
GHOST Users Manual
Release 0.9.0

Marc White, Kathleen Labrie & the GHOST DRS Team

May 19, 2017





Contents

1 Overview of GHOST 1

2 Polynomial Model Method 5

3 Recipes for GHOST 7

4 Tips and Tricks for Processing GHOST 17

5 Issues and Limitations 19

6 Primitives for GHOST 21

7 Indices and tables 33

i



ii



CHAPTER 1

Overview of GHOST

Note: This section of documentation is a summary/transcription of the GHOST Concept of Operations Document
(ConOps) as at November 2015. It should be reviewed and updated once the instrument is actually built and commis-
sioned.

Description of the Instrument

GHOST is a fibre-fed echelle spectrograph. It has a wide variety of observing modes tuned to a range of science cases.

GHOST comprises two positioner arms, “IFU 1” and “IFU 2”. The layout of each focal plane is shown below. Each
comprises multiple micro-lens arrays (black hexagons) feeding fiber bundles for targeting science fields at standard
(large hexagons in IFU 1 and 2) or high (small hexagons in IFU 1) spectral resolution, peripheral guide fibers sur-
rounding the science fields (red hexagons), and dedicated sky fibers at a fixed offset position a few arcseconds from
the science fields (cyan hexagons). Each positioner can access different halves of the 7.5 arcminute field (as shown in
Figure 4), with a 16” common region of overlap.

Warning: Find image

The instrument has two distinct observing modes. In ‘standard’ mode, up to two targets can be observed simulta-
neously using the large fibre bundles on IFU1 and IFU2. In ‘high resolution’ mode, a single target can be observed
using the high-resolution bundle on IFU1. A ThXe calibration lamp can also be supplied simultaneously with the
observations. Sky fibre bundles are provided for ‘standard’ mode on IFU 2, and for ‘high-resolution’ mode on IFU 1.

1



GHOST Users Manual, Release 0.9.0

Mode Standard Resolution High Resolution
Spectral coverage 363-950nm, simultaneous 363-950nm,

simultaneous
Spectral resolution 50,000 75,000
Radial velocity precision 600 m/s 10 m/s
Multiplexing Dual targets/beam switching (82” minimum

separation)
Single target

Patrol field 7.5’ semicircle (16” overlap between IFUs) 7.5’
IFU plane size 1.2” 1.2”
IFU element number and size 7 × 0.4” 19 × 0.2”
Sky fibres 3 × 0.4” (on IFU 1) 7 × 0.2” (on IFU 2)
Approx. limiting Vega
magnitude1

17.4 - 17.8 17.0 - 17.4

The GHOST control software positions the IFUs as required during observations. A mask in the slit injection unit
blocks light from the unused fibre bundles.

Instrument Operating Modes

The following table is an overview of the instrument observing modes available to users, which are selecting via the
Gemini Observing Tool (OT).

Configuration Focal Plane Resolu-
tion

Detector
binning2

Guiding3 Approx. B
mag.

Two-target IFU1 &
IFU2

50k 1x2 P2 & guide
fibres

< 18

Two-target (faint) IFU1 &
IFU2

50k 1x4 P2 ≥ 18

Two-target (very faint) IFU1 &
IFU2

43k 2x4 P2 ≥ 18

Beam-switching IFU1 &
IFU2

50k 1x2 P2 & guide
fibres

< 18

Beam-switching (faint) IFU1 &
IFU2

50k 1x8 P2 ≥ 18

Beam-switching (v.
faint)

IFU1 &
IFU2

43k 2x8 P2 ≥ 18

High-resolution IFU1 75k 1x1 P2 & guide
fibres

< 17

High-resolution (faint) IFU1 75k 1x8 P2 & guide
fibres

17− 18

High-resolution (PRV) IFU1 &
ThXe

75k 1x1 P2 & guide
fibres

< 16

Two-target modes

In standard spectral resolution mode, two targets can be observed simultaneously using the standard-resolution fibre
bundles on IFU1 and IFU2, and the associated sky bundle on IFU1. Targets are specified to the OT using absolute
astronomical coordinates; a guide star is also needed for the peripheral wave-front sensor (PWFS) guiding. Care needs
to be taken to configure the instrument such that the PWFS does not vignette a science IFU.

For standard two-target modes, targets are expected to be bright enough that the PSF edges can be used for guiding
via the guide fibres attached to the science bundles. For faint/very faint mode, guiding is by PWFS only. Guide fibres

1 Can achieve S/N ratio of 30 in 1 hour at 450 nm.
2 Reported as (binning in the spectral direction) x (binning in the slit direction)
3 P2 corresponds to peripheral wave-front sensor (PWFS) guiding.

2 Chapter 1. Overview of GHOST



GHOST Users Manual, Release 0.9.0

can also be disabled in standard two-target mode if crowded fields cause the guiding to be inaccurate.

In faint/very-faint mode, a larger detector binning is used to reduce the impact of read noise.

Beam-switching modes

In regions of low target density (i.e. where there is a single target within the GHOST field-of-view), the two standard-
resolution IFUs may be beam-switched to provide continuous target observation, whilst alternating each IFU between
the target and an offset sky position. This facilitates accurate sky subtraction by differencing sequential frames,
avoides the resampling of bright sky lines or detector artefacts, and elimiates the effects of potential flat fielding errors
and differential fibre throughputs. This is particularly useful for faint targets and the ‘red’ camera, where there are
numerous time-variable sky lines.

