

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Mozilla Source Tree Docs 50.0a1 documentation

Mozilla Source Tree Documentation

	SSL Error Reporting

	Firefox

	Telemetry Experiments

	Build System

	WebIDL

	Graphics

	Firefox for Android

	Indices and tables

	Localization

	mach

	CloudSync

	TaskCluster Task-Graph Generation

	Crash Manager

	Telemetry

	Crash Reporter

	Supbrocess Module

	Toolkit modules

	Add-on Manager

	Linting

	Indices and tables

	Mozilla ESLint Plugin

Python Packages

	mach package
	Subpackages

	Submodules

	mach.base module

	mach.config module

	mach.decorators module

	mach.dispatcher module

	mach.logging module

	mach.main module

	mach.registrar module

	mach.terminal module

	Module contents

	mozbuild package
	Subpackages

	Submodules

	mozbuild.android_version_code module

	mozbuild.artifacts module

	mozbuild.base module

	mozbuild.config_status module

	mozbuild.doctor module

	mozbuild.dotproperties module

	mozbuild.html_build_viewer module

	mozbuild.jar module

	mozbuild.mach_commands module

	mozbuild.makeutil module

	mozbuild.milestone module

	mozbuild.mozconfig module

	mozbuild.mozinfo module

	mozbuild.preprocessor module

	mozbuild.pythonutil module

	mozbuild.shellutil module

	mozbuild.sphinx module

	mozbuild.testing module

	mozbuild.util module

	mozbuild.virtualenv module

	Module contents

	mozlint package
	Subpackages

	Submodules

	mozlint.cli module

	mozlint.errors module

	mozlint.parser module

	mozlint.pathutils module

	mozlint.result module

	mozlint.roller module

	mozlint.types module

	Module contents

	mozpack package
	Subpackages

	Submodules

	mozpack.archive module

	mozpack.copier module

	mozpack.dmg module

	mozpack.errors module

	mozpack.executables module

	mozpack.files module

	mozpack.hg module

	mozpack.manifests module

	mozpack.mozjar module

	mozpack.path module

	mozpack.unify module

	Module contents

	mozversioncontrol package
	Submodules

	mozversioncontrol.repoupdate module

	Module contents

	mozwebidlcodegen package
	Module contents

Managing Documentation

This documentation is generated via the
Sphinx [http://sphinx-doc.org/] tool from sources in the tree.

To build the documentation, run mach doc. Run
mach help doc to see configurable options.

Adding Documentation

To add new documentation, define the SPHINX_TREES and
SPHINX_PYTHON_PACKAGE_DIRS variables in moz.build files in
the tree and documentation will automatically get picked up.

Say you have a directory featureX you would like to write some
documentation for. Here are the steps to create Sphinx documentation
for it:

	Create a directory for the docs. This is typically docs. e.g.
featureX/docs.

	Create an index.rst file in this directory. The index.rst file
is the root documentation for that section. See build/docs/index.rst
for an example file.

	In a moz.build file (typically the one in the parent directory of
the docs directory), define SPHINX_TREES to hook up the plumbing.
e.g. SPHINX_TREES['featureX'] = 'docs'. This says the ``docs``
directory under the current directory should be installed into the
Sphinx documentation tree under ``/featureX``.

	If you have Python packages you would like to generate Python API
documentation for, you can use SPHINX_PYTHON_PACKAGE_DIRS to
declare directories containing Python packages. e.g.
SPHINX_PYTHON_PACKAGE_DIRS += ['mozpackage'].

Indices and tables

	Index

	Module Index

	Search Page

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

SSL Error Reporting

With the introduction of HPKP, it becomes useful to be able to capture data
on pin violations. SSL Error Reporting is an opt-in mechanism to allow users
to send data on such violations to mozilla.

	Payload Format

	Preferences

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	SSL Error Reporting

Payload Format

An example report:

{
 "hostname":"example.com",
 "port":443,
 "timestamp":1413490449,
 "errorCode":-16384,
 "failedCertChain":[
],
 "userAgent":"Mozilla/5.0 (X11; Linux x86_64; rv:36.0) Gecko/20100101 Firefox/36.0",
 "version":1,
 "build":"20141022164419",
 "product":"Firefox",
 "channel":"default"
}

Where the data represents the following:

	“hostname”

	The name of the host the connection was being made to.

	“port”

	The TCP port the connection was being made to.

	“timestamp”

	The (local) time at which the report was generated. Seconds since 1 Jan 1970,
UTC.

	“errorCode”

	The error code. This is the error code from certificate verification. Here’s a small list of the most commonly-encountered errors:
https://wiki.mozilla.org/SecurityEngineering/x509Certs#Error_Codes_in_Firefox
In theory many of the errors from sslerr.h, secerr.h, and pkixnss.h could be encountered. We’re starting with just MOZILLA_PKIX_ERROR_KEY_PINNING_FAILURE, which means that key pinning failed (i.e. there wasn’t an intersection between the keys in any computed trusted certificate chain and the expected list of keys for the domain the user is attempting to connect to).

	“failedCertChain”

	The certificate chain which caused the pinning violation (array of base64
encoded PEM)

	“user agent”

	The user agent string of the browser sending the report

	“build”

	The build ID

	“product”

	The product name

	“channel”

	The user’s release channel

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	SSL Error Reporting

Preferences

The following preferences are used by SSL Error reporting:

	“security.ssl.errorReporting.enabled”

	Should the SSL Error Reporting UI be shown on pin violations? Default
value: true

	“security.ssl.errorReporting.url”

	Where should SSL error reports be sent? Default value:
https://incoming.telemetry.mozilla.org/submit/sslreports/

	“security.ssl.errorReporting.automatic”

	Should error reports be sent without user interaction. Default value:
false. Note: this pref is overridden by the value of
security.ssl.errorReporting.enabled
This is only set when specifically requested by the user. The user can set
this value (or unset it) by checking the “Automatically report errors in the
future” checkbox when about:neterror is displayed for SSL Errors.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

Firefox

This is the nascent documentation of the Firefox front-end code.

	Directory Links Architecture and Data Formats

	UITelemetry data format

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Firefox

Directory Links Architecture and Data Formats

Directory links are enhancements to the new tab experience that combine content
Firefox already knows about from user browsing with external content. There are
3 kinds of links:

	directory links fill in additional tiles on the new tab page if there would
have been empty tiles because the user has a clean profile or cleared history

	suggested links are shown if certain triggering criteria matches the user’s
browsing behavior, i.e., if the user has a top site that matches one of
several possible sites. E.g., only show a sports suggestion if the user has a
sport site as a top site

	enhanced links replace a matching user’s visible history tile from the same
site but only the visual aspects: title, image, and rollover image

To power the above features, DirectoryLinksProvider module downloads, at most
once per 24 hours, the directory source links as JSON with enough data for
Firefox to determine what should be shown or not. This module also handles
reporting back data about the tiles via asynchronous pings that don’t return
data from the server.

For the directory source and ping endpoints, the default preference values point
to Mozilla key-pinned servers with encryption. No cookies are set by the servers
and Firefox enforces this by making anonymous requests.

	default directory source endpoint:
https://tiles.services.mozilla.com/v3/links/fetch/%LOCALE%/%CHANNEL%

	default directory ping endpoint: https://tiles.services.mozilla.com/v3/links/

Preferences

There are two main preferences that control downloading links and reporting
metrics.

browser.newtabpage.directory.source

This endpoint tells Firefox where to download directory source file as a GET
request. It should return JSON of the appropriate format containing the relevant
links data. The value can be a data URI, e.g., an empty JSON object effectively
turns off remote downloading: data:text/plain,{}

The preference value will have %LOCALE% and %CHANNEL% replaced by the
appropriate values for the build of Firefox, e.g.,

	directory source endpoint:
https://tiles.services.mozilla.com/v3/links/fetch/en-US/release

browser.newtabpage.directory.ping

This endpoint tells Firefox where to report Tiles metrics as a POST request. The
data is sent as a JSON blob. Setting it to empty effectively turns off reporting
of Tiles data.

A path segment will be appended to the endpoint of “view” or “click” depending
on the type of ping, e.g.,

	view ping endpoint: https://tiles.services.mozilla.com/v3/links/view

	click ping endpoint: https://tiles.services.mozilla.com/v3/links/click

Data Flow

When Firefox starts, it checks for a cached directory source file. If one
exists, it checks for its timestamp to determine if a new file should be
downloaded.

If a directory source file needs to be downloaded, a GET request is made then
cacheed and unpacked the JSON into the different types of links. Various checks
filter out invalid links, e.g., those with http-hosted images or those that
don’t fit the allowed suggestions.

When a new tab page is built, DirectoryLinksProvider module provides additional
link data that is combined with history link data to determine which links can
be displayed or not.

When a new tab page is shown, a view ping is sent with relevant tiles data.
Similarly, when the user clicks on various parts of tiles (to load the page,
pin, block, etc.), a click ping is sent with similar data. Both of these can
trigger downloading of fresh directory source links if 24 hours have elapsed
since last download.

Users can turn off the ping with in-new-tab-page controls.

As the new tab page is rendered, any images for tiles are downloaded if not
already cached. The default servers hosting the images are Mozilla CDN that
don’t use cookies: https://tiles.cdn.mozilla.net/ and Firefox enforces that the
images come from mozilla.net or data URIs when using the default directory
source.

Source JSON Format

Firefox expects links data in a JSON object with top level keys each providing
an array of tile objects. The keys correspond to the different types of links:
directory, suggested, and enhanced.

Example

Below is an example directory source file:

{
 "directory": [
 {
 "bgColor": "",
 "directoryId": 498,
 "enhancedImageURI": "https://tiles.cdn.mozilla.net/images/d11ba0b3095bb19d8092cd29be9cbb9e197671ea.28088.png",
 "imageURI": "https://tiles.cdn.mozilla.net/images/1332a68badf11e3f7f69bf7364e79c0a7e2753bc.5316.png",
 "title": "Mozilla Community",
 "type": "affiliate",
 "url": "http://contribute.mozilla.org/"
 }
],
 "enhanced": [
 {
 "bgColor": "",
 "directoryId": 776,
 "enhancedImageURI": "https://tiles.cdn.mozilla.net/images/44a14fc405cebc299ead86514dff0e3735c8cf65.10814.png",
 "imageURI": "https://tiles.cdn.mozilla.net/images/20e24aa2219ec7542cc8cf0fd79f0c81e16ebeac.11859.png",
 "title": "TurboTax",
 "type": "sponsored",
 "url": "https://turbotax.intuit.com/"
 }
],
 "suggested": [
 {
 "adgroup_name": "open-source browser",
 "bgColor": "#cae1f4",
 "check_inadjacency": true,
 "directoryId": 702,
 "explanation": "Suggested for %1$S enthusiasts who visit sites like %2$S",
 "frecent_sites": [
 "addons.mozilla.org",
 "air.mozilla.org",
 "blog.mozilla.org",
 "bugzilla.mozilla.org",
 "developer.mozilla.org",
 "etherpad.mozilla.org",
 "hacks.mozilla.org",
 "hg.mozilla.org",
 "mozilla.org",
 "planet.mozilla.org",
 "quality.mozilla.org",
 "support.mozilla.org",
 "treeherder.mozilla.org",
 "wiki.mozilla.org"
],
 "frequency_caps": {"daily": 3, "total": 10},
 "imageURI": "https://tiles.cdn.mozilla.net/images/9ee2b265678f2775de2e4bf680df600b502e6038.3875.png",
 "time_limits": {"start": "2014-01-01T00:00:00.000Z", "end": "2014-02-01T00:00:00.000Z"},
 "title": "Thanks for testing!",
 "type": "affiliate",
 "url": "https://www.mozilla.com/firefox/tiles"
 }
]
}

Link Object

Each link object has various values that Firefox uses to display a tile:

	url - string url for the page to be loaded when the tile is clicked. Only
https and http URLs are allowed.

	title - string that appears below the tile.

	type - string relationship of the link to Mozilla. Expected values:
affiliate, organic, sponsored.

	imageURI - string url for the tile image to show. Only https and data URIs
are allowed.

	enhancedImageURI - string url for the image to be shown before the user
hovers. Only https and data URIs are allowed.

	bgColor - string css color for additional fill background color.

	directoryId - id of the tile to be used during ping reporting

Suggested Link Object Extras

A suggested link has additional values:

	adgroup_name - string to override the hardcoded display name of the
triggering set of sites in Firefox.

	check_inadjacency - boolean if true prevents the suggested link from being
shown if the new tab page is showing a site from an inadjacency list.

	explanation - string to override the default explanation that appears
below a Suggested Tile. %1$S is replaced by the triggering adgroup name and
%2$S is replaced by the triggering site.

	frecent_sites - array of strings of the sites that can trigger showing a
Suggested Tile if the user has the site in one of the top 100 most-frecent
pages.

	frequency_caps - an object consisting of daily and total frequency caps
that limit the number of times a Suggested Tile can be shown in the new tab
per day and overall.

	time_limits - an object consisting of start and end timestamps specifying
when a Suggested Tile may start and has to stop showing in the newtab.
The timestamp is expected in ISO_8601 format: ‘2014-01-10T20:00:00.000Z’

The inadjacency list is packaged with Firefox as base64-encoded 1-way-hashed
sites that tend to have adult, gambling, alcohol, drug, and similar content.
Its location: chrome://browser/content/newtab/newTab.inadjacent.json

The preapproved arrays follow a policy for determining what topic grouping is
allowed as well as the composition of a grouping. The topics are broad
uncontroversial categories, e.g., Mobile Phone, News, Technology, Video Game,
Web Development. There are at least 5 sites within a grouping, and as many
popular sites relevant to the topic are included to avoid having one site be
clearly dominant. These requirements provide some deniability of which site
actually triggered a suggestion during ping reporting, so it’s more difficult to
determine if a user has gone to a specific site.

Ping JSON Format

Firefox reports back an action and the state of tiles on the new tab page based
on the user opening a new tab or clicking a tile. The top level keys of the
ping:

	locale - string locale of the Firefox build

	tiles - array of tiles ping objects

An additional key at the top level indicates which action triggered the ping.
The value associated to the action key is the 0-based index into the tiles array
of which tile triggered the action. Valid actions: block, click, pin, sponsored,
sponsored_link, unpin, view. E.g., if the second tile is being clicked, the ping
will have "click": 1

Example

Below is an example click ping with 3 tiles: a pinned suggested tile
followed by a history tile and a directory tile. The first tile is being
blocked:

{
 "locale": "en-US",
 "tiles": [
 {
 "id": 702,
 "pin": 1,
 "past_impressions": {"total": 5, "daily": 1},
 },
 {},
 {
 "id": 498,
 }
],
 "block": 0
}

Tiles Ping Object

Each tile of the new tab page is reported back as part of the ping with some or
none of the following optional values:

	id - id that was provided as part of the downloaded link object (for all
types of links: directory, suggested, enhanced); not present if the tile was
created from user behavior, e.g., visiting pages

	past_impressions - number of impressions (new tab “views”) a suggested
tile was shown before it was clicked, pinned or blocked. Where the “total”
counter is the overall number of impressions accumulated prior to a click action,
and “daily” counter is the number impressions occurred on same calendar day of
a click. This infomration is submitted once per a suggested tile upon click,
pin or block

	pinned - 1 if the tile is pinned; not present otherwise

	pos - integer position if the tile is not in the natural order, e.g., a
pinned tile after an empty slot; not present otherwise

	score - integer truncated score based on the tile’s frecency; not present
if 0

	url - empty string if it’s an enhanced tile; not present otherwise

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Firefox

UITelemetry data format

UI Telemetry sends its data as a JSON blob. This document describes the different parts
of the JSON blob.

toolbars

This tracks the state of the user’s UI customizations. It has the following properties:

	sizemode - string indicating whether the window is in maximized, normal (restored) or
fullscreen mode;

	bookmarksBarEnabled - boolean indicating whether the bookmarks bar is visible;

	menuBarEnabled - boolean indicating whether the menu bar is visible (always false on OS X);

	titleBarEnabled - boolean indicating whether the (real) titlebar is visible (rather than
having tabs in the titlebar);

	defaultKept - list of strings identifying toolbar buttons and items that are still in their
default position. Only the IDs of builtin widgets are sent (ie not add-on widgets);

	defaultMoved - list of strings identifying toolbar buttons and items that are no longer in
their default position, but have not been removed to the palette. Only the IDs of builtin widgets
are sent (ie not add-on widgets);

	nondefaultAdded - list of strings identifying toolbar buttons and items that have been added
from the palette. Only the IDs of builtin widgets are sent (ie not add-on widgets);

	defaultRemoved - list of strings identifying toolbar buttons and items that are in the
palette that are elsewhere by default. Only the IDs of builtin widgets are sent
(ie not add-on widgets);

	addonToolbars - the number of non-default toolbars that are customizable. 1 by default
because it counts the add-on bar shim;

	visibleTabs - array of the number of visible tabs per window;

	hiddenTabs - array of the number of hidden tabs per window (ie tabs in panorama groups which
are not the current group);

	countableEvents - please refer to the next section.

	durations - an object mapping descriptions to duration records, which records the amount of
time a user spent doing something. Currently only has one property:
	customization - how long a user spent customizing the browser. This is an array of
objects, where each object has a duration property indicating the time in milliseconds,
and a bucket property indicating a bucket in which the duration info falls.

countableEvents

Countable events are stored under the toolbars section. They count the number of times certain
events happen. No timing or other correlating information is stored - purely the number of times
things happen.

countableEvents contains a list of buckets as its properties. A bucket represents the state the browser was in when these events occurred, such as currently running an interactive tour. There are 3 types of buckets:

	__DEFAULT__ - No bucket, for times when the browser is not in any special state.

	bucket_<NAME> - Normal buckets, for when the browser is in a special state. The <NAME> in the bucket ID is the name associated with the bucket and may be further broken down into parts by the | character.

	bucket_<NAME>|<INTERVAL> - Expiring buckets, which are similar to a countdown timer. The <INTERVAL> in the bucket ID describes the time interval the recorded event happened in. The intervals are 1m (one minute), 3m (three minutes), 10m (ten minutes), and 1h (one hour). After one hour, the __DEFAULT__ bucket is automatically used again.

Each bucket is an object with the following properties:

	click-builtin-item is an object tracking clicks on builtin customizable toolbar items, keyed
off the item IDs, with an object for each item with keys left, middle and right each
storing a number indicating how often the respective type of click has happened.

	click-menu-button is the same, except the item ID is always ‘button’.

	click-bookmarks-bar is the same, with the item IDs being replaced by either container for
clicks on bookmark or livemark folders, and item for individual bookmarks.

	click-menubar is similar, with the item IDs being replaced by one of menu, menuitem
or other, depending on the kind of item clicked. Note that this is not tracked on OS X, where
we can’t listen for these events because of the global menubar.

	click-bookmarks-menu-button is also similar, with the item IDs being replaced by:

	menu for clicks on the ‘menu’ part of the item;

	add for clicks that add a bookmark;

	edit for clicks that open the panel to edit an existing bookmark;

	
	in-panel for clicks when the button is in the menu panel, and clicking it does none of the

	above;

	customize tracks different types of customization events without the left, middle and
right distinctions. The different events are the following, with each storing a count of the
number of times they occurred:

	start counts the number of times the user starts customizing;

	add counts the number of times an item is added somewhere from the palette;

	move counts the number of times an item is moved somewhere else (but not to the palette);

	remove counts the number of times an item is removed to the palette;

	reset counts the number of times the ‘restore defaults’ button is used;

	
	search is an object tracking searches of various types, keyed off the search

	location, storing a number indicating how often the respective type of search
has happened.

	There are also two special keys that mean slightly different things.
	urlbar-keyword records searches that would have been an invalid-protocol
error, but are now keyword searches. They are also counted in the urlbar
keyword (along with all the other urlbar searches).

	selection searches records selections of search suggestions. They include
the source, the index of the selection, and the kind of selection (mouse or
enter key). Selection searches are also counted in their sources.

UITour

The UITour API provides ways for pages on trusted domains to safely interact with the browser UI and request it to perform actions such as opening menus and showing highlights over the browser chrome - for the purposes of interactive tours. We track some usage of this API via the UITour object in the UI Telemetry output.

Each page is able to register itself with an identifier, a Page ID. A list of Page IDs that have been seen over the last 8 weeks is available via seenPageIDs.

Page IDs are also used to identify buckets for countableEvents, in the following circumstances:

	The current tab is a tour page. This will be a normal bucket with the name UITour|<PAGEID>, where <PAGEID> is the page’s registered ID. This will result in bucket IDs such as bucket_UITour|australis-tour.

	A tour tab is open but another tab is active. This will be an expiring bucket with the name UITour|<PAGEID>|inactive. This will result in bucket IDs such as bucket_UITour|australis-tour|inactive|1m.

	A tour tab has recently been open but has been closed. This will be an expiring bucket with the name UITour|<PAGEID>|closed. This will result in bucket IDs such as bucket_UITour|australis-tour|closed|10m.

contextmenu

We track context menu interactions to figure out which ones are most often used and/or how
effective they are. In the contextmenu object, we first store things per-bucket. Next, we
divide the following different context menu situations:

	selection if there is content on the page that’s selected on which the user clicks;

	link if the user opened the context menu for a link

	image-link if the user opened the context menu on an image or canvas that’s a link;

	image if the user opened the context menu on an image (that isn’t a link);

	canvas if the user opened the context menu on a canvas (that isn’t a link);

	media if the user opened the context menu on an HTML video or audio element;

	input if the user opened the context menu on a text input element;

	social if the user opened the context menu inside a social frame;

	other for all other openings of the content menu;

Each of these objects (if they exist) then gets a “withcustom” and/or a “withoutcustom” property
for context menus opened with custom page-created items and without them, and each of those
properties holds an object with IDs corresponding to a count of how often an item with that ID was
activated in the context menu. Only builtin context menu items are tracked, and besides those items
there are four special items which get counts:

	close-without-interaction is incremented when the user closes the context menu without interacting with it;

	custom-page-item is incremented when the user clicks an item that was created by the page;

	unknown is incremented when an item without an ID was clicked;

	other-item is incremented when an add-on-provided menuitem is clicked.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

Telemetry Experiments

Telemetry Experiments is a feature of Firefox that allows the installation
of add-ons called experiments to a subset of the Firefox population for
the purposes of experimenting with changes and collecting data on specific
aspects of application usage.

	Experiments Manifests

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Telemetry Experiments

Experiments Manifests

Experiments Manifests are documents that describe the set of active
experiments a client may run.

Experiments Manifests are fetched periodically by clients. When
fetched, clients look at the experiments within the manifest and
determine which experiments are applicable. If an experiment is
applicable, the client may download and start the experiment.

Manifest Format

Manifests are JSON documents where the main element is an object.

The schema of the object is versioned and defined by the presence
of a top-level version property, whose integer value is the
schema version used by that manifest. Each version is documented
in the sections below.

Version 1

Version 1 is the original manifest format.

The following properties may exist in the root object:

	experiments

	An array of objects describing candidate experiments. The format of
these objects is documented below.

An array is used to create an explicit priority of experiments.
Experiments listed at the beginning of the array take priority over
experiments that follow.

