256) public permissions;
5 modifier onlyWithRole(bytes32 _role) {
6 require(hasRole(msg.sender, _role));
7 _;
8 }
9

10 function createRole(bytes32 _role) public {
11 require(roles[_role] == 0);
12 // todo: check overflow
13 roles[_role] = 1 << rolesKeys.length;
14 rolesKeys.push(_role);
15 }
16

17 function addRoleToAccount(address _address, bytes32 _role) public {
18 require(roles[_role] != 0);
19 permissions[_address] = permissions[_address] | roles[_role];
20 }
21

22 function cleanRolesForAccount(address _address) public {
23 delete permissions[_address];
24 }
25

26 function hasRole(address _address, bytes32 _role)
27 public
28 view
29 returns (bool _hasRole)
30 {
31 _hasRole = (permissions[_address] & roles[_role]) > 0;
32 }
33 }

26 Chapter 9. Use Cases for Product Owners

CHAPTER 10

Implementing a product policy workflow

10.1 Using a generic policy workflow

The GIF provides a list of entities to manage insurance business processes:

• an application

• a policy

• a claim

• a payout

These entities represent a generic policy workflow. In the course of a workflow, the state of entities will be changed
visualizing insurance business process.

A product contract is able to use a workflow with both prepaid (before issuing a policy) and postpaid (after issuing a
policy) premiums. On the diagram below, there are more details for a default scheme with prepaid premiums.

There are two possible ways of choosing premiums by a customer of a product: based on a fixed premium (a payout
will correspond with a chosen premium) and based on a fixed payout (a premium will correspond with the desired
amount of a payout).

A policy state flow diagram

27

GIF Manual Test Documentation, Release latest

The Business Process Model and Notation policy flow with prepaid premium diagram

28 Chapter 10. Implementing a product policy workflow

GIF Manual Test Documentation, Release latest

Note: An example of a policy flow described above is one of the two possible flows (with a premium paid before a
policy is issued). It is also possible to pay a premium after a policy issuance.

10.1.1 Managing an application

This insurance business process actually starts when any customer (or it might be an application from any organization
that represents the interests of a group of customers) sends an application for an insurance policy via a user interface
on a product contract level.

The DIP Protocol enables a product contract to perform the following actions:

• create an application

• underwrite an application

• decline an application

• revoke an application

10.1. Using a generic policy workflow 29

GIF Manual Test Documentation, Release latest

Creating an application

To create an application for a policy, the newApplication function needs to be used. This function is invoked to store
new application data, which contains such fields as a premium amount, currency, payout options, risk definition, etc.
A policy buyer signs a policy agreement using this function.

The application state is “Applied.” During scoring or underwriting processes, an application remains in the “Applied”
status.

The code below demonstrates how the function is called.

1 function _newApplication(
2 bytes32 _bpExternalKey,
3 uint256 _premium,
4 bytes32 _currency,
5 uint256[] memory _payoutOptions
6) internal returns (uint256 _applicationId) {
7 _applicationId = productService.newApplication(
8 _bpExternalKey,
9 _premium,

10 _currency,
11 _payoutOptions
12);
13 }

Underwriting an application

To sign a policy agreement by a product contract, the underwrite function has to be used.

As soon as an application is accepted by an underwriter, its state is changed to “Underwritten.” The application remains
in the “Underwritten” state when a new policy is created.

The code below demonstrates how the function is invoked.

1 function _underwrite(uint256 _applicationId)
2 internal
3 returns (uint256 _policyId)
4 {
5 _policyId = productService.underwrite(_applicationId);
6 }

Declining an application

This function is used simply to decline an application. The application state changes to “Declined.”

The code below illustrates how the function performs.

1 function _decline(uint256 _applicationId) internal {
2 productService.decline(_applicationId);
3 }

10.1.2 Managing a policy

By default, before issuing a policy, an underwriter must confirm that policy premiums are fully paid.

30 Chapter 10. Implementing a product policy workflow

GIF Manual Test Documentation, Release latest

When a customer has an application underwritten and paid a premium for a product policy, the GIF methods allow to
fulfill the following actions:

• create a policy

• expire a policy

Creating a policy

This function allows to create a new entity: issue a new policy token. A policy is created with the “Active” state.

A product contract sends a PDF policy certificate to a customer using the PDF Generator core microservice.

Expiring a policy

The function is used to set a policy expiration. The possible cases are the following:

• A policy duration date has expired.

• A risk for a policy has been confirmed and paid out (in case a risk is to be paid out once).

• The event has not been confirmed by an oracle in the course of a policy duration, which means no payout.

When the function is performed, a policy state is set as “Expired.”

The code below demonstrates how to use the expire function.

1 function _expire(uint256 _policyId) internal {
2 productService.expire(_policyId);
3 }

10.1.3 Managing a claim

The DIP allows products contracts to use the claim management methods. Specifically, the following actions can be
performed:

• apply a claim

• confirm a claim

• decline a claim

Applying a claim

The function is used to declare a new claim. The claim state is set as “Applied.”

Note: Claims can be applied when a policy has the “Active” or “Expired” status.

The code below demonstrates how the function is invoked.

1 function _newClaim(uint256 _policyId) internal returns (uint256 _claimId) {
2 _claimId = productService.newClaim(_policyId);
3 }

10.1. Using a generic policy workflow 31

GIF Manual Test Documentation, Release latest

Confirming a claim

The function is used to confirm a claim. A new payout object is created after performing this action. The claim state
is set as “Confirmed.”

The code below illustrates how the function performs.

1 function _confirmClaim(uint256 _claimId, uint256 _amount)
2 internal
3 returns (uint256 _payoutId)
4 {
5 _payoutId = productService.confirmClaim(_claimId, _amount);
6 }

Declining a claim

This function is used to decline a claim. The claim state is set as “Declined.”

The code below illustrates how the function is invoked.

1 function _decline(uint256 _applicationId) internal {
2 productService.decline(_applicationId);
3 }

10.1.4 Managing a payout

Confirming a payout

The method is used to confirm the payout that has actually happened. The payout state changes to “PaidOut.”

1 function _payout(uint256 _payoutId, uint256 _amount)
2 internal
3 returns (uint256 _remainder)
4 {
5 _remainder = productService.payout(_payoutId, _amount);
6 }

10.2 Creating a new or update default policy workflow

Currently, the GIF offers a general purpose default policy workflow to products contracts. In case a product contract
needs to update a default workflow or create a new one, there are three possible options to do this:

1. Pull a request from a product contract. This request will be reviewed by the Etherisc team and merged with the
existing workflow. It may also be a new version of a policy workflow.

2. Create an issue on GitHub. A product contract can create an issue, and, after reviewal, the Etherisc team will
plan the requested improvements on a policy workflow.

3. Direct a request via e-mail: contact@etherisc.com.

32 Chapter 10. Implementing a product policy workflow

mailto:contact@etherisc.com

CHAPTER 11

On-chain and off-chain storage

Any Product on the DIP has a choice of:

• what type of data to store

• where to store data

The DIP storage model allows products contracts to store its data on:

• blockchain smart contracts

• a platform database

• a product database

Note: Payment card data should be stored on a payment provider level as it requires PCI compliance to store payment
card data of customers in a database.

In many countries, a legal agreement is needed between a party that runs a storage service and a party that uses a
storage service.

11.1 On-chain

As the DIP operates in the Ethereum environment, the term on-chain specifies smart contracts, where a product can
store risk description and specific metadata per policy.

The key principle of how the DIP itself uses data is that no personal data is kept in smart contracts — only unique
hashed references.

The DIP allows to store data for any product regarding its:

• customers (Note: first_name, last_name, and e-mail fields are required by the GIF.)

• policies

• claims

33

GIF Manual Test Documentation, Release latest

In case a product doesn’t want to use a platform database, it is possible to use the product’s database.

Attention: According to the EU General Data Protection Regulation requirements, we prevent you from storing
personal data of customers on-chain. This data is to be stored off-chain only. There exist special identificators
stored on-chain (hashed data references), which allow for retrieving data from an off-chain database. This prevents
unauthorized access to sensitive data by an on-chain identificator. The diagram below illustrates the relations
between on-chain and off-chain storage. This methodology implements the “Positionspapier des Bundesblock,”
the german association of blockchain companies which tries to implement this methodology in EU law.

11.2 Profiling

To avoid the possibility of the so-called customer “profiling,” each newly issued policy gets a new unique customer ID
(unique hashed reference).

34 Chapter 11. On-chain and off-chain storage

https://bundesblock.de/wp-content/uploads/2017/10/bundesblock_positionspapier_v1.1.pdf

CHAPTER 12

Make Payouts

In order to make payouts in fiat money, a product contract needs to use the GIF Payout microservice.

Your product App (here we mean a server App body of your product that connects and coordinates its on-chain and
off-chain parts) needs to subscribe to the Event Listener microservice to get notifications about the off-chain events
related to your product. This way, the product App knows that a new entity “Payout” appears with the “expected”
state. To make a payout, a product contract should send a message to the framework with the following structure:

{
id: 'payout',
type: 'object',
properties: {
policyId: { type: 'string' },
payoutAmount: { type: 'number' },
currency: { type: 'string' },
provider: { type: 'string' },
contractPayoutId: { type: 'string' },

},

Where the ‘policyId’, ‘payoutAmount’, ‘currency’, ‘provider’, and ‘contractPayoutId’ attributes are required to be
defined.

The product contract sends the above-mentioned message to the Payout microservice. The information should contain
the address where payout funds are to be transferred and the transfer method (e.g., transfer to a bank account, payment
card, a transferwise, PayPal account, coin wallet, post transfer, etc.).

Below, you can find an example of a payout message (referred to a particular policy, with ID equal to 1) made by the
Payout microservice (“Transferwise”). The payout is made in fiat money (100 EUR) and a product contract is to be
notified about this.

1 {
2 policyId: 1,
3 payoutAmount: 100,
4 currency: 'EUR',
5 provider: 'transferwise',
6 }

35

GIF Manual Test Documentation, Release latest

To describe the process in more detail, we provide the following clarification of the interaction between the GIF and
product components during the payout process.

