

GIECS Documentation

Giecs Intermediate Environment for Concatenative, Stack-oriented programming.

[image: https://img.shields.io/travis/michaelsippel/giecs/master.svg?label=master]
 [https://travis-ci.org/michaelsippel/giecs/branches][image: https://img.shields.io/travis/michaelsippel/giecs/dev.svg?label=dev]
 [https://travis-ci.org/michaelsippel/giecs/branches][image: https://img.shields.io/github/tag/michaelsippel/giecs.svg]
 [https://github.com/michaelsippel/giecs/tags][image: https://img.shields.io/github/license/michaelsippel/giecs.svg]
 [https://github.com/michaelsippel/giecs/blob/doc/LICENSE]GIECS allows you to create a custom intermediate environment or virtual machine for scripting and compiling. Its design is concatenative and stack-based, making it easy to implement frontends for LISP, Forth, Joy or functional languages like Haskell.

Table Of Contents

	1. Overview
	1.1. Motivation

	1.2. Use Cases

	2. Components
	2.1. Virtual Memory

	2.2. Program Evaluation

	3. Getting Started
	3.1. Building GIECS
	3.1.1. Requirements

	3.1.2. Using Boost.Build
	3.1.2.1. Run Unittests

	3.1.2.2. Build Interpreters

	3.2. Writing A Brainfuck Interpreter
	3.2.1. The Virtual Machine

	3.2.2. Compiling Syntax for the VM

	4. License

	Search Page

1. Overview

1.1. Motivation

“Programming languages appear to be in trouble. Each successive language incorporates, with a
little cleaning up, all the features of its predecessors plus a few more.“
— John Backus, 1978

1.2. Use Cases

Language Interopability, Compilers, Interpreters, Language Design

2. Components

2.1. Virtual Memory

2.2. Program Evaluation

3. Getting Started

This Section shows exemplary how to use GIECS for writing a Brainfuck-Interpreter.

	3.1. Building GIECS
	3.1.1. Requirements

	3.1.2. Using Boost.Build
	3.1.2.1. Run Unittests

	3.1.2.2. Build Interpreters

	3.2. Writing A Brainfuck Interpreter
	3.2.1. The Virtual Machine

	3.2.2. Compiling Syntax for the VM

3.1. Building GIECS

GIECS is a C++ header-only template library. In order to use it, you only have to set your includepath to the root of the giecs-directory.

3.1.1. Requirements

	C++11 compiler

	boost >= 1.60

3.1.2. Using Boost.Build

The testcases and examples are built using Boost.Build.
To include GIECS using Boost.Build, the following option in your jamfile is enough:

<library>/giecs

Overall, Boost.Build requires the environment-variable BOOST_ROOT to be set:

export BOOST_ROOT=<your boost installation>

3.1.2.1. Run Unittests

b2 test

3.1.2.2. Build Interpreters

b2 languages/brainfuck
b2 languages/forth
b2 languages/lisp

3.2. Writing A Brainfuck Interpreter

See full code version [https://github.com/michaelsippel/giecs/tree/dev/languages/brainfuck]

3.2.1. The Virtual Machine

The Complete VM-Implementation [https://github.com/michaelsippel/giecs/tree/dev/languages/brainfuck/vm.hpp] weights ~100 lines of readable C++.

The VM consists of an Instruction -type and an Operator, which executes the Instructions.
Brainfuck-Instructions are simple, they only need an Opcode (representing ,, ., +, -, <, >, [,]) and an optional data register for jump-instructions.

First lets define our VM-Opcodes with an enum:

	
enum brainfuck::Opcode

	Opcodes for the Virtual-Brainfuck-Machine

Values:

	
in

	Get character from input and write it to current cell.

	
out

	Write current cell as character to output.

	
inc

	Increment the current cell.

	
dec

	Decrement the current cell.

	
next

	Move cell-pointer right.

	
prev

	Move cell-pointer left.

	
jmp

	Jump unconditionally.

	
jz

	Jump, if current cell is zero.

Now we need to represent the state of the VM. The neccesary values are members of brainfuck::VM: Tape and Program pointers have templated types and are expected to behave as iterators on a container (e.g. std::array). It contains a struct which defines Instructions.
When the Operator (defined later) wants to execute an instruction, the method fetch is called, which updates the VM-State (in this case load the register) and returns the Opcode to be executed. Note that Data is the type for the VM-State.
The last thing to do is to get the Instructions. This is done by CodeAccessor.

	
template <typename TapeIterator, typename ProgramIterator>

	
class brainfuck::VM

	Stores the state of the virtual-machine and provides all operations.

Public Functions

	
brainfuck::VM::GIECS_CORE_OPERATOR(Operator, ((Opcode::in, TAPE_FN(std::cin >> * tape)))((Opcode::out, TAPE_FN(std::cout<< (char)* tape)))((Opcode::inc, TAPE_FN(++(* tape))))((Opcode::dec, TAPE_FN(--(* tape))))((Opcode::next, TAPE_FN(++ tape)))((Opcode::prev, TAPE_FN(-- tape)))((Opcode::jmp, DATA_FN(std::advance(d.pc, d.jmp_off))))((Opcode::jz, TAPE_FN(if(* tape ==0) std::advance(d.pc, d.jmp_off)))))

	

Public Members

	
TapeIterator tape

	Pointer to current memory-cell.

	
ProgramIterator pc

	Program counter.

	
std::iterator_traits<ProgramIterator>::difference_type jmp_off

	Register (used by jmp and jz)

	
class CodeAccessor

	Decodes the program-stream to instructions and buffers them. Emulates a queue.