Experiments Objects

Each object in the experiments array may contain the following
properties:

	id

	(required) String identifier of this experiment. The identifier should
be treated as opaque by clients. It is used to uniquely identify an
experiment for all of time.

	xpiURL

	(required) String URL of the XPI that implements this experiment.

If the experiment is activated, the client will download and install this
XPI.

	xpiHash

	(required) String hash of the XPI that implements this experiment.

The value is composed of a hash identifier followed by a colon
followed by the hash value. e.g.
sha1:f677428b9172e22e9911039aef03f3736e7f78a7. sha1 and sha256
are the two supported hashing mechanisms. The hash value is the hex
encoding of the binary hash.

When the client downloads the XPI for the experiment, it should compare
the hash of that XPI against this value. If the hashes don’t match,
the client should not install the XPI.

Clients may also use this hash as a means of determining when an
experiment’s XPI has changed and should be refreshed.

	startTime

	Integer seconds since UNIX epoch that this experiment should
start. Clients should not start an experiment if now() is less than
this value.

	maxStartTime

	(optional) Integer seconds since UNIX epoch after which this experiment
should no longer start.

Some experiments may wish to impose hard deadlines after which no new
clients should activate the experiment. This property may be used to
facilitate that.

	endTime

	Integer seconds since UNIX epoch after which this experiment
should no longer run. Clients should cease an experiment when the current
time is beyond this value.

	maxActiveSeconds

	Integer seconds defining the max wall time this experiment should be
active for.

The client should deactivate the experiment this many seconds after
initial activation.

This value only involves wall time, not browser activity or session time.

	appName

	Array of application names this experiment should run on.

An application name comes from nsIXULAppInfo.name. It is a value
like Firefox, Fennec, or B2G.

The client should compare its application name against the members of
this array. If a match is found, the experiment is applicable.

	minVersion

	(optional) String version number of the minimum application version this
experiment should run on.

A version number is something like 27.0.0 or 28.

The client should compare its version number to this value. If the client’s
version is greater or equal to this version (using a version-aware comparison
function), the experiment is applicable.

If this is not specified, there is no lower bound to versions this
experiment should run on.

	maxVersion

	(optional) String version number of the maximum application version this
experiment should run on.

This is similar to minVersion except it sets the upper bound for
application versions.

If the client’s version is less than or equal to this version, the
experiment is applicable.

If this is not specified, there is no upper bound to versions this
experiment should run on.

	version

	(optional) Array of application versions this experiment should run on.

This is similar to minVersion and maxVersion except only a
whitelisted set of specific versions are allowed.

The client should compare its version to members of this array. If a match
is found, the experiment is applicable.

	minBuildID

	(optional) String minimum Build ID this experiment should run on.

Build IDs are values like 201402261424.

The client should perform a string comparison of its Build ID against this
value. If its value is greater than or equal to this value, the experiment
is applicable.

	maxBuildID

	(optional) String maximum Build ID this experiment should run on.

This is similar to minBuildID except it sets the upper bound
for Build IDs.

The client should perform a string comparison of its Build ID against
this value. If its value is less than or equal to this value, the
experiment is applicable.

	buildIDs

	(optional) Array of Build IDs this experiment should run on.

This is similar to minBuildID and maxBuildID except only a
whitelisted set of Build IDs are considered.

The client should compare its Build ID to members of this array. If a
match is found, the experiment is applicable.

	os

	(optional) Array of operating system identifiers this experiment should
run on.

Values for this array come from nsIXULRuntime.OS.

The client will compare its operating system identifier to members
of this array. If a match is found, the experiment is applicable to the
client.

	channel

	(optional) Array of release channel identifiers this experiment should run
on.

The client will compare its channel to members of this array. If a match
is found, the experiment is applicable.

If this property is not defined, the client should assume the experiment
is to run on all channels.

	locale

	(optional) Array of locale identifiers this experiment should run on.

A locale identifier is a string like en-US or zh-CN and is
obtained by looking at
nsIXULChromeRegistry.getSelectedLocale("global").

The client should compare its locale identifier to members of this array.
If a match is found, the experiment is applicable.

If this property is not defined, the client should assume the experiment
is to run on all locales.

	sample

	(optional) Decimal number indicating the sampling rate for this experiment.

This will contain a value between 0.0 and 1.0. The client should
generate a random decimal between 0.0 and 1.0. If the randomly
generated number is less than or equal to the value of this field, the
experiment is applicable.

	disabled

	(optional) Boolean value indicating whether an experiment is disabled.

Normally, experiments are deactivated after a certain time has passed or
after the experiment itself determines it no longer needs to run (perhaps
it collected sufficient data already).

This property serves as a backup mechanism to remotely disable an
experiment before it was scheduled to be disabled. It can be used to
kill experiments that are found to be doing wrong or bad things or that
aren’t useful.

If this property is not defined or is false, the client should assume
the experiment is active and a candidate for activation.

	frozen

	(optional) Boolean value indicating this experiment is frozen and no
longer accepting new enrollments.

If a client sees a true value in this field, it should not attempt to
activate an experiment.

	jsfilter

	(optional) JavaScript code that will be evaluated to determine experiment
applicability.

This property contains the string representation of JavaScript code that
will be evaluated in a sandboxed environment using JavaScript’s
eval().

The string is expected to contain the definition of a JavaScript function
filter(context). This function receives as its argument an object
holding application state. See the section below for the definition of
this object.

The purpose of this property is to allow experiments to define complex
rules and logic for evaluating experiment applicability in a manner
that is privacy conscious and doesn’t require the transmission of
excessive data.

The return value of this filter indicates whether the experiment is
applicable. Functions should return true if the experiment is
applicable.

If an experiment is not applicable, they should throw an Error whose
message contains the reason the experiment is not applicable. This
message may be logged and sent to remote servers, so it should not
contain private or otherwise sensitive data that wouldn’t normally
be submitted.

If a falsey (or undefined) value is returned, the client should
assume the experiment is not applicable.

If this property is not defined, the client does not consider a custom
JavaScript filter function when determining whether an experiment is
applicable.

JavaScript Filter Context Objects

The object passed to a jsfilter filter() function contains the
following properties:

	healthReportSubmissionEnabled

	This property contains a boolean indicating whether Firefox Health
Report has its data submission flag enabled (whether Firefox Health
Report is sending data to remote servers).

	healthReportPayload

	This property contains the current Firefox Health Report payload.

The payload format is documented at Payload Format.

	telemetryPayload

	This property contains the current Telemetry payload.

The evaluation sandbox for the JavaScript filters may be destroyed
immediately after filter() returns. This function should not assume
async code will finish.

Experiment Applicability and Client Behavior

The point of an experiment manifest is to define which experiments are
available and where and how to run them. This section explains those
rules in more detail.

Many of the properties in Experiment Objects are related to determining
whether an experiment should run on a given client. This evaluation is
performed client side.

1. Multiple conditions in an experiment

If multiple conditions are defined for an experiment, the client should
combine each condition with a logical AND: all conditions must be
satisfied for an experiment to run. If one condition fails, the experiment
is not applicable.

2. Active experiment disappears from manifest

If a specific experiment disappears from the manifest, the client should
continue conducting an already-active experiment. Furthermore, the
client should remember what the expiration events were for an experiment
and honor them.

The rationale here is that we want to prevent an accidental deletion
or temporary failure on the server to inadvertantly deactivate
supposed-to-be-active experiments. We also don’t want premature deletion
of an experiment from the manifest to result in indefinite activation
periods.

3. Inactive experiment disappears from manifest

If an inactive but scheduled-to-be-active experiment disappears from the
manifest, the client should not activate the experiment.

If that experiment reappears in the manifest, the client should not
treat that experiment any differently than any other new experiment. Put
another way, the fact an inactive experiment disappears and then
reappears should not be significant.

The rationale here is that server operators should have complete
control of an inactive experiment up to it’s go-live date.

4. Re-evaluating applicability on manifest refresh

When an experiment manifest is refreshed or updated, the client should
re-evaluate the applicability of each experiment therein.

The rationale here is that the server may change the parameters of an
experiment and want clients to pick those up.

5. Activating a previously non-applicable experiment

If the conditions of an experiment change or the state of the client
changes to allow an experiment to transition from previously
non-applicable to applicable, the experiment should be activated.

For example, if a client is running version 28 and the experiment
initially requires version 29 or above, the client will not mark the
experiment as applicable. But if the client upgrades to version 29 or if
the manifest is updated to require 28 or above, the experiment will
become applicable.

6. Deactivating a previously active experiment

If the conditions of an experiment change or the state of the client
changes and an active experiment is no longer applicable, that
experiment should be deactivated.

7. Calculation of sampling-based applicability

For calculating sampling-based applicability, the client will associate
a random value between 0.0 and 1.0 for each observed experiment
ID. This random value will be generated the first time sampling
applicability is evaluated. This random value will be persisted and used
in future applicability evaluations for this experiment.

By saving and re-using the value, the client is able to reliably and
consistently evaluate applicability, even if the sampling threshold
in the manifest changes.

Clients should retain the randomly-generated sampling value for
experiments that no longer appear in a manifest for a period of at least
30 days. The rationale is that if an experiment disappears and reappears
from a manifest, the client will not have multiple opportunities to
generate a random value that satisfies the sampling criteria.

8. Incompatible version numbers

If a client receives a manifest with a version number that it doesn’t
recognize, it should ignore the manifest.

9. Usage of old manifests

If a client experiences an error fetching a manifest (server not
available) or if the manifest is corrupt, not readable, or compatible,
the client may use a previously-fetched (cached) manifest.

10. Updating XPIs

If the URL or hash of an active experiment’s XPI changes, the client
should fetch the new XPI, uninstall the old XPI, and install the new
XPI.

Examples

Here is an example manifest:

{
 "version": 1,
 "experiments": [
 {
 "id": "da9d7f4f-f3f9-4f81-bacd-6f0626ffa360",
 "xpiURL": "https://experiments.mozilla.org/foo.xpi",
 "xpiHash": "sha1:cb1eb32b89d86d78b7326f416cf404548c5e0099",
 "startTime": 1393000000,
 "endTime": 1394000000,
 "appName": ["Firefox", "Fennec"],
 "minVersion": "28",
 "maxVersion": "30",
 "os": ["windows", "linux", "osx"],
 "jsfilter": "function filter(context) { return context.healthReportEnabled; }"
 }
]
}

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

Build System

Important Concepts

	Glossary

	Build System Overview

	Supported Configurations

	Mozconfig Files

	moz.build Files

	mozbuild Sandbox Symbols

	Files Metadata

	Profile Guided Optimization

	Why the Build System is Slow

	Environment Variables Impacting the Build System

	Build Targets

	Python and the Build System

	Test Manifests

	mozinfo

	Text Preprocessor

	JAR Manifests

	Defining Binaries for the Build System

	Creating Toolchain Archives

	Localization (l10n)

integrated development environment (IDE)

	Android Eclipse Projects

	Cpp Eclipse Projects

	Visual Studio Projects

mozbuild

mozbuild is a Python package containing a lot of the code for the
Mozilla build system.

	mozbuild

	dumbmake

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Build System

Glossary

	clobber build

	A build performed with an initially empty object directory. All
build actions must be performed.

	config.status

	An executable file produced by configure that takes the
generated build config and writes out files used to build the
tree. Traditionally, config.status writes out a bunch of
Makefiles.

	configure

	A generated shell script which detects the current system
environment, applies a requested set of build configuration
options, and writes out metadata to be consumed by the build
system.

	incremental build

	A build performed with the result of a previous build in an
object directory. The build should not have to work as hard because
it will be able to reuse the work from previous builds.

	install manifest

	A file containing metadata describing file installation rules.
A large part of the build system consists of copying files
around to appropriate places. We write out special files
describing the set of required operations so we can process the
actions effeciently. These files are install manifests.

	mozconfig

	A shell script used to configure the build system.

	mozinfo

	An API for accessing a common and limited subset of the build and
run-time configuration. See mozinfo.

	object directory

	A directory holding the output of the build system. The build
system attempts to isolate all file modifications to this
directory. By convention, object directories are commonly
directories under the source directory prefixed with obj-.
e.g. obj-firefox.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Build System

Build System Overview

This document provides an overview on how the build system works. It is
targeted at people wanting to learn about internals of the build system.
It is not meant for persons who casually interact with the build system.
That being said, knowledge empowers, so consider reading on.

The build system is composed of many different components working in
harmony to build the source tree. We begin with a graphic overview.

[image: digraph build_components { rankdir="LR"; "configure" -> "config.status" -> "build backend" -> "build output" }]

Phase 1: Configuration

Phase 1 centers around the configure script, which is a bash shell script.
The file is generated from a file called configure.in which is written in M4
and processed using Autoconf 2.13 to create the final configure script.
You don’t have to worry about how you obtain a configure file: the build
system does this for you.

The primary job of configure is to determine characteristics of the system
and compiler, apply options passed into it, and validate everything looks OK to
build. The primary output of the configure script is an executable file
in the object directory called config.status. configure also produces
some additional files (like autoconf.mk). However, the most important file
in terms of architecture is config.status.

The existence of a config.status file may be familiar to those who have worked
with Autoconf before. However, Mozilla’s config.status is different from almost
any other config.status you’ve ever seen: it’s written in Python! Instead of
having our configure script produce a shell script, we have it generating
Python.

Now is as good a time as any to mention that Python is prevalent in our build
system. If we need to write code for the build system, we do it in Python.
That’s just how we roll. For more, see Python and the Build System.

config.status contains 2 parts: data structures representing the output of
configure and a command-line interface for preparing/configuring/generating
an appropriate build backend. (A build backend is merely a tool used to build
the tree - like GNU Make or Tup). These data structures essentially describe
the current state of the system and what the existing build configuration looks
like. For example, it defines which compiler to use, how to invoke it, which
application features are enabled, etc. You are encouraged to open up
config.status to have a look for yourself!

Once we have emitted a config.status file, we pass into the realm of
phase 2.

Phase 2: Build Backend Preparation and the Build Definition

Once configure has determined what the current build configuration is,
we need to apply this to the source tree so we can actually build.

What essentially happens is the automatically-produced config.status Python
script is executed as soon as configure has generated it. config.status
is charged with the task of tell a tool how to build the tree. To do this,
config.status must first scan the build system definition.

The build system definition consists of various moz.build files in the tree.
There is roughly one moz.build file per directory or per set of related directories.
Each moz.build files defines how its part of the build config works. For
example it says I want these C++ files compiled or look for additional
information in these directories. config.status starts with the moz.build
file from the root directory and then descends into referenced moz.build
files by following DIRS variables or similar.

As the moz.build files are read, data structures describing the overall
build system definition are emitted. These data structures are then fed into a
build backend, which then performs actions, such as writing out files to
be read by a build tool. e.g. a make backend will write a
Makefile.

When config.status runs, you’ll see the following output:

Reticulating splines...
Finished reading 1096 moz.build files into 1276 descriptors in 2.40s
Backend executed in 2.39s
2188 total backend files. 0 created; 1 updated; 2187 unchanged
Total wall time: 5.03s; CPU time: 3.79s; Efficiency: 75%

What this is saying is that a total of 1096 moz.build files were read.
Altogether, 1276 data structures describing the build configuration were
derived from them. It took 2.40s wall time to just read these files and
produce the data structures. The 1276 data structures were fed into the
build backend which then determined it had to manage 2188 files derived
from those data structures. Most of them already existed and didn’t need
changed. However, 1 was updated as a result of the new configuration.
The whole process took 5.03s. Although, only 3.79s was in
CPU time. That likely means we spent roughly 25% of the time waiting on
I/O.

For more on how moz.build files work, see moz.build Files.

Phase 3: Invokation of the Build Backend

When most people think of the build system, they think of phase 3. This is
where we take all the code in the tree and produce Firefox or whatever
application you are creating. Phase 3 effectively takes whatever was
generated by phase 2 and runs it. Since the dawn of Mozilla, this has been
make consuming Makefiles. However, with the transition to moz.build files,
you may soon see non-Make build backends, such as Tup or Visual Studio.

When building the tree, most of the time is spent in phase 3. This is when
header files are installed, C++ files are compiled, files are preprocessed, etc.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Build System

Supported Configurations

This page attempts to document supported build configurations.

Windows

We support building on Windows XP and newer operating systems using
Visual Studio 2010 and newer.

The following are not fully supported by Mozilla (but may work):

	Building without the latest MozillaBuild Windows development
environment

	Building with Mingw or any other non-Visual Studio toolchain.

OS X

We support building on OS X 10.6 and newer with the OS X 10.6 SDK.

The tree should build with the following OS X releases and SDK versions:

	10.6 Snow Leopard

	10.7 Lion

	10.8 Mountain Lion

	10.9 Mavericks

The tree requires building with Clang 3.3 and newer. This corresponds to
version of 4.2 of Apple’s Clang that ships with Xcode. This corresponds
to Xcode 4.6 and newer. Xcode 4.6 only runs on OS X 10.7.4 and newer.
So, OS X 10.6 users will need to install a non-Apple toolchain. Running
mach bootstrap should install an appropriate toolchain from Homebrew
or MacPorts automatically.

The tree should build with GCC 4.4 and newer on OS X. However, this
build configuration isn’t as widely used (and differs from what Mozilla
uses to produce OS X builds), so it’s recommended to stick with Clang.

Linux

Linux 2.6 and later kernels are supported.

Most distributions are supported as long as the proper package
dependencies are in place. Running mach bootstrap should install
packages for popular Linux distributions. configure will typically
detect missing dependencies and inform you how to disable features to
work around unsatisfied dependencies.

Clang 3.3 or GCC 4.4 is required to build the tree.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Build System

mozconfig Files

mozconfig files are used to configure how a build works.

mozconfig files are actually shell scripts. They are executed in a
special context with specific variables and functions exposed to them.

API

Functions

The following special functions are available to a mozconfig script.

ac_add_options

This function is used to declare extra options/arguments to pass into
configure.

e.g.:

ac_add_options --disable-tests
ac_add_options --enable-optimize

mk_add_options

This function is used to inject statements into client.mk for execution.
It is typically used to define variables, notably the object directory.

e.g.:

mk_add_options AUTOCLOBBER=1

ac_add_options

This is a variant of ac_add_options() which only adds configure options
for a specified application. This is only used when building multiple
applications through client.mk. This function is typically not needed.

Special mk_add_options Variables

For historical reasons, the method for communicating certain
well-defined variables is via mk_add_options(). In this section, we
document what those special variables are.

MOZ_OBJDIR

This variable is used to define the object directory for the current
build.

Finding the active mozconfig

Multiple mozconfig files can exist to provide different configuration
options for different tasks. The rules for finding the active mozconfig
are defined in the
mozbuild.mozconfig.MozconfigLoader.find_mozconfig() method:

	
class mozbuild.mozconfig.MozconfigLoader(topsrcdir)

	Handles loading and parsing of mozconfig files.

	
find_mozconfig(env={'LANG': 'C.UTF-8', 'READTHEDOCS_PROJECT': 'gfritzsche-demo', 'READTHEDOCS': 'True', 'APPDIR': '/app', 'DEBIAN_FRONTEND': 'noninteractive', 'OLDPWD': '/', 'HOSTNAME': 'build-4258433-project-55928-gfritzsche-demo', u'SHELL': u'/bin/bash', 'PWD': '/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/checkouts/latest/tools/docs', 'BIN_PATH': '/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/envs/latest/bin', 'READTHEDOCS_VERSION': 'latest', 'PATH': '/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/checkouts/latest/tools/docs/_build/epub/_venv/bin:/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/envs/latest/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin', 'HOME': '/home/docs'})

	Find the active mozconfig file for the current environment.

This emulates the logic in mozconfig-find.

	If ENV[MOZCONFIG] is set, use that

	If $TOPSRCDIR/mozconfig or $TOPSRCDIR/.mozconfig exists, use it.

	If both exist or if there are legacy locations detected, error out.

The absolute path to the found mozconfig will be returned on success.
None will be returned if no mozconfig could be found. A
MozconfigFindException will be raised if there is a bad state,
including conditions from #3 above.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Build System

moz.build Files

moz.build files are the mechanism by which tree metadata (notably
the build configuration) is defined.

Directories in the tree contain moz.build files which declare
functionality for their respective part of the tree. This includes
things such as the list of C++ files to compile, where to find tests,
etc.

moz.build files are actually Python scripts. However, their
execution is governed by special rules. This is explained below.

moz.build Python Sandbox

As mentioned above, moz.build files are Python scripts. However,
they are executed in a special Python sandbox that significantly
changes and limits the execution environment. The environment is so
different, it’s doubtful most moz.build files would execute without
error if executed by a vanilla Python interpreter (e.g. python
moz.build.

The following properties make execution of moz.build files special:

	The execution environment exposes a limited subset of Python.

	There is a special set of global symbols and an enforced naming
convention of symbols.

	Some symbols are inherited from previously-executed moz.build
files.

The limited subset of Python is actually an extremely limited subset.
Only a few symbols from __builtins__ are exposed. These include
True, False, and None. Global functions like import,
print, and open aren’t available. Without these, moz.build
files can do very little. This is by design.

The execution sandbox treats all UPPERCASE variables specially. Any
UPPERCASE variable must be known to the sandbox before the script
executes. Any attempt to read or write to an unknown UPPERCASE
variable will result in an exception being raised. Furthermore, the
types of all UPPERCASE variables is strictly enforced. Attempts to
assign an incompatible type to an UPPERCASE variable will result in
an exception being raised.

The strictness of behavior with UPPERCASE variables is a very
intentional design decision. By ensuring strict behavior, any operation
involving an UPPERCASE variable is guaranteed to have well-defined
side-effects. Previously, when the build configuration was defined in
Makefiles, assignments to variables that did nothing would go
unnoticed. moz.build files fix this problem by eliminating the
potential for false promises.

After a moz.build file has completed execution, only the
UPPERCASE variables are used to retrieve state.

The set of variables and functions available to the Python sandbox is
defined by the mozbuild.frontend.context module. The
data structures in this module are consumed by the
mozbuild.frontend.reader.MozbuildSandbox class to construct
the sandbox. There are tests to ensure that the set of symbols exposed
to an empty sandbox are all defined in the context module.
This module also contains documentation for each symbol, so nothing can
sneak into the sandbox without being explicitly defined and documented.

Reading and Traversing moz.build Files

The process for reading moz.build files roughly consists of:

	Start at the root moz.build (<topsrcdir>/moz.build).

	Evaluate the moz.build file in a new sandbox.

	Emit the main context and any sub-contexts from the executed
sandbox.

	Extract a set of moz.build files to execute next.

	For each additional moz.build file, goto #2 and repeat until all
referenced files have executed.

From the perspective of the consumer, the output of reading is a stream
of mozbuild.frontend.reader.context.Context instances. Each
Context defines a particular aspect of data. Consumers iterate over
these objects and do something with the data inside. Each object is
essentially a dictionary of all the UPPERCASE variables populated
during its execution.

Note

Historically, there was only one context per moz.build file.
As the number of things tracked by moz.build files grew and more
and more complex processing was desired, it was necessary to split these
contexts into multiple logical parts. It is now common to emit
multiple contexts per moz.build file.

Build System Reading Mode

The traditional mode of evaluation of moz.build files is what’s
called build system traversal mode. In this mode, the CONFIG
variable in each moz.build sandbox is populated from data coming
from config.status, which is produced by configure.