There are a few entities involved in the process of payout: the product smart contract, the product App, the ProductSer-
vice contract, the Policy module and some microservices (such as Event Listener, Payout microservice and Ethereum
signer).

The process starts with confirming a claim by calling the _confirmClaim function in the product contract. This
function is addressed to the ProductService contract, which delegates it to the Policy module. The function is
performed here and an entity “Claim” changes its state to “Confirmed”.

At the same time, a new entity “Payout” is created at the Policy module with the “expected” state. When the states
are changed, the LogPayoutStateChanged event takes place. This event, like many other events, is “listened” by a
particular microservice — Event Listener subscribed to the events of the core contract.

Then, Event Listener notifies the product App (with a business logic implemented) about this event. This App ex-
changes messages with other microservices involved (the Payout microservice and the Ethereum signer microser-
vice) in order to make a payout. The Ethereum signer microservice can make payouts on the Ethereum blockchain.
It also notifies the product contract, which calls the _confirmPayout function and addresses it to the ProductService
contract.

This results to a similar flow (ProductService — Policy module — the payout changes state to “Paid out” — the
LogPayoutStateChanged event occurs — Event Listener notifies the product App — the product App orders the Noti-
fication microservice to notify the customer about the payout — the Notification microservice sends a message to the
customer and reports about it to the product App).

36 Chapter 12. Make Payouts

CHAPTER 13

Managing oracles

13.1 Actors

• A Product is a contract that provides a specific service to customers.

• The Query module is a service that forwards requests to different oracle providers.

• An Oracle is a service used to provide specific data to products.

13.2 Description

Oracle services provide huge leverage to the Generic Insurance Framework.

Product contracts use an oracle to obtain off-chain data and confirm or decline real-world events vital for an insurance
process. The scheme below illustrates the request flow from the beginning (a product sends a request) till the end (a
product receives the requested data).

The GIF accomplished a strategy for product contracts to get data from a specific oracle, which a product is particularly
interested in.

37

GIF Manual Test Documentation, Release latest

13.3 A workflow

13.3.1 Registering an oracle

• Any product owner, oracle owner, or the instance operator is able to register its oracle type, where they specify
criteria for the oracles that provide data back to the requesting parties. For this purpose, the proposeOracleType
function is used. The parameters, such as oracleTypeName, inputFormat, inputDefinitions, callbackFormat,
callbackDefinitions, and currency are defined here. Then, the instance operator activates an oracle type. It can
also deactivate an oracle type.

• deactivateOracle is used by the instance operator to deactivate an oracle.

13.3.2 Registering an oracle to type

• An oracle owner, a product owner, or the instance operator can propose a particular oracle. For this purpose, the
proposeOracleToType method is called to propose a particular oracle to a particular oracle type. The necessary
parameters of the method are: oracleTypeName, inputFormat, callbackFormat, and a description.

• revokeOracleToTypeProposal is called by oracle owners or product owners to remove a proposal, before it is
approved.

• assignOracleToOracleType is called by the instance operator to assign an oracle to an oracle type.

• removeOracleFromOracleType is called by the instance operator to remove an oracle from an oracle type.

13.3.3 Updating an oracle contract

• Oracle owners or product owners can update an oracle contract for a particular oracle.

• updateOracleContract is called to update an oracle contract.

13.3.4 Creating a request

• Product calls request a function.

• ProductService receives a request and verifies the correctness of the request according to the permissions of the
License Module.

• ProductSservice addresses a request to a policy flow.

• A policy flow addresses a request to the query module to connect an oracle.

• The query module executes a request to a particular oracle that requests data from the data provider.

• An oracle calls to the requested data provider (i.e., Oraclize) to obtain the necessary data.

• request is called by a product contract to request data from an oracle by an oracle type. The request function
uses the following arguments: callbackMethodName, callbackContractAddress, oracleTypeName, and respon-
sibleOracleID.

13.3.5 Receiving a callback

• A particular data provider performs a callback to an oracle.

• An oracle sends a response to an oracle service with received data as an answer for the request.

38 Chapter 13. Managing oracles

GIF Manual Test Documentation, Release latest

• An oracle service addresses the received data to the query module, where the sender and the addressee are being
verified. The query module specifies the response (which product contract made a query, what an oracle type is,
and which Oracle is to respond to the query).

• Then, the response is to be checked. An oracle is confirmed to be registered to the system and to be assigned to
an oracle type, which corresponds to that of the query. If everything matches, then an oracle provides a product
contract with the requested data.

13.3.6 Making Respond

• An oracle contract makes a response using the respond method and sends the requested data in the respond.

• respond is called by an oracle service after an oracle responses to the request of a product contract.

• The methods of the query module are used to communicate with oracles when an insurance application requires
data or a decision of a particular actor.

The code below illustrates the functions that can be called by the OracleQueryController.

1 interface IQueryController {
2

3 function proposeOracleType(
4 bytes32 _oracleTypeName,
5 string calldata _inputFormat,
6 string calldata _callbackFormat,
7 string calldata _description
8) external;
9

10 function activateOracleType(bytes32 _oracleTypeName) external;
11

12 function deactivateOracleType(bytes32 _oracleTypeName) external;
13

14 function removeOracleType(bytes32 _oracleTypeName) external;
15

16 function proposeOracle(
17 address _sender,
18 address _oracleContract,
19 string calldata _description
20) external returns (uint256 _oracleId);
21

22 function updateOracleContract(
23 address _sender,
24 address _newOracleContract,
25 uint256 _oracleId
26) external;
27

28 function activateOracle(uint256 _oracleId) external;
29

30 function deactivateOracle(uint256 _oracleId) external;
31

32 function removeOracle(uint256 _oracleId) external;
33

34 function proposeOracleToType(
35 address _sender,
36 bytes32 _oracleTypeName,
37 uint256 _oracleId
38) external returns (uint256 _proposalId);
39

(continues on next page)

13.3. A workflow 39

GIF Manual Test Documentation, Release latest

(continued from previous page)

40 function revokeOracleToTypeProposal(
41 address _sender,
42 bytes32 _oracleTypeName,
43 uint256 _proposalId
44) external;
45

46 function assignOracleToOracleType(
47 bytes32 _oracleTypeName,
48 uint256 _proposalId
49) external;
50

51 function removeOracleFromOracleType(
52 bytes32 _oracleTypeName,
53 uint256 _oracleId
54) external;
55

56 function request(
57 bytes calldata _input,
58 string calldata _callbackMethodName,
59 address _callabackContractAddress,
60 bytes32 _oracleTypeName,
61 uint256 _responsibleOracleId
62) external returns (uint256 _requestId);
63

64 function respond(
65 uint256 _requestId,
66 address _responder,
67 bytes calldata _data
68) external returns (uint256 _responseId);
69 }

40 Chapter 13. Managing oracles

CHAPTER 14

Upgrading policies

Once an insurance agreement is signed and a policy is issued, parties cannot unilaterally change the specified behavior.
It means, the framework must ensure that all the parties involved can always exactly predict which set of smart
contracts will execute the policy.

There are two ways to provide upgradability of contracts within the system and two different situations that could
trigger an update of a smart contract:

• Fixes. In case a bug has been detected. A bug is a deviation of expected behaviour to actual behaviour—a
difference between a specification and an implementation. Bugs can be technical (a flawed implementation of a
certain calculation leading to wrong results), but they can also occur in the translation process from legal prose
to code. In this case, the specification would be flawed, and correct implementation of a flawed specification
still leads to wrong results.

• Upgrades. New features need to be implemented for various reasons: modifications in pricing, a risk model,
etc. In this case, the specification changes.

Both cases can occur on the core contract or product-specific contract levels.

We handle the two cases differently:

1. A “bug fix” upgrade will affect all policies, both the existing and new ones.

2. A “new feature” upgrade will affect only new policies. The existing policies will be executed with the original
set of smart contracts (modulo bug fixes).

The following diagram illustrates the above-mentioned ways to change contracts and the result of such changes (when
you get a new contract address). Then you can replace the existing contract by the new one if there was a “bug fixing,”
or deploy a new “additional” version of the contract if there was an upgrade of the existing contract.

41

GIF Manual Test Documentation, Release latest

42 Chapter 14. Upgrading policies

CHAPTER 15

Notify Clients

To provide notifications to its customers Product’s contract can use Notification microservice, which provides notifi-
cations based on triggering events.

This microservice informs Product’s contract and its customers about the processing and the state of his application
for policy, policy itself, payment details, his claim for policy and payout details via e-mail as well as notifies Product
builders via Telegram chat specifically.

There are two main transports available for Product contractss on Etherisc platform:

• SMTP transport

• Telegram transport

Notification microservice receives an event message about the need for delivery from other microservices and sends it
for delivery to the appropriate transports.

Every message for Notification MS contains what, where and with what credentials to send.

The event message should include the following data:

1. name of the template;

2. data to fill in the template;

3. properties (i.e. recipient e-mail)

Product may create branded templates to use instead of default templates. Notification microservice simply takes
a template, substitutes the data and sends it where it is requested. A Product’s contract can have templates in any
languages, saving them to platform templates.

Product application provides notificationSettingsUpdate event with branded templates and description what notifica-
tion are to be used.