The Gemini OT will automatically set diametrically opposed offset conditions for sky measurements, to allow beam-
switching to be accomplished using telescope motion alone. However, in the case that this is inappropriate (e.g.
crowded fields, or where the PWFS may vignette a science detector using the default configuration), it is possible to
explicitly specify sky positions. This inflicts a time penalty, as the IFU positions will need to be reconfigured.

In the faint and very-faint modes, larger detector binning is used, and guiding via the GHOST fibres is disabled. Guide
fibres may be used in the standard beam-switching mode, although like the two-target mode, this can be disabled if
necessary.

High-resolution modes

High-resolution modes use the high-resolution science fibre bundle on IFU1. A high-resolution sky fibre bundle is on
IFU2, and can be positioned independently of IFU1 for simultaneous sky observations. The use of a single science
field provides maximum flexibility for the positioning of IFUs so as to avoid vignetting by the PWFS, and maximizes
the patrol radius for selecting PWFS guide stars. Spectral binning in the spectral direction is not used in this mode, to
fully sample the spectral PSF. A factor 2 binning along the slit is optimal.

Warning: This factor 2 binning isn’t reflected in the table!

The high-resolution science fibre bundle has six peripheral guide bundles, for guiding using the extended PSF of
bright targets. This can be disabled as required, and is disabled by default in faint mode. Eight-pixel binning in the slit
direction is also used in faint mode.

For targets requiring the best possible wavelength calibration, a precision radial velocity (PRV) mode is provided.
A fibre agitator is used to reduce modal noise introduced to the fibres by stress, strain or imperfections. A ThXe
calibration source is may also be fed into an additional high-resolution fibre which is passed to the spectrograph for
calibration simultaneous to observations. This source is cycled on and off with a given duty cycle, giving total counts
within a given exposure time to be similar in magnitude to the science fibres (and avoiding saturation).

Description of the Data

Note: Will actually need some, you know, data to do this completely.

BPM Flag Encoding

The bad pixel mask (BPM) flag encoding used for GHOST is derived from that used for GHOS, and is summarized
below:

1.2. Description of the Data 3



GHOST Users Manual, Release 0.9.0

Bit Pixel value Meaning
0 0 No conditions apply (i.e. good data)
1 1 Generic bad pixel (e.g. region occulted/not illuminated; hot pixel; bad column)
2 2 Highly non-linear pixel response
3 4 Saturated pixel
4 8 Cosmic ray hit
5 16 Invalid data (e.g. all data rejected during stacking)
6 32 Not used.
7 64 Not used.
8 128 Not used.
9 256 SCI pixel value has been replaced via interpolation
10 512 SCI pixel value has been replaced, but not via interpolation

4 Chapter 1. Overview of GHOST



CHAPTER 2

Polynomial Model Method

Description of the Spectrograph Model principle

The principle employed in the development of this pipeline relies heavily on a polynomial principle for all the mod-
elling of the spectrograph’s characteristics from the data. These include the location of the orders, the wavelength scale
and the reciprocal model that converts the sampled slit from the slit viewer to its image on the spectrograph CCD.

The idea is that instead of a traditional empirical extraction where the orders are “scanned” for their location and arc
lines are detected blindly, we form a model of the spectrograph and fit the parameters using the flat fields and arcs to
measure small changes in the spectrograph on a nightly basis. Then, the extraction process becomes relatively trivial
with knowledge of where all the flux is and the wavelength scale is uniquely determined. A simple advantage of
this method is that the entire spectrograph is modelled as one, instead of each individual order as a separate entity.
Ultimately, measurements such as radial velocity shifts can be determined using a single varying parameter, as opposed
to a combination of measured shifts in all orders.

The principle implemented is that of a sum of polynomials of polynomials. This differs from an approach where each
physical parameter of the spectrograph is modelled individually and focusses on a series of coefficients that represent
various aspects of the CCD images. We thereby minimise the number of required parameters that describe the data.

Mathematical principle

The polyfit method uses files containing polynomial coefficients where each line is the coefficients for the poly-
nomials as a function of order, which are then combined as a function of y position on the CCD chip, defined as the
CCD pixel numbers in the spectral direction.

For mathematical convininence and correspondence with a testable reference, the polynomials are evaluated with
respect to a reference order 𝑚ref , defaulting as whatever order number is in the middle of the range used for each arm,
and as a function of the middle pixel on the chip 𝑦𝑚𝑖𝑑𝑑𝑙𝑒.

The functional form is:

𝐹 (𝑝) = 𝑝0(𝑚) + 𝑝1(𝑚) * 𝑦′ + 𝑝2(𝑚) * 𝑦′2 + ...

5



GHOST Users Manual, Release 0.9.0

with 𝑦′ = 𝑦 − 𝑦𝑚𝑖𝑑𝑑𝑙𝑒 , and:

𝑝0(𝑚) = 𝑞00 + 𝑞01 *𝑚′ + 𝑞02 *𝑚′2 + ...

with 𝑚′ = 𝑚ref/𝑚− 1

In this functional form, 𝐹 (𝑝) is whatever aspect we wish to model. In the specific example of GHOST, it will be the
x position (defined in the spatial direction) in the first instance, but this same method is then used for the wavelength
scale, and all three aspects of the slit image on the chip (spatial direction magnification scale, spectral direction
magnification scale and rotation), all of which are expected to change as a function of order and position along the
order.

This means that the simplest wavelength scale spectrograph model should have:

• 𝑞00 : central wavelength of order m_ref

• 𝑞01 : central wavelength of order m_ref

• 𝑞10 : central_wavelength/R_pix, with R_pix the resolving power / pixel.