During evaluation, moz.build files often make decisions conditional
on the state of the build configuration. e.g. only compile foo.cpp if
feature X is enabled.

In this mode, traversal of moz.build files is governed by variables
like DIRS and TEST_DIRS. For example, to execute a child
directory, foo, you would add DIRS += ['foo'] to a moz.build
file and foo/moz.build would be evaluated.

Filesystem Reading Mode

There is an alternative reading mode that doesn’t involve the build
system and doesn’t use DIRS variables to control traversal into
child directories. This mode is called filesystem reading mode.

In this reading mode, the CONFIG variable is a dummy, mostly empty
object. Accessing all but a few special variables will return an empty
value. This means that nearly all if CONFIG['FOO']: branches will
not be taken.

Instead of using content from within the evaluated moz.build
file to drive traversal into subsequent moz.build files, the set
of files to evaluate is controlled by the thing doing the reading.

A single moz.build file is not guaranteed to be executable in
isolation. Instead, we must evaluate all parent moz.build files
first. For example, in order to evaluate /foo/moz.build, one must
execute /moz.build and have its state influence the execution of
/foo/moz.build.

Filesystem reading mode is utilized to power the
Files Metadata feature.

Technical Details

The code for reading moz.build files lives in
mozbuild.frontend.reader. The Python sandboxes evaluation results
(mozbuild.frontend.context.Context) are passed into
mozbuild.frontend.emitter, which converts them to classes defined
in mozbuild.frontend.data. Each class in this module defines a
domain-specific component of tree metdata. e.g. there will be separate
classes that represent a JavaScript file vs a compiled C++ file or test
manifests. This means downstream consumers of this data can filter on class
types to only consume what they are interested in.

There is no well-defined mapping between moz.build file instances
and the number of mozbuild.frontend.data classes derived from
each. Depending on the content of the moz.build file, there may be 1
object derived or 100.

The purpose of the emitter layer between low-level sandbox execution
and metadata representation is to facilitate a unified normalization and
verification step. There are multiple downstream consumers of the
moz.build-derived data and many will perform the same actions. This
logic can be complicated, so we have a component dedicated to it.

mozbuild.frontend.reader.BuildReader` and
mozbuild.frontend.reader.TreeMetadataEmitter` have a
stream-based API courtesy of generators. When you hook them up properly,
the mozbuild.frontend.data classes are emitted before all
moz.build files have been read. This means that downstream errors
are raised soon after sandbox execution.

Lots of the code for evaluating Python sandboxes is applicable to
non-Mozilla systems. In theory, it could be extracted into a standalone
and generic package. However, until there is a need, there will
likely be some tightly coupled bits.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Build System

mozbuild Sandbox Symbols

Sub-Context: Files

Metadata attached to files.

It is common to want to annotate files with metadata, such as which
Bugzilla component tracks issues with certain files. This sub-context is
where we stick that metadata.

The argument to this sub-context is a file matching pattern that is applied
against the host file’s directory. If the pattern matches a file whose info
is currently being sought, the metadata attached to this instance will be
applied to that file.

Patterns are collections of filename characters with / used as the
directory separate (UNIX-style paths) and * and ** used to denote
wildcard matching.

Patterns without the * character are literal matches and will match at
most one entity.

Patterns with * or ** are wildcard matches. * matches files
at least within a single directory. ** matches files across several
directories.

	foo.html

	Will match only the foo.html file in the current directory.

	*.jsm

	Will match all .jsm files in the current directory.

	**/*.cpp

	Will match all .cpp files in this and all child directories.

	foo/*.css

	Will match all .css files in the foo/ directory.

	bar/*

	Will match all files in the bar/ directory and all of its
children directories.

	bar/**

	This is equivalent to bar/* above.

	bar/**/foo

	Will match all foo files in the bar/ directory and all of its
children directories.

The difference in behavior between * and ** is only evident if
a pattern follows the * or **. A pattern ending with * is
greedy. ** is needed when you need an additional pattern after the
wildcard. e.g. **/foo.

BUG_COMPONENT

The bug component that tracks changes to these files.

	Storage Type:	TypedTuple

	Input Type:	tuple

Values are a 2-tuple of unicode describing the Bugzilla product and
component. e.g. ('Core', 'Build Config').

FINAL

Mark variable assignments as finalized.

	Storage Type:	bool

	Input Type:	bool

During normal processing, values from newer Files contexts
overwrite previously set values. Last write wins. This behavior is
not always desired. FINAL provides a mechanism to prevent
further updates to a variable.

When FINAL is set, the value of all variables defined in this
context are marked as frozen and all subsequent writes to them
are ignored during metadata reading.

See Finalizing Values for more info.

IMPACTED_TESTS

File patterns, tags, and flavors for tests relevant to these files.

	Storage Type:	_TypedRecord

	Input Type:	list

Maps source files to the tests potentially impacted by those files.
Tests can be specified by file pattern, tag, or flavor.

For example:

	with Files(‘runtests.py’):

	
	IMPACTED_TESTS.files += [

	‘**’,

]

in testing/mochitest/moz.build will suggest that any of the tests
under testing/mochitest may be impacted by a change to runtests.py.

File patterns may be made relative to the topsrcdir with a leading
‘/’, so

	with Files(‘httpd.js’):

	
	IMPACTED_TESTS.files += [

	‘/testing/mochitest/tests/Harness_sanity/**‘,

]

in netwerk/test/httpserver/moz.build will suggest that any change to httpd.js
will be relevant to the mochitest sanity tests.

Tags and flavors are sorted string lists (flavors are limited to valid
values).

For example:

	with Files(‘toolkit/devtools/*‘):

	
	IMPACTED_TESTS.tags += [

	‘devtools’,

]

in the root moz.build would suggest that any test tagged ‘devtools’ would
potentially be impacted by a change to a file under toolkit/devtools, and

	with Files(‘dom/base/nsGlobalWindow.cpp’):

	
	IMPACTED_TESTS.flavors += [

	‘mochitest’,

]

Would suggest that nsGlobalWindow.cpp is potentially relevant to
any plain mochitest.

Variables

A11Y_MANIFESTS

List of manifest files defining a11y tests.

	Storage Type:	_OrderedListWithAction

	Input Type:	list

ALLOW_COMPILER_WARNINGS

Whether to allow compiler warnings (i.e. not treat them as

	Storage Type:	bool

	Input Type:	bool

errors).

This is commonplace (almost mandatory, in fact) in directories
containing third-party code that we regularly update from upstream and
thus do not control, but is otherwise discouraged.

ANDROID_APK_NAME

The name of an Android APK file to generate.

	Storage Type:	unicode

	Input Type:	unicode

ANDROID_APK_PACKAGE

The name of the Android package to generate R.java for, like org.mozilla.gecko.

	Storage Type:	unicode

	Input Type:	unicode

ANDROID_ASSETS_DIRS

Android assets directories.

	Storage Type:	_TypedListWithItems

	Input Type:	list

This variable contains a list of directories containing static
files to package into an ‘assets’ directory and merge into an
APK file.

ANDROID_ECLIPSE_PROJECT_TARGETS

Defines Android Eclipse project targets.

	Storage Type:	dict

	Input Type:	dict

This variable should not be populated directly. Instead, it should
populated by calling add_android_eclipse{_library}_project().

ANDROID_EXTRA_PACKAGES

The name of extra Android packages to generate R.java for, like [‘org.mozilla.other’].

	Storage Type:	StrictOrderingOnAppendList

	Input Type:	list

ANDROID_EXTRA_RES_DIRS

Android extra package resource directories.

	Storage Type:	_TypedListWithItems

	Input Type:	list

This variable contains a list of directories containing static files
to package into a ‘res’ directory and merge into an APK file. These
directories are packaged into the APK but are assumed to be static
unchecked dependencies that should not be otherwise re-distributed.

ANDROID_GENERATED_RESFILES

Android resource files generated as part of the build.

	Storage Type:	StrictOrderingOnAppendList

	Input Type:	list

This variable contains a list of files that are expected to be
generated (often by preprocessing) into a ‘res’ directory as
part of the build process, and subsequently merged into an APK
file.

ANDROID_INSTRUMENTATION_MANIFESTS

List of manifest files defining Android instrumentation tests.

	Storage Type:	_OrderedListWithAction

	Input Type:	list

ANDROID_RES_DIRS

Android resource directories.

	Storage Type:	_TypedListWithItems

	Input Type:	list

This variable contains a list of directories containing static
files to package into a ‘res’ directory and merge into an APK
file.

ASFLAGS

Flags passed to the assembler for all of the assembly source files

	Storage Type:	List

	Input Type:	list

declared in this directory.

Note that the ordering of flags matters here; these flags will be
added to the assembler’s command line in the same order as they
appear in the moz.build file.

BRANDING_FILES

List of files to be installed into the branding directory.

	Storage Type:	_TypedListWithItems

	Input Type:	list

BRANDING_FILES will copy (or symlink, if the platform supports it)
the contents of its files to the dist/branding directory. Files that
are destined for a subdirectory can be specified by accessing a field.
For example, to export foo.png to the top-level directory and
bar.png to the directory images/subdir, append to
BRANDING_FILES like so:

BRANDING_FILES += ['foo.png']
BRANDING_FILES.images.subdir += ['bar.png']

BROWSER_CHROME_MANIFESTS

List of manifest files defining browser chrome tests.

	Storage Type:	_OrderedListWithAction

	Input Type:	list

CFLAGS

Flags passed to the C compiler for all of the C source files

	Storage Type:	List

	Input Type:	list

declared in this directory.

Note that the ordering of flags matters here, these flags will be
added to the compiler’s command line in the same order as they
appear in the moz.build file.

CMFLAGS

Flags passed to the Objective-C compiler for all of the Objective-C

	Storage Type:	List

	Input Type:	list

source files declared in this directory.

Note that the ordering of flags matters here; these flags will be
added to the compiler’s command line in the same order as they
appear in the moz.build file.

CMMFLAGS

Flags passed to the Objective-C++ compiler for all of the

	Storage Type:	List

	Input Type:	list

Objective-C++ source files declared in this directory.

Note that the ordering of flags matters here; these flags will be
added to the compiler’s command line in the same order as they
appear in the moz.build file.

CONFIGURE_DEFINE_FILES

Output files generated from configure/config.status.

	Storage Type:	_TypedList

	Input Type:	list

This is a substitute for AC_CONFIG_HEADER in autoconf. This is very
similar to CONFIGURE_SUBST_FILES except the generation logic takes
into account the values of AC_DEFINE instead of AC_SUBST.

CONFIGURE_SUBST_FILES

Output files that will be generated using configure-like substitution.

	Storage Type:	_TypedList

	Input Type:	list

This is a substitute for AC_OUTPUT in autoconf. For each path in this
list, we will search for a file in the srcdir having the name
{path}.in. The contents of this file will be read and variable
patterns like @foo@ will be substituted with the values of the
AC_SUBST variables declared during configure.

CPP_UNIT_TESTS

Compile a list of C++ unit test names.

	Storage Type:	StrictOrderingOnAppendList

	Input Type:	list

Each name in this variable corresponds to an executable built from the
corresponding source file with the same base name.

If the configuration token BIN_SUFFIX is set, its value will be
automatically appended to each name. If a name already ends with
BIN_SUFFIX, the name will remain unchanged.
This variable is only available in templates.

CRASHTEST_MANIFESTS

List of manifest files defining crashtests.

	Storage Type:	_OrderedListWithAction

	Input Type:	list

These are commonly named crashtests.list.

CXXFLAGS

Flags passed to the C++ compiler for all of the C++ source files

	Storage Type:	List

	Input Type:	list

declared in this directory.

Note that the ordering of flags matters here; these flags will be
added to the compiler’s command line in the same order as they
appear in the moz.build file.

DEFFILE

The program .def (module definition) file.

	Storage Type:	unicode

	Input Type:	unicode

This variable can only be used on Windows.

DEFINES

Dictionary of compiler defines to declare.

	Storage Type:	InitializedDefines

	Input Type:	dict

These are passed in to the compiler as -Dkey='value' for string
values, -Dkey=value for numeric values, or -Dkey if the
value is True. Note that for string values, the outer-level of
single-quotes will be consumed by the shell. If you want to have
a string-literal in the program, the value needs to have
double-quotes.

Example:

DEFINES['NS_NO_XPCOM'] = True
DEFINES['MOZ_EXTENSIONS_DB_SCHEMA'] = 15
DEFINES['DLL_SUFFIX'] = '".so"'

This will result in the compiler flags -DNS_NO_XPCOM,
-DMOZ_EXTENSIONS_DB_SCHEMA=15, and -DDLL_SUFFIX='".so"',
respectively. These could also be combined into a single
update:

DEFINES.update({
 'NS_NO_XPCOM': True,
 'MOZ_EXTENSIONS_DB_SCHEMA': 15,
 'DLL_SUFFIX': '".so"',
})

DELAYLOAD_DLLS

Delay-loaded DLLs.

	Storage Type:	List

	Input Type:	list

This variable contains a list of DLL files which the module being linked
should load lazily. This only has an effect when building with MSVC.

DIRS

Child directories to descend into looking for build frontend files.

	Storage Type:	_TypedList

	Input Type:	list

This works similarly to the DIRS variable in make files. Each str
value in the list is the name of a child directory. When this file is
done parsing, the build reader will descend into each listed directory
and read the frontend file there. If there is no frontend file, an error
is raised.

Values are relative paths. They can be multiple directory levels
above or below. Use .. for parent directories and / for path
delimiters.

DISABLE_STL_WRAPPING

Disable the wrappers for STL which allow it to work with C++ exceptions

	Storage Type:	bool

	Input Type:	bool

disabled.

DIST_INSTALL

Whether to install certain files into the dist directory.

	Storage Type:	EnumClass

	Input Type:	bool

By default, some files types are installed in the dist directory, and
some aren’t. Set this variable to True to force the installation of
some files that wouldn’t be installed by default. Set this variable to
False to force to not install some files that would be installed by
default.

This is confusing for historical reasons, but eventually, the behavior
will be made explicit.

DIST_SUBDIR

The name of an alternate directory to install files to.

	Storage Type:	unicode

	Input Type:	unicode

When this variable is present, the results of this directory will end up
being placed in the $(DIST_SUBDIR) subdirectory of where it would
otherwise be placed.

EXPORTS

List of files to be exported, and in which subdirectories.

	Storage Type:	_TypedListWithItems

	Input Type:	list

EXPORTS is generally used to list the include files to be exported to
dist/include, but it can be used for other files as well. This variable
behaves as a list when appending filenames for export in the top-level
directory. Files can also be appended to a field to indicate which
subdirectory they should be exported to. For example, to export
foo.h to the top-level directory, and bar.h to mozilla/dom/,
append to EXPORTS like so:

EXPORTS += ['foo.h']
EXPORTS.mozilla.dom += ['bar.h']

Entries in EXPORTS are paths, so objdir paths may be used, but
any files listed from the objdir must also be listed in
GENERATED_FILES.

EXTRA_DSO_LDOPTS

Flags passed to the linker when linking a shared library.

	Storage Type:	List

	Input Type:	list

Note that the ordering of flags matter here, these flags will be
added to the linker’s command line in the same order as they
appear in the moz.build file.

FILES_PER_UNIFIED_FILE

The number of source files to compile into each unified source file.

	Storage Type:	int

	Input Type:	int

FINAL_LIBRARY

Library in which the objects of the current directory will be linked.

	Storage Type:	unicode

	Input Type:	unicode

This variable contains the name of a library, defined elsewhere with
LIBRARY_NAME, in which the objects of the current directory will be
linked.

FINAL_TARGET

The name of the directory to install targets to.

	Storage Type:	FinalTargetValue

	Input Type:	unicode

The directory is relative to the top of the object directory. The
default value is dependent on the values of XPI_NAME and DIST_SUBDIR. If
neither are present, the result is dist/bin. If XPI_NAME is present, the
result is dist/xpi-stage/$(XPI_NAME). If DIST_SUBDIR is present, then
the $(DIST_SUBDIR) directory of the otherwise default value is used.

FINAL_TARGET_FILES

List of files to be installed into the application directory.

	Storage Type:	_TypedListWithItems

	Input Type:	list

FINAL_TARGET_FILES will copy (or symlink, if the platform supports it)
the contents of its files to the directory specified by
FINAL_TARGET (typically dist/bin). Files that are destined for a
subdirectory can be specified by accessing a field, or as a dict access.
For example, to export foo.png to the top-level directory and
bar.svg to the directory images/do-not-use, append to
FINAL_TARGET_FILES like so:

FINAL_TARGET_FILES += ['foo.png']
FINAL_TARGET_FILES.images['do-not-use'] += ['bar.svg']

FINAL_TARGET_PP_FILES

Like FINAL_TARGET_FILES, with preprocessing.

	Storage Type:	_TypedListWithItems

	Input Type:	list

FORCE_SHARED_LIB

Whether the library in this directory is a shared library.

	Storage Type:	bool

	Input Type:	bool

This variable is only available in templates.

FORCE_STATIC_LIB

Whether the library in this directory is a static library.

	Storage Type:	bool

	Input Type:	bool

GENERATED_EVENTS_WEBIDL_FILES

WebIDL source files for generated events.

	Storage Type:	StrictOrderingOnAppendList

	Input Type:	list

These will be parsed and converted to .cpp and .h files.

GENERATED_FILES

Generic generated files.

	Storage Type:	StrictOrderingOnAppendListWithFlagsSpecialization

	Input Type:	list

This variable contains a list of files for the build system to
generate at export time. The generation method may be declared
with optional script and inputs flags on individual entries.
If the optional script flag is not present on an entry, it
is assumed that rules for generating the file are present in
the associated Makefile.in.

Example:

GENERATED_FILES += ['bar.c', 'baz.c', 'foo.c']
bar = GENERATED_FILES['bar.c']
bar.script = 'generate.py'
bar.inputs = ['datafile-for-bar']
foo = GENERATED_FILES['foo.c']
foo.script = 'generate.py'
foo.inputs = ['datafile-for-foo']

This definition will generate bar.c by calling the main method of
generate.py with a open (for writing) file object for bar.c, and
the string datafile-for-bar. In a similar fashion, the main
method of generate.py will also be called with an open
(for writing) file object for foo.c and the string
datafile-for-foo. Please note that only string arguments are
supported for passing to scripts, and that all arguments provided
to the script should be filenames relative to the directory in which
the moz.build file is located.

To enable using the same script for generating multiple files with
slightly different non-filename parameters, alternative entry points
into script can be specified:

GENERATED_FILES += ['bar.c']
bar = GENERATED_FILES['bar.c']
bar.script = 'generate.py:make_bar'

The chosen script entry point may optionally return a set of strings,
indicating extra files the output depends on.

GENERATED_WEBIDL_FILES

Generated WebIDL source files.

	Storage Type:	StrictOrderingOnAppendList

	Input Type:	list

These will be generated from some other files.

GYP_DIRS

Defines a list of object directories handled by gyp configurations.

	Storage Type:	StrictOrderingOnAppendListWithFlagsSpecialization

	Input Type:	list

Elements of this list give the relative object directory. For each
element of the list, GYP_DIRS may be accessed as a dictionary
(GYP_DIRS[foo]). The object this returns has attributes that need to be
set to further specify gyp processing:

	input, gives the path to the root gyp configuration file for that
object directory.

	variables, a dictionary containing variables and values to pass
to the gyp processor.

	sandbox_vars, a dictionary containing variables and values to
pass to the mozbuild processor on top of those derived from gyp
configuration.

	non_unified_sources, a list containing sources files, relative to
the current moz.build, that should be excluded from source file
unification.

	Typical use looks like:

	GYP_DIRS += [‘foo’, ‘bar’]
GYP_DIRS[‘foo’].input = ‘foo/foo.gyp’
GYP_DIRS[‘foo’].variables = {

‘foo’: ‘bar’,
(...)

}
(...)

HAS_MISC_RULE

Whether this directory should be traversed in the misc tier.

	Storage Type:	bool

	Input Type:	bool

Many libs rules still exist in Makefile.in files. We highly prefer
that these rules exist in the misc tier/target so that they can be
executed concurrently during tier traversal (the misc tier is
fully concurrent).

Presence of this variable indicates that this directory should be
traversed by the misc tier.

Please note that converting libs rules to the misc tier must
be done with care, as there are many implicit dependencies that can
break the build in subtle ways.

HOST_CFLAGS

Flags passed to the host C compiler for all of the C source files

	Storage Type:	List

	Input Type:	list

declared in this directory.

Note that the ordering of flags matters here, these flags will be
added to the compiler’s command line in the same order as they
appear in the moz.build file.

HOST_CXXFLAGS

Flags passed to the host C++ compiler for all of the C++ source files

	Storage Type:	List

	Input Type:	list

declared in this directory.

Note that the ordering of flags matters here; these flags will be
added to the compiler’s command line in the same order as they
appear in the moz.build file.

HOST_DEFINES

Dictionary of compiler defines to declare for host compilation.

	Storage Type:	InitializedDefines

	Input Type:	dict

See DEFINES for specifics.

HOST_LIBRARY_NAME

Name of target library generated when cross compiling.

	Storage Type:	unicode

	Input Type:	unicode

This variable is only available in templates.

HOST_OS_LIBS

List of system libraries for host programs and libraries.

	Storage Type:	List

	Input Type:	list

HOST_PROGRAM

Compiled host executable name.

	Storage Type:	unicode

	Input Type:	unicode

If the configuration token HOST_BIN_SUFFIX is set, its value will be
automatically appended to HOST_PROGRAM. If HOST_PROGRAM already
ends with HOST_BIN_SUFFIX, HOST_PROGRAM will remain unchanged.
This variable is only available in templates.

HOST_SIMPLE_PROGRAMS

Compile a list of host executable names.

	Storage Type:	StrictOrderingOnAppendList

	Input Type:	list

Each name in this variable corresponds to a hosst executable built
from the corresponding source file with the same base name.

If the configuration token HOST_BIN_SUFFIX is set, its value will
be automatically appended to each name. If a name already ends with
HOST_BIN_SUFFIX, the name will remain unchanged.
This variable is only available in templates.

HOST_SOURCES

Source code files to compile with the host compiler.

	Storage Type:	_TypedList

	Input Type:	list

This variable contains a list of source code files to compile.
with the host compiler.

HOST_USE_LIBS

List of libraries to link to host programs and libraries.

	Storage Type:	StrictOrderingOnAppendList

	Input Type:	list

IPDL_SOURCES

IPDL source files.

	Storage Type:	StrictOrderingOnAppendList

	Input Type:	list

These are .ipdl files that will be parsed and converted to
.cpp files.

IS_COMPONENT

Whether the library contains a binary XPCOM component manifest.

	Storage Type:	bool

	Input Type:	bool

Implies FORCE_SHARED_LIB.
This variable is only available in templates.

IS_FRAMEWORK

Whether the library to build should be built as a framework on OSX.

	Storage Type:	bool

	Input Type:	bool

This implies the name of the library won’t be prefixed nor suffixed.
Implies FORCE_SHARED_LIB.
This variable is only available in templates.

JAR_MANIFESTS

JAR manifest files that should be processed as part of the build.