Inherits from boost::circular_buffer< Instruction >

Public Functions

	
template<>
CodeAccessor(ProgramIterator &begin_, ProgramIterator const &end_)

	

	
template<>
Instruction &front(void)

	
	Return

	the next instruction

	
template<>
bool empty(void) const

	
	Return

	if end-of-program is reached

	
struct Instruction

	Instruction to be executed, gets decoded by CodeAccessor from program-stream

Public Types

	
template<>
using Opcode = brainfuck::Opcode

	

	
template<>
using Data = VM<TapeIterator, ProgramIterator>

	

Public Functions

	
template<>
Opcode fetch(Data &data)

	Get the opcode for this instruction and update the vm-state (load register).

Public Members

	
template<>
Opcode op

	

	
template<>
std::iterator_traits<ProgramIterator>::difference_type jmp_off

	

Opcode fetch(Data& data)
{
 data.jmp_off = this->jmp_off;
 return this->op;
}

Now we need to implement the opcodes using an Operator. This generates a class which can be used with giecs::eval.

#define DATA_FN(def) ([](typename Instruction::Data& d){ def ; })
#define TAPE_FN(def) DATA_FN(auto& tape = d.tape; def)
 GIECS_CORE_OPERATOR(Operator,
 ((Opcode::in, TAPE_FN(std::cin >> *tape)))
 ((Opcode::out, TAPE_FN(std::cout << (char)*tape)))
 ((Opcode::inc, TAPE_FN(++(*tape))))
 ((Opcode::dec, TAPE_FN(--(*tape))))
 ((Opcode::next, TAPE_FN(++tape)))
 ((Opcode::prev, TAPE_FN(--tape)))
 ((Opcode::jmp, DATA_FN(_jmp(d))))
 ((Opcode::jz, TAPE_FN(if(*tape == 0) _jmp(d))))
);

3.2.2. Compiling Syntax for the VM

See syntax.hpp [https://github.com/michaelsippel/giecs/blob/doc/languages/brainfuck/syntax.hpp]

4. License

Copyright (c) 2016, Michael Sippel.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name “GIECS” nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Index

 B
 | G

B

 	
 	brainfuck::dec (C++ enumerator)

 	brainfuck::in (C++ enumerator)

 	brainfuck::inc (C++ enumerator)

 	brainfuck::jmp (C++ enumerator)

 	brainfuck::jz (C++ enumerator)

 	brainfuck::next (C++ enumerator)

 	brainfuck::Opcode (C++ type)

 	brainfuck::out (C++ enumerator)

 	brainfuck::prev (C++ enumerator)

 	brainfuck::VM (C++ class)

 	brainfuck::VM::CodeAccessor (C++ class)

 	
 	brainfuck::VM::Instruction (C++ class)

 	brainfuck::VM::jmp_off (C++ member)

 	brainfuck::VM::pc (C++ member)

 	brainfuck::VM::tape (C++ member)

 	brainfuck::VM<TapeIterator, ProgramIterator>::CodeAccessor::CodeAccessor (C++ function)

 	brainfuck::VM<TapeIterator, ProgramIterator>::CodeAccessor::empty (C++ function)

 	brainfuck::VM<TapeIterator, ProgramIterator>::CodeAccessor::front (C++ function)

 	brainfuck::VM<TapeIterator, ProgramIterator>::Instruction::Data (C++ type)

 	brainfuck::VM<TapeIterator, ProgramIterator>::Instruction::fetch (C++ function)

 	brainfuck::VM<TapeIterator, ProgramIterator>::Instruction::jmp_off (C++ member)

 	brainfuck::VM<TapeIterator, ProgramIterator>::Instruction::op (C++ member)

 	brainfuck::VM<TapeIterator, ProgramIterator>::Instruction::Opcode (C++ type)

G

 	
 	giecs::Core (C++ class)

 	giecs::Core::eval (C++ function)

 	giecs::Core<Instruction, Operator>::InstructionType (C++ type)

 	
 	giecs::memory::Accessor (C++ class)

 	giecs::memory::Context (C++ class)

 	giecs::memory::ContextSync (C++ class)

Internal Documentation

	Virtual Memory
	Context

	Synchronization

	Accessors

	Program Evaluation

Program Evaluation

	
template <typename Instruction, typename Operator>

	
struct giecs::Core

	
Public Types

	
template<>
using InstructionType = Instruction

	

Public Static Functions

	
template <typename Container>

	
static void eval(std::queue<Instruction, Container> &code, typename Instruction::Data &data)

	

Virtual Memory

Context

The virtual memory is managed by

	
template <std::size_t page_size, typename align_t>

	
class giecs::memory::Context

	

Synchronization

	
template <std::size_t page_size, typename align_t>

	
class giecs::memory::ContextSync

	Subclassed by giecs::memory::Accessor< page_size, align_t, val_t, Linear< page_size, align_t, addr_t, val_t, buf_t, index_t > >, giecs::memory::Accessor< page_size, align_t, val_t, Linear< page_size, align_t, addr_t, val_t, val_t *, std::size_t > >, giecs::memory::Accessor< page_size, align_t, val_t, Derived >

Accessors

Base Class:

	
template <std::size_t page_size, typename align_t, typename val_t, typename Derived>

	
class giecs::memory::Accessor

	Inherits from giecs::memory::ContextSync< page_size, align_t >

 _static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/down.png

_static/up.png

_static/minus.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		GIECS Documentation

 		Overview

 		Motivation

 		Use Cases

 		Components

 		Virtual Memory

 		Program Evaluation

 		Getting Started

 		Building GIECS

 		Requirements

 		Using Boost.Build

 		Writing A Brainfuck Interpreter

 		The Virtual Machine

 		Compiling Syntax for the VM

 		License