• 𝑞11 : central_wavelength/R_pix, with R_pix the resolving power / pixel.

... with everything else approximately zero.

Please note that the order of polynomials is left undefined. The code that handles these parameters is identical and
left generalised since each aspect (x position, wavelength, etc) may require a different number of variables to fully
describe the problem.

Description of model file contents

In the case of the x position, using default file xmod.fits, the contents of this file are as follows:

𝑋𝑚𝑜𝑑 =

⎡⎣ 𝑞24 𝑞23 𝑞22 𝑞21 𝑞20
𝑞14 𝑞13 𝑞12 𝑞11 𝑞10
𝑞04 𝑞03 𝑞02 𝑞01 𝑞00

⎤⎦ (2.1)

The non standard way to define the variables within the files and imported array is related to the way numpy’s poly1d
function takes inputs, with the highest order coefficient first.

In the case of x position, the coefficients represent:

• 𝑞00 : x position of the middle of the reference order.

• 𝑞01 : linear term coefficient for order spacing

• 𝑞02 : quadratic term coefficient for order spacing

• 𝑞10 : common rotation term for all orders

• 𝑞11 : linear term coefficient for order rotation

• 𝑞12 : quadratic term coefficient for order rotation

• 𝑞20 : common curvature term for all orders

• 𝑞21 : linear term coefficient for order curvature

• 𝑞22 : quadratic term coefficient for order curvature

... with everything else approximately zero.

6 Chapter 2. Polynomial Model Method



CHAPTER 3

Recipes for GHOST

Typical Processing Flows

Here we review some of the typical processing workflows for GHOST data reduction. For this discussion, it is
assumed you’ve already installed the latest Ureka package and made a local clone of the ghostdr Hg repository.
(For illustrative purposes, the text below assumes the clone’s working copy root is wc/.)

Furthermore, for the commands given below to work properly, you must:

1. initialize the Ureka environment: ur_setup

2. create a symlink named wc/externals/gemini_python/astrodata_GHOST pointing to wc/
astrodata_GHOST,

3. add wc/externals/gemini_python to the beginning of your PYTHONPATH, and

4. add wc/externals/gemini_python/astrodata/scripts and wc/externals/
gemini_python/recipe_system/apps to the beginning of your PATH

Generating a Bias Calibration frame

To generate a bias calibration frame you need 2 or more GHOST bias frames from the same arm. Until the instrument
is live, you can use the GHOST simulator to generate this data. Its testsim.py script will create several types of
frames, including 3 bias frames for each arm, 3 darks for each arm, and 3 flats for each arm and resolution combination.
You can comment out the generation of non-bias frame types to speed things up.

Once you have a few biases of the same arm to work with, generate a file list using the typewalk utility. The
following command assumes you have generated several red arm biases (if you don’t specify either GHOST_RED or
GHOST_BLUE, you may get mixed red and blue frames which don’t stack well!):

typewalk --types GHOST_BIAS GHOST_RED --dir <path_to>/data_folder -o bias.list

Now you are ready to generate a bias calibration frame. The following command (which runs the
makeProcessedBiasG Gemini recipe behind the scenes) will stack the bias frames in listed bias.list and
store the finished bias calibration in calibrations/storedcals/:

7



GHOST Users Manual, Release 0.9.0

reduce @<path_to>/bias.list

Don’t forget the @ character in this line, e.g. if <path_to> is data then this command should be reduce @data/
bias.list. The @ parameter is a legacy from IRAF, and tells reduce that you’re passing a list of filenames
instead of a data file. This code call will place a file named bias_1_red_bias.fits in the calibrations/
storedcals directory of your present working directory.

The whole process behind Gemini’s makeProcessedBias recipe is documented in the following flowchart (thanks
Kathleen Labrie):

8 Chapter 3. Recipes for GHOST



GHOST Users Manual, Release 0.9.0

Generating a Dark Calibration Frame

The procedure for generating a dark calibration frame is broadly similar to making a bias calibration frame. However,
the type to be passed to typewalk should be GHOST_DARK instead of GHOST_BIAS (in addition to the necessary

3.1. Typical Processing Flows 9



GHOST Users Manual, Release 0.9.0

GHOST_RED/GHOST_BLUE type):

typewalk --types GHOST_DARK GHOST_RED --dir <path_to>/data_folder -o dark.list

Assuming typewalk has output your list of dark frames to dark.list, attempting to run:

reduce @<path_to>/dark.list

will fail. This is because the framework cannot currently find calibrations stored on disk (it uses a much more compli-
cated lookup scheme). The workaround for the time being is to force it to look on disk in a particular area using the
--override_cal option:

reduce @<path_to>/dark.list --override_cal processed_bias:calibrations/storedcals/
→˓bias_1_red_bias.fits

(Depending on your specific bias.list contents, your bias calibration under your calibrations/storedcals directory may
have a different name, so double- check.) This command will place a file dark95_1_red_dark.fits into the
calibrations/storedcals directory.

The whole process behind Gemini’s makeProcessedDark recipe is documented in the following flowchart (thanks
Kathleen Labrie):

10 Chapter 3. Recipes for GHOST



GHOST Users Manual, Release 0.9.0

3.1. Typical Processing Flows 11



GHOST Users Manual, Release 0.9.0

Generating a Flat Calibration Frame

The procedure for generating a flat field calibration frame is similar to creating a dark or bias, although you have to
typewalk over GHOST_FLAT files instead, e.g.:

typewalk --types GHOST_FLAT GHOST_RED GHOST_HIGH --dir <path_to>/data_folder -o flat.
→˓list

(Note this is the first place where we have to explicitly specify the resolution mode/type of the object file we ultimately
intend to reduce.) Then, when you call reduce on the flat.list, you must provide both the bias and dark file
path explicitly:

reduce @<path_to>/flat.list --override_cal processed_bias:calibrations/storedcals/
→˓bias_1_red_bias.fits processed_dark:calibrations/storedcals/dark95_1_red_dark.fits

(or whatever the filename of the processed dark turns out to be).