	Storage Type:	_TypedList

	Input Type:	list

JAR manifests are files in the tree that define how to package files
into JARs and how chrome registration is performed. For more info,
see JAR Manifests.

JAVA_JAR_TARGETS

Defines Java JAR targets to be built.

	Storage Type:	dict

	Input Type:	dict

This variable should not be populated directly. Instead, it should
populated by calling add_java_jar().

JETPACK_ADDON_MANIFESTS

List of manifest files defining jetpack addon tests.

	Storage Type:	_OrderedListWithAction

	Input Type:	list

JETPACK_PACKAGE_MANIFESTS

List of manifest files defining jetpack package tests.

	Storage Type:	_OrderedListWithAction

	Input Type:	list

LDFLAGS

Flags passed to the linker when linking all of the libraries and

	Storage Type:	List

	Input Type:	list

executables declared in this directory.

Note that the ordering of flags matters here; these flags will be
added to the linker’s command line in the same order as they
appear in the moz.build file.

LD_VERSION_SCRIPT

The linker version script for shared libraries.

	Storage Type:	unicode

	Input Type:	unicode

This variable can only be used on Linux.

LIBRARY_DEFINES

Dictionary of compiler defines to declare for the entire library.

	Storage Type:	OrderedDict

	Input Type:	dict

This variable works like DEFINES, except that declarations apply to all
libraries that link into this library via FINAL_LIBRARY.

LIBRARY_NAME

The code name of the library generated for a directory.

	Storage Type:	unicode

	Input Type:	unicode

By default STATIC_LIBRARY_NAME and SHARED_LIBRARY_NAME take this name.
In example/components/moz.build,:

LIBRARY_NAME = 'xpcomsample'

would generate example/components/libxpcomsample.so on Linux, or
example/components/xpcomsample.lib on Windows.
This variable is only available in templates.

LOCAL_INCLUDES

Additional directories to be searched for include files by the compiler.

	Storage Type:	_TypedList

	Input Type:	list

MARIONETTE_LAYOUT_MANIFESTS

List of manifest files defining marionette-layout tests.

	Storage Type:	_OrderedListWithAction

	Input Type:	list

MARIONETTE_LOOP_MANIFESTS

List of manifest files defining marionette-loop tests.

	Storage Type:	_OrderedListWithAction

	Input Type:	list

MARIONETTE_UNIT_MANIFESTS

List of manifest files defining marionette-unit tests.

	Storage Type:	_OrderedListWithAction

	Input Type:	list

MARIONETTE_UPDATE_MANIFESTS

List of manifest files defining marionette-update tests.

	Storage Type:	_OrderedListWithAction

	Input Type:	list

MARIONETTE_WEBAPI_MANIFESTS

List of manifest files defining marionette-webapi tests.

	Storage Type:	_OrderedListWithAction

	Input Type:	list

METRO_CHROME_MANIFESTS

List of manifest files defining metro browser chrome tests.

	Storage Type:	_OrderedListWithAction

	Input Type:	list

MOCHITEST_CHROME_MANIFESTS

List of manifest files defining mochitest chrome tests.

	Storage Type:	_OrderedListWithAction

	Input Type:	list

MOCHITEST_MANIFESTS

List of manifest files defining mochitest tests.

	Storage Type:	_OrderedListWithAction

	Input Type:	list

NO_COMPONENTS_MANIFEST

Do not create a binary-component manifest entry for the

	Storage Type:	bool

	Input Type:	bool

corresponding XPCOMBinaryComponent.

NO_EXPAND_LIBS

Forces to build a real static library, and no corresponding fake

	Storage Type:	bool

	Input Type:	bool

library.

NO_JS_MANIFEST

Explicitly disclaims responsibility for manifest listing in EXTRA_COMPONENTS.

	Storage Type:	bool

	Input Type:	bool

Normally, if you have .js files listed in EXTRA_COMPONENTS or
EXTRA_PP_COMPONENTS, you are expected to have a corresponding
.manifest file to go with those .js files. Setting NO_JS_MANIFEST
indicates that the relevant .manifest file and entries for those .js
files are elsehwere (jar.mn, for instance) and this state of affairs
is OK.

NO_PGO

Whether profile-guided optimization is disable in this directory.

	Storage Type:	bool

	Input Type:	bool

NO_VISIBILITY_FLAGS

Build sources listed in this file without VISIBILITY_FLAGS.

	Storage Type:	bool

	Input Type:	bool

OBJDIR_FILES

List of files to be installed anywhere in the objdir. Use sparingly.

	Storage Type:	_TypedListWithItems

	Input Type:	list

OBJDIR_FILES is similar to FINAL_TARGET_FILES, but it allows copying
anywhere in the object directory. This is intended for various one-off
cases, not for general use. If you wish to add entries to OBJDIR_FILES,
please consult a build peer.

OBJDIR_PP_FILES

Like OBJDIR_FILES, with preprocessing. Use sparingly.

	Storage Type:	_TypedListWithItems

	Input Type:	list

OS_LIBS

System link libraries.

	Storage Type:	List

	Input Type:	list

This variable contains a list of system libaries to link against.

PREPROCESSED_TEST_WEBIDL_FILES

Preprocessed test WebIDL source files.

	Storage Type:	StrictOrderingOnAppendList

	Input Type:	list

These will be preprocessed, then parsed and converted to .cpp
and .h files if tests are enabled.

PREPROCESSED_WEBIDL_FILES

Preprocessed WebIDL source files.

	Storage Type:	StrictOrderingOnAppendList

	Input Type:	list

These will be preprocessed before being parsed and converted.

PROGRAM

Compiled executable name.

	Storage Type:	unicode

	Input Type:	unicode

If the configuration token BIN_SUFFIX is set, its value will be
automatically appended to PROGRAM. If PROGRAM already ends with
BIN_SUFFIX, PROGRAM will remain unchanged.
This variable is only available in templates.

PYTHON_UNIT_TESTS

A list of python unit tests.

	Storage Type:	StrictOrderingOnAppendList

	Input Type:	list

RCFILE

The program .rc file.

	Storage Type:	unicode

	Input Type:	unicode

This variable can only be used on Windows.

RCINCLUDE

The resource script file to be included in the default .res file.

	Storage Type:	unicode

	Input Type:	unicode

This variable can only be used on Windows.

REFTEST_MANIFESTS

List of manifest files defining reftests.

	Storage Type:	_OrderedListWithAction

	Input Type:	list

These are commonly named reftest.list.

RESFILE

The program .res file.

	Storage Type:	unicode

	Input Type:	unicode

This variable can only be used on Windows.

SDK_FILES

List of files to be installed into the sdk directory.

	Storage Type:	_TypedListWithItems

	Input Type:	list

SDK_FILES will copy (or symlink, if the platform supports it)
the contents of its files to the dist/sdk directory. Files that
are destined for a subdirectory can be specified by accessing a field.
For example, to export foo.py to the top-level directory and
bar.py to the directory subdir, append to
SDK_FILES like so:

SDK_FILES += ['foo.py']
SDK_FILES.subdir += ['bar.py']

SDK_LIBRARY

Whether the library built in the directory is part of the SDK.

	Storage Type:	bool

	Input Type:	bool

The library will be copied into SDK_LIB_DIR ($DIST/sdk/lib).

SHARED_LIBRARY_NAME

The name of the static library generated for a directory, if it needs to

	Storage Type:	unicode

	Input Type:	unicode

differ from the library code name.

Implies FORCE_SHARED_LIB.

SIMPLE_PROGRAMS

Compile a list of executable names.

	Storage Type:	StrictOrderingOnAppendList

	Input Type:	list

Each name in this variable corresponds to an executable built from the
corresponding source file with the same base name.

If the configuration token BIN_SUFFIX is set, its value will be
automatically appended to each name. If a name already ends with
BIN_SUFFIX, the name will remain unchanged.
This variable is only available in templates.

SONAME

The soname of the shared object currently being linked

	Storage Type:	unicode

	Input Type:	unicode

soname is the “logical name” of a shared object, often used to provide
version backwards compatibility. This variable makes sense only for
shared objects, and is supported only on some unix platforms.

SOURCES

Source code files.

	Storage Type:	_TypedListWithItems

	Input Type:	list

This variable contains a list of source code files to compile.
Accepts assembler, C, C++, Objective C/C++.

SPHINX_PYTHON_PACKAGE_DIRS

Directories containing Python packages that Sphinx documents.

	Storage Type:	StrictOrderingOnAppendList

	Input Type:	list

SPHINX_TREES

Describes what the Sphinx documentation tree will look like.

	Storage Type:	dict

	Input Type:	dict

Keys are relative directories inside the final Sphinx documentation
tree to install files into. Values are directories (relative to this
file) whose content to copy into the Sphinx documentation tree.

STATIC_LIBRARY_NAME

The name of the static library generated for a directory, if it needs to

	Storage Type:	unicode

	Input Type:	unicode

differ from the library code name.

Implies FORCE_STATIC_LIB.

SYMBOLS_FILE

A file containing a list of symbols to export from a shared library.

	Storage Type:	SourcePath

	Input Type:	unicode

The given file contains a list of symbols to be exported, and is
preprocessed.
A special marker “@DATA@” must be added after a symbol name if it
points to data instead of code, so that the Windows linker can treat
them correctly.

TEST_HARNESS_FILES

List of files to be installed for test harnesses.

	Storage Type:	_TypedListWithItems

	Input Type:	list

TEST_HARNESS_FILES can be used to install files to any directory
under $objdir/_tests. Files can be appended to a field to indicate
which subdirectory they should be exported to. For example,
to export foo.py to _tests/foo, append to
TEST_HARNESS_FILES like so:

TEST_HARNESS_FILES.foo += ['foo.py']

Files from topsrcdir and the objdir can also be installed by prefixing
the path(s) with a ‘/’ character and a ‘!’ character, respectively:

TEST_HARNESS_FILES.path += ['/build/bar.py', '!quux.py']

TEST_WEBIDL_FILES

Test WebIDL source files.

	Storage Type:	StrictOrderingOnAppendList

	Input Type:	list

These will be parsed and converted to .cpp and .h files
if tests are enabled.

UNIFIED_SOURCES

Source code files that can be compiled together.

	Storage Type:	_TypedList

	Input Type:	list

This variable contains a list of source code files to compile,
that can be concatenated all together and built as a single source
file. This can help make the build faster and reduce the debug info
size.

USE_EXTENSION_MANIFEST

Controls the name of the manifest for JAR files.

	Storage Type:	bool

	Input Type:	bool

By default, the name of the manifest is ${JAR_MANIFEST}.manifest.
Setting this variable to True changes the name of the manifest to
chrome.manifest.

USE_LIBS

List of libraries to link to programs and libraries.

	Storage Type:	StrictOrderingOnAppendList

	Input Type:	list

USE_STATIC_LIBS

Whether the code in this directory is a built against the static

	Storage Type:	bool

	Input Type:	bool

runtime library.

This variable only has an effect when building with MSVC.

USE_YASM

Use the yasm assembler to assemble assembly files from SOURCES.

	Storage Type:	bool

	Input Type:	bool

By default, the build will use the toolchain assembler, $(AS), to
assemble source files in assembly language (.s or .asm files). Setting
this value to True will cause it to use yasm instead.

If yasm is not available on this system, or does not support the
current target architecture, an error will be raised.

WEBIDL_EXAMPLE_INTERFACES

Names of example WebIDL interfaces to build as part of the build.

	Storage Type:	StrictOrderingOnAppendList

	Input Type:	list

Names in this list correspond to WebIDL interface names defined in
WebIDL files included in the build from one of the *WEBIDL_FILES
variables.

WEBIDL_FILES

WebIDL source files.

	Storage Type:	StrictOrderingOnAppendList

	Input Type:	list

These will be parsed and converted to .cpp and .h files.

WEBRTC_SIGNALLING_TEST_MANIFESTS

List of manifest files defining WebRTC signalling tests.

	Storage Type:	_OrderedListWithAction

	Input Type:	list

WEB_PLATFORM_TESTS_MANIFESTS

List of (manifest_path, test_path) defining web-platform-tests.

	Storage Type:	_TypedListWithAction

	Input Type:	list

WIN32_EXE_LDFLAGS

Flags passed to the linker when linking a Windows .exe executable

	Storage Type:	List

	Input Type:	list

declared in this directory.

Note that the ordering of flags matter here, these flags will be
added to the linker’s command line in the same order as they
appear in the moz.build file.

This variable only has an effect on Windows.

XPCSHELL_TESTS_MANIFESTS

List of manifest files defining xpcshell tests.

	Storage Type:	_OrderedListWithAction

	Input Type:	list

XPIDL_MODULE

XPCOM Interface Definition Module Name.

	Storage Type:	unicode

	Input Type:	unicode

This is the name of the .xpt file that is created by linking
XPIDL_SOURCES together. If unspecified, it defaults to be the same
as MODULE.

XPIDL_NO_MANIFEST

Indicate that the XPIDL module should not be added to a manifest.

	Storage Type:	bool

	Input Type:	bool

This flag exists primarily to prevent test-only XPIDL modules from being
added to the application’s chrome manifest. Most XPIDL modules should
not use this flag.

XPIDL_SOURCES

XPCOM Interface Definition Files (xpidl).

	Storage Type:	StrictOrderingOnAppendList

	Input Type:	list

This is a list of files that define XPCOM interface definitions.
Entries must be files that exist. Entries are almost certainly .idl
files.

XPI_NAME

The name of an extension XPI to generate.

	Storage Type:	unicode

	Input Type:	unicode

When this variable is present, the results of this directory will end up
being packaged into an extension instead of the main dist/bin results.

Functions

add_android_eclipse_library_project

Declare an Android Eclipse library project.

	Arguments:	(str)

This is one of the supported ways to populate the
ANDROID_ECLIPSE_PROJECT_TARGETS variable.

The parameters are:
* name - project name.

This returns a rich Android Eclipse project type, described at
mozbuild.frontend.data.AndroidEclipseProjectData.

add_android_eclipse_project

Declare an Android Eclipse project.

	Arguments:	(str, str)

This is one of the supported ways to populate the
ANDROID_ECLIPSE_PROJECT_TARGETS variable.

The parameters are:
* name - project name.
* manifest - path to AndroidManifest.xml.

This returns a rich Android Eclipse project type, described at
mozbuild.frontend.data.AndroidEclipseProjectData.

add_java_jar

Declare a Java JAR target to be built.

	Arguments:	(str)

This is the supported way to populate the JAVA_JAR_TARGETS
variable.

The parameters are:
* dest - target name, without the trailing .jar. (required)

This returns a rich Java JAR type, described at
mozbuild.frontend.data.JavaJarData.

error

Issue a fatal error.

	Arguments:	(str)

If this function is called, processing is aborted immediately.

export

Make the specified variable available to all child directories.

	Arguments:	(str)

The variable specified by the argument string is added to the
environment of all directories specified in the DIRS and TEST_DIRS
variables. If those directories themselves have child directories,
the variable will be exported to all of them.

The value used for the variable is the final value at the end of the
moz.build file, so it is possible (but not recommended style) to place
the export before the definition of the variable.

This function is limited to the upper-case variables that have special
meaning in moz.build files.

NOTE: Please consult with a build peer before adding a new use of this
function.

Example usage

To make all children directories install as the given extension:

XPI_NAME = 'cool-extension'
export('XPI_NAME')

include

Include another mozbuild file in the context of this one.

	Arguments:	(SourcePath)

This is similar to a #include in C languages. The filename passed to
the function will be read and its contents will be evaluated within the
context of the calling file.

If a relative path is given, it is evaluated as relative to the file
currently being processed. If there is a chain of multiple include(),
the relative path computation is from the most recent/active file.

If an absolute path is given, it is evaluated from TOPSRCDIR. In
other words, include('/foo') references the path
TOPSRCDIR + '/foo'.

Example usage

Include sibling.build from the current directory.:

include('sibling.build')

Include foo.build from a path within the top source directory:

include('/elsewhere/foo.build')

template

Decorator for template declarations.

	Arguments:	(function)

Templates are a special kind of functions that can be declared in
mozbuild files. Uppercase variables assigned in the function scope
are considered to be the result of the template.

	Contrary to traditional python functions:

	
	return values from template functions are ignored,

	template functions don’t have access to the global scope.

Example template

The following Program template sets two variables PROGRAM and
USE_LIBS. PROGRAM is set to the argument given on the template
invocation, and USE_LIBS to contain “mozglue”:

@template
def Program(name):
 PROGRAM = name
 USE_LIBS += ['mozglue']

Template invocation

A template is invoked in the form of a function call:

Program('myprog')

The result of the template, being all the uppercase variable it sets
is mixed to the existing set of variables defined in the mozbuild file
invoking the template:

FINAL_TARGET = 'dist/other'
USE_LIBS += ['mylib']
Program('myprog')
USE_LIBS += ['otherlib']

The above mozbuild results in the following variables set:

	FINAL_TARGET is ‘dist/other’

	USE_LIBS is [‘mylib’, ‘mozglue’, ‘otherlib’]

	PROGRAM is ‘myprog’

warning

Issue a warning.

	Arguments:	(str)

Warnings are string messages that are printed during execution.

Warnings are ignored during execution.

Special Variables

CONFIG

Dictionary containing the current configuration variables.

	Type:	dict

All the variables defined by the configuration system are available
through this object. e.g. ENABLE_TESTS, CFLAGS, etc.

Values in this container are read-only. Attempts at changing values
will result in a run-time error.

Access to an unknown variable will return None.

EXTRA_COMPONENTS

Additional component files to distribute.

	Type:	list

This variable contains a list of files to copy into
$(FINAL_TARGET)/components/.

EXTRA_JS_MODULES

Additional JavaScript files to distribute.

	Type:	list

This variable contains a list of files to copy into
``$(FINAL_TARGET)/modules.

EXTRA_PP_COMPONENTS

Javascript XPCOM files.

	Type:	list

This variable contains a list of files to preprocess. Generated
files will be installed in the /components directory of the distribution.

EXTRA_PP_JS_MODULES

Additional JavaScript files to distribute.

	Type:	list

This variable contains a list of files to copy into
$(FINAL_TARGET)/modules, after preprocessing.

JS_PREFERENCE_FILES

Exported javascript files.

	Type:	list

A list of files copied into the dist directory for packaging and installation.
Path will be defined for gre or application prefs dir based on what is building.

JS_PREFERENCE_PP_FILES

Like JS_PREFERENCE_FILES, preprocessed..

	Type:	list

OBJDIR

The path to the object directory for this file.

	Type:	str

Is is the same as TOPOBJDIR + RELATIVEDIR.

RELATIVEDIR

Constant defining the relative path of this file.

	Type:	str

The relative path is from TOPSRCDIR. This is defined as relative
to the main file being executed, regardless of whether additional
files have been included using include().

RESOURCE_FILES

List of resources to be exported, and in which subdirectories.

	Type:	list

RESOURCE_FILES is used to list the resource files to be exported to
dist/bin/res, but it can be used for other files as well. This variable
behaves as a list when appending filenames for resources in the top-level
directory. Files can also be appended to a field to indicate which
subdirectory they should be exported to. For example, to export
foo.res to the top-level directory, and bar.res to fonts/,
append to RESOURCE_FILES like so:

RESOURCE_FILES += ['foo.res']
RESOURCE_FILES.fonts += ['bar.res']

SRCDIR

Constant defining the source directory of this file.

	Type:	str

This is the path inside TOPSRCDIR where this file is located. It
is the same as TOPSRCDIR + RELATIVEDIR.

TESTING_JS_MODULES

JavaScript modules to install in the test-only destination.

	Type:	list

Some JavaScript modules (JSMs) are test-only and not distributed
with Firefox. This variable defines them.

To install modules in a subdirectory, use properties of this
variable to control the final destination. e.g.

TESTING_JS_MODULES.foo += ['module.jsm'].

TEST_DIRS

Like DIRS but only for directories that contain test-only code.

	Type:	list

If tests are not enabled, this variable will be ignored.

This variable may go away once the transition away from Makefiles is
complete.

TOPOBJDIR

Constant defining the top object directory.

	Type:	str

The top object directory is the parent directory which will contain
the output of the build. This is commonly referred to as “the object
directory.”

TOPSRCDIR

Constant defining the top source directory.

	Type:	str

The top source directory is the parent directory containing the source
code and all build files. It is typically the root directory of a
cloned repository.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Build System

Files Metadata

moz.build Files provide a mechanism for attaching metadata to
files. Essentially, you define some flags to set on a file or file
pattern. Later, some tool or process queries for metadata attached to a
file of interest and it does something intelligent with that data.

Defining Metadata

Files metadata is defined by using the
Files Sub-Context in moz.build
files. e.g.:

with Files('**/Makefile.in'):
 BUG_COMPONENT = ('Core', 'Build Config')

This working example says, for all Makefile.in files in every directory
underneath this one - including this directory - set the Bugzilla
component to Core :: Build Config.

For more info, read the
docs on Files.

How Metadata is Read

Files metadata is extracted in Filesystem Reading Mode.

Reading starts by specifying a set of files whose metadata you are
interested in. For each file, the filesystem is walked to the root
of the source directory. Any moz.build encountered during this
walking are marked as relevant to the file.

Let’s say you have the following filesystem content:

/moz.build
/root_file
/dir1/moz.build
/dir1/foo
/dir1/subdir1/foo
/dir2/foo

For /root_file, the relevant moz.build files are just
/moz.build.

For /dir1/foo and /dir1/subdir1/foo, the relevant files are
/moz.build and /dir1/moz.build.

For /dir2, the relevant file is just /moz.build.

Once the list of relevant moz.build files is obtained, each
moz.build file is evaluated. Root moz.build file first,
leaf-most files last. This follows the rules of
Filesystem Reading Mode, with the set of evaluated moz.build
files being controlled by filesystem content, not DIRS variables.

The file whose metadata is being resolved maps to a set of moz.build
files which in turn evaluates to a list of contexts. For file metadata,
we only care about one of these contexts:
Files.

We start with an empty Files instance to represent the file. As
we encounter a files sub-context, we see if it is appropriate to
this file. If it is, we apply its values. This process is repeated
until all files sub-contexts have been applied or skipped. The final
state of the Files instance is used to represent the metadata for
this particular file.

It may help to visualize this. Say we have 2 moz.build files:

/moz.build
with Files('*.cpp'):
 BUG_COMPONENT = ('Core', 'XPCOM')

with Files('**/*.js'):
 BUG_COMPONENT = ('Firefox', 'General')

/foo/moz.build
with Files('*.js'):
 BUG_COMPONENT = ('Another', 'Component')

Querying for metadata for the file /foo/test.js will reveal 3
relevant Files sub-contexts. They are evaluated as follows:

	/moz.build - Files('*.cpp'). Does /*.cpp match
/foo/test.js? No. Ignore this context.

	/moz.build - Files('**/*.js'). Does /**/*.js match
/foo/test.js? Yes. Apply BUG_COMPONENT = ('Firefox', 'General')
to us.

	/foo/moz.build - Files('*.js'). Does /foo/*.js match
/foo/test.js? Yes. Apply
BUG_COMPONENT = ('Another', 'Component').

At the end of execution, we have
BUG_COMPONENT = ('Another', 'Component') as the metadata for
/foo/test.js.