See code details:

transports: [
{
name: 'smtp',

(continues on next page)

43

GIF Manual Test Documentation, Release latest

(continued from previous page)

props: {
from: 'noreply@etherisc.com',

},
events: ['application_declined', 'application_error'],

},
{
name: 'telegram',
props: {
chatId:'54321',

},
events: ['application_declined', 'application_error'],

},
],

templates: [
{
name: 'application_error',
transport: 'smtp',
template: '<h1>Application Error {{policy.id}}</h1>',

},
{
name: 'application_error',
transport: 'telegram',
template: 'Application Error {{policy.id}}',

},
];

type: 'application_error',
data: { policy: { id: 1514 } },
props: {

recipient: 'foo@email.com',
subject: 'Etherisc application error',

}

See events triggers here:

44 Chapter 15. Notify Clients

GIF Manual Test Documentation, Release latest

Message
Name

Description Triggered

quote_successfulYour quote is created successfully. We are contacting you regarding
payment details. Please provide a necessary payment for premium

Application state is
changed to “Underwrit-
ten”

charge_cancelledWe’re unable to process your payment card. Please try another card Payment request to
provider was not suc-
cessful

application
_declined

We are sorry to inform that the application for Policy has been declined
by underwriter

Application state is
changed to “Declined”

applica-
tion_error

Technical error: the requested application has not been found Application has not been
found

pre-
mium_paid

We’ve received your premium payment Customer has paid a pre-
mium

applica-
tion_revoked

We confirm that the application for Policy has been revoked. Your pre-
mium minus cancellation fee will be sent back to you

Application state is
changed to “Revoked”

pol-
icy_issued

We confirm that Policy has been issued. Details below. . . Token has been issued.
Policy is created

pol-
icy_error

Technical error: the requested policy has not been found Policy has not been
found

pol-
icy_expired

We inform you that Policy has been expired Policy state is changed to
“Expired”

claim_confirmedYour claim regarding Policy has been confirmed. The payout will be
transferred to your payment card

Claim state is changed to
“Confirmed”

claim_declinedWe inform you that your claim regarding Policy has been declined Claim state is changed to
“Declined”

claim_error Technical error: the requested claim has not been found Claim has not been
found

claim_paid_outYour claim for Policy has been paid out Payout state is changed
to “PaidOut”

45

GIF Manual Test Documentation, Release latest

46 Chapter 15. Notify Clients

CHAPTER 16

View Ledger of Funds on Different Accounts

There are several accounts we distribute money to:

• Balance - wallet is used to transfer funds;

• Premium - amount of money client pays for the policy;

• Risk Fund - fund which covers risks in case of payout;

• Operations Fund - fund which covers all operational costs (pricing, underwriting, oracle costs);

• Oracle Costs - amount of money we pay for pricing, underwriting, events confirmation;

• Payout - amount of money client gets when policy risk actually happens;

• Reward - payment to Etherisc platform from premiums (might not need it).

47

GIF Manual Test Documentation, Release latest

48 Chapter 16. View Ledger of Funds on Different Accounts

CHAPTER 17

Message Queue

The concept used for connecting numerous platform microservices is the following: to use a central message queue
supporting the AMQP protocol, currently implemented in RabbitMQ, to deliver signals between different actors.
As one of the possible patterns for organization of microservices, the message queue helps to solve some inherent
microservices issues, such as:

Discoverability. Each microservice does not need to find all other microservices it interacts with. The only thing it
should know is where the queue is.

Extensibility. New types of microservices can be introduced to process the old types of messages without any changes
to existing ones.

Resiliency. The message queue serves as a storage for undelivered messages until it needs to deliver them to get the
microservice back to the operational state.

49

GIF Manual Test Documentation, Release latest

50 Chapter 17. Message Queue

CHAPTER 18

The @etherisc/microservice npm package

For convenience, the logic of the message queue interaction for all the node-based microservices (along with some
other potentially common adapters, like a relational database or a file storage) was packaged into a npm package called
@etherisc/microservice.

Product’s contract developers should include @etherisc/microservice as an ‘npm’ dependency for any of its Product
specific microservices.

To get it working properly, you’d need to provide a list of environmental variables:

AMQP_MODE, AMQP_HOST, AMQP_PORT, AMQP_USERNAME, AMQP_PASSWORD - your product creden-
tials for message queue access, which should be provided to you when you register your product to operate on the DIP
platform.

The main thing you get for including this npm package is the ability to start your node.js microservice by simply
invoking the ‘bootstrap’ method in your main ‘node’ executable. That will allow you to pick which general areas
you’d like your microservice to work with (amqp, database, storage) or, for the product microservices, which insurance
process template you’d like your product to follow.

Let’s assume that you want to create a message logging microservice for your product.

'bash >
npm install --save @etherisc/microservice

const { bootstrap } = require('@etherisc/microservice');

class MessageLogger {
constructor({ amqp }) {

this.amqp = amqp;
}
async bootstrap() {

// The code for your particular amqp subscriptions and
// other asynchronous behaviours to be initialized

}
}
bootstrap(MessageLogger, {

(continues on next page)

51

GIF Manual Test Documentation, Release latest

(continued from previous page)

amqp: true,
});

52 Chapter 18. The @etherisc/microservice npm package

CHAPTER 19

Message versioning. Publish and Subscribe functions

We’d like to point out that for a microservice architecture controlled via a message queue, two types of objects need
to be strictly versioned (following the Semantic Versioning 2.0 specification when possible):

Message types. For all message types on the platform, we’re planning to have an up-to-date entry in the
‘@etherisc/microservice/io/amqp/messages/types’ folder that will keep the information on what data is expected to
be included in that message, as well as if attributes are required or optional. It was decided to tag each message type
with a pair of numbers ‘X.Y’ in a way that X is the MAJOR version and Y is MINOR version. Any change to the
schema of a message should result in aversion change. If the changes are ‘breaking’ (such as the removal of required
attributes), the MAJOR version needs to be incremented, otherwise - the MINOR one.

Microservice repositories. Each individual core microservice application will have a version label consisting of three
integers ‘X.Y.Z’, as well as a reference list of message types it creates and consumes (with their appropriate version
tags). The subscription logic inside the service needs to be aware of the version it accepts, while the publishing logic
needs to clearly indicate what version of a particular message is produced.

So for the example implementation of MessageLogger, the subscription command would look like this:

const { bootstrap } = require('@etherisc/microservice');

class MessageLogger {
constructor({ amqp }) {

this.amqp = amqp;
}
async bootstrap() {

this.amqp.consume({
messageType: '*',
// A name for the message type you subscribe for, there is a default

→˓value of '*'
// that means all types will be handled messagetypeVersion: '#',
// You can specify the particular version,
// all the versions for the fixed major (for example '1.*'),
// accept all versions with '#' or '*.*',
//, or use 'latest' as the value to accept the most recent version only,

→˓ignoring all others.
handler: async ({ content, fields, properties }) => {

(continues on next page)

53

GIF Manual Test Documentation, Release latest

(continued from previous page)

// the contents of the handling function
// In case of our logging service that could be any persistence logic
// saveToDatabase(content);
},

});
}

}

Conversely, the publishing logic, which would most likely be a part of the handler for some external event or another
message, may look like this:

await this.amqp.publish({
messageType: 'eventNotification',
// there is no default here, a particular message type needs to be invoked

→˓explicitly
messageVersion: '1.*',
// The version of the schema to use, accepts some of the masks used for

→˓subscriptions
content: { key1: value1, key2: value2, arrayofdata: [data1, data2], nestedobject:

→˓{key3: value3} },
// The content that will be passed to all the consumers, the structure will be

→˓validated
// to conform to the structure described in the message type description

correlationId: properties.correlationId,
// An optional trace attribute employed by RabbitMQ, used for debugging when the
// handling of one message fires an event that publishes another message

});

54 Chapter 19. Message versioning. Publish and Subscribe functions

CHAPTER 20

User Manual for the GIF sandbox Command Line Interface

Once developed by the Etherisc team, the Generic Insurance Framework (GIF) is released as an environ-
ment where product builders can create their own products. To access the GIF and to make user experience
more enjoyable, the Etherisc team has also created a so-called “sandbox” — a particular working envi-
ronment where product builders are able to experiment with their products in a test mode, not worrying
about possible “unexpected” results.

The next step is to equip product builders with a plain and powerful solution, enabling them to operate
the GIF, as well as a sandbox for it. Such a solution is now available for product builders through the GIF
Command Line Interface (CLI). Here, we present a quick reference on how to use the Command Line
Interface while working with the GIF.

For better understanding of this document, you can refer to the User manual for the GIF to refresh the
content and the features of the framework. There you can also find basic methods necessary for creating
your own product’s contract.

20.1 Prerequisites

To make interactions with the GIF efficient and pleasant, the very first thing to do is to setup the required working
environment. Such environment already exists and runs in the sandbox with all the necessary core smart contracts
deployed, as well as microservices activated and ready to use. In addition, you should install NodeJS (version 8.12.0
or later, npm version 6.4.1 or later) and Python.

After that, to install the CLI you just need to insert the npm install -g @etherisc/gifcli command in
the command line of your computer. You can also check the version of the CLI by running the gifcli version
command, as in the example below.

$ npm install -g @etherisc/gifcli

$ gifcli (-v|--version|version)
@etherisc/gifcli/1.1.2 win32-x64 node-v10.15.3

55

https://gif-manual.readthedocs.io/en/latest/index.html
https://nodejs.org/
https://www.python.org/

GIF Manual Test Documentation, Release latest

20.2 General description

The basic principle of the CLI is the same as of any other command line: to manage a programming working envi-
ronment with commands. Actually, you run the CLI within the operating system console of your computer (e.g., a
command line of Microsoft Windows, Ubuntu, etc.).

Here, we list commands available for product builders and will further describe each command in more detail.
There are a few basic commands in the CLI mode available right after installation of the gifcli necessary for mak-
ing the very first steps: gifcli console , gifcli exec , gifcli help [COMMAND] (or any other gif-
cli command with a space after “help” and without an additional “gifcli”, e.g. gifcli help user:register), gifcli
user:register , gifcli product:create , gifcli product:select , gifcli artifact:send
and gifcli user:logout .

The other commands are used when you have already created a product. These commands (beginning with “gif”) are
available in the console mode , which is run by the gifcli console command.

In the table below, you can see a list of commands, available on the GIF CLI.