After the flat field has been created, the spectrograph apertures are fit using a polyfit approach. The RecipeSystem
will read in the appropriate aperture model from the lookups system, fit it to the flat field, and store the resulting
model in the calibrations system.

The selection of the appropriate polyfit model to start with is determined by the spectrograph arm, resolution, and
the date the observations are made on. Ideally, there will only be one model per arm and resolution combination;
however, spectrograph maintenance (i.e. dis- and re-assembly) may result in the model changing at a specific point in
time. Therefore, the RecipeSystem should (see below) automatically choose the most recent applicable model for the
dataset being considered.

Note: Date-based model selection is currently not implemented - instead, only a single model is provided for each
arm/resolution combination. This is sufficient for testing involving the simulator data. Date-based selection will be
implemented soon.

The process behind makeProcessedFlatG is summarized in the following flowchart (thanks Kathleen Labrie):

12 Chapter 3. Recipes for GHOST



GHOST Users Manual, Release 0.9.0

3.1. Typical Processing Flows 13



GHOST Users Manual, Release 0.9.0

Note: This is the originally-envisaged implementation of makeProcessedFlatG. It has since been decided that
Gemini will guarantee that Gemini Observatory will always take at least three flat fields per arm per observation, which
means that rejectCosmicRays is not required; stackFrames will remove almost all cosmic rays.

Generating an Arc Calibration Frame

Warning: You must have performed a full slit viewer reduction before attempting to make an arc calibrator - the
results of the slit flat and slit image reduction are required to make the profile extraction and subsequent wavelength
fitting work. See Reducing Slit Viewing Images for details.

Making an arc calibration frame is similar to the previous calibration steps. The correct type to typewalk across is
GHOST_ARC:

typewalk --types GHOST_ARC GHOST_RED GHOST_HIGH --dir <path_to>/data_folder -o arc.
→˓list

Additional calibrators required are reduced slit viewer flats and slit viewer images, as well as the aperture fit made
during the generation of the flat calibration image:

reduce @<path_to>/arc.list --override_cal processed_bias:calibrations/storedcals/bias_
→˓1_red_bias.fits processed_dark:calibrations/storedcals/dark95_1_red_dark.fits
→˓processed_slit:calibrations/storedcals/obj95_1.0_high_SLIT_stack_slit.fits
→˓processed_slitflat:calibrations/storedcals/flat95_high_1_SLIT_stack_slitFlat.fits
→˓processed_xmod:calibrations/storedcals/GHOST_1_1_red_high_xmodPolyfit.fits

Arc reduction not only generates a reduced arc image and places it in the calibrations directory, but also uses the
polyfit module to extract the flux profiles of the object/sky fibres in the input image. It then uses this fit, and a line
set stored in the RecipeSystem lookups system, to make a wavelength fit to the arc image. This fit is also stored in the
calibrations directory/system.

Reducing an Object frame (Spectra)

The GHOST simulator produces object spectra frames like obj95_1.0_std_red.fits whose names follow this
convention: obj{exptime}_{seeing}_{resolution}_{arm}.fits. If you run typewalk on the folder
containing these, you’ll see that they are identified as GHOST_OBJECT:

typewalk --dir <path_to>/data_folder

This informs the reduction framework to run the reduceG GHOST recipe on them. which should run to at least the
flatCorrect step now that you have dark and bias calibration frames (for the moment, we have commented the
remaining steps out of the reduceG recipe so it will complete successfully):

reduce <path_to>/data_folder/obj95_1.0_high_red.fits

The above command will fail due to the faulty calibrations lookup. Again, we need to use the --override_cal
option:

reduce <path_to>/data_folder/obj95_1.0_high_red.fits --override_cal processed_
→˓bias:calibrations/storedcals/bias_1_red_bias.fits processed_dark:calibrations/
→˓storedcals/dark95_1_red_dark.fits processed_flat:calibrations/storedcals/flat95_
→˓high_1_red_flat.fits

14 Chapter 3. Recipes for GHOST



GHOST Users Manual, Release 0.9.0

This produces a obj95_1.0_high_red_flatCorrected.fits (or similar) file, a bias, dark and flat corrected
GHOST spectrum frame.

Warning: The primitive rejectCosmicRays would normally be called as part of reduceG, after the
darkCorrect step. It is currently commented out - the underlying LACosmic algorithm is working, but aperture
removal/re-instatement is required to avoid accidentally flagging spectral peaks and the edges of orders as cosmic
rays, and this has yet to be implemented.