One way to look at file metadata is as a stack of data structures.
Each Files sub-context relevant to a given file is applied on top
of the previous state, starting from an empty state. The final state
wins.

Finalizing Values

The default behavior of Files sub-context evaluation is to apply new
values on top of old. In most circumstances, this results in desired
behavior. However, there are circumstances where this may not be
desired. There is thus a mechanism to finalize or freeze values.

Finalizing values is useful for scenarios where you want to prevent
wildcard matches from overwriting previously-set values. This is useful
for one-off files.

Let’s take Makefile.in files as an example. The build system module
policy dictates that Makefile.in files are part of the Build
Config module and should be reviewed by peers of that module. However,
there exist Makefile.in files in many directories in the source
tree. Without finalization, a * or ** wildcard matching rule
would match Makefile.in files and overwrite their metadata.

Finalizing of values is performed by setting the FINAL variable
on Files sub-contexts. See the
Files documentation for more.

Here is an example with Makefile.in files, showing how it is
possible to finalize the BUG_COMPONENT value.:

/moz.build
with Files('**/Makefile.in'):
 BUG_COMPONENT = ('Core', 'Build Config')
 FINAL = True

/foo/moz.build
with Files('**'):
 BUG_COMPONENT = ('Another', 'Component')

If we query for metadata of /foo/Makefile.in, both Files
sub-contexts match the file pattern. However, since BUG_COMPONENT is
marked as finalized by /moz.build, the assignment from
/foo/moz.build is ignored. The final value for BUG_COMPONENT
is ('Core', 'Build Config').

Here is another example:

with Files('*.cpp'):
 BUG_COMPONENT = ('One-Off', 'For C++')
 FINAL = True

with Files('**'):
 BUG_COMPONENT = ('Regular', 'Component')

For every files except foo.cpp, the bug component will be resolved
as Regular :: Component. However, foo.cpp has its value of
One-Off :: For C++ preserved because it is finalized.

Important

FINAL only applied to variables defined in a context.

If you want to mark one variable as finalized but want to leave
another mutable, you’ll need to use 2 Files contexts.

Guidelines for Defining Metadata

In general, values defined towards the root of the source tree are
generic and become more specific towards the leaves. For example,
the BUG_COMPONENT for /browser might be Firefox :: General
whereas /browser/components/preferences would list
Firefox :: Preferences.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Build System

Profile Guided Optimization

PGO is the process of adding
probes to a compiled binary, running said binary, then using the
run-time information to recompile the binary to (hopefully) make it
faster.

How PGO Builds Work

The supported interface for invoking a PGO build is to evaluate the
build target of client.mk with MOZ_PGO defined. e.g.:

$ make -f client.mk MOZ_PGO=1

This is equivalent to:

$ make -f client.mk profiledbuild

Which is roughly equivalent to:

	Perform a build with MOZ_PROFILE_GENERATE=1 and MOZ_PGO_INSTRUMENTED=1

	Package with MOZ_PGO_INSTRUMENTED=1

	Performing a run of the instrumented binaries

	$ make maybe_clobber_profiledbuild

	Perform a build with MOZ_PROFILE_USE=1

Differences between toolchains

There are some implementation differences depending on the compiler
toolchain being used.

The maybe_clobber_profiledbuild step gets its name because of a
difference. On Windows, this step merely moves some .pgc files around.
Using GCC or Clang, it is equivalent to a make clean.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Build System

Why the Build System is Slow

A common complaint about the build system is that it’s slow. There are
many reasons contributing to its slowness. We will attempt to document
them here.

First, it is important to distinguish between a clobber build
and an incremental build. The reasons for why each are slow can
be different.

The build does a lot of work

It may not be obvious, but the main reason the build system is slow is
because it does a lot of work! The source tree consists of a few
thousand C++ files. On a modern machine, we spend over 120 minutes of CPU
core time compiling files! So, if you are looking for the root cause of
slow clobber builds, look at the sheer volume of C++ files in the tree.

You don’t have enough CPU cores and MHz

The build should be CPU bound. If the build system maintainers are
optimizing the build system perfectly, every CPU core in your machine
should be 100% saturated during a build. While this isn’t currently the
case (keep reading below), generally speaking, the more CPU cores you
have in your machine and the more total MHz in your machine, the better.

We highly recommend building with no fewer than 4 physical CPU
cores. Please note the physical in this sentence. Hyperthreaded
cores (an Intel Core i7 will report 8 CPU cores but only 4 are physical
for example) only yield at most a 1.25x speedup per core.

We also recommend using the most modern CPU model possible. Haswell
chips deliver much more performance per CPU cycle than say Sandy Bridge
CPUs.

This cause impacts both clobber and incremental builds.

You are building with a slow I/O layer

The build system can be I/O bound if your I/O layer is slow. Linking
libxul on some platforms and build architectures can perform gigabytes
of I/O.

To minimize the impact of slow I/O on build performance, we highly
recommend building with an SSD. Power users with enough memory may opt
to build from a RAM disk. Mechanical disks should be avoided if at all
possible.

Some may dispute the importance of an SSD on build times. It is true
that the beneficial impact of an SSD can be mitigated if your system has
lots of memory and the build files stay in the page cache. However,
operating system memory management is complicated. You don’t really have
control over what or when something is evicted from the page cache.
Therefore, unless your machine is a dedicated build machine or you have
more memory than is needed by everything running on your machine,
chances are you’ll run into page cache eviction and you I/O layer will
impact build performance. That being said, an SSD certainly doesn’t
hurt build times. And, anyone who has used a machine with an SSD will
tell you how great of an investment it is for performance all around the
operating system. On top of that, some automated tests are I/O bound
(like those touching SQLite databases), so an SSD will make tests
faster.

This cause impacts both clobber and incremental builds.

You don’t have enough memory

The build system allocates a lot of memory, especially when building
many things in parallel. If you don’t have enough free system memory,
the build will cause swap activity, slowing down your system and the
build. Even if you never get to the point of swapping, the build system
performs a lot of I/O and having all accessed files in memory and the
page cache can significantly reduce the influence of the I/O layer on
the build system.

We recommend building with no less than 8 GB of system memory. As
always, the more memory you have, the better. For a bare bones machine
doing nothing more than building the source tree, anything more than 16
GB is likely entering the point of diminishing returns.

This cause impacts both clobber and incremental builds.

You are building on Windows

New processes on Windows are about a magnitude slower to spawn than on
UNIX-y systems such as Linux. This is because Windows has optimized new
threads while the *NIX platforms typically optimize new processes.
Anyway, the build system spawns thousands of new processes during a
build. Parts of the build that rely on rapid spawning of new processes
are slow on Windows as a result. This is most pronounced when running
configure. The configure file is a giant shell script and shell
scripts rely heavily on new processes. This is why configure on Windows
can run over a minute slower on Windows.

Another reason Windows builds are slower is because Windows lacks proper
symlink support. On systems that support symlinks, we can generate a
file into a staging area then symlink it into the final directory very
quickly. On Windows, we have to perform a full file copy. This incurs
much more I/O. And if done poorly, can muck with file modification
times, messing up build dependencies. As of the summer of 2013, the
impact of symlinks is being mitigated through the use
of an install manifest.

These issues impact both clobber and incremental builds.

Recursive make traversal is slow

The build system has traditionally been built by employing recursive
make. Recursive make involves make iterating through directories / make
files sequentially and executing each in turn. This is inefficient for
directories containing few targets/tasks because make could be starved
for work when processing these directories. Any time make is starved,
the build isn’t using all available CPU cycles and the build is slower
as a result.

Work has started in bug 907365 to fix this issue by changing the way
make traverses all the make files.

The impact of slow recursive make traversal is mostly felt on
incremental builds. Traditionally, most of the wall time during a
no-op build is spent in make traversal.

make is inefficient

Compared to modern build backends like Tup or Ninja, make is slow and
inefficient. We can only make make so fast. At some point, we’ll hit a
performance plateau and will need to use a different tool to make builds
faster.

Please note that clobber and incremental builds are different. A clobber
build with make will likely be as fast as a clobber build with e.g. Tup.
However, Tup should vastly outperform make when it comes to incremental
builds. Therefore, this issue is mostly seen when performing incremental
builds.

C++ header dependency hell

Modifying a .h file can have significant impact on the build system.
If you modify a .h that is used by 1000 C++ files, all of those 1000
C++ files will be recompiled.

Our code base has traditionally been sloppy managing the impact of
changed headers on build performance. Bug 785103 tracks improving the
situation.

This issue mostly impacts the times of an incremental build.

A search/indexing service on your machine is running

Many operating systems have a background service that automatically
indexes filesystem content to make searching faster. On Windows, you
have the Windows Search Service. On OS X, you have Finder.

These background services sometimes take a keen interest in the files
being produced as part of the build. Since the build system produces
hundreds of megabytes or even a few gigabytes of file data, you can
imagine how much work this is to index! If this work is being performed
while the build is running, your build will be slower.

OS X’s Finder is notorious for indexing when the build is running. And,
it has a tendency to suck up a whole CPU core. This can make builds
several minutes slower. If you build with mach and have the optional
psutil package built (it requires Python development headers - see
Python and the Build System for more) and Finder is running during a build, mach will
print a warning at the end of the build, complete with instructions on
how to fix it.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Build System

Environment Variables Impacting the Build System

Various environment variables have an impact on the behavior of the
build system. This document attempts to document them.

	AUTOCLOBBER

	If defines, the build system will automatically clobber as needed.
The default behavior is to print a message and error out when a
clobber is needed.

This variable is typically defined in a mozconfig
file via mk_add_options.

	REBUILD_CHECK

	If defined, the build system will print information about why
certain files were rebuilt.

This feature is disabled by default because it makes the build slower.

	MACH_NO_TERMINAL_FOOTER

	If defined, the terminal footer displayed when building with mach in
a TTY is disabled.

	MACH_NO_WRITE_TIMES

	If defined, mach commands will not prefix output lines with the
elapsed time since program start. This option is equivalent to
passing --log-no-times to mach.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Build System

Build Targets

When you build with mach build, there are some special targets that can be
built. This page attempts to document them.

Partial Tree Targets

The targets in this section only build part of the tree. Please note that
partial tree builds can be unreliable. Use at your own risk.

	export

	Build the export tier. The export tier builds everything that is
required for C/C++ compilation. It stages all header files, processes
IDLs, etc.

	compile

	Build the compile tier. The compile tier compiles all C/C++ files.

	libs

	Build the libs tier. The libs tier performs linking and performs
most build steps which aren’t related to compilation.

	tools

	Build the tools tier. The tools tier mostly deals with supplementary
tools and compiled tests. It will link tools against libXUL, including
compiled test binaries.

	binaries:

	Recompiles and relinks C/C++ files. Only works after a complete normal
build, but allows for much faster rebuilds of C/C++ code. For performance
reasons, however, it skips nss, nspr, icu and ffi. This is targeted to
improve local developer workflow when touching C/C++ code.

	install-manifests

	Process install manifests. Install manifests handle the installation of
files into the object directory.

Unless NO_REMOVE=1 is defined in the environment, files not accounted
in the install manifests will be deleted from the object directory.

	install-tests

	Processes the tests install manifest.

Common Actions

The targets in this section correspond to common build-related actions. Many
of the actions in this section are effectively frontends to shell scripts.
These actions will likely all be replaced by mach commands someday.

	buildsymbols

	Create a symbols archive for the current build.

This must be performed after a successful build.

	check

	Run build system tests.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Build System

Python and the Build System

The Python programming language is used significantly in the build
system. If we need to write code for the build system or for a tool
related to the build system, Python is typically the first choice.

Python Requirements

The tree requires Python 2.7.3 or greater but not Python 3 to build.
All Python packages not in the Python distribution are included in the
source tree. So all you should need is a vanilla Python install and you
should be good to go.

Only CPython (the Python distribution available from www.python.org) is
supported.

We require Python 2.7.3 (and not say 2.7.2) to build because Python
2.7.3 contains numerous bug fixes, especially around the area of Unicode
handling. These bug fixes are extremely annoying and have to be worked
around. The build maintainers were tired of doing this, so the minimum
version requirement was upped (bug 870420).

We intend to eventually support Python 3. This will come by way of dual
2.7/3.x compatibility because a single flag day conversion to 3.x will
be too cumbersome given the amount of Python that would need converted.
We will not know which 3.x minor release we are targeting until this
effort is underway. This is tracked in bug 636155.

Compiled Python Packages

There are some features of the build that rely on compiled Python packages
(packages containing C source). These features are currently all
optional because not every system contains the Python development
headers required to build these extensions.

We recommend you have the Python development headers installed (mach
bootstrap should do this for you) so you can take advantage of these
features.

Issues with OS X System Python

The Python that ships with OS X has historically been littered with
subtle bugs and suboptimalities. Furthermore, OS X up through 10.8 don’t
ship with Python 2.7.3 (10.8 ships with 2.7.2).

OS X 10.8 and below users will be required to install a new Python
distribution. This may not be necessary for OS X 10.9+. However, we
still recommend installing a separate Python because of the history with
OS X’s system Python issues.

We recommend installing Python through Homebrew or MacPorts. If you run
mach bootstrap, this should be done for you.

Virtualenvs

The build system relies heavily on
virtualenvs [http://www.virtualenv.org/en/latest/]. Virtualenvs are
standalone and isolated Python environments. The problem a virtualenv
solves is that of dependencies across multiple Python components. If two
components on a system relied on different versions of a package, there
could be a conflict. Instead of managing multiple versions of a package
simultaneously, Python and virtualenvs take the route that it is easier
to just keep them separate so there is no potential for conflicts.

Very early in the build process, a virtualenv is created inside the
object directory. The virtualenv is configured such that it can
find all the Python packages in the source tree. The code for this lives
in mozbuild.virtualenv.

Deficiencies

There are numerous deficiencies with the way virtualenvs are handled in
the build system.

	mach reinvents the virtualenv.

There is code in build/mach_bootstrap.py that configures sys.path
much the same way the virtualenv does. There are various bugs tracking
this. However, no clear solution has yet been devised. It’s not a huge
problem and thus not a huge priority.

	They aren’t preserved across copies and packaging.

If you attempt to copy an entire tree from one machine to another or
from one directory to another, chances are the virtualenv will fall
apart. It would be nice if we could preserve it somehow. Instead of
actually solving portable virtualenvs, all we really need to solve is
encapsulating the logic for populating the virtualenv along with all
dependent files in the appropriate place.

	.pyc files written to source directory.

We rely heavily on .pth files in our virtualenv. A .pth file
is a special file that contains a list of paths. Python will take the
set of listed paths encountered in .pth files and add them to
sys.path.

When Python compiles a .py file to bytecode, it writes out a
.pyc file so it doesn’t have to perform this compilation again.
It puts these .pyc files alongside the .pyc file. Python
provides very little control for determing where these .pyc files
go, even in Python 3 (which offers customer importers).

With .pth files pointing back to directories in the source tree
and not the object directory, .pyc files are created in the source
tree. This is bad because when Python imports a module, it first looks
for a .pyc file before the .py file. If there is a .pyc
file but no .py file, it will happily import the module. This
wreaks havoc during file moves, refactoring, etc.

There are various proposals for fixing this. See bug 795995.

Installing Python Manually

We highly recommend you use your system’s package manager or a
well-supported 3rd party package manager to install Python for you. If
these are not available to you, we recommend the following tools for
installing Python:

	buildout.python [https://github.com/collective/buildout.python]

	pyenv [https://github.com/yyuu/pyenv]

	An official installer from http://www.python.org.

If all else fails, consider compiling Python from source manually. But this
should be viewed as the least desirable option.

Common Issues with Python

Upgrading your Python distribution breaks the virtualenv

If you upgrade the Python distribution (e.g. install Python 2.7.5
from 2.7.3, chances are parts of the virtualenv will break.
This commonly manifests as a cryptic Cannot import XXX exception.
More often than not, the module being imported contains binary/compiled
components.

If you upgrade or reinstall your Python distribution, we recommend
clobbering your build.

Packages installed at the system level conflict with build system’s

It is common for people to install Python packages using sudo (e.g.
sudo pip install psutil) or with the system’s package manager
(e.g. apt-get install python-mysql.

A problem with this is that packages installed at the system level may
conflict with the package provided by the source tree. As of bug 907902
and changeset f18eae7c3b27 (September 16, 2013), this should no longer
be an issue since the virtualenv created as part of the build doesn’t
add the system’s site-packages directory to sys.path. However,
poorly installed packages may still find a way to creep into the mix and
interfere with our virtualenv.

As a general principle, we recommend against using your system’s package
manager or using sudo to install Python packages. Instead, create
virtualenvs and isolated Python environments for all of your Python
projects.

Python on $PATH is not appropriate

Tools like mach will look for Python by performing /usr/bin/env
python or equivalent. Please be sure the appropriate Python 2.7.3+
path is on $PATH. On OS X, this likely means you’ll need to modify your
shell’s init script to put something ahead of /usr/bin.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Build System

Test Manifests

Many test suites have their test metadata defined in files called
test manifests.

Test manifests are divided into two flavors: ManifestParser Manifests
and Reftest Manifests.

Naming Convention

The build system does not enforce file naming for test manifest files.
However, the following convention is used.

	mochitest.ini

	For the plain flavor of mochitests.

	chrome.ini

	For the chrome flavor of mochitests.

	browser.ini

	For the browser chrome flavor of mochitests.

	a11y.ini

	For the a11y flavor of mochitests.

	xpcshell.ini

	For xpcshell tests.

ManifestParser Manifests

ManifestParser manifests are essentially ini files that conform to a basic
set of assumptions.

The reference documentation [http://mozbase.readthedocs.org/en/latest/manifestparser.html]
for manifestparser manifests describes the basic format of test manifests.

In summary, manifests are ini files with section names describing test files:

[test_foo.js]
[test_bar.js]

Keys under sections can hold metadata about each test:

[test_foo.js]
skip-if = os == "win"
[test_foo.js]
skip-if = os == "linux" && debug
[test_baz.js]
fail-if = os == "mac" || os == "android"

There is a special DEFAULT section whose keys/metadata apply to all
sections/tests:

[DEFAULT]
property = value

[test_foo.js]

In the above example, test_foo.js inherits the metadata property = value
from the DEFAULT section.

Recognized Metadata

Test manifests can define some common keys/metadata to influence behavior.
Those keys are as follows:

	head

	List of files that will be executed before the test file. (Used in
xpcshell tests.)

	tail

	List of files that will be executed after the test file. (Used in
xpcshell tests.)

	support-files

	List of additional files required to run tests. This is typically
defined in the DEFAULT section.

Unlike other file lists, support-files supports a globbing mechanism
to facilitate pulling in many files with minimal typing. This globbing
mechanism is activated if an entry in this value contains a *
character. A single * will wildcard match all files in a directory.
A double ** will descend into child directories. For example,
data/* will match data/foo but not data/subdir/bar where
data/** will match data/foo and data/subdir/bar.

Support files starting with / are placed in a root directory, rather
than a location determined by the manifest location. For mochitests,
this allows for the placement of files at the server root. The source
file is selected from the base name (e.g., foo for /path/foo).
Files starting with / cannot be selected using globbing.

Some support files are used by tests across multiple directories. In
this case, a test depending on a support file from another directory
must note that dependency with the path to the required support file
in its own support-files entry. These use a syntax where paths
starting with !/ will indicate the beginning of the path to a
shared support file starting from the root of the srcdir. For example,
if a manifest at dom/base/test/mochitest.ini has a support file,
dom/base/test/server-script.sjs, and a mochitest in
dom/workers/test depends on that support file, the test manifest
at dom/workers/test/mochitest.ini must include
!/dom/base/test/server-script.sjs in its support-files entry.

	generated-files

	List of files that are generated as part of the build and don’t exist in
the source tree.

The build system assumes that each manifest file, test file, and file
listed in head, tail, and support-files is static and
provided by the source tree (and not automatically generated as part
of the build). This variable tells the build system not to make this
assumption.

This variable will likely go away sometime once all generated files are
accounted for in the build config.

If a generated file is not listed in this key, a clobber build will
likely fail.

	dupe-manifest

	Record that this manifest duplicates another manifest.

The common scenario is two manifest files will include a shared
manifest file via the [include:file] special section. The build
system enforces that each test file is only provided by a single
manifest. Having this key present bypasses that check.

The value of this key is ignored.

	skip-if

	Skip this test if the specified condition is true.
See Manifest Filter Language.

	fail-if

	Expect test failure if the specified condition is true.
See Manifest Filter Language.

	run-sequentially

	If present, the test should not be run in parallel with other tests.

Some test harnesses support parallel test execution on separate processes
and/or threads (behavior varies by test harness). If this key is present,
the test harness should not attempt to run this test in parallel with any
other test.

By convention, the value of this key is a string describing why the test
can’t be run in parallel.

Manifest Filter Language

Some manifest keys accept a special filter syntax as their values. These
values are essentially boolean expressions that are evaluated at test
execution time.

The expressions can reference a well-defined set of variables, such as
os and debug. These variables are populated from the
mozinfo.json file. For the full list of available variables, see
the mozinfo documentation.

See
the source [https://hg.mozilla.org/mozilla-central/file/default/testing/mozbase/manifestparser/manifestparser/manifestparser.py] for the full documentation of the
expression syntax until it is documented here.

File Installation

Files referenced by manifests are automatically installed into the object
directory into paths defined in
mozbuild.frontend.emitter.TreeMetadataEmitter._process_test_manifest().

Relative paths resolving to parent directory (e.g.
support-files = ../foo.txt have special behavior.

For support-files, the file will be installed to the default destination
for that manifest. Only the file’s base name is used to construct the final
path: directories are irrelevant. Files starting with / are an exception,
these are installed relative to the root of the destination; the base name is
instead used to select the file..

For all other entry types, the file installation is skipped.

Reftest Manifests

See MDN [https://developer.mozilla.org/en-US/docs/Creating_reftest-based_unit_tests].

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Build System

mozinfo

mozinfo is a solution for representing a subset of build
configuration and run-time data.

mozinfo data is typically accessed through a mozinfo.json file
which is written to the object directory during build
configuration. The code for writing this file lives in
mozbuild.mozinfo.

mozinfo.json is an object/dictionary of simple string values.

The attributes in mozinfo.json are used for many purposes. One use
is to filter tests for applicability to the current build. For more on
this, see Test Manifests.

mozinfo.json Attributes

mozinfo currently records the following attributes.

	appname

	The application being built.

Value comes from MOZ_APP_NAME from config.status.

Optional.

	asan

	Whether address sanitization is enabled.

Values are true and false.

Always defined.

	bin_suffix

	The file suffix for binaries produced with this build.

Values may be an empty string, as not all platforms have a binary
suffix.

Always defined.

	bits

	The number of bits in the CPU this build targets.

Values are typically 32 or 64.

Universal Mac builds do not have this key defined.

Unkown processor architectures (see processor below) may not have
this key defined.

Optional.

	buildapp

	The path to the XUL application being built.

For desktop Firefox, this is browser. For Fennec, it’s
mobile/android. For B2G, it’s b2g.

	crashreporter

	Whether the crash reporter is enabled for this build.

Values are true and false.

Always defined.

	datareporting

	Whether data reporting (MOZ_DATA_REPORTING) is enabled for this build.

Values are true and false.