Group of
commands/
methods

CLI mode
(gifcli [COMMAND]
— commands)

Console + Execute
mode
(gif.[METHOD]
— methods)

Common service
commands/
methods

gifcli console
gifcli exec
gifcli help [type here the name
of the necessary command,
i.e. product:create]

gif.help()
gif.help(‘type a com-
mand
here, i.e. product.get’)

Commands related to users
(product builders)

gifcli user:register
gifcli user:logout

—

Commands to manage
products

gifcli product:create
gifcli product:select
gifcli artifact:send

gif.product.get

Methods to set and oversee
the business processes
of a product

— gif.bp.create
gif.bp.list
gif.bp.getById
gif.bp.getByKey

Methods to interact with
product contracts

— gif.contract.call
gif.contract.send

Methods related to customers
(end-users of a product,
developed by
product builders)

— gif.customer.create
gif.customer.getById
gif.customer.list

Methods to manage
applications

— gif.application.list
gif.application.getById

Methods to interact
with a policy

— gif.policy.list
gif.policy.getById

Methods to manage
claims

— gif.claim.list
gif.claim.getById

Methods to work
with payouts

— gif.payout.list
gif.payout.getById

When using the CLI for the first time, you need to register a user. Then, you can create your product, add customers,
etc.

56 Chapter 20. User Manual for the GIF sandbox Command Line Interface

GIF Manual Test Documentation, Release latest

There are three modes of working with the CLI: a basic CLI mode (you can use it by inputing gifcli [COMMAND]
in your system’s command line), a console mode (using the gifcli console command) and an execute mode
(by the gifcli exec command). As we’ve mentioned, the first one becomes available right after the installation
of the GIF CLI. The other commands would be ready for use just after you have created a user and a product. The
console mode enables you to input methods one by one directly into the command line, and the execute mode allows
to write sequence of commands in a particular file and then execute this file in the CLI.

In the console mode, as well as in the execute mode, you interact with your product directly — the CLI executes
commands on behalf of the current product (you can see the name of your current product in such a line: GIF :: `

your product name ` $ [COMMAND]). As soon as you have several products, you can switch between
them getting to the necessary product by the gifcli product:select command. To execute the gifcli commands, you
should first exit from the console (or execute) mode by running Ctrl+C twice.

In case of doubt, you can always refer to the gifcli help [COMMAND] command in the CLI mode. There, you
can find a list of currently available commands. The execution of this command looks like that.

gifcli help
$ gifcli help
gifcli ======

VERSION
@etherisc/gifcli/1.0.5 win32-x64 node-v10.15.3

USAGE
$ gifcli [COMMAND]

COMMANDS
artifact manage artifacts
console run console mode
exec execute file
help display help for gifcli
product manage products
update update the gifcli CLI
user manage user

In the console mode (appears by the gifcli console command), you can input the gif.help() method into
the command line. This will show you methods available for the user. Here is an example.

$ gifcli console
GIF :: `your product name` > gif.help()
gif.info Information about the product
gif.help Get information about the command
gif.artifact.get Get artifact for contract
gif.contract.send Send transaction to contract
gif.contract.call Call contract
gif.customer.create Create customer
gif.customer.getById Get customer by id
gif.customer.list Get all customers
gif.bp.create Create new business process
gif.bp.getByKey Get business process by key identifier
gif.bp.getById Get business process by id identifier
gif.bp.list Get all business processes
gif.application.getById Get application by id
gif.application.list Get all applications
gif.policy.getById Get policy by id
gif.policy.list Get all policies
gif.claim.getById Get claim by id
gif.claim.list Get all claims

(continues on next page)

20.2. General description 57

GIF Manual Test Documentation, Release latest

(continued from previous page)

gif.payout.getById Get payout by id
gif.payout.list Get all payouts
gif.product.get Get product instance

To learn more about each of the above-mentioned methods use the gif.help('...') method. For instance,
gif.help('product.get').

20.3 A step-by-step guide

Here, we present basic steps that demonstrate you how to start working with the GIF and its command line interface
— from registering a user to making a payout by your product. In addition, you will find other available extension
commands in the General description section. This will help you to execute all the necessary processes.

We will go through all the steps necessary to interact with the GIF CLI on the basis of our default sample contracts.
You can create your own products (contracts) using whether required basic methods or other methods and business
logic developed and implemented by yourself.

Start working with the GIF CLI directly from running command line on your computer:

1. First, you need to input the gifcli user:register command in the CLI. After that, fill in the fields with
your first name, last name, and e-mail address, as well as create a password.

$ gifcli user:register

Firstname: John
Lastname: Johnson
Email: john.johnson@mail.com
Password: *******
Repeat password: *******

User registered

After this, a user will be created.

Attention: Be careful with the gifcli user:logout command. You need to use it only in case you want
to make a new user instead of the previous one. This command clears up the .gifconfig.json file in your home
directory. After executing the command, you will not be able to access your previously created products and
customers. The password, as well as email address, first and last names for a new user should be different to that
of the previous one.

In case you would need to exploit your previous user, you should backup the .gifconfig.json file with the required
credentials and then use it instead of the .gifconfig.json file with the data of your current one.

2. Then, obviously, you would like to start dealing with your products. If you want to create a product and become
a product owner, use the gifcli product:create command. There, you can specify a product name.
This name at the same time is registered at the RabbitMQ message broker.

$ gifcli product:create

Product name: one

Product created

58 Chapter 20. User Manual for the GIF sandbox Command Line Interface

https://gif-manual-test.readthedocs.io/en/latest/core_smart_contracts.html

GIF Manual Test Documentation, Release latest

3. After that, you should create a directory by the mkdir command (mkdir my-first-product in our
example) for your product (the “one” for our case), and go to it (using the cd ./my-first-product
command).

$ mkdir my-first-product

Directory: /Users/username

Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 3/26/2019 16:30 PM my-first-product

PS ./Users/username> cd my-first-product
PS ./Users/username/my-first-product>

4. Then, run the npm init -y command.

$ npm init -y

Wrote to ./my-first-product/package.json:

{
"name": "my-first-product",
"version": "1.0.0",
"description": "",
"main": "index.js",
"scripts": {
"test": "echo /"Error: no test specified/" && exit 1"

},
"keywords": [],
"author": "",
"license": "ISC"

}

5. After that, you should use the npm install truffle openzeppelin-solidity
truffle-hdwallet-provider @etherisc/gif command. A successful execution should end
up with the following lines.

$ npm install truffle openzeppelin-solidity truffle-hdwallet-provider @etherisc/gif

...
+ truffle@5.0.10
+ truffle-hdwallet-provider@1.0.6
+ openzeppelin-solidity@2.2.0
+ @etherisc/gif@1.0.0
added 892 packages from 1374 contributors and audited 3757 packages in 79.988s
found 0 vulnerabilities

6. The next step is to execute the ./node_modules/.bin/truffle init command:

$./node_modules/.bin/truffle init

> Preparing to download
> Downloading
> Cleaning up temporary files
> Setting up box

(continues on next page)

20.3. A step-by-step guide 59

GIF Manual Test Documentation, Release latest

(continued from previous page)

Unbox successful. Sweet!

Commands:

Compile: truffle compile
Migrate: truffle migrate
Test contracts: truffle test

7. Now you need to create your product’s smart contract and deploy it. In our example, we need to take the
following steps:

7a. First, we should replace the content of the truffle-config.js file in the “my-first-product” directory on our computer
with the following one:

1 const HDWalletProvider = require('truffle-hdwallet-provider');
2

3

4 module.exports = {
5 migrations_directory: process.env.MIGRATIONS_DIRECTORY || './migrations',
6 contracts_build_directory: process.env.CONTRACTS_BUILD_DIRECTORY || './build',
7

8 networks: {
9 development: {

10 host: 'localhost',
11 port: 8545,
12 network_id: 7777,
13 gas: 6600000,
14 gasPrice: 10 * (10 ** 9),
15 websockets: true,
16 },
17

18 coverage: {
19 host: 'localhost',
20 network_id: '*',
21 port: 8555, // the same port as in .solcover.js.
22 gas: 0xfffffffffff,
23 gasPrice: 0x01,
24 },
25

26 kovan: {
27 // MNEMONIC: BIP39 mnemonic, e.g. https://iancoleman.io/bip39/#english
28 // HTTP_PRODIVER: e.g. https://kovan.infura.io/<your-token>
29 provider: () => new HDWalletProvider(process.env.MNEMONIC, process.env.HTTP_

→˓PROVIDER),
30 network_id: 42,
31 confirmation: 2,
32 timeoutBlocks: 200,
33 skipDryRun: true,
34 gas: 6600000,
35 gasPrice: 10 * (10 ** 9),
36 },
37

38 rinkeby: {
39 // MNEMONIC: BIP39 mnemonic, e.g. https://iancoleman.io/bip39/#english
40 // HTTP_PRODIVER: e.g. https://rinkeby.infura.io/<your-token>
41 provider: () => new HDWalletProvider(process.env.MNEMONIC, process.env.HTTP_

→˓PROVIDER), (continues on next page)

60 Chapter 20. User Manual for the GIF sandbox Command Line Interface

GIF Manual Test Documentation, Release latest

(continued from previous page)

42 network_id: 4,
43 confirmation: 2,
44 timeoutBlocks: 200,
45 skipDryRun: true,
46 gas: 6600000,
47 gasPrice: 10 * (10 ** 9),
48 },
49 },
50

51 mocha: {
52 timeout: 20000,
53 useColors: true,
54 },
55

56 compilers: {
57 solc: {
58 version: '0.5.2',
59 settings: {
60 optimizer: {
61 enabled: true,
62 runs: 200,
63 },
64 evmVersion: 'byzantium', // -> constantinople
65 },
66 },
67 },
68 };

7b. Then, we can create our product contract taking the following one as an example. We create a SimpleProduct.sol
file in the “contracts” folder in our “my-first-product” directory with the content below.