Reducing Slit Viewing Images

Reducing slit viewer images is very similar to reducing standard images, including steps to generate bias, dark and flat
calibration frames, plus a final step to process the slit viewer frames (which removes cosmic rays and computes the
mean exposure epoch). The first step, computing the bias calibrator, may be skipped in favour of simply pointing to
a slit bias frame (of type GHOST_SLITV_BIAS). Or, follow these steps to produce one by stacking multiple frames
together:

typewalk --types GHOST_SLITV_BIAS --dir <path_to>/data_folder -o slit_bias.list
reduce @<path_to>/slit_bias.list

The next step is to generate the dark calibrator. Follow these steps to produce one:

typewalk --types GHOST_SLITV_DARK --dir <path_to>/data_folder -o slit_dark.list
reduce @<path_to>/slit_dark.list --override_cal processed_bias:calibrations/
→˓storedcals/bias_1_SLIT_stack_slitBias.fits

Now generate the flat calibrator. For this you will now need to specify an additional type to typewalk that identifies
the resolution of the data that you wish to process (as mixing resolutions would be nonsensical). Follow these steps as
an example:

typewalk --types GHOST_SLITV_FLAT GHOST_HIGH --dir <path_to>/data_folder -o slit_flat_
→˓high.list
reduce @<path_to>/slit_flat_high.list --override_cal processed_bias:calibrations/
→˓storedcals/bias_1_SLIT_stack_slitBias.fits processed_dark:calibrations/storedcals/
→˓dark95_1_SLIT_stack_slitDark.fits

The final step is to use all of the above calibrators in a call to reduce a set of slit viewer images taken concurrently
with a science frame, usually found in files named like obj95_1.0_high_SLIT.fits (following this convention:
obj{exptime}_{seeing}_{resolution}_SLIT.fits). If you run typewalk on the folder containing
these, you’ll see that they are identified as GHOST_SLITV_IMAGE. This informs the reduction framework to run the
makeProcessedSlitG GHOST recipe on them. Run the reduction as follows (note that the flat is provided to
--override_cal as process_slitflat and not simply processed_flat):

reduce <path_to>/data_folder/obj95_1.0_high_SLIT.fits --override_cal processed_
→˓bias:calibrations/storedcals/bias_1_SLIT_stack_slitBias.fits processed_
→˓dark:calibrations/storedcals/dark95_1_SLIT_stack_slitDark.fits processed_
→˓slitflat:calibrations/storedcals/flat95_high_1_SLIT_stack_slitFlat.fits

Other Processing Flows

include scientific flow charts, include associated recipes

3.2. Other Processing Flows 15



GHOST Users Manual, Release 0.9.0

16 Chapter 3. Recipes for GHOST



CHAPTER 4

Tips and Tricks for Processing GHOST

Some title depending on content

Describe the quirks of GHOST data, give tips and tricks, what to watch for. Screenshots are encourages.

Example

Some other topic

Example

17



GHOST Users Manual, Release 0.9.0

18 Chapter 4. Tips and Tricks for Processing GHOST



CHAPTER 5

Issues and Limitations

19



GHOST Users Manual, Release 0.9.0

20 Chapter 5. Issues and Limitations



CHAPTER 6

Primitives for GHOST

correctSlitCosmics

Purpose

This primitive replaces CR-affected pixels in each individual slit viewer image (taken from the current stream) with
their equivalents from the median frame of those images.

Inputs and Outputs

correctSlitCosmics takes no particular configuration inputs.

Algorithm

The incoming stream of AstroData objects, representing bias-/dark-corrected slit viewer frames, is first used to produce
a per-pixel median absolute deviation (MAD) frame for clipping cosmic ray (CR) outliers. A median frame is then
separately produced (from the inputs) and subtracted from each in turn. CR-impacted pixels are those where the
difference residual exceeds 20x the MAD, which are then replaced with their equivalents from the median slit viewer
frame.

Issues and Limitations

For short duration science exposures there may be too few coincident slit frames to produce a meaningful MAD frame
for CR detection.

21



GHOST Users Manual, Release 0.9.0

extractProfile

Purpose

TODO

Inputs and Outputs

TODO

Algorithm

TODO

Issues and Limitations

TODO

findApertures

Purpose

This primitive will take an existing polyfit model for the aperture locations in a frame, and fit the model to the
observed data.

Note that this primitive is only run on prepared flat fields (i.e. images that have been run through the
makeProcessedFlatG recipe). The primitive will abort if passed any other type of file.

Inputs and Outputs

findApertures takes no particular configuration inputs.

Algorithm

The RecipeSystem will automatically determine the appropriate initial polyfit model, based on the arm, resolution and
date of the observation.

Note: Date selection of polyfit models has yet to be implemented.

The primitive will instantiate an Arm object from the polyfit.ghost module, which is included as a part of
astrodata_GHOST. This Arm contains all the functions for fitting the aperture positions of the data.

The Arm object then makes the following three steps:

• An initial model of the spectrograph is constructed based on the parameters read-on from the lookup system;

• The reduced flat-field is convolved with the slit profile of the instrument, determined from the slit viewing
camera

22 Chapter 6. Primitives for GHOST



GHOST Users Manual, Release 0.9.0

• The initial model is fitted to the result of the convolved flat field, which represents the location of the middle of
each order. The result of this fit is then used in the spectra extraction as the basis for the location of the orders.

A polyfit model FITS file is then written out to the calibration system.

Issues and Limitations

There is a placeholder retrieval function for getting back a fitted polyfit model, but there are no primitives yet for
applying this model to data.

Future versions of this fitting procedure will include an extra polynomial describing the change in the spatial scale of
the fiber images as a function of order location on the CCD. The current lack of such feature currently results in a
slight innaccuracy of the fit on the edge of orders which are close together. This is due to the fact that the convolution
with a fixed profile results is slight overlap at those locations.

fitWavelength

Purpose

TODO

Inputs and Outputs

TODO

Algorithm

TODO

Issues and Limitations

TODO

fork

Purpose

This primitive creates a new stream by copying the current stream’s inputs to the outputs of the new stream. Has the
same effect as (but without the disk write penalty incurred by) the following construct:

addToList(purpose=save_to_disk)
getList(purpose=save_to_disk, to_stream=new_stream_name)

Inputs and Outputs

The only parameter fork takes is newStream, the name of the new stream to be formed.