Always defined.

	debug

	Whether this is a debug build.

Values are true and false.

Always defined.

	healthreport

	Whether the Health Report feature is enabled.

Values are true and false.

Always defined.

	mozconfig

	The path of the mozconfig file used to produce this build.

Optional.

	nightly_build

	Whether this is a nightly build.

Values are true and false.

Always defined.

	os

	The operating system the build is produced for. Values for tier-1
supported platforms are linux, win, mac, b2g, and
android. For other platforms, the value is the lowercase version
of the OS_TARGET variable from config.status.

Always defined.

	processor

	Information about the processor architecture this build targets.

Values come from TARGET_CPU, however some massaging may be
performed.

If the build is a universal build on Mac (it targets both 32-bit and
64-bit), the value is universal-x86-x86_64.

If the value starts with arm, the value is arm.

If the value starts with a string of the form i[3-9]86], the
value is x86.

Always defined.

	release_build

	Whether this is a release build.

Values are true and false.

Always defined.

	sm_promise

	Whether spidermonkey promises have been enabled or not. This is set
by adding –enable-sm-promise to the mozconfig file.

Values are true and false.

Always defined.

	tests_enabled

	Whether tests are enabled for this build.

Values are true and false.

Always defined.

	toolkit

	The widget toolkit in case. The value comes from the
MOZ_WIDGET_TOOLKIT config.status variable.

Always defined.

	topsrcdir

	The path to the source directory the build came from.

Always defined.

	wave

	Whether Wave audio support is enabled.

Values are true and false.

Always defined.

	webm

	Whether WebM support is enabled.

Values are true and false.

Always defined.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Build System

Text Preprocessor

The build system contains a text preprocessor similar to the C preprocessor,
meant for processing files which have no built-in preprocessor such as XUL
and JavaScript documents. It is implemented at python/mozbuild/mozbuild/preprocessor.py and
is typically invoked via JAR Manifests.

While used to preprocess CSS files, the directives are changed to begin with
% instead of # to avoid conflict of the id selectors.

Directives

Variable Definition

define

#define variable
#define variable value

Defines a preprocessor variable.

Note that, unlike the C preprocessor, instances of this variable later in the
source are not automatically replaced (see #filter). If value is not supplied,
it defaults to 1.

Note that whitespace is significant, so "#define foo one" and
"#define foo one " is different (in the second case, foo is defined to
be a four-character string).

undef

#undef variable

Undefines a preprocessor variable.

Conditionals

if

#if variable
#if !variable
#if variable==string
#if variable!=string

Disables output if the conditional is false. This can be nested to arbitrary
depths. Note that in the equality checks, the variable must come first, and
the comparison operator must not be surrounded by any whitespace.

else

#else

Reverses the state of the previous conditional block; for example, if the
last #if was true (output was enabled), an #else makes it off
(output gets disabled).

Warning

An #else is relative to the last conditional block only,
unlike the C preprocessor.

It does not matter whether any blocks before it were true. This behavior
changed on trunk (Gecko 1.9) on 2006-12-07; see Bug 277122 for details.

#if 1
 always included
#elif 1
 never included
#else
 always included
#endif

endif

#endif

Ends the conditional block.

ifdef / ifndef

#ifdef variable
#ifndef variable

An #if conditional that is true only if the preprocessor variable
variable is defined (in the case of ifdef) or not defined (ifndef).

elif / elifdef / elifndef

#elif variable
#elif !variable
#elif variable == string
#elif variable != string
#elifdef variable
#elifndef variable

A shorthand to mean an #else combined with the relevant conditional.
The following two blocks are equivalent:

#ifdef foo
 block 1
#elifdef bar
 block 2
#endif

#ifdef foo
 block 1
#else
#ifdef bar
 block 2
#endif
#endif

Warning

An #elif, #elifdef, or #elifndef is relative to
the last conditional block only (as well as the condition it implies),
unlike the C preprocessor. It does not matter whether any blocks before
it were true. This behavior changed on trunk (Gecko 1.9) on 2006-12-07.
See Bug 277122 for details.

File Inclusion

include

#include filename

The file specified by filename is processed as if the contents was placed
at this position. This also means that preprocessor conditionals can even
be started in one file and ended in another (but is highly discouraged).
There is no limit on depth of inclusion, or repeated inclusion of the same
file, or self inclusion; thus, care should be taken to avoid infinite loops.

includesubst

#includesubst @variable@filename

Same as a #include except that all instances of variable in the included
file is also expanded as in #filter substitution

expand

#expand string

All variables wrapped in __ are replaced with their value, for this line
only. If the variable is not defined, it expands to an empty string. For
example, if foo has the value bar, and baz is not defined, then:

#expand This <__foo__> <__baz__> gets expanded

Is expanded to:

This <bar> <> gets expanded

filter / unfilter

#filter filter1 filter2 ... filterN
#unfilter filter1 filter2 ... filterN

#filter turns on the given filter.

Filters are run in alphabetical order on a per-line basis.

#unfilter turns off the given filter. Available filters are:

	emptyLines

	strips blank lines from the output

	slashslash

	strips everything from the first two consecutive slash (/)
characters until the end of the line

	spaces

	collapses consecutive sequences of spaces into a single space,
and strips leading and trailing spaces

	substitution

	all variables wrapped in @ are replaced with their value. If the
variable is not defined, it is a fatal error. Similar to #expand
and #filter

	attemptSubstitution

	all variables wrapped in @ are replaced with their value, or an
empty string if the variable is not defined. Similar to #expand.

literal

#literal string

Output the string (i.e. the rest of the line) literally, with no other fixups.
This is useful to output lines starting with #, or to temporarily
disable filters.

Other

#error

#error string

Cause a fatal error at this point, with the error message being the
given string.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Build System

JAR Manifests

JAR Manifests are plaintext files in the tree that are used to package chrome
files into the correct JARs, and create
Chrome Registration [https://developer.mozilla.org/en-US/docs/Chrome_Registration]
manifests. JAR Manifests are commonly named jar.mn. They are
declared in moz.build files using the JAR_MANIFESTS variable.

jar.mn files are automatically processed by the build system when building a
source directory that contains one. The jar.mn is run through the
Text Preprocessor before being passed to the manifest processor. In order to
have @variables@ expanded (such as @AB_CD@) throughout the file, add
the line #filter substitution at the top of your jar.mn file.

The format of a jar.mn is fairly simple; it consists of a heading specifying
which JAR file is being packaged, followed by indented lines listing files and
chrome registration instructions.

To see a simple jar.mn file at work, see toolkit/profile/jar.mn. A much
more complex jar.mn is at toolkit/locales/jar.mn.

Shipping Chrome Files

To ship chrome files in a JAR, an indented line indicates a file to be packaged:

<jarfile>.jar:
 path/in/jar/file_name.xul (source/tree/location/file_name.xul)

	The JAR location may be preceded with a base path between square brackets::

	
	[base/path] <jarfile>.jar:

	path/in/jar/file_name.xul (source/tree/location/file_name.xul)

In this case, the jar will be directly located under the given base/bath,
while without a base path, it will be under a chrome directory.

If the JAR manifest and packaged file live in the same directory, the path and
parenthesis can be omitted. In other words, the following two lines are
equivalent:

path/in/jar/same_place.xhtml (same_place.xhtml)
path/in/jar/same_place.xhtml

The source tree location may also be an absolute path (taken from the
top of the source tree:

path/in/jar/file_name.xul (/path/in/sourcetree/file_name.xul)

An asterisk marker (*) at the beginning of the line indicates that the
file should be processed by the Text Preprocessor before being packaged:

* path/in/jar/preprocessed.xul (source/tree/location/file_name.xul)

Preprocessed files always replace existing files, to ensure that changes in
#expand or #include directives are picked up.

There is a special source-directory format for localized files (note the
percent sign in the source file location): this format reads localized.dtd
from the en-US directory if building an English version, and reads the
file from the alternate localization source tree
/l10n/<locale>/path/localized.dtd if building a localized version:

locale/path/localized.dtd (%localized/path/localized.dtd)

The source tree location can also use wildcards, in which case the path in
jar is expected to be a base directory. Paths before the wildcard are not
made part of the destination path:

path/in/jar/ (source/tree/location/*.xul)

The above will install all xul files under source/tree/location as
path/in/jar/*.xul.

Register Chrome

Chrome Registration [https://developer.mozilla.org/en-US/docs/Chrome_Registration]
instructions are marked with a percent sign (%) at the beginning of the
line, and must be part of the definition of a JAR file. Any additional percents
signs are replaced with an appropriate relative URL of the JAR file being
packaged:

% content global %path/in/jar/
% overlay chrome://blah/content/blah.xul chrome://foo/content/overlay.xul

There are two possible locations for a manifest file. If the chrome is being
built into a standalone application, the jar.mn processor creates a
<jarfilename>.manifest next to the JAR file itself. This is the default
behavior.

If the build specifies USE_EXTENSION_MANIFEST = 1, the jar.mn processor
creates a single chrome.manifest file suitable for registering chrome as
an extension.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Build System

Defining Binaries for the Build System

One part of what the build system does is compile C/C++ and link the resulting
objects to produce executables and/or libraries. This document describes the
basics of defining what is going to be built and how. All the following
describes constructs to use in moz.build files.

Source files

Source files to be used in a given directory are registered in the SOURCES
and UNIFIED_SOURCES variables. UNIFIED_SOURCES have a special behavior
in that they are aggregated by batches of 16, requiring, for example, that there
are no conflicting variables in those source files.

SOURCES and UNIFIED_SOURCES are lists which must be appended to, and
each append requires the given list to be alphanumerically ordered.

UNIFIED_SOURCES += [
 'FirstSource.cpp',
 'SecondSource.cpp',
 'ThirdSource.cpp',
]

SOURCES += [
 'OtherSource.cpp',
]

SOURCES and UNIFIED_SOURCES can contain a mix of different file types,
for C, C++, and Objective C.

Static Libraries

To build a static library, other than defining the source files (see above), one
just needs to define a library name with the Library template.

Library('foo')

The library file name will be libfoo.a on UNIX systems and foo.lib on
Windows.

If the static library needs to aggregate other static libraries, a list of
Library names can be added to the USE_LIBS variable. Like SOURCES, it
requires the appended list to be alphanumerically ordered.

USE_LIBS += ['bar', 'baz']

If there are multiple directories containing the same Library name, it is
possible to disambiguate by prefixing with the path to the wanted one (relative
or absolute):

USE_LIBS += [
 '/path/from/topsrcdir/to/bar',
 '../relative/baz',
]

Note that the leaf name in those paths is the Library name, not an actual
file name.

Note that currently, the build system may not create an actual library for
static libraries. It is an implementation detail that shouldn’t need to be
worried about.

As a special rule, USE_LIBS is allowed to contain references to shared
libraries. In such cases, programs and shared libraries linking this static
library will inherit those shared library dependencies.

Intermediate (Static) Libraries

In many cases in the tree, static libraries are built with the only purpose
of being linked into another, bigger one (like libxul). Instead of adding all
required libraries to USE_LIBS for the bigger one, it is possible to tell
the build system that the library built in the current directory is meant to
be linked to that bigger library, with the FINAL_LIBRARY variable.

FINAL_LIBRARY = 'xul'

The FINAL_LIBRARY value must match a unique Library name somewhere
in the tree.

As a special rule, those intermediate libraries don’t need a Library name
for themselves.

Shared Libraries

Sometimes, we want shared libraries, a.k.a. dynamic libraries. Such libraries
are defined similarly to static libraries, using the SharedLibrary template
instead of Library.

SharedLibrary('foo')

When this template is used, no static library is built. See further below to
build both types of libraries.

With a SharedLibrary name of foo, the library file name will be
libfoo.dylib on OSX, libfoo.so on ELF systems (Linux, etc.), and
foo.dll on Windows. On Windows, there is also an import library named
foo.lib, used on the linker command line. libfoo.dylib and
libfoo.so are considered the import library name for, resp. OSX and ELF
systems.

On OSX, one may want to create a special kind of dynamic library: frameworks.
This is done with the Framework template.

Framework('foo')

With a Framework name of foo, the framework file name will be foo.
This template however affects the behavior on all platforms, so it needs to
be set only on OSX.

Executables

Executables, a.k.a. programs, are, in the simplest form, defined with the
Program template.

Program('foobar')

On UNIX systems, the executable file name will be foobar, while on Windows,
it will be foobar.exe.

Like static and shared libraries, the build system can be instructed to link
libraries to the executable with USE_LIBS, listing various Library
names.

In some cases, we want to create an executable per source file in the current
directory, in which case we can use the SimplePrograms template

SimplePrograms([
 'FirstProgram',
 'SecondProgram',
])

Contrary to Program, which requires corresponding SOURCES, when using
SimplePrograms, the corresponding SOURCES are implied. If the
corresponding sources have an extension different from .cpp, it is
possible to specify the proper extension:

SimplePrograms([
 'ThirdProgram',
 'FourthProgram',
], ext='.c')

Please note this construct was added for compatibility with what already lives
in the mozilla tree ; it is recommended not to add new simple programs with
sources with a different extension than .cpp.

Similar to SimplePrograms, is the CppUnitTests template, which defines,
with the same rules, C++ unit tests programs. Like SimplePrograms, it takes
an ext argument to specify the extension for the corresponding SOURCES,
if it’s different from .cpp.

Linking with system libraries

Programs and libraries usually need to link with system libraries, such as a
widget toolkit, etc. Those required dependencies can be given with the
OS_LIBS variable.

OS_LIBS += [
 'foo',
 'bar',
]

This expands to foo.lib bar.lib when building with MSVC, and
-lfoo -lbar otherwise.

For convenience with pkg-config, OS_LIBS can also take linker flags
such as -L/some/path and -llib, such that it is possible to directly
assign LIBS variables from CONFIG, such as:

OS_LIBS += CONFIG['MOZ_PANGO_LIBS']

(assuming CONFIG['MOZ_PANGO_LIBS'] is a list, not a string)

Like USE_LIBS, this variable applies to static and shared libraries, as
well as programs.

Libraries from third party build system

Some libraries in the tree are not built by the moz.build-governed build
system, and there is no Library corresponding to them.

However, USE_LIBS allows to reference such libraries by giving a full
path (like when disambiguating identical Library names). The same naming
rules apply as other uses of USE_LIBS, so only the library name without
prefix and suffix shall be given.

USE_LIBS += [
 '/path/from/topsrcdir/to/third-party/bar',
 '../relative/third-party/baz',
]

Note that /path/from/topsrcdir/to/third-party and
../relative/third-party/baz must lead under a subconfigured directory (a
directory with an AC_OUTPUT_SUBDIRS in configure.in), or security/nss.

Building both static and shared libraries

When both types of libraries are required, one needs to set both
FORCE_SHARED_LIB and FORCE_STATIC_LIB boolean variables.

FORCE_SHARED_LIB = True
FORCE_STATIC_LIB = True

But because static libraries and Windows import libraries have the same file
names, either the static or the shared library name needs to be different
than the name given to the Library template.

The STATIC_LIBRARY_NAME and SHARED_LIBRARY_NAME variables can be used
to change either the static or the shared library name.

Library('foo')
STATIC_LIBRARY_NAME = 'foo_s'

With the above, on Windows, foo_s.lib will be the static library,
foo.dll the shared library, and foo.lib the import library.

In some cases, for convenience, it is possible to set both
STATIC_LIBRARY_NAME and SHARED_LIBRARY_NAME. For example:

Library('mylib')
STATIC_LIBRARY_NAME = 'mylib_s'
SHARED_LIBRARY_NAME = CONFIG['SHARED_NAME']

This allows to use mylib in the USE_LIBS of another library or
executable.

When refering to a Library name building both types of libraries in
USE_LIBS, the shared library is chosen to be linked. But sometimes,
it is wanted to link the static version, in which case the Library name
needs to be prefixed with static: in USE_LIBS

a/moz.build:
 Library('mylib')
 FORCE_SHARED_LIB = True
 FORCE_STATIC_LIB = True
 STATIC_LIBRARY_NAME = 'mylib_s'
b/moz.build:
 Program('myprog')
 USE_LIBS += [
 'static:mylib',
]

Miscellaneous

The SDK_LIBRARY boolean variable defines whether the library in the current
directory is going to be installed in the SDK.

The SONAME variable declares a “shared object name” for the library. It
defaults to the Library name or the SHARED_LIBRARY_NAME if set. When
linking to a library with a SONAME, the resulting library or program will
have a dependency on the library with the name corresponding to the SONAME
instead of the Library name. This only impacts ELF systems.

a/moz.build:
 Library('mylib')
b/moz.build:
 Library('otherlib')
 SONAME = 'foo'
c/moz.build:
 Program('myprog')
 USE_LIBS += [
 'mylib',
 'otherlib',
]

On e.g. Linux, the above myprog will have DT_NEEDED markers for
libmylib.so and libfoo.so instead of libmylib.so and
libotherlib.so if there weren’t a SONAME. This means the runtime
requirement for myprog is libfoo.so instead of libotherlib.so.

Gecko-related binaries

Some programs or libraries are totally independent of Gecko, and can use the
above mentioned templates. Others are Gecko-related in some way, and may
need XPCOM linkage, mozglue. These things are tedious. A set of additional
templates exists to ease defining such programs and libraries. They are
essentially the same as the above mentioned templates, prefixed with “Gecko”:

	GeckoProgram

	GeckoSimplePrograms

	GeckoCppUnitTests

	GeckoSharedLibrary

	GeckoFramework

There is also XPCOMBinaryComponent for XPCOM components, which is a
special kind of library.

All the Gecko-prefixed templates take the same arguments as their
non-Gecko-prefixed counterparts, and can take a few more arguments
for non-standard cases. See the definition of GeckoBinary in
build/gecko_templates.mozbuild for more details, but most usecases
should not require these additional arguments.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Build System

Creating Toolchain Archives

There are various scripts in the repository for producing archives
of the build tools (e.g. compilers and linkers) required to build.

Clang

See the build/build-clang directory. Read build/build-clang/README
for more.

Windows

The build/windows_toolchain.py script is used to build and manage
Windows toolchain archives containing Visual Studio executables, SDKs,
etc.

The way Firefox build automation works is an archive containing the
toolchain is produced and uploaded to an internal Mozilla server. The
build automation will download, verify, and extract this archive before
building. The archive is self-contained so machines don’t need to install
Visual Studio, SDKs, or various other dependencies. Unfortunately,
Microsoft’s terms don’t allow Mozilla to distribute this archive
publicly. However, the same tool can be used to create your own copy.

Configuring Your System

It is highly recommended to perform this process on a fresh installation
of Windows 7 or 10 (such as in a VM). Installing all updates through
Windows Update is not only acceptable - it is encouraged. Although it
shouldn’t matter.

Next, install Visual Studio 2015 Community. The download link can be
found at https://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx.
Be sure to follow these install instructions:

	Choose a Custom installation and click Next

	Select Programming Languages -> Visual C++ (make sure all sub items are
selected)

	Under Windows and Web Development uncheck everything except
Universal Windows App Development Tools and the items under it
(should be Tools (1.3.1)... and the Windows 10 SDK).

Once Visual Studio 2015 Community has been installed, from a checkout
of mozilla-central, run something like the following to produce a ZIP
archive:

$./mach python build/windows_toolchain.py create-zip vs2015u2

The produced archive will be the argument to create-zip + .zip.

Firefox for Android with Gradle

To build Firefox for Android with Gradle in automation, archives
containing both the Gradle executable and a Maven repository
comprising the exact build dependencies are produced and uploaded to
an internal Mozilla server. The build automation will download,
verify, and extract these archive before building. These archives
provide a self-contained Gradle and Maven repository so that machines
don’t need to fetch additional Maven dependencies at build time.
(Gradle and the downloaded Maven dependencies can be both
redistributed publicly.)

Archiving the Gradle executable is straight-forward, but archiving a
local Maven repository is not. Therefore a special Task Cluster
Docker image and job exist for producing the required archives. The
Docker image definition is rooted in
taskcluster/docker/android-gradle-build. The Task Cluster job
definition is in
testing/taskcluster/tasks/builds/android_api_15_gradle_dependencies.yml.
The job runs in a container based on the custom Docker image and
spawns a Sonatype Nexus proxying Maven repository process in the
background. The job builds Firefox for Android using Gradle and the
in-tree Gradle configuration rooted at build.gradle. The spawned
proxying Maven repository downloads external dependencies and collects
them. After the Gradle build completes, the job archives the Gradle
version used to build, and the downloaded Maven repository, and
exposes them as Task Cluster artifacts.

Here is an example try job fetching these dependencies [https://treeherder.mozilla.org/#/jobs?repo=try&revision=75bc98935147&selectedJob=17793653].
The resulting task produced a Gradle archive [https://queue.taskcluster.net/v1/task/CeYMgAP3Q-KF8h37nMhJjg/runs/0/artifacts/public%2Fbuild%2Fgradle.tar.xz]
and a Maven repository archive [https://queue.taskcluster.net/v1/task/CeYMgAP3Q-KF8h37nMhJjg/runs/0/artifacts/public%2Fbuild%2Fjcentral.tar.xz].
These archives were then uploaded (manually) to Mozilla automation
using tooltool for consumption in Gradle builds.

To update the version of Gradle in the archive produced, update
gradle/wrapper/gradle-wrapper.properties. Be sure to also update
the SHA256 checksum to prevent poisoning the build machines!

To update the versions of Gradle dependencies used, update
dependencies sections in the in-tree Gradle configuration rooted
at build.gradle. Once you are confident your changes build
locally, push a fresh try build with an invocation like:

$ hg push-to-try -m "try: -b o -p android-api-15-gradle-dependencies"

Then upload your archives to tooltool [https://wiki.mozilla.org/ReleaseEngineering/Applications/Tooltool#How_To_Upload_To_Tooltool],
update the in-tree manifests in
mobile/android/config/tooltool-manifests, and push a fresh try
build.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Build System

Localization (l10n)

Single-locale language repacks

To save on build time, the build system and automation collaborate to allow
downloading a packaged en-US Firefox, performing some locale-specific
post-processing, and re-packaging a locale-specific Firefox. Such artifacts
are termed “single-locale language repacks”. There is another concept of a
“multi-locale language build”, which is more like a regular build and less
like a re-packaging post-processing step.

There are scripts in-tree in mozharness to orchestrate these re-packaging
steps for Desktop [https://dxr.mozilla.org/mozilla-central/source/testing/mozharness/scripts/desktop_l10n.py]
and Android [https://dxr.mozilla.org/mozilla-central/source/testing/mozharness/scripts/mobile_l10n.py]
but they rely heavily on buildbot information so they are almost impossible to
run locally.

The following instructions are extracted from the Android script with hg hash
494289c7 [https://dxr.mozilla.org/mozilla-central/rev/494289c72ba3997183e7b5beaca3e0447ecaf96d/testing/mozharness/scripts/mobile_l10n.py],
and may need to be updated and slightly modified for Desktop.

Step by step instructions for Android

This assumes that $AB_CD is the locale you want to repack with; I tested
with “ar” and “en-GB”.

Warning

l10n repacks do not work with artifact builds. Repackaging
compiles no code so supporting --disable-compile-environment would not
save much, if any, time.

	You must have a built and packaged object directory, or a pre-built
en-US package.