1 pragma solidity 0.5.2;
2

3 import "@etherisc/gif/contracts/Product.sol";
4

5

6 contract SimpleProduct is Product {
7

8 event NewApplication(uint256 applicationId);
9 event NewPolicy(uint256 policyId);

10 event ApplicationDeclined(uint256 applicationId);
11 event NewClaim(uint256 policyId, uint256 claimId);
12 event NewPayout(uint256 claimId, uint256 payoutId, uint256 payoutAmount);
13 event PolicyExpired(uint256 policyId);
14 event PayoutConfirmation(uint256 payoutId, uint256 amount);
15

16 bytes32 public constant NAME = "SimpleProduct";
17 bytes32 public constant POLICY_FLOW = "PolicyFlowDefault";
18

19 constructor(address _productController)
20 public
21 Product(_productController, NAME, POLICY_FLOW)
22 {}
23

24 function applyForPolicy(
25 bytes32 _bpExternalKey,

(continues on next page)

20.3. A step-by-step guide 61

GIF Manual Test Documentation, Release latest

(continued from previous page)

26 uint256 _premium,
27 bytes32 _currency,
28 uint256[] calldata _payoutOptions
29) external onlySandbox {
30 uint256 applicationId = _newApplication(
31 _bpExternalKey,
32 _premium,
33 _currency,
34 _payoutOptions
35);
36 emit NewApplication(applicationId);
37 }
38

39 function underwriteApplication(uint256 _applicationId) external onlySandbox {
40 uint256 policyId = _underwrite(_applicationId);
41 emit NewPolicy(policyId);
42 }
43

44 function declineApplication(uint256 _applicationId) external onlySandbox {
45 _decline(_applicationId);
46 emit ApplicationDeclined(_applicationId);
47 }
48

49 function newClaim(uint256 _policyId) external onlySandbox {
50 uint256 claimId = _newClaim(_policyId);
51 emit NewClaim(_policyId, claimId);
52 }
53

54 function confirmClaim(uint256 _claimId, uint256 _payoutAmount) external
→˓onlySandbox {

55 uint256 payoutId = _confirmClaim(_claimId, _payoutAmount);
56 emit NewPayout(_claimId, payoutId, _payoutAmount);
57 }
58

59 function expire(uint256 _policyId) external onlySandbox {
60 _expire(_policyId);
61 emit PolicyExpired(_policyId);
62 }
63

64 function confirmPayout(uint256 _payoutId, uint256 _amount) external onlySandbox {
65 _payout(_payoutId, _amount);
66 emit PayoutConfirmation(_payoutId, _amount);
67 }
68

69 function getQuote(uint256 _sum) external view returns (uint256 _premium) {
70 require(_sum > 0);
71 _premium = _sum.div(20);
72 }
73 }

7c. Now we can proceed with making a deployment migration. Like in the previous step, we use the following sample
for migration. We create a 2_deploy_SimpleProduct.js file in the “migrations” folder in our “my-first-product”
directory and paste the text of the sample contract here.

1 const SimpleProduct = artifacts.require('SimpleProduct');
2

(continues on next page)

62 Chapter 20. User Manual for the GIF sandbox Command Line Interface

GIF Manual Test Documentation, Release latest

(continued from previous page)

3 const GIF_PRODUCT_SERVICE_CONTRACT = '0x0';
4

5 module.exports = deployer => deployer.deploy(SimpleProduct, GIF_PRODUCT_SERVICE_
→˓CONTRACT);

7d. After that, we need to set the value of the constant GIF_PRODUCT_SERVICE_CONTRACT to
0x6520354fa128cc6483B9662548A597f7FcB7a687 — the address of the deployed smart contract. It should be
placed in the GIF_PRODUCT_SERVICE_CONTRACT line of the 2_deploy_SimpleProduct.js file. For your
convenience we list addresses of the core smart contracts at the end of this manual.

7e. To finish with this step, we need to add the "compile": "truffle compile", "migrate":
"truffle migrate", commands to the “scripts” section of the package.json file in the my-first-product directory.

8. Then, you should execute the npm run compile command.

$ npm run compile

> my-first-product@1.0.0 compile ./my-first-product
> truffle compile

Compiling your contracts...
===========================
> Compiling @etherisc/gif/contracts/Product.sol
> Compiling @etherisc/gif/contracts/services/IProductService.sol
> Compiling @etherisc/gif/contracts/shared/RBAC.sol
> Compiling ./contracts/Migrations.sol
> Compiling ./contracts/SimpleProduct.sol
> Compiling openzeppelin-solidity/contracts/math/SafeMath.sol
> Compiling openzeppelin-solidity/contracts/ownership/Ownable.sol

...

> Artifacts written to ./my-first-product/build
> Compiled successfully using:

-solc: 0.5.2+commit.1df8f40c.Emscripten.clang

Note: Before running the next command, you should create a mnemonic here.

It is also required to fund your account with some test ETH on Rinkeby test network.

9. After that, you can continue with the migration using the HTTP_PROVIDER="https://rinkeby.
infura.io/v3/KEY" MNEMONIC="mnemonic" npm run migrate -- --network rinkeby
command. In the command text, instead of the word “KEY” paste your infura key and, instead of the word
“mnemonic”, input here the mnemonic, created in the previous step. To execute the command, you need to
create an account at Infura (if you haven’t yet) and paste the key from your account into the mentioned space in
the command.

Note: Operating on the Ethereum environment, all the transactions consume “gas”. You can face a warning message
like this: “Error: ** Deployment Failed *** “Migrations” – The contract code couldn’t be stored, please check your
gas limit.”* In this case, you need to top up your account with some ETH and execute the command again.

$ HTTP_PROVIDER="https://rinkeby.infura.io/v3/paste your infura key here" MNEMONIC="..
→˓." npm run migrate -- --network rinkeby

(continues on next page)

20.3. A step-by-step guide 63

https://iancoleman.io/bip39/#english
https://faucet.rinkeby.io/
https://infura.io/register

GIF Manual Test Documentation, Release latest

(continued from previous page)

> my-first-product-2@1.0.0 migrate ./my-first-product-2
> truffle migrate "--network" "rinkeby"

Compiling your contracts...
===========================
> Everything is up to date, there is nothing to compile.

Starting migrations...
======================
> Network name: 'rinkeby'
> Network id: 4
> Block gas limit: 0x6acec5

1_initial_migration.js
======================

Deploying 'Migrations'

> transaction hash:

→˓0x9313aeb218ae3b1174fd365c1ae921cc978e961d36b5616558a1003032d661ea
> Blocks: 0 Seconds: 8
> contract address: 0xACE701BfFd5c14EEFA565D1651f83D9ED9bd5e48
> account: 0x1DdCFb13eb5109E53763677E04BC9FB8fAb40D4b
> balance: xx.xxxxxxxx
> gas used: 221171
> gas price: 10 gwei
> value sent: 0 ETH
> total cost: 0.00xxxxxx ETH

> Saving migration to chain.
> Saving artifacts

> Total cost: 0.00xxxxxx ETH

2_deploy_SimpleProduct.js
======================

Deploying 'SimpleProduct'

> transaction hash:

→˓0xcd7bfec51303bb66639bd90cf6db2c40f2e875d744e97b35c41102c3e5a03170
...

> Saving migration to chain.
> Saving artifacts

> Total cost: 0.0xxxxxxx ETH

Summary
=======
> Total deployments: 2
> Final cost: 0.0xxxxxxx ETH

10. Now you should input the gifcli artifact:send --file {PATH_TO_CONTRACT_ARTIFACT}
--network rinkeby command, where PATH_TO_CONTRACT_ARTIFACT stands for a path to the .json
file with artifacts for the contract. In our example, this part of the command looks like that: gifcli artifact:send
–file ./my-first-product/build/SimpleProduct.json –network rinkeby. You can find the SimpleProduct.json file
(from our example) in the “build” folder of the “my-first-product” directory. It will appear on your computer
after you execute the npm run compile command. The response for the successful execution of the command

64 Chapter 20. User Manual for the GIF sandbox Command Line Interface

GIF Manual Test Documentation, Release latest

will be the following:

$ gifcli artifact:send --file ./my-first-product/build/SimpleProduct.json --network
→˓rinkeby

{ result: 'Artifact saved',
product: 'one',
contractName: 'SimpleProduct',
address: '0xF8450d6b6be91C861d7ef2a91B5e2695aeAf335a',
network: 'rinkeby',
version: '1.0.5' }

Now we’ve successfully created a product smart contract.

11. As we are already in the “my-first-product” directory, we can run the console mode to proceed interacting with
our product “one”. We execute the gifcli console command.

$ gifcli console

GIF :: one >

12. By executing the gif.product.get() method, the CLI demonstrates the artifacts of the current product
as they are registered on the GIF (compare the “name” of the product “SimpleProduct” instead of “one” at
RabbitMQ).

$ gif.product.get()

{ key: 18,
created: '2019-03-26T16:47:07.176Z',
updated: '2019-03-26T16:49:21.580Z',
productId: 21,
name: 'SimpleProduct',
addr: '0xf8450d6b6be91c861d7ef2a91b5e2695aeaf335a',
policyFlow: 'PolicyFlowDefault',
release: 0,
policyToken: '0x00',
approved: true,
paused: false,

productOwner: '0x00' }

13. Now, you can proceed with creating a customer. Here, the gif.customer.create({ firstname:
'...', lastname: '...', email: '...@....com'}) method will help:

$ gif.customer.create({firstname:'Dear',lastname:'Customer',email:'dear.customer@mail.
→˓com', age: 33})

{ customerId:
'5efaf976b1fb4fe0be9b0d68e833c469757c2749863c33b77ce907e6f3bc8cee'

}

You can add other necessary arguments about your customers, e.g., the age (as in our example), etc. in the text of the
method.

14. Then, using the gif.customer.getById("insert customer ID here") method, you can receive
specific data related to a certain customer by a customer ID. From the previous step, you will receive the output
with the customer’s first name, last name, e-mail address, and age.

20.3. A step-by-step guide 65

GIF Manual Test Documentation, Release latest

$ gif.customer.getById(
→˓"5efaf976b1fb4fe0be9b0d68e833c469757c2749863c33b77ce907e6f3bc8cee")

{ id:
'5efaf976b1fb4fe0be9b0d68e833c469757c2749863c33b77ce907e6f3bc8cee',
firstname: 'Dear',
lastname: 'Customer',
email: 'dear.customer@mail.com',
created: '2019-03-26T16:49:59.059Z',
updated: '2019-03-26T16:49:59.059Z',
age: '33' }

15. You can also input the gif.customer.list() method. Like other methods related to the “lists” of partic-
ular issues, this method results in the list of customers of your current productt. In our example, we have only
one customer.