6.4. fitWavelength 23



GHOST Users Manual, Release 0.9.0

Issues and Limitations

Be careful not to specify the parameter newStream as simply stream as this is a reserved parameter name with
special meaning to the recipe framework and odd behaviour results when used.

mosaicADdetectors

Purpose

This primitive mosaics the SCI frames of the input images, along with the VAR and DQ frames if they exist.

Inputs and Outputs

tile: bool (default: False), tile images instead of mosaic (mosaic includes transformations)

dq_planes: bool (default: False), transform the DQ image, bit plane by bit plane

Algorithm

This primitive overrides the one of the same name inherited from GEMINIPrimitives. The override
logic is identical to the original except for two hacks introduced just prior to calling the mosaicing routine,
gemini_mosaic_function, and undone immediately after. These are necessary in order to trick the underly-
ing mosaicing machinery into working for GHOST data, and are as follows:

• First, we add ‘GSAOI’ to the internal array of types for our input AstroData object (which con-
tains the extensions we want to mosaic). This bypasses the GSAOI-/GMOS-only check built into
gemini_mosaic_function. Afterwards we reset the type list back to normal by invoking AstroData.
refresh_types on the resulting, mosaiced, AstroData object.

• Secondly, we set the INSTRUME PHU keyword to ../../../astrodata_GHOST/ADCONFIG_GHOST/
lookups. This tricks set_geo_values (called by gemini_mosaic_function) into referencing the
geometry_conf.py file under our own astrodata_GHOST/lookups folder. As soon as the mosaic-
ing routine returns we reset INSTRUME back to ‘GHOST’ (and in fact this must be done before the call to
refresh_types mentioned above).

Until such time as astrodata_GHOST has been merged into astrodata_Gemini (like GMOS and GSAOI have
been), or astrodata_Gemini is refactored, the above two hacks will be necessary in order for GHOST to make
use of Gemini’s mosaicing mechanism.

Issues and Limitations

Requires ugly hacks until integration with, or refactoring of, astrodata_Gemini is completed.

24 Chapter 6. Primitives for GHOST



GHOST Users Manual, Release 0.9.0

Primitive #1 (alphabetical)

Purpose

Inputs and Outputs

Algorithm

Issues and Limitations

Primitive #2 (alphabetical)

Purpose

Inputs and Outputs

Algorithm

Issues and Limitations

processSlits

Purpose

For each CR-corrected slit viewer frame taken from the current stream, this primitive extracts the object profiles within
and uses them to flux-weight the image’s offset (relative to the coincident science frame) and then uses that to compute
the mean exposure epoch for the entire series of inputs.

Inputs and Outputs

flat: string or None (default: None) - The name of the processed slit viewer flat field image. If not provided, or if
set to None, the flat will be taken from the processed_slitflat override_cal command line argument.

Algorithm

For each individual CR-corrected frame taken from the input, a SlitViewer object is instantiated for each spectro-
graph arm using the frame and the passed- in flat field image. The SlitViewer objects then each provide, via the
object_slit_profiles() method, a 2 element array where each element is a 1-dimensional array representing
a single object profile, un-normalised, sky-corrected, and summed across (not along) the slit.

In the case of high resolution data, the Th/Ar profiles are discarded, after which the flux for the remaining object
profiles, for both arms, is summed together. This individual frame sum is then scaled by its percentage overlap with
the science frame (computed from UTC start/stop times for both the individual frame and the science frame), which in
turn is used to weight the frame’s offset (in seconds) from the start of the science exposure. [Note that only the science
frame’s UTC start/stop times are present for this process, not its frame data.]

Finally the sum of the weighted offsets is divided by the sum of the weights to provide the mean offset from the start
of the science exposure. This is added to the science exposure UTC start time to produce the mean exposure epoch,
which in turn is written into the header of each CR-corrected output frame, in the AVGEPOCH keyword.

6.7. Primitive #1 (alphabetical) 25



GHOST Users Manual, Release 0.9.0

Issues and Limitations

The UTC start/stop times of the coincident science frame are currently obtained from the UTSTART/UTEND PHU
keywords, having been written there by our splitter primitive (or the simulator with the -split option used). In the
context of a standalone slit viewer frame, this may be considered improper usage of these keywords.

promote

Purpose

This primitive is responsible for taking a slit viewer MEF (that results as the output from the observation bundle splitter
primitive) and “promoting” all the slit viewer extensions therein to full AstroData objects with various manipulations
so that they will pass various checks and otherwise work nicely with the rest of the recipe.

Note that this primitive is only meant to be run on raw (unprocessed) slit viewer MEFs produced by the splitter
primitive (or by the simulator with the -split option supplied).

Inputs and Outputs

promote takes no particular configuration inputs.

Algorithm

The promote primitive performs these manipulations on the slit viewer extensions:

• It uses AstroData slicing (also known as “sub-data”) to initially produce a separate AstroData object for each ex-
tension, then also makes a copy of the PHU for each resultant AstroData object (since sub-data references a sin-
gle copy of the original PHU by default). In this manner, fully independent AstroData objects are created repre-
senting each extension. This is done to bypass the extension count check we inherit from GMOSPrimitives.
validateData, which is suitable for processing GHOST’s red and blue arm data, but not for the slit viewer
MEFs which may contain any number of extensions.