./mach build
./mach package

	Clone l10n-central/$AB_CD so that it is a sibling to your
mozilla-central directory.

$ ls -al
mozilla-central
...
$ mkdir -p l10n-central
$ hg clone https://hg.mozilla.org/l10n-central/$AB_CD l10n-central/$AB_CD
$ ls -al
mozilla-central
l10n-central/$AB_CD
...

	Copy your mozconfig to mozconfig.l10n and add the following.

ac_add_options --with-l10n-base=../../l10n-central
ac_add_options --disable-tests
mk_add_options MOZ_OBJDIR=./objdir-l10n

	Configure and prepare the l10n object directory.

MOZCONFIG=mozconfig.l10n ./mach configure
MOZCONFIG=mozconfig.l10n ./mach build -C config export
MOZCONFIG=mozconfig.l10n ./mach build buildid.h

	Copy your built package and unpack it into the l10n object directory.

cp $OBJDIR/dist/fennec-*en-US*.apk ./objdir-l10n/dist
MOZCONFIG=mozconfig.l10n ./mach build -C mobile/android/locales unpack

	Run the compare-locales script to write locale-specific changes into
objdir-l10n/merged.

MOZCONFIG=mozconfig.l10n ./mach compare-locales --merge-dir objdir-l10n/merged $AB_CD

	Finally, repackage using the locale-specific changes.

MOZCONFIG=mozconfig.l10n LOCALE_MERGEDIR=`realpath objdir-l10n/merged` ./mach build -C mobile/android/locales installers-$AB_CD

(Note the absolute path for LOCALE_MERGEDIR.) You should find a
re-packaged build at objdir-l10n/dist/fennec-*$AB_CD*.apk.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Build System

Android Eclipse Projects

The build system contains alpha support for generating Android Eclipse
project files to aid with development.

To generate Android Eclipse project files, you’ll need to have a fully
built and packaged tree:

mach build && mach package

(This is because Eclipse itself packages an APK containing
omni.ja, and omni.ja is only assembled during packaging.)

Then, simply generate the Android Eclipse build backend:

mach build-backend -b AndroidEclipse

If all goes well, the path to the generated projects should be
printed (currently, $OBJDIR/android_eclipse).

To use the generated Android Eclipse project files, you’ll need to
have a recent version of Eclipse (see Tested Versions) with the
Eclipse ADT plugin [http://developer.android.com/tools/sdk/eclipse-adt.html]
installed. You can then import all the projects into Eclipse using
File > Import ... > General > Existing Projects into Workspace.

Updating Project Files

As you pull and update the source tree, your Android Eclipse files may
fall out of sync with the build configuration. The tree should still
build fine from within Eclipse, but source files may be missing and in
rare circumstances Eclipse’s index may not have the proper build
configuration.

To account for this, you’ll want to periodically regenerate the
Android Eclipse project files. You can do this by running mach build
&& mach package && mach build-backend -b AndroidEclipse from the
command line. It’s a good idea to refresh and clean build all projects
in Eclipse after doing this.

In future, we’d like to include an Android Eclipse run configuration
or build target that integrates updating the project files.

Currently, regeneration rewrites the original project files. If
you’ve made any customizations to the projects, they will likely get
overwritten. We would like to improve this user experience in the
future.

Troubleshooting

If Eclipse’s builder gets confused, you should always refresh and
clean build all projects. If Eclipse’s builder is continually
confused, you can see a log of what is happening at
$OBJDIR/android_eclipse/build.log.

If you run into memory problems executing dex, you should
Increase Eclipse’s memory limits [http://stackoverflow.com/a/11093228].

The produced Android Eclipse project files are unfortunately not
portable. Please don’t move them around.

Structure of Android Eclipse projects

The Android Eclipse backend generates several projects spanning Fennec
itself and its tests. You’ll mostly interact with the Fennec project
itself.

In future, we’d like to expand this documentation to include some of
the technical details of how the Eclipse integration works, and how to
add additional Android Eclipse projects using the moz.build
system.

Tested Versions

	OS
	Version
	Working as of

	Mac OS X
	Luna (Build id: 20130919-0819)
	February 2014

	Mac OS X
	Kepler (Build id: 20131219-0014)
	February 2014

	Mac OS X 10.8.5
	Kepler (Build id: 20130919-0819)
	February 2014

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Build System

Cpp Eclipse Projects

For additional information on using Eclipse CDT see
the MDN page [https://developer.mozilla.org/en-US/docs/Eclipse_CDT].

The build system contains alpha support for generating C++ Eclipse
project files to aid with development.

Please report bugs to bugzilla and make them depend on bug 973770.

To generate a C++ Eclipse project files, you’ll need to have a fully
built tree:

mach build

Then, simply generate the Android Eclipse build backend:

mach build-backend -b CppEclipse

If all goes well, the path to the generated workspace should be
printed (currently, $OBJDIR/android_eclipse).

To use the generated Android Eclipse project files, you’ll need to
have a Eclipse CDT 8.3 (We plan to follow the latest Eclipse release)
Eclipse CDT plugin [https://www.eclipse.org/cdt/]
installed. You can then import all the projects into Eclipse using
File > Import ... > General > Existing Projects into Workspace
-only- if you have not ran the background indexer.

Updating Project Files

As you pull and update the source tree, your C++ Eclipse files may
fall out of sync with the build configuration. The tree should still
build fine from within Eclipse, but source files may be missing and in
rare circumstances Eclipse’s index may not have the proper build
configuration.

To account for this, you’ll want to periodically regenerate the
Android Eclipse project files. You can do this by running mach build
&& mach build-backend -b CppEclipse from the
command line.

Currently, regeneration rewrites the original project files. If
you’ve made any customizations to the projects, they will likely get
overwritten. We would like to improve this user experience in the
future.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Build System

Visual Studio Projects

The build system contains alpha support for generating Visual Studio
project files to aid with development.

To generate Visual Studio project files, you’ll need to have a configured tree:

mach configure

(If you have built recently, your tree is already configured.)

Then, simply generate the Visual Studio build backend:

mach build-backend -b VisualStudio

If all goes well, the path to the generated Solution (.sln) file should be
printed. You should be able to open that solution with Visual Studio 2010 or
newer.

Currently, output is hard-coded to the Visual Studio 2010 format. If you open
the solution in a newer Visual Studio release, you will be prompted to upgrade
projects. Simply click through the wizard to do that.

Structure of Solution

The Visual Studio solution consists of hundreds of projects spanning thousands
of files. To help with organization, the solution is divided into the following
trees/folders:

	Build Targets

	This folder contains common build targets. The full project is used to
perform a full build. The binaries project is used to build just binaries.
The visual-studio project can be built to regenerate the Visual Studio
project files.

Performing the clean action on any of these targets will clean the
entire build output.

	Binaries

	This folder contains common binaries that can be executed from within
Visual Studio. If you are building the Firefox desktop application,
the firefox project will launch firefox.exe. You probably want one of
these set to your startup project.

	Libraries

	This folder contains entries for each static library that is produced as
part of the build. These roughly correspond to each directory in the tree
containing C/C++. e.g. code from dom/base will be contained in the
dom_base project.

These projects don’t do anything when built. If you build a project here,
the binaries build target project is built.

Updating Project Files

As you pull and update the source tree, your Visual Studio files may fall out
of sync with the build configuration. The tree should still build fine from
within Visual Studio. But source files may be missing and IntelliSense may not
have the proper build configuration.

To account for this, you’ll want to periodically regenerate the Visual Studio
project files. You can do this within Visual Studio by building the
Build Targets :: visual-studio project or by running
mach build-backend -b VisualStudio from the command line.

Currently, regeneration rewrites the original project files. If you’ve made
any customizations to the solution or projects, they will likely get
overwritten. We would like to improve this user experience in the
future.

Moving Project Files Around

The produced Visual Studio solution and project files should be portable.
If you want to move them to a non-default directory, they should continue
to work from wherever they are. If they don’t, please file a bug.

Invoking mach through Visual Studio

It’s possible to build the tree via Visual Studio. There is some light magic
involved here.

Alongside the Visual Studio project files is a batch script named mach.bat.
This batch script sets the environment variables present in your MozillaBuild
development environment at the time of Visual Studio project generation
and invokes mach inside an msys shell with the arguments specified to the
batch script. This script essentially allows you to invoke mach commands
inside the MozillaBuild environment without having to load MozillaBuild.

While projects currently only utilize the mach build command, the batch
script does not limit it’s use: any mach command can be invoked. Developers
may abuse this fact to add custom projects and commands that invoke other
mach commands.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Build System

mozbuild

mozbuild is a Python package providing functionality used by Mozilla’s
build system.

Modules Overview

	mozbuild.backend – Functionality for producing and interacting with build
backends. A build backend is an entity that consumes build system metadata
(from mozbuild.frontend) and does something useful with it (typically writing
out files that can be used by a build tool to build the tree).

	mozbuild.compilation – Functionality related to compiling. This
includes managing compiler warnings.

	mozbuild.frontend – Functionality for reading build frontend files
(what defines the build system) and converting them to data structures
which are fed into build backends to produce backend configurations.

	mozpack – Functionality related to packaging builds.

Overview

The build system consists of frontend files that define what to do. They
say things like “compile X” “copy Y.”

The mozbuild.frontend package contains code for reading these frontend
files and converting them to static data structures. The set of produced
static data structures for the tree constitute the current build
configuration.

There exist entities called build backends. From a high level, build
backends consume the build configuration and do something with it. They
typically produce tool-specific files such as make files which can be used
to build the tree.

Piecing it all together, we have frontend files that are parsed into data
structures. These data structures are fed into a build backend. The output
from build backends is used by builders to build the tree.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Build System

dumbmake

dumbmake is a simple dependency tracker for make.

It turns lists of make targets into longer lists of make targets that
include dependencies. For example:

netwerk, package

might be turned into

netwerk, netwerk/build, toolkit/library, package

The dependency list is read from the plain text file
topsrcdir/build/dumbmake-dependencies. The format best described by
example:

	build_this

	when_this_changes

Interpret this to mean that build_this is a dependency of
when_this_changes. More formally, a line (CHILD) indented more than
the preceding line (PARENT) means that CHILD should trigger building
PARENT. That is, building CHILD will trigger building first CHILD and
then PARENT.

This structure is recursive:

	build_this_when_either_change

	
	build_this_only_when

	this_changes

This means that build_this_when_either_change is a dependency of
build_this_only_when and this_changes, and build_this_only_when
is a dependency of this_changes. Building this_changes will build
first this_changes, then build_this_only_when, and finally
build_this_when_either_change.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

WebIDL

WebIDL describes interfaces web browsers are supposed to implement.

The interaction between WebIDL and the build system is somewhat complex.
This document will attempt to explain how it all works.

Overview

.webidl files throughout the tree define interfaces the browser
implements. Since Gecko/Firefox is implemented in C++, there is a
mechanism to convert these interfaces and associated metadata to
C++ code. That’s where the build system comes into play.

All the code for interacting with .webidl files lives under
dom/bindings. There is code in the build system to deal with
WebIDLs explicitly.

WebIDL source file flavors

Not all .webidl files are created equal! There are several flavors,
each represented by a separate symbol from mozbuild Sandbox Symbols.

	WEBIDL_FILES

	Refers to regular/static .webidl files. Most WebIDL interfaces
are defined this way.

	GENERATED_EVENTS_WEBIDL_FILES

	In addition to generating a binding, these .webidl files also
generate a source file implementing the event object in C++

	PREPROCESSED_WEBIDL_FILES

	The .webidl files are generated by preprocessing an input file.
They otherwise behave like WEBIDL_FILES.

	TEST_WEBIDL_FILES

	Like WEBIDL_FILES but the interfaces are for testing only and
aren’t shipped with the browser.

	PREPROCESSED_TEST_WEBIDL_FILES

	Like TEST_WEBIDL_FILES except the .webidl is obtained via
preprocessing, much like PREPROCESSED_WEBIDL_FILES.

	GENERATED_WEBIDL_FILES

	The .webidl for these is obtained through an external
mechanism. Typically there are custom build rules for producing these
files.

Producing C++ code

The most complicated part about WebIDLs is the process by which
.webidl files are converted into C++.

This process is handled by code in the mozwebidlcodegen
package. mozwebidlcodegen.WebIDLCodegenManager is
specifically where you want to look for how code generation is
performed. This includes complex dependency management.

Requirements

This section aims to document the build and developer workflow requirements
for WebIDL.

	Parser unit tests

	There are parser tests provided by dom/bindings/parser/runtests.py
that should run as part of make check. There must be a mechanism
to run the tests in human mode so they output friendly error
messages.

The current mechanism for this is mach webidl-parser-test.

	Mochitests

	There are various mochitests under dom/bindings/test. They should
be runnable through the standard mechanisms.

	Working with test interfaces

	TestExampleGenBinding.cpp calls into methods from the
TestExampleInterface and TestExampleProxyInterface interfaces.
These interfaces need to be generated as part of the build. These
interfaces should not be exported or packaged.

There is a compiletests make target in dom/bindings that
isn’t part of the build that facilitates turnkey code generation
and test file compilation.

	Minimal rebuilds

	Reprocessing every output for every change is expensive. So we don’t
inconvenience people changing .webidl files, the build system
should only perform a minimal rebuild when sources change.

This logic is mostly all handled in
mozwebidlcodegen.WebIDLCodegenManager. The unit tests for
that Python code should adequately test typical rebuild scenarios.

Bug 940469 tracks making the existing implementation better.

	Explicit method for performing codegen

	There needs to be an explicit method for invoking code generation.
It needs to cover regular and test files.

This is implemented via make export in dom/bindings.

	No-op binding generation should be fast

	So developers touching .webidl files are not inconvenienced,
no-op binding generation should be fast. Watch out for the build system
processing large dependency files it doesn’t need in order to perform
code generation.

	Ability to generate example files

	Any interface can have example .h/.cpp files generated.
There must be a mechanism to facilitate this.

This is currently facilitated through mach webidl-example. e.g.
mach webidl-example HTMLStyleElement.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

Graphics

The graphics team’s documentation is currently using doxygen. We’re tracking the work to integrate it better at https://bugzilla.mozilla.org/show_bug.cgi?id=1150232.

For now you can read the graphics source code documentation here:

http://people.mozilla.org/~bgirard/doxygen/gfx/

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

Firefox for Android

Contents:

	Runtime locale switching in Fennec
	Overview

	Locale events

	System locale changes

	Further reference

	UI Telemetry
	Sessions

	Events

	Versioning

	Clock

	Dictionary

	Install tracking with the Adjust SDK
	Data collection

	Technical notes

	Shipping Default Domains
	Domain Auto-completion

	Suggested Sites

	Guidelines for Adult Content

	Updating Lists

	The Firefox for Android install bouncer
	Technical details

Indices and tables

	Index

	Module Index

	Search Page

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Firefox for Android

Runtime locale switching in Fennec

Bug 917480 [https://bugzilla.mozilla.org/show_bug.cgi?id=917480] built on Bug 936756 [https://bugzilla.mozilla.org/show_bug.cgi?id=936756] to allow users to switch between supported locales at runtime, within Fennec, without altering the system locale.

This document aims to describe the overall architecture of the solution, along with guidelines for Fennec developers.

Overview

There are two places that locales are relevant to an Android application: the Java Locale object and the Android configuration itself.

Locale switching involves manipulating these values (to affect future UI), persisting them for future activities, and selectively redisplaying existing UI elements to give the appearance of responsive switching.

The user’s choice of locale is stored in a per-app pref, "locale". If missing, the system default locale is used. If set, it should be a locale code like "es" or "en-US".

BrowserLocaleManager takes care of updating the active locale when asked to do so. It also manages persistence and retrieval of the locale preference.

The question, then, is when to do so.

Locale events

One might imagine that we need only set the locale when our Application is instantiated, and when a new locale is set. Alas, that’s not the case: whenever there’s a configuration change (e.g., screen rotation), when a new activity is started, and at other apparently random times, Android will supply our activities with a configuration that’s been reset to the system locale.

For this reason, each starting activity must ask BrowserLocaleManager to fix its locale.

Ideally, we also need to perform some amount of work when our configuration changes, when our activity is resumed, and perhaps when a result is returned from another activity, if that activity can change the app locale (as is the case for any activity that calls out to GeckoPreferences – see BrowserApp#onActivityResult).

GeckoApp itself does some additional work, because it has particular performance constraints, and also is the typical root of the preferences activity.

Here’s an example of the work that a typical activity should do:

// This is cribbed from o.m.g.sync.setup.activities.LocaleAware.
public static void initializeLocale(Context context) {
 final LocaleManager localeManager = BrowserLocaleManager.getInstance();
 if (Build.VERSION.SDK_INT < Build.VERSION_CODES.GINGERBREAD) {
 localeManager.getAndApplyPersistedLocale(context);
 } else {
 final StrictMode.ThreadPolicy savedPolicy = StrictMode.allowThreadDiskReads();
 StrictMode.allowThreadDiskWrites();
 try {
 localeManager.getAndApplyPersistedLocale(context);
 } finally {
 StrictMode.setThreadPolicy(savedPolicy);
 }
 }
}

@Override
public void onConfigurationChanged(Configuration newConfig) {
 final LocaleManager localeManager = BrowserLocaleManager.getInstance();
 final Locale changed = localeManager.onSystemConfigurationChanged(this, getResources(), newConfig, mLastLocale);
 if (changed != null) {
 // Redisplay to match the locale.
 onLocaleChanged(BrowserLocaleManager.getLanguageTag(changed));
 }
}

@Override
public void onCreate(Bundle icicle) {
 // Note that we don't do this in onResume. We should,
 // but it's an edge case that we feel free to ignore.
 // We also don't have a hook in this example for when
 // the user picks a new locale.
 initializeLocale(this);

 super.onCreate(icicle);
}

GeckoApplication itself handles correcting locales when the configuration changes; your activity shouldn’t need to do this itself. See GeckoApplication‘s and GeckoApp‘s onConfigurationChanged methods.

System locale changes

Fennec can be in one of two states.

If the user has not explicitly chosen a Fennec-specific locale, we say
we are “mirroring” the system locale.

When we are not mirroring, system locale changes do not impact Fennec
and are essentially ignored; the user’s locale selection is the only
thing we care about, and we actively correct incoming configuration
changes to reflect the user’s chosen locale.

By contrast, when we are mirroring, system locale changes cause Fennec
to reflect the new system locale, as if the user picked the new locale.

When the system locale changes when we’re mirroring, your activity will receive an onConfigurationChanged call. Simply pass this on to BrowserLocaleManager, and then handle the response appropriately.

Further reference

GeckoPreferences, GeckoApp, and BrowserApp are excellent resources for figuring out what you should do.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Firefox for Android

UI Telemetry

Fennec records UI events using a telemetry framework called UITelemetry.

Some links:

	Project page [https://wiki.mozilla.org/Mobile/Projects/Telemetry_probes_for_Fennec_UI_elements]

	Wiki page [https://wiki.mozilla.org/Mobile/Fennec/Android/UITelemetry]

	User research notes [https://wiki.mozilla.org/Mobile/User_Experience/Research]

Sessions

Sessions are essentially scopes. They are meant to provide context to
events; this allows events to be simpler and more reusable. Sessions are
usually bound to some component of the UI, some user action with a duration, or
some transient state.

For example, a session might be begun when a user begins interacting with a
menu, and stopped when the interaction ends. Or a session might encapsulate
period of no network connectivity, the first five seconds after the browser
launched, the time spent with an active download, or a guest mode session.

Sessions implicitly record the duration of the interaction.

A simple use-case for sessions is the bookmarks panel in about:home. We start a
session when the user swipes into the panel, and stop it when they swipe away.
This bookmarks session does two things: firstly, it gives scope to any generic
event that may occur within the panel (e.g., loading a URL). Secondly, it
allows us to figure out how much time users are spending in the bookmarks
panel.

To start a session, call Telemetry.startUISession(String sessionName).

	sessionName

	The name of the session. Session names should be brief, lowercase, and should describe which UI
component the user is interacting with. In certain cases where the UI component is dynamic, they could include an ID, essential to identifying that component. An example of this is dynamic home panels: we use session names of the format homepanel:<panel_id> to identify home panel sessions.

To stop a session, call Telemetry.stopUISession(String sessionName, String reason).

	sessionName

	The name of the open session

	reason (Optional)

	A descriptive cause for ending the session. It should be brief, lowercase, and generic so it can be reused in different places. Examples reasons are:

	switched

	The user transitioned to a UI element of equal level.

	exit

	The user left for an entirely different element.

Events

Events capture key occurrences. They should be brief and simple, and should not contain sensitive or excess information. Context for events should come from the session (scope). An event can be created with four fields (via Telemetry.sendUIEvent): action, method, extras, and timestamp.

	action

	The name of the event. Should be brief and lowercase. If needed, you can make use of namespacing with a ‘.‘ separator. Example event names: panel.switch, panel.enable, panel.disable, panel.install.

	method (Optional)

	Used for user actions that can be performed in many ways. This field specifies the method by which the action was performed. For example, users can add an item to their reading list either by long-tapping the reader icon in the address bar, or from within reader mode. We would use the same event name for both user actions but specify two methods: addressbar and readermode.

	extras (Optional)

	For extra information that may be useful in understanding the event. Make an effort to keep this brief.

	timestamp (Optional)

	The time at which the event occurred. If not specified, this field defaults to the current value of the realtime clock.

Versioning

As a we improve on our Telemetry methods, it is foreseeable that our probes will change over time. Different versions of a probe could carry different data or have different interpretations on the server-side. To make it easier for the server to handle these changes, you should add version numbers to your event and session names. An example of a versioned session is homepanel.1; this is version 1 of the homepanel session. This approach should also be applied to event names, an example being: panel.enable.1 and panel.enable.2.

Clock

Times are relative to either elapsed realtime (an arbitrary monotonically increasing clock that continues to tick when the device is asleep), or elapsed uptime (which doesn’t tick when the device is in deep sleep). We default to elapsed realtime.

See the documentation in the source [http://mxr.mozilla.org/mozilla-central/source/mobile/android/base/Telemetry.java] for more details.

Dictionary

Events

	action.1

	Generic action, usually for tracking menu and toolbar actions.

	cancel.1

	Cancel a state, action, etc.

	cast.1

	Start casting a video.

	edit.1

	Sent when the user edits a top site.

	launch.1

	Launching (opening) an external application.
Note: Only used in JavaScript for now.

	loadurl.1

	Loading a URL.

	locale.browser.reset.1

	When the user chooses “System default” in the browser locale picker.

	locale.browser.selected.1

	When the user chooses a locale in the browser locale picker. The selected
locale is provided as the extra.

	locale.browser.unselected.1

	When the user chose a different locale in the browser locale picker, this
event is fired with the previous locale as the extra. If the previous locale
could not be determined, “unknown” is provided.

	neterror.1

	When the user performs actions on the in-content network error page. This should probably be a Session, but it’s difficult to start and stop the session reliably.

	panel.hide.1

	Hide a built-in home panel.

	panel.move.1

	Move a home panel up or down.

	panel.remove.1

	Remove a custom home panel.

	panel.setdefault.1

	Set default home panel.

	panel.show.1

	Show a hidden built-in home panel.

	pin.1, unpin.1

	Sent when the user pinned or unpinned a top site.

	policynotification.success.1:true

	Sent when a user has accepted the data notification policy. Can be false
instead of true if an error occurs.

	sanitize.1

	Sent when the user chooses to clear private data.

	save.1, unsave.1

	Saving or unsaving a resource (reader, bookmark, etc.) for viewing later.

	search.1

	Sent when the user performs a search. Currently used in the search activity.

	search.remove.1

	Sent when the user removes a search engine.

	search.restore.1

	Sent when the user restores the search engine configuration back to the built-in configuration.

	search.setdefault.1

	Sent when the user sets a search engine to be the default.

	share.1

	Sharing content.

	show.1

	Sent when a contextual UI element is shown to the user.

	undo.1

	Sent when performing an undo-style action, like undoing a closed tab.