$ gif.customer.list()

[{ id:
'5efaf976b1fb4fe0be9b0d68e833c469757c2749863c33b77ce907e6f3bc8cee',

firstname: 'Dear',
lastname: 'Customer',
email: 'dear.customer@mail.com',
created: '2019-03-26T16:50:20.059Z',
age: '33' }]

16. The (bp - business process) gif.bp.create({ manager: 'customer_name' or customerId:
'...' or both as well}) method returns bpExternalKey required for applyForPolicy in a con-
tract to link policy flow objects with an external database. This very method is used to con-
nect a customer (a customer name or an ID is required) and all his/her data (optional inputs
are provided in the {} brackets) important for the business process. The method can also look
like that: gif.bp.create({ manager: 'Dear', customer: { firstname: 'Dear',
lastname: 'Customer', email: 'dear.customer@mail.com' } }).

$ gif.bp.create({manager: 'Dear', customerId:
→˓'5efaf976b1fb4fe0be9b0d68e833c469757c2749863c33b77ce907e6f3bc8cee'})

{ bpExternalKey: 'b5aaa0546e264f39a92baea697f53be5',
customerId:
'5efaf976b1fb4fe0be9b0d68e833c469757c2749863c33b77ce907e6f3bc8cee' }

17. You can also make a list of your business processes by using the gif.bp.list() method:

$ gif.bp.list()

[{ key: 'b5aaa0546e264f39a92baea697f53be5',
created: '2019-03-26T16:50:53.855Z',
customerId: '5efaf976b1fb4fe0be9b0d68e833c469757c2749863c33b77ce907e6f3bc8cee',
contractKey: null,
productId: 1,
id: 1,
applicationId: 1,
policyId: 0,
hasPolicy: false,
hasApplication: true,
tokenContract: '0x00',

(continues on next page)

66 Chapter 20. User Manual for the GIF sandbox Command Line Interface

GIF Manual Test Documentation, Release latest

(continued from previous page)

tokenId: -1,
registryContract: '0x00',
release: 0,
state: 0,
stateMessage: '',
bpExternalKey: 'b5aaa0546e264f39a92baea697f53be5',
createdAt: 1553619141,
updatedAt: 1553619141,
manager: 'Dear' }]

You can use the gif.bp.getById() method as well as the gif.bp.getByKey() method to read a part of
commonly shared data (metadata) of a particular business process. Metadata is contained both in the product’s contract
and in the product’s database. The gif.bp.getById() method uses the ID of a business process in the product’s
contract (as you see the “id” line from above). The gif.bp.getByKey() method, that requires to input a unique
key of the business process — an identifier in your product database (the “key” line in the example above). The same
key is used when you apply for a policy (the 20th step in our example).

18. One more step is to execute the gif.contract.call("ProductName", "getQuote", [e.g.
sum of payout by the contract]) method. In our case, this method calls the method “getQuote”,
which sets the premium for our contract. As you can see from the sample, the premium is about 5% of the
payout. By the gif.contract.call method, you can read any data of your product’s contract or get a result of an
executed function. This method does not change the state of the contract and does not make a transaction on the
blockchain.

Here is the data from our sample:

$ gif.contract.call('SimpleProduct','getQuote',[200])

{ _premium: '10' }

19. The gif.contract.send("ProductName", "applyForPolicy", ['ExternalKey', sum
of payout, 'currency', [sum of premium]]) method can be used for different purposes. In
place of the “ExternalKey” text in the method you need to input the key given at the 18th step. As you can
see from our example, it helps to apply for a policy but it is also used for underwriting applications, as well as
creating and confirming claims. We will do this in a few steps. By this method, you can send transactions to the
contract’s method. As a result, the state of the contract is changed and a transaction on the blockchain is made.

$ gif.contract.send('SimpleProduct', 'applyForPolicy', [
→˓'b5aaa0546e264f39a92baea697f53be5', 200,'EUR',[10]])

{ blockHash:
'0xd21fc587a9dfa50b65e08267b6d4f43d1b68fe7a1dc5a3330c0d0e9bcaae9773',
blockNumber: 4139120,
contractAddress: null,
cumulativeGasUsed: 437007,
from: '0x0e48196f6e7c8df0006bb7e7122e1e9f5ef46d6a',
gasUsed: 351892,
logsBloom:

...
returnValues: [Object],
event: 'NewApplication',
signature:
'0x0ff47c4a3dc48719ecfd1876116e80d7d76ec7cb67248ae49449f9104747af29',
raw: [Object] } } }

20. To look through applications of your product, you can execute the gif.application.list() method.

20.3. A step-by-step guide 67

GIF Manual Test Documentation, Release latest

$ gif.application.list()

{ key: 'e0937732cb1749c7aa81795393c7d3d2',
created: '2019-03-26T16:52:22.019Z',
contractKey: null,
productId: 21,
id: 13,
metadataId: 13,
premium: 200,
currency: 'EUR',
payoutOptions: '["10"]',
state: 0,
stateMessage: '',
createdAt: 1553619141,
updatedAt: 1553619141 }

21. After creating applications, you can get data of a particular application by its ID using the gif.
application.getById(ID number of an application) method. In our example, we got the
ID number of the application (see the previous step). Its ID = 13. Then, we place it in brackets.

$ gif.application.getById(13)
{ key: 'e0937732cb1749c7aa81795393c7d3d2',

created: '2019-03-26T16:52:22.019Z',
updated: '2019-03-26T16:52:22.019Z',
contractKey: null,
productId: 21,
id: 13,
metadataId: 13,
premium: 200,
currency: 'EUR',
payoutOptions: '["10"]',
state: 0,
stateMessage: '',
createdAt: 1553619141,
updatedAt: 1553619141 }

22. With the gif.contract.send("ProductName", "underwriteApplication",
[application ID]) method, you can underwrite a certain application.

$ gif.contract.send('SimpleProduct','underwriteApplication',[13])

{ blockHash:
'0x1d580e979734106c2b46eccb8f9b2522e342e58b6666104bbcbcd697fceb9152',
blockNumber: 4139193,
contractAddress: null,
cumulativeGasUsed: 1884903,
from: '0x0e48196f6e7c8df0006bb7e7122e1e9f5ef46d6a',
gasUsed: 235013,
logsBloom:

...
returnValues: [Object],
event: 'NewPolicy',
signature:
'0x174c94eb4ef02e690e5bd01790c284af662a414381f1c631bf388a8850a5db13',

raw: [Object] } } }

23. The gif.policy.list() method enables you to get a list of policies:

68 Chapter 20. User Manual for the GIF sandbox Command Line Interface

GIF Manual Test Documentation, Release latest

$ gif.policy.list()

[{ key: '30762af6af2d4267afc72f1714b1eb52',
created: '2019-03-26T16:56:06.630Z',
contractKey: null,
productId: 21,
id: 3,
metadataId: 13,
state: 0,
stateMessage: '',
createdAt: 1553619366,
updatedAt: 1553619366 }]

24. You can also receive specific data related to a certain policy by a policy ID using the gif.policy.
getById(ID number of a policy) method. As you can see from the previous step, the ID number
of the policy is 3:

$ gif.policy.getById(3)

{ key: '30762af6af2d4267afc72f1714b1eb52',
created: '2019-03-26T16:56:06.630Z',
updated: '2019-03-26T16:56:06.630Z',
contractKey: null,
productId: 21,
id: 3,
metadataId: 13,
state: 0,
stateMessage: '',
createdAt: 1553619366,
updatedAt: 1553619366 }

25. To create a claim use the gif.contract.send("ProductName", "newClaim", [ID number
of a policy]) method:

$ gif.contract.send('SimpleProduct','newClaim',[3])

{ blockHash:
'0x30da89398de8083a250f031af72fbfc27fa64cfd2bb1a88d3963e5e151fc9582',
blockNumber: 4139333,
contractAddress: null,
cumulativeGasUsed: 1017872,
from: '0x0e48196f6e7c8df0006bb7e7122e1e9f5ef46d6a',
gasUsed: 185825,
logsBloom:

...
returnValues: [Object],
event: 'NewClaim',
signature: '0xcb97bbaee7e6aa4ae5d3a69e8a66d1f15b6d4ebb585e5f8f26eaab86c49ae665',
raw: [Object] } } }

26. To list claims, you can use the gif.claim.list() method.

$ gif.claim.list()

[{ key: '651328ab2b764b52b4ba696a2f791ab9',
created: '2019-03-26T16:58:21.538Z',
contractKey: null,

(continues on next page)

20.3. A step-by-step guide 69

GIF Manual Test Documentation, Release latest

(continued from previous page)

productId: 21,
id: 3,
metadataId: 13,
data: '',
state: 0,
stateMessage: '',
createdAt: 1553619501,
updatedAt: 1553619501 }]

27. As you have already seen earlier, the same behavior, can be achieved by the gif.claim.getById(ID
number of a policy) method:

$ gif.claim.getById(3)

{ key: '651328ab2b764b52b4ba696a2f791ab9',
created: '2019-03-26T16:58:21.538Z',
updated: '2019-03-26T16:58:21.538Z',
contractKey: null,
productId: 21,
id: 3,
metadataId: 13,
data: '',
state: 0,
stateMessage: '',
createdAt: 1553619501,
updatedAt: 1553619501 }

28. You can provide a confirmation of a claim by the gif.contract.send("ProductName",
"confirmClaim", [ID number of a claim, sum of payout]) method:

$ gif.contract.send('SimpleProduct','confirmClaim',[3,100])

{ blockHash:
'0x129315bc294f7444c90e84c73ef81e2629c5939dd62bac1d23d15b4538ee809b',
blockNumber: 4139427,
contractAddress: null,
cumulativeGasUsed: 1932170,
from: '0x0e48196f6e7c8df0006bb7e7122e1e9f5ef46d6a',
gasUsed: 283098,
logsBloom:

...
returnValues: [Object],
event: 'NewPayout',
signature:
'0xf2891b2b2049ac20caebda64567475aab2ad4d50f1faa089cda0d70aaa1fb3f2',

raw: [Object] } } }

29. To make a payout, you need to confirm it using the gif.contract.send("ProductName",
"confirmPayout", [3, 100]) method:

$ gif.contract.send('SimpleProduct','confirmPayout',[3,100])

{ blockHash:
'0x80c925e2f6e4eea469d5c6ab33f70e8291c1a25c3e56478155423e15bf917ae8',

blockNumber: 4139446,
contractAddress: null,

(continues on next page)

70 Chapter 20. User Manual for the GIF sandbox Command Line Interface

GIF Manual Test Documentation, Release latest

(continued from previous page)

cumulativeGasUsed: 110977,
from: '0x0e48196f6e7c8df0006bb7e7122e1e9f5ef46d6a',
gasUsed: 110977,
logsBloom:

...
returnValues: [Object],
event: 'PayoutConfirmation',
signature:
'0x0ad736fbe1571767f34d1bfa0cebbaf3c0424d30452fdc42167509bb5060ad82',

raw: [Object] } } }

30. Finally, you can see a list of payouts of your product by executing the gif.payout.list() method:

$ gif.payout.list()

[{ key: 'de2c53312e72425ab913c2e760ec5efd',
created: '2019-03-26T17:00:06.647Z',
contractKey: null,
productId: 21,
id: 3,
metadataId: 13,
claimId: 3,
expectedAmount: 0,
actualAmount: 100,
state: 1,
stateMessage: '',
createdAt: 1553619606,
updatedAt: 1553619741 }]

You can also use the gif.payout.getById(ID number of a payout) method when you want to receive
specific data related to a certain payout by its ID.

With these basic steps, you can start using the Generic Insurance Framework.

Note: For your convenience, we also provide the addresses of the smart contracts, deployed in the blockchain test
network Rinkeby. These contracts enable the necessary functionality for the GIF CLI. In particular, you should use
the ProductService contract to deploy your own product’s contract.

Network: rinkeby (id: 4)

InstanceOperatorService: 0x39F7826D3796BC4a2Eb2F0B8fF3799f30D02CBf5

License: 0x9Fb57F1C2291395a0F654A03C2053309a9928d39

LicenseController: 0xd5337b57c636EEF4Aa5C78625816715AE945f81A

Migrations: 0xa38910BB20F790aaC9F03C498b5bb61382a0dCF7

OracleOwnerService: 0xcD8438bA7580139e5df05067cd868ea31A7eb9E8

OracleService: 0x5F4a25c03054f8072Bd10C6afc515E5C4a146f27

Policy: 0x10154588296B531B880ca669E0807A3dA78F2Ae8

PolicyController: 0x1fCda1D5efBCC82d24e0438C618DDCe7383827AB

PolicyFlowDefault: 0x04EC0D88D70713ba304ad54c6f22200ea93dDd57

ProductService: 0x6520354fa128cc6483B9662548A597f7FcB7a687

20.3. A step-by-step guide 71

GIF Manual Test Documentation, Release latest

Query: 0x2936555290B17062e3472CF3a5A3DE3B84A01515

QueryController: 0xAd517b5da0b62DfF56ac57d612f4bEf0eA1e1b78

Registry: 0x5E78A5a3ffd005761B501D6264cEcD87E2d331B0

RegistryController: 0x4Bf8b2622a1b5B6b2865087323E6C518a3946AbA

72 Chapter 20. User Manual for the GIF sandbox Command Line Interface

CHAPTER 21

GIF Tutorial: How to build an insurance product on GIF

This is the first part of the GIF Tutorial aimed at explaining how to build products on top of Etherisc’s
Generic Insurance Framework. In this article, we will go through all the steps of creating your very first
product on top of GIF. So put your fingers on the keyboard and let’s get moving.

First of all, what is “GIF”? The acronym stands for “Generic Insurance Framework”. Its main goal is to
provide a simple and clean interface to build decentralized insurance products. Core contracts are aimed
to be deployed on-chain.

A product contract acts as a client and utilizes generic methods which are important parts of every policy
lifecycle. From this point of view, a product’s business logic could be defined in a single smart contract
and all the hard work is delegated to the GIF.

21.1 Some insurance terminology

Before we start, let’s define some insurance-specific terminology.

• An insurance company is a legal body that is qualified in accepting risks against a premium. In most countries,
insurance companies need a license. The insurance company is not necessarily the entity which runs the tech-
nical process; it can also be outsourced to a service provider. Most of the other functions in the value chain can
also be taken by other parties (e.g. distribution, claims management, etc.). The only function which cannot be
delegated is the actual transfer of the risk.

• An application is a formal request of the customer for an insurance policy. It is a signal from the customer to
the insurance company: “I ask for insurance cover”.

• The application is then checked by the insurance company and either accepted or declined. The process of
accepting an application is called underwriting. The person who performs this action is an “underwriter”.
By underwriting, the insurance company commits itself to transfer the risk from the customer to the insurance
company. This fact is documented in a contract. This contract is called a policy. A contract is binding for both
parties: The customer is committed to paying the premium and the insurance company is committed to covering
a loss in case an insured event occurs.

• If an insured event occurs, the customer typically files a claim — a step which can be omitted in case of
parametric insurance, where a data-driven oracle takes the responsibility to file the claim automatically.

73

GIF Manual Test Documentation, Release latest

• The claim is then checked by the insurance company and if the insurance company decides that the claim is
valid then a payout is triggered (e.g. the insurance company will deny the claim if the premium has not been
paid). Again, in a parametric case, the insurance company can delegate the decision to a rule-based engine or to
an external independent oracle.

• Payouts can be done in one or more parts.

GIF provides generic functions for this lifecycle and a generic workflow which controls the sequence of states. In
the next section, we will describe these functions and how they work in detail. Every function can be assigned to a
role, which can be defined by the product designer. Typical roles are e.g. underwriter, claims manager, application
manager, bookkeeper but of course the product designer is not limited to these.

21.2 Generic Lifecycle Functions

Here is the list of magic methods available for every product:

• _register (each product needs to be registered in order to get access to the GIF functionality)

• _newApplication (to put application data into the storage)

• _underwrite (to underwrite an application and create a new policy)

• _decline (to decline an application)

• _newClaim (to create a new claim for policy)

• _confirmClaim (to confirm a claim and create a payout object)

• _declineClaim (to decline a claim)

• _payout (to confirm an off-chain payout)

• _request (to request data or action from the oracle)

• _createRole (to create roles for actors)

• _addRoleToAccount (to assign roles to actors)

The names of these methods start with an underscore to highlight the fact that these are internal methods and you can
override them in your product. For example, you are free to have the newApplication method in your contract and
use _newApplication in it as well.

74 Chapter 21. GIF Tutorial: How to build an insurance product on GIF

CHAPTER 22

The idea for a new product

In this article, we will build a very simple product. The main goal is to provide you a path through the process of
building your own product. In this case, we will build an insurance product for an electronic store, which sells screens
for laptops.

Let’s assume that a screen is unrepairable. If it’s broken (and of course only if it is an insurance case), a payout should
be equal to the price of the screen.

The pricing model is very simple. Let’s assume that a policy premium should be 10% of the laptop screen price.

The policy expiration period is 1 year.

The following actors will take part in the process: an application manager, an underwriter, a claims manager and a
bookkeeper.

Here are the steps of the product life cycle:

• The customer applies for a policy.

• The application manager creates an application for the policy on behalf of the customer.

• The underwriter underwrites or declines the application.

• If the application is underwritten, a new policy is issued.

• If something wrong happens with the laptop screen, the customer can create a claim.

• The claims manager confirms or declines this claim.

• If the claim is confirmed, a new payout is created.

• Then, the bookkeeper should pay to the customer and confirm that the payout has been executed.

• After the expiration period ends, the policy should be expired.

75

GIF Manual Test Documentation, Release latest

76 Chapter 22. The idea for a new product

CHAPTER 23

Setting up a development environment

23.1 Prerequisites:

Node.js should be installed on your computer. If you already have it, then check its version. It shouldn’t be too old.
Use at least version 8.12.0 but below 12 (to see if Node.js is installed, open your terminal and type “node -v”, this
should show you a current version).

GIF consists of 3 parts:

• Core smart contracts

• Microservices represent a utility layer. They are available to provide useful functionality for product builders
(off-chain data storage, watch Ethereum events, interact with smart contracts (call data and send transactions),
send emails, telegram notifications, etc.). More detailed information about available microservices will be
published in the next articles.

• CLI tool (gifcli). A command-line interface to interact with the sandbox environment.

23.2 Registration

In order to create products, you have to be registered as a product owner. Use the “./bin/run user:register” command
to register in the sandbox. It will require to insert some information: first name, last name, email, and password.

Prepare environment variables, like this and put them to your shell env file (e.g. .bashrc, .zshrc, etc.):

export GIF_API_HOST="http://localhost"
export GIF_AMQP_HOST="localhost”
cd ./cli
./bin/run user:register

After the registration, the product owner is permitted to create a product. Let’s create the first one.

./bin/run product:create

77

https://nodejs.org/en/

GIF Manual Test Documentation, Release latest

That’s it. Now we can start creating a smart contract for the product.

78 Chapter 23. Setting up a development environment

CHAPTER 24

Coding part

24.1 Configure a Truffle project

Now we are ready to build a product. Create a new directory for it.

mkdir estore-insurance
cd estore-insurance

Install required dependencies:

• Truffle — a development environment for smart contracts, truffle-hdwallet-provider — we use it to sign trans-
actions during the deployment with a mnemonic account.

• @etherisc/gif — GIF core smart contracts — we need the Product.sol contract to inherit from it.

• openzeppelin-solidity — a library for smart contract development — we will use Ownerable.sol from it.