• The above manipulation causes the resulting AstroData objects to all have the same ORIGNAME in their PHUs.
This becomes an issue when we leverage the existing StackPrimitives.stackFrames primitive, as it
must first (being IRAF-based) write its inputs to disk. As it uses ORIGNAME to do so, clashes would result, so
we make ORIGNAME unique by simply appending an incrementing number.

• Finally, we also reset the EXTVER of all extensions in the AstroData objects resulting from the first manipula-
tion back to 1 (since now there is only a single extension in each AstroData object).

Issues and Limitations

None.

rejectCosmicRays

Purpose

This primitive will mask cosmic rays in a GHOST data frame by updating the data mask.

26 Chapter 6. Primitives for GHOST



GHOST Users Manual, Release 0.9.0

Warning: The algorithm seems to work, but isn’t managing to update the DQ plane. I’m working on the issue.
-MCW

Inputs and Outputs

The following options can be passed to rejectCosmicRays via the RecipeSystem, or overridden with a user configura-
tion file, as marked:

Parameter Type Default Override? DescriptionRecipe User
suffix str _cosmicRaysRe-

jected
Y Y Suffix affixed to modified file.

subsam-
pling

int 2 Y Y The number of pixels to subsample in each direction
of each pixel.

sigma_lim float 5.0 Y Y Sigma clipping value.
f_lim float 6.0 Y Y Fine-structure clipping limit.
n_passes int 2 Y Y Number of iterations to perform.

Algorithm

This primitive is a first-principles implementation of the LACosmic algorithm. NumPy array operations are used for
maximum efficiency. For a full-discussion of the algorithm, see van Dokkum 2001, PASP 113, 1420-1427 (ADS). In
summary (where the symbol * denotes convolution):

1. Create a Laplacian, ℒ+, of the input data frame, 𝐼 .

• Subsample the image by a factor of subsampling and apply the Laplacian transformation;

• Set any negative sub-pixels to have value 0 instead;

• Re-sample the image back to its original resolution.

2. Generate the ‘sigma map’, 𝑆, of the frame.

• Form a ‘noise image’ of the data, 𝑁 = 𝑔−1
√︀
𝑔(𝑀5 * 𝐼) + 𝜎2

𝑟𝑛, where 𝑔 and 𝜎𝑟𝑛 are the data gain and
read noise respectively. 𝑀5 is a 5× 5 median filter used to smooth the data.

• The sigma map is then generated as 𝑆 = ℒ+/𝑓𝑆𝑁 , where 𝑓𝑆 is the subsampling factor used.

• Smooth the sigma map to help remove sampling flux, resulting in 𝑆′ = 𝑆 − (𝑆 *𝑀5).

3. Generate the ‘fine-structure image’ of the frame, ℱ = (𝑀3 * 𝐼)− ((𝑀3 * 𝐼) *𝑀7), where 𝑀3 and 𝑀7 are 3× 3
and 7× 7 median filters,

4. Mark pixels as cosmic rays (via the image quality plane) if:

• 𝑆′ > sigma_lim, and

• ℒ+/ℱ > f_lim.

5. For the purposes of the algorithm (i.e. not in the data to be returned), replace cosmic rays pixels with the median
value of surrounding pixels.

6. Iterate over steps 1-5 until n_passes is reached, or the number of cosmic rays detected falls to 0.

6.11. rejectCosmicRays 27

https://ui.adsabs.harvard.edu/#abs/2001PASP..113.1420V/abstract


GHOST Users Manual, Release 0.9.0

Issues and Limitations

Both strong spectral features and, in high-resolution mode, the ThXe calibration output may be incorrectly flagged as
cosmic rays. Therefore, this primitive will trigger a call to need to add more here once this actually works

Note: The current preset values of sigma_lim (15.0, 5.0), f_lim (5.0) and n_passes (5) are a first-pass guess at
what seems to flag roughly the correct number of cosmic rays. More complete testing, and the possible implementation
of a table of preset values on a case-by-case basis, will need to wait until the findApertures routine (and related routines)
are finalized and mixed in with the cosmic ray finding.

stackFrames

Purpose

This primitive is simply a wrapper around the standard StackPrimitives.stackFrames primitive which ex-
poses extra parameters to the underlying gemcombine.cl IRAF script, and allows increasing the IRAF verbosity.

Inputs and Outputs

hsigma: float or None (default: None) - expose the hsigma parameter of the underlying IRAF gemcombine script,
allowing it to be set within a recipe

hthresh: float or None (default: None) - expose the hthreshold parameter of the underlying IRAF gemcombine
script, allowing it to be set within a recipe

lsigma: float or None (default: None) - expose the lsigma parameter of the underlying IRAF gemcombine script,
allowing it to be set within a recipe

lthresh: float or None (default: None) - expose the lthreshold parameter of the underlying IRAF gemcombine
script, allowing it to be set within a recipe

pclip: float or None (default: None) - expose the pclip parameter of the underlying IRAF gemcombine script,
allowing it to be set within a recipe

sigscale: float or None (default: None) - expose the sigscale parameter of the underlying IRAF gemcombine script,
allowing it to be set within a recipe

verbose: <any> or None (default: None) - set the level of iraf verbosity

Issues and Limitations

The default value for reject_method (a parameter exposed by the underlying StackPrimitives.
stackFrames primitive) is ‘avsigclip’ (inherited from Gemini) which is probably not what we want in most cases.
If necessary (or more convenient), we could override the default in this wrapper, or in the parameters_GHOST.py
file.

28 Chapter 6. Primitives for GHOST



GHOST Users Manual, Release 0.9.0

standardizeHeaders

Purpose

This primitive implements part of the necessary interface required by the StandardizePrimitives.prepare
“super-primitive” inherited from Gemini which, among other things, we use for its calls to validateData and
markAsPrepared. Gemini defines both of those so we don’t have to, but not standardizeHeaders; however,
it does define standardizeGeminiHeaders which works fine for us so, ironically, we just make this primitive
call that!

Inputs and Outputs

The usual stream of AstroData objects which, upon output, have had their headers standardized for trouble-free pro-
cessing through the GHOST pipeline recipes.

Issues and Limitations

None.

standardizeStructure

Purpose

This primitive is responsible for massaging input data frames into a format compatible with the remainder of the
downstream primitives.

When passed a series of slit viewer MEFs (such as results from the observation bundle splitter primitive, or from the
simulator with the -split option sup- plied), it “promotes” all the slit viewer extensions therein to full AstroData objects
with various manipulations so that they will pass various checks and otherwise work nicely with the rest of the recipe.

When passed other input (such as normal science detector frames) nothing is done except the addition of the obligatory
timestamp keyword.

Inputs and Outputs

standardizeStructure takes no particular configuration inputs.

Algorithm

For slit viewer data, the standardizeStructure primitive performs these man- ipulations:

• It uses AstroData slicing (also known as “sub-data”) to initially produce a separate AstroData object for each
extension, then also makes a copy of the PHU for each resultant AstroData object (since sub-data references a
single copy of the original PHU by default). In this manner, fully independent AstroData objects are created
representing each extension.

• The above manipulation causes the resulting AstroData objects to all have the same ORIGNAME in their PHUs.
This becomes an issue when we leverage the existing StackPrimitives.stackFrames primitive, as it
must first (being IRAF-based) write its inputs to disk. As it uses ORIGNAME to do so, clashes would result, so
we make ORIGNAME unique by simply appending an incrementing number.

6.13. standardizeHeaders 29



GHOST Users Manual, Release 0.9.0

• Finally, we also reset the EXTVER of all extensions in the AstroData objects resulting from the first manipula-
tion back to 1 (since now there is only a single extension in each AstroData object).

Issues and Limitations

None.

switchTo

Purpose

This primitive makes the named stream the current stream, such that all subsequently invoked primitives will take as
input the AstroData objects in that stream, as well as write their output AstroData objects to that stream.

Inputs and Outputs

The only parameter switchTo takes is streamName, the name of the stream to which to “shift” execution. Equiv-
alently, the name of the stream which to make current.

Issues and Limitations

Be careful not to specify the parameter streamName as simply stream as this is a reserved parameter name with
special meaning to the recipe framework and odd behaviour results when used.

tileAmplifiers

Purpose

This primitive tiles (or optionally mosaics) the SCI frames of the input images, along with the VAR and DQ frames if
they exist.

Inputs and Outputs

mosaic: bool (default: False), tile the images by default; mosaic them (including transformations) if True

dq_planes: bool (default: False), transform the DQ image, bit plane by bit plane

Algorithm

This primitive is a copy of GEMINIPrimitives.mosaicADdetectors with a couple of additional hacks in-
troduced just prior to calling the mosaicing routine, gemini_mosaic_function, and undone immediately after.
These are necessary in order to trick the underlying mosaicing machinery into working for GHOST data, and are as
follows:

30 Chapter 6. Primitives for GHOST



GHOST Users Manual, Release 0.9.0

• First, we add ‘GSAOI’ to the internal array of types for our input AstroData object (which con-
tains the extensions we want to mosaic). This bypasses the GSAOI-/GMOS-only check built into
gemini_mosaic_function. Afterwards we reset the type list back to normal by invoking AstroData.
refresh_types on the resulting, mosaiced, AstroData object.

• Secondly, we set the INSTRUME PHU keyword to ../../../astrodata_GHOST/ADCONFIG_GHOST/
lookups. This tricks set_geo_values (called by gemini_mosaic_function) into referencing the
geometry_conf.py file under our own astrodata_GHOST/lookups folder. As soon as the mosaic-
ing routine returns we reset INSTRUME back to ‘GHOST’ (and in fact this must be done before the call to
refresh_types mentioned above).

Until such time as astrodata_GHOST has been merged into astrodata_Gemini (like GMOS and GSAOI have
been), or astrodata_Gemini is refactored, the above two hacks will be necessary in order for GHOST to make
use of Gemini’s mosaicing mechanism.

Issues and Limitations

Requires ugly hacks until integration with, or refactoring of, astrodata_Gemini is completed.

validateData

Purpose

This primitive is responsible for ensuring the data passed is GHOST data and has correctly formatted keywords.
(We use the “prepare” superprimitive provided by Gemini which invokes validateData before standardizeHeaders and
standardizeStructure, so validateData must not assert things set by either of those.)

Inputs and Outputs

validateData takes no particular configuration inputs.

Algorithm

None.

Issues and Limitations

At the moment, our version of this primitive does nothing other than write a timestamp into the headers. In future we
may want to check that the right number of extensions is present (but only for normal science detector frames as slit
viewer frames can have any number), and/or confirming that only certain binning shape is used. These are the sorts of
assertions other instruments have used validateData for.

6.17. validateData 31



GHOST Users Manual, Release 0.9.0

32 Chapter 6. Primitives for GHOST



CHAPTER 7

Indices and tables

• genindex

• modindex

• search

33


	Overview of GHOST
	Polynomial Model Method
	Recipes for GHOST
	Tips and Tricks for Processing GHOST
	Issues and Limitations
	Primitives for GHOST
	Indices and tables