The last command here will bootstrap a typical Truffle project for us.

npm init -y
npm install truffle truffle-hdwallet-provider @etherisc/gif openzeppelin-solidity
./node_modules/.bin/truffle init

Edit truffle-config.json

module.exports = {
networks: {

development: {
host: 'localhost',
port: 8545,
network_id: 7777,
gas: 6600000,
gasPrice: 10 * (10 ** 9),
websockets: true,

},

(continues on next page)

79

https://truffleframework.com/
https://openzeppelin.org/

GIF Manual Test Documentation, Release latest

(continued from previous page)

},
compilers: {
solc: {

version: "0.5.2",
settings: {

optimizer: {
enabled: true,
runs: 200,

},
},

},
},

};

Then add “compile” and “migrate” commands to the scripts section in the package.json file. The first one will be used
to compile smart contracts. The second one is needed to deploy them to the relevant network (we will deploy to local
blockchain).

...

"scripts": {
"compile": "truffle compile",
"migrate": "truffle migrate"

},

...

File: ./package.json

80 Chapter 24. Coding part

CHAPTER 25

Create a smart contract

Create a new file “EStoreInsurance.sol” in the contracts directory with the following content:

pragma solidity 0.5.2;
import "<PATH_TO_GIF>/core/gif-contracts/contracts/Product.sol";
contract EStoreInsurance is Product {
bytes32 public constant NAME = "EStoreInsurance";
bytes32 public constant POLICY_FLOW = "PolicyFlowDefault";
constructor(address _productService)
public

Product(_productService, NAME, POLICY_FLOW) {}
}

File: ./contracts/EStoreInsurance.sol

First of all, we imported the Product contract from the GIF package and inherited from it. From now, if we deploy this
contract, our product will become a client for GIF contracts through the ProductService contract (we pass its address
as a constructor argument). Look at these magic constants: NAME and POLICY_FLOW. NAME is a name for your
product. The only restriction here is that it should fit the 32-bytes length. The POLICY_FLOW constant should be
defined to choose the core contract, which will represent the policy lifecycle for this product. Right now, we have
only this contract — “PolicyFlowDefault”. And we have plans to create different versions of it for different policy
lifecycles.

In the constructor, we call the Product’s constructor and pass the address of ProductService to it (this address is
published in GIF repository on Github). The Product’s constructor will call the “register” function and your product
contract will be proposed as a product (It should be approved by the administrator before this product starts to accept
new applications. But don’t worry, in the sandbox, the product will be approved automatically).

Then let’s define risk. So far, as each product has its own set of fields we keep such data on the product contract side.
In this particular case, risk contains brand, model, and year fields.

...

bytes32 public constant POLICY_FLOW = "PolicyFlowDefault";
struct Risk {

(continues on next page)

81

https://github.com/etherisc/GIF#gif-core-contracts-on-rinkeby

GIF Manual Test Documentation, Release latest

(continued from previous page)

bytes32 brand;
bytes32 model;
uint256 year;

}
mapping(bytes32 => Risk) public risks;
constructor(address _productService)

...

File: ./contracts/EStoreInsurance.sol

Add a public function to calculate a premium based on a certain price. This function could be used to provide quotas
to applicants.

...

constructor(address _productService) public Product(_productService, NAME, POLICY_
→˓FLOW) {}
function getQuote(uint256 _price) public pure returns (uint256 _premium) {

require(_price > 0, "ERROR::INVALID PRICE");
_premium = _price.div(10);

}

File: ./contracts/EStoreInsurance.sol

Now we can define a function that will be used to apply for a policy.

...

_premium = _price.div(10);
}
function applyForPolicy(

bytes32 _brand,
bytes32 _model,
uint256 _year,
uint256 _price,
uint256 _premium,
bytes32 _currency,
bytes32 _bpExternalKey

)external onlySandbox {
require(_premium > 0, "ERROR:INVALID_PREMIUM");
require(getQuote(_price) == _premium, "ERROR::INVALID_PREMIUM");
bytes32 riskId = keccak256(abi.encodePacked(_brand, _model, _year));
risks[riskId] = Risk(_brand, _model, _year);
uint256[] memory payoutOptions = new uint256[](1);
payoutOptions[0] = _price;
uint256 applicationId = _newApplication(_bpExternalKey, _premium, _currency,

→˓payoutOptions);
emit LogRequestUnderwriter(applicationId);

}

File: ./contracts/EStoreInsurance.sol

We use the modifier “onlySandbox” here. It restricts permissions for this method to the sandbox account. As you
will see later, as a product builder you can utilize the sandbox microservice to send transactions to your contract. The
applyForPolicy method also contains the _newApplication invocation. It will create a new application in GIF core
contracts.

82 Chapter 25. Create a smart contract

GIF Manual Test Documentation, Release latest

Create other required functions in the same manner.

...

emit LogRequestUnderwriter(applicationId);
}
function underwriteApplication(uint256 _applicationId) external onlySandbox {

uint256 policyId = _underwrite(_applicationId);
emit LogApplicationUnderwritten(_applicationId, policyId);

}
function declineApplication(uint256 _applicationId) external onlySandbox {

_decline(_applicationId);
emit LogApplicationDeclined(_applicationId);

}
function createClaim(uint256 _policyId) external onlySandbox {

uint256 claimId = _newClaim(_policyId);
emit LogRequestClaimsManager(_policyId, claimId);

}
function confirmClaim(uint256 _applicationId, uint256 _claimId) external onlySandbox {

uint256[] memory payoutOptions = _getPayoutOptions(_applicationId);
uint256 payoutId = _confirmClaim(_claimId, payoutOptions[0]);
emit LogRequestPayout(payoutId);

}
function confirmPayout(uint256 _claimId, uint256 _amount) external onlySandbox {

_payout(_claimId, _amount);
emit LogPayout(_claimId, _amount);

}

File: ./contracts/EStoreInsurance.sol

Don’t forget to define events for your product.

contract EStoreInsurance is Product {
event LogRequestUnderwriter(uint256 applicationId);
event LogApplicationUnderwritten(uint256 applicationId, uint256 policyId);
event LogApplicationDeclined(uint256 applicationId);
event LogRequestClaimsManager(uint256 policyId, uint256 claimId);
event LogClaimDeclined(uint256 claimId);
event LogRequestPayout(uint256 payoutId);
event LogPayout(uint256 claimId, uint256 amount);
bytes32 public constant NAME = "EStoreInsurance";

...

File: ./contracts/EStoreInsurance.sol

Now is the time to deploy this contract. In the migrations folder, create the “2_deploy_EStoreInsurance.js” file with
the content:

const EStoreInsurance = artifacts.require("EStoreInsurance");
const GIF_PRODUCT_SERVICE_CONTRACT ="<!-- Insert address of productService contract --
→˓>";
module.exports = deployer => deployer.deploy(EStoreInsurance, GIF_PRODUCT_SERVICE_
→˓CONTRACT);

File: ./migrations/2_deploy_EStoreInsurance.js

Look how we use the address of the ProductService contract to define GIF core contract. This address is published in
GIF repository on Github . The product will interact with it.

83

https://github.com/etherisc/GIF#gif-core-contracts-on-rinkeby

GIF Manual Test Documentation, Release latest

npm run compile

If everything is fine, the contract will be compiled without issues.

npm run migrate

The contract will be deployed on the local blockchain.

84 Chapter 25. Create a smart contract

CHAPTER 26

Interact with the smart contract

Send artifacts of your deployment to GIF Sandbox:

cd ./cli
./bin/run artifact:send --file ./build/contracts/EStoreInsurance.json --network
→˓development

After that, the product will be approved automatically and you can start interacting with it. Enter the console mode:

./bin/run console

Run these commands one by one to go through the whole policy lifecycle from application creation to policy payout.

First of all, execute this command. If your product is approved, you will get information about it.

gif.product.get()

Create a new customer. This data is private and available only to the product owner.

gif.customer.create({ firstname: "Jow", lastname: "Dow", email: "jow@dow.com" })

Now start a new business process.

gif.bp.create({ customerId: "GET-CUSTOMER-ID-FROM-PREV-COMMAND" })

Here is how you can call your contract data:

gif.contract.call("EStoreInsurance", "getQuote", [100])

Now let’s apply for a policy:

gif.contract.send("EStoreInsurance", "applyForPolicy", ["APPLE", "A1278", "2012",
→˓1000, 100, "EUR", "PUT-BP-KEY-HERE"])

Check if it is created:

85

GIF Manual Test Documentation, Release latest

gif.application.getById(1)
gif.application.list()

Underwrite the application. A new policy should be issued.

gif.contract.send("EStoreInsurance", "underwriteApplication", [1])

Check the new policy:

gif.policy.getById(1)
gif.policy.list()

Create a claim for the policy:

gif.contract.send("EStoreInsurance", "createClaim", [1])

Check the claim:

gif.claim.getById(1)
gif.claim.list()

Confirm the claim. A new payout should be created.

gif.contract.send("EStoreInsurance", "confirmClaim", [1, 1])

Check the payout status:

gif.payout.getById(1)
gif.payout.list()

As soon as we use fiat payments here, the external payout should be confirmed. Let’s do it.

gif.contract.send("EStoreInsurance", "confirmPayout", [1, 100])

And check the final payout status:

gif.payout.getById(1)
gif.payout.list()

Congratulations!) You have just built your first insurance product!

86 Chapter 26. Interact with the smart contract

	User Manual for the Generic Insurance Framework
	Terminology

	Generic Insurance Framework
	Core Smart Contracts
	Product Service
	Policy Flow

	Modules
	The license module
	The policy module
	The query module
	The registry module
	Use Cases for Product Owners
	Register a product
	Role assignment by a product

	Implementing a product policy workflow
	Using a generic policy workflow
	Creating a new or update default policy workflow

	On-chain and off-chain storage
	On-chain
	Profiling

	Make Payouts
	Managing oracles
	Actors
	Description
	A workflow

	Upgrading policies
	Notify Clients
	View Ledger of Funds on Different Accounts
	Message Queue
	The @etherisc/microservice npm package
	Message versioning. Publish and Subscribe functions
	User Manual for the GIF sandbox Command Line Interface
	Prerequisites
	General description
	A step-by-step guide

	GIF Tutorial: How to build an insurance product on GIF
	Some insurance terminology
	Generic Lifecycle Functions

	The idea for a new product
	Setting up a development environment
	Prerequisites:
	Registration

	Coding part
	Configure a Truffle project

	Create a smart contract
	Interact with the smart contract