Methods

	actionbar

	Action triggered from an ActionBar UI.

	back

	Action triggered from the back button.

	banner

	Action triggered from a banner (such as HomeBanner).

	button

	Action triggered from a button.
Note: Only used in JavaScript for now.

	content

	Action triggered from a content page.

	contextmenu

	Action triggered from a contextmenu. Could be from chrome or content.

	dialog

	Action triggered from a dialog.

	doorhanger

	Action triggered from a doorhanger popup prompt.

	griditem

	Action triggered from a griditem, such as those used in Top Sites panel.

	homescreen

	Action triggered from a homescreen shortcut icon.

	intent

	Action triggered from a system Intent, usually sent from the OS.

	list

	Action triggered from an unmanaged list of items, usually provided by the OS.

	listitem

	Action triggered from a listitem.

	menu

	Action triggered from the main menu.

	notification

	Action triggered from a system notification.

	pageaction

	Action triggered from a pageaction, displayed in the URL bar.

	service

	Action triggered from an automatic system making a decision.

	settings

	Action triggered from a content page.

	shareoverlay

	Action triggered from a content page.

	suggestion

	Action triggered from a suggested result, like those from search engines or default tiles.

	system

	Action triggered from an OS level action, like application foreground / background.

	toast

	Action triggered from an unobtrusive, temporary notification.

	widget

	Action triggered from a widget placed on the homescreen.

Sessions

	awesomescreen.1

	Awesomescreen (including frecency search) is active.

	firstrun.1

	Started the very first time we believe the application has been launched.

	frecency.1

	Awesomescreen frecency search is active.

	homepanel.1

	Started when a user enters a given home panel.
Session name is dynamic, encoded as “homepanel.1:<panel_id>”
Built-in home panels have fixed IDs

	reader.1

	Reader viewer becomes active in the foreground.

	searchactivity.1

	Started when the user launches the search activity (onStart) and stopped
when they leave the search activity.

	settings.1

	Settings activity is active.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Firefox for Android

Install tracking with the Adjust SDK

Fennec (Firefox for Android) tracks certain types of installs using a third party install tracking
framework called Adjust. The intention is to determine the origin of Fennec installs by answering
the question, “Did this user on this device install Fennec in response to a specific advertising
campaign performed by Mozilla?”

Mozilla is using a third party framework in order to answer this question for the Firefox for
Android 38.0.5 release. We hope to remove the framework from Fennec in the future.

The framework consists of a software development kit (SDK) built into Fennec and a
data-collecting Internet service backend run by the German company adjust GmbH [http://www.adjust.com]. The Adjust SDK
is open source and MIT licensed: see the github repository [https://github.com/adjust/android_sdk]. Fennec ships a copy of the SDK
(currently not modified from upstream) in mobile/android/thirdparty/com/adjust/sdk. The SDK is
documented at https://docs.adjust.com.

Data collection

When is data collected and sent to the Adjust backend?

Data is never collected (or sent to the Adjust backend) unless

	the Fennec binary is an official Mozilla binary [1]; and

	the release channel is Release or Beta [2].

If both of the above conditions are true, then data is collected and sent to the Adjust backend in
the following two circumstances: first, when

	Fennec is started on the device [3].

Second, when

	the Fennec binary was installed from the Google Play Store; and

	the Google Play Store sends the installed Fennec binary an INSTALL_REFERRER Intent [https://developer.android.com/reference/com/google/android/gms/tagmanager/InstallReferrerReceiver.html], and the
received Intent includes Google Play Store campaign tracking information. This happens when thea
Google Play Store install is in response to a campaign-specific Google Play Store link. For
details, see the developer documentation at
https://developers.google.com/analytics/devguides/collection/android/v4/campaigns.

In these two limited circumstances, data is collected and sent to the Adjust backend.

Where does data sent to the Adjust backend go?

The Adjust SDK is hard-coded to send data to the endpoint https://app.adjust.com. The endpoint is
defined by com.adjust.sdk.Constants.BASE_URL at
https://hg.mozilla.org/mozilla-central/file/f76f02793f7a/mobile/android/thirdparty/com/adjust/sdk/Constants.java#l27.

The Adjust backend then sends a limited subset of the collected data – limited but sufficient to
uniquely identify the submitting device – to a set of advertising network providers that Mozilla
elects to share the collected data with. Those advertising networks then confirm or deny that the
identifying information corresponds to a specific advertising campaign performed by Mozilla.

What data is collected and sent to the Adjust backend?

The Adjust SDK collects and sends two messages to the Adjust backend. The messages have the
following parameters:

V/Adjust (6508): Parameters:
V/Adjust (6508): screen_format normal
V/Adjust (6508): device_manufacturer samsung
V/Adjust (6508): session_count 1
V/Adjust (6508): device_type phone
V/Adjust (6508): screen_size normal
V/Adjust (6508): package_name org.mozilla.firefox
V/Adjust (6508): app_version 39.0a1
V/Adjust (6508): android_uuid <guid>
V/Adjust (6508): display_width 720
V/Adjust (6508): country GB
V/Adjust (6508): os_version 18
V/Adjust (6508): needs_attribution_data 0
V/Adjust (6508): environment sandbox
V/Adjust (6508): device_name Galaxy Nexus
V/Adjust (6508): os_name android
V/Adjust (6508): tracking_enabled 1
V/Adjust (6508): created_at 2015-03-24T17:53:38.452Z-0400
V/Adjust (6508): app_token <private>
V/Adjust (6508): screen_density high
V/Adjust (6508): language en
V/Adjust (6508): display_height 1184
V/Adjust (6508): gps_adid <guid>

V/Adjust (6508): Parameters:
V/Adjust (6508): needs_attribution_data 0
V/Adjust (6508): app_token <private>
V/Adjust (6508): environment production
V/Adjust (6508): android_uuid <guid>
V/Adjust (6508): tracking_enabled 1
V/Adjust (6508): gps_adid <guid>

The available parameters (including ones not exposed to Mozilla) are documented at
https://partners.adjust.com/placeholders/.

Notes on what data is collected

The android_uuid uniquely identifies the device.

The gps_adid is a Google Advertising ID. It is capable of uniquely identifying a device to any
advertiser, across all applications. If a Google Advertising ID is not available, Adjust may fall
back to an Android ID, or, as a last resort, the device’s WiFi MAC address.

The tracking_enabled flag is only used to allow or disallow contextual advertising to be sent to a
user. It can be, and is, ignored for general install tracking of the type Mozilla is using the
Adjust SDK for. (This flag might be used by consumers using the Adjust SDK to provide in-App
advertising.)

It is not clear how much entropy their is in the set of per-device parameters that do not
explicitly uniquely identify the device. That is, it is not known if the device parameters are
likely to uniquely fingerprint the device, in the way that user agent capabilities are likely to
uniquely fingerprint the user.

Technical notes

Build flags controlling the Adjust SDK integration

Add the following to your mozconfig to compile with the Adjust SDK:

export MOZ_INSTALL_TRACKING=1
export MOZ_NATIVE_DEVICES=1
export RELEASE_BUILD=1
ac_add_options --with-adjust-sdk-keyfile="$topsrcdir/mobile/android/base/adjust-sdk-sandbox.token"

MOZ_NATIVE_DEVICES && RELEASE_BUILD are required for an unknown
reason. If you build without them, the StubAdjustHelper will be
returned.

No trace of the Adjust SDK should be present in Fennec if
MOZ_INSTALL_TRACKING is not defined.

Access to the Adjust backend is controlled by a private App-specific
token. Fennec’s token is managed by Release Engineering and should not
be exposed if at all possible; for example, it should not leak to build
logs. The value of the token is read from the file specified using the
configure flag --with-adjust-sdk-keyfile=KEYFILE and stored in
the build variable MOZ_INSTALL_TRACKING_ADJUST_SDK_APP_TOKEN. The
mozconfig specified above defaults to submitting data to a special Adjust
sandbox allowing a developer to test Adjust without submitting false
data to our backend.

We throw an assertion if MOZ_INSTALL_TRACKING is specified but
--with-adjust-sdk-keyfile is not to ensure our builders have a proper
adjust token for release and beta builds. It’s great to catch some
errors at compile-time rather than in release. That being said, ideally
we’d specify a default --with-adjust-sdk-keyfile for developer builds
but I don’t know how to do that.

Technical notes on the Adjust SDK integration

The Adjust install tracking SDK is a pure-Java library that is conditionally compiled into Fennec.
It’s not trivial to integrate such conditional feature libraries into Fennec without pre-processing.
To minimize such pre-processing, we define a trivial AdjustHelperInterface and define two
implementations: the real AdjustHelper, which requires the Adjust SDK, and a no-op
StubAdjustHelper, which has no additional requirements. We use the existing pre-processed
AppConstants.java.in to switch, at build-time, between the two implementations.

Notes and links

	[1]	Data is not sent for builds not produced by Mozilla: this would include
redistributors such as the Palemoon project.

	[2]	Data is not sent for Aurora, Nightly, or custom builds.

	[3]	Started means more than just when the user taps the Fennec icon or otherwise causes
the Fennec user interface to appear directly. It includes, for example, when a Fennec service
(like the Update Service, or Background Sync), starts and Fennec was not previously running on the
device. See http://developer.android.com/reference/android/app/Application.html#onCreate%28%29
for details.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Firefox for Android

Shipping Default Domains

Firefox for Mobile (Android and iOS) ships sets of default content in order to improve the
first-run experience. There are two primary places where default sets of domains are used: URLBar
domain auto-completion, and Top Sites suggested thumbnails.

The source of these domains is typically the Alexa top sites lists, global and by-country. Before
shipping the sets of domains, the lists are sanitized.

Domain Auto-completion

As you type in the URLBar, Firefox will scan your history and auto-complete previously visited
domains that match what you have entered. This can make navigating to web sites faster because it
can avoid significant amounts of typing. During your first few uses, Firefox does not have any
history and you are forced to type full URLs. Shipping a set of top domains provides a fallback.

The top domains list can be localized, but Firefox will fallback to using en-US as the default for all
locales that do not provide a specific set. The list can have several hundred domains, but due to
size concerns, is usually capped to five hundred or less.

Sanitizing Methods

After getting a source list, e.g. Alexa top global sites, we apply some simple guidelines to the
list of domains:

	Remove any sites in the Alexa adult site list.

	Remove any locale-specific domain duplicates. We assume primary URLs (.com) will redirect to the
correct locale (.co.jp) at run-time.

	Remove any explicit adult content* domains.

	Remove any sites that use explicit or adult advertising*.

	Remove any URL shorteners and redirecters.

	Remove any content/CDN domains. Some sites use separate domains to store images and other static content.

	Remove any sites primarily used for advertising or management of advertising.

	Remove any sites that fail to load in mobile browsers.

	Remove any time/date specific sites that may have appeared on the list due to seasonal spikes.

Suggested Sites

Suggested sites are default thumbnails, displayed on the Top Sites home panel. A suggested site
consists of a title, thumbnail image, background color and URL. Multiple images are usually
required to handle the variety of device DPIs.

Suggested sites can be localized, but Firefox will fallback to using en-US as the default for all
locales that do not provide a specific set. The list is usually small, with perhaps fewer than ten
sites.

Sanitizing Methods

After getting a source list, e.g. Alexa top global sites, we apply some simple guidelines to the
list of domains:

	Remove pure search engines. We handle search engines differently and don’t consider them to be
suggested sites.

	Remove any locale-specific domain duplicates. We assume primary URLs (.com) will redirect to the
correct locale (.co.jp) at run-time.

	Remove any explicit adult content domains.

	Remove any sites that use explicit or adult advertising.

	Remove any URL shorteners and redirecters.

	Remove any content/CDN domains. Some sites use separate domains to store images and other static
content.

Guidelines for Adult Content

Generally the Adult category includes sites whose dominant theme is either:

	To appeal to the prurient interest in sex without any serious literary, artistic, political, or
scientific value

	The depiction or description of nudity, including sexual or excretory activities or organs in a
lascivious way

	The depiction or description of sexually explicit conduct in a lascivious way (e.g. for
entertainment purposes)

For a more complete definition and guidelines of adult content, use the full DMOZ guidelines at
http://www.dmoz.org/docs/en/guidelines/adult/general.html.

Updating Lists

After approximately every two releases, Product (with Legal) will review current lists and
sanitizing methods, and update the lists accordingly.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Firefox for Android

The Firefox for Android install bouncer

Bug 1234629 [https://bugzilla.mozilla.org/show_bug.cgi?id=1234629] and Bug 1163082 [https://bugzilla.mozilla.org/show_bug.cgi?id=1163082] combine to allow building a very small
Fennec-like “bouncer” APK that redirects (bounces) a potential Fennec user to the marketplace of
their choice – usually the Google Play Store – to install the real Firefox for Android application
APK.

The real APK should install seamlessly over top of the bouncer APK. Care is taken to keep the
bouncer and application APK <permission> manifest definitions identical, and to have the bouncer APK
<activity> manifest definitions look similar to the application APK <activity> manifest definitions.

In addition, the bouncer APK can carry a Fennec distribution, which it copies onto the device before
redirecting to the marketplace. The application APK recognizes the installed distribution and
customizes itself accordingly on first run.

The motivation is to allow partners to pre-install the very small bouncer APK on shipping devices
and to have a smooth path to upgrade to the full application APK, with a partner-specific
distribution in place.

Technical details

To build the bouncer APK, define MOZ_ANDROID_PACKAGE_INSTALL_BOUNCER. To pack a distribution
into the bouncer APK (and not into the application APK), add a line like:

ac_add_options --with-android-distribution-directory=/path/to/fennec-distribution-sample

to your mozconfig file. See the general distribution documentation on the wiki [https://wiki.mozilla.org/Mobile/Distribution_Files] for more information.

The distribution directory should end up in the assets/distribution directory of the bouncer
APK. It will be copied into /data/data/$ANDROID_PACKAGE_NAME/distribution when the bouncer
executes.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

Localization

	Glossary

The documentation here is targeted at developers, writing localizable code
for Firefox and Firefox for Android, as well as Thunderbird and SeaMonkey.

If you haven’t dealt with localization in gecko code before, it’s a good
idea to check the Glossary for what localization is, and which terms
we use for what.

Exposing strings

Localizers only handle a few file formats in well-known locations in the
source tree.

The locations are in directories like

browser/locales/en-US/subdir/file.ext

The first thing to note is that only files beneath locales/en-US are
exposed to localizers. The second thing to note is that only a few directories
are exposed. Which directories are exposed is defined in files called
l10n.ini, which are at a
few places [https://dxr.mozilla.org/mozilla-central/search?q=path%3Al10n.ini&redirect=true]
in the source code.

An example looks like this

[general]
depth = ../..

[compare]
dirs = browser
 browser/branding/official

[includes]
toolkit = toolkit/locales/l10n.ini

This tells the l10n infrastructure three things: Resolve the paths against the
directory two levels up, include files in browser/locales/en-US and
browser/branding/official/locales/en-US, and load more data from
toolkit/locales/l10n.ini.

For projects like Thunderbird and SeaMonkey in comm-central, additional
data needs to be provided when including an l10n.ini from a different
repository:

[include_toolkit]
type = hg
mozilla = mozilla-central
repo = http://hg.mozilla.org/
l10n.ini = toolkit/locales/l10n.ini

This tells the l10n pieces where to find the repository, and where inside
that repository the l10n.ini file is. This is needed because for local
builds, mail/locales/l10n.ini references
mozilla/toolkit/locales/l10n.ini, which is where the comm-central
build setup expects toolkit to be.

Now that the directories exposed to l10n are known, we can talk about the
supported file formats.

File formats

This is just a quick overview, please check the
XUL Tutorial [https://developer.mozilla.org/docs/Mozilla/Tech/XUL/Tutorial/Localization]
for an in-depth tour.

The following file formats are known to the l10n tool chains:

	DTD

	Used in XUL and XHTML. Also for Android native strings.

	Properties

	Used from JavaScript and C++. When used from js, also comes with
plural support [https://developer.mozilla.org/docs/Mozilla/Localization/Localization_and_Plurals].

	ini

	Used by the crashreporter and updater, avoid if possible.

	foo.defines

	Used during builds, for example to create file:install.rdf for
language packs.

Adding new formats involves changing various different tools, and is strongly
discouraged.

Exceptions

Generally, anything that exists in en-US needs a one-to-one mapping in
all localizations. There are a few cases where that’s not wanted, notably
around search settings and spell-checking dictionaries.

To enable tools to adjust to those exceptions, there’s a python-coded
filter.py, implementing test(), with the following
signature

def test(mod, path, entity = None):
 if does_not_matter:
 return "ignore"
 if show_but_do_not_merge:
 return "report"
 # default behavior, localizer or build need to do something
 return "error"

For any missing file, this function is called with mod being
the module, and path being the relative path inside
locales/en-US. The module is the top-level dir as referenced in
l10n.ini.

For missing strings, the entity parameter is the key of the string
in the en-US file.

l10n-merge

Gecko doesn’t support fallback from a localization to en-US at runtime.
Thus, the build needs to ensure that the localization as it’s built into
the package has all required strings, and that the strings don’t contain
errors. To ensure that, we’re merging the localization and en-US
at build time, nick-named l10n-merge.

The process is usually triggered via

$obj-dir/browser/locales> make merge-de LOCALE_MERGEDIR=$PWD/merge-de

It creates another directory in the object dir, merge-ab-CD, in
which the modified files are stored. The actual repackaging process looks for
the localized files in the merge dir first, then the localized file, and then
in en-US. Thus, for the de localization of
browser/locales/en-US/chrome/browser/browser.dtd, it checks

	$objdir/browser/locales/merge-de/browser/chrome/browser/browser.dtd

	$(LOCALE_BASEDIR)/de/browser/chrome/browser/browser.dtd

	browser/locales/en-US/chrome/browser/browser.dtd

and will include the first of those files it finds.

l10n-merge modifies a file if it supports the particular file type, and there
are missing strings which are not filtered out, or if an existing string
shows an error. See the Checks section below for details.

Checks

As part of the build and other localization tool chains, we run a variety
of source-based checks. Think of them as linters.

The suite of checks is usually determined by file type, i.e., there’s a
suite of checks for DTD files and one for properties files, etc. An exception
are Android-specific checks.

Android

For Android, we need to localize strings.xml. We’re doing so via DTD
files, which is mostly OK. But the strings inside the XML file have to
satisfy additional constraints about quotes etc, that are not part of XML.
There’s probably some historic background on why things are the way they are.

The Android-specific checks are enabled for DTD files that are in
mobile/android/base/locales/en-US/.

Localizations

Now that we talked in-depth about how to expose content to localizers,
where are the localizations?

We host a mercurial repository per locale and per branch. Most of our
localizations only work starting with aurora, so the bulk of the localizations
is found on https://hg.mozilla.org/releases/l10n/mozilla-aurora/. We have
several localizations continuously working with mozilla-central, those
repositories are on https://hg.mozilla.org/l10n-central/.

You can search inside our localized files on
Transvision [https://transvision.mozfr.org/] and
http://mxr.mozilla.org/l10n-mozilla-aurora/.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Localization

Glossary

	L10n

	Numeronym for Localization, L, 10 chars, n

	l10n-merge

	nick-name for the process of merging en-US and a particular
localization into one joint artifact without any missing strings, and
without technical errors, as far as possible.

	L12y

	Numeronym for Localizability

	Localizability

	Enabling a piece of software to be localized. This is mostly
externalizing English strings, and writing build support to
pick up localized search engines etc.

	Localization

	The process of creating content in a native language, including
translation, but also customizations like Search.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

mach

Mach (German for do) is a generic command dispatcher for the command
line.

To use mach, you install the mach core (a Python package), create an
executable driver script (named whatever you want), and write mach
commands. When the driver is executed, mach dispatches to the
requested command handler automatically.

Features

On a high level, mach is similar to using argparse with subparsers (for
command handling). When you dig deeper, mach offers a number of
additional features:

	Distributed command definitions

	With optparse/argparse, you have to define your commands on a central
parser instance. With mach, you annotate your command methods with
decorators and mach finds and dispatches to them automatically.

	Command categories

	Mach commands can be grouped into categories when displayed in help.
This is currently not possible with argparse.

	Logging management

	Mach provides a facility for logging (both classical text and
structured) that is available to any command handler.

	Settings files

	Mach provides a facility for reading settings from an ini-like file
format.

Components

Mach is conceptually composed of the following components:

	core

	The mach core is the core code powering mach. This is a Python package
that contains all the business logic that makes mach work. The mach
core is common to all mach deployments.

	commands

	These are what mach dispatches to. Commands are simply Python methods
registered as command names. The set of commands is unique to the
environment mach is deployed in.

	driver

	The driver is the entry-point to mach. It is simply an executable
script that loads the mach core, tells it where commands can be found,
then asks the mach core to handle the current request. The driver is
unique to the deployed environment. But, it’s usually based on an
example from this source tree.

Project State

mach was originally written as a command dispatching framework to aid
Firefox development. While the code is mostly generic, there are still
some pieces that closely tie it to Mozilla/Firefox. The goal is for
these to eventually be removed and replaced with generic features so
mach is suitable for anybody to use. Until then, mach may not be the
best fit for you.

	Implementing Commands

	Drivers

	Logging

	Settings

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	mach

Implementing Commands

Mach commands are defined via Python decorators.

All the relevant decorators are defined in the mach.decorators module.
The important decorators are as follows:

	CommandProvider

	A class decorator that denotes that a class contains mach
commands. The decorator takes no arguments.

	Command

	A method decorator that denotes that the method should be called when
the specified command is requested. The decorator takes a command name
as its first argument and a number of additional arguments to
configure the behavior of the command.

	CommandArgument

	A method decorator that defines an argument to the command. Its
arguments are essentially proxied to ArgumentParser.add_argument()

	SubCommand

	A method decorator that denotes that the method should be a
sub-command to an existing @Command. The decorator takes the
parent command name as its first argument and the sub-command name
as its second argument.

@CommandArgument can be used on @SubCommand instances just
like they can on @Command instances.

Classes with the @CommandProvider decorator must have an
__init__ method that accepts 1 or 2 arguments. If it accepts 2
arguments, the 2nd argument will be a
mach.base.CommandContext instance.

Here is a complete example:

from mach.decorators import (
 CommandArgument,
 CommandProvider,
 Command,
)

@CommandProvider
class MyClass(object):
 @Command('doit', help='Do ALL OF THE THINGS.')
 @CommandArgument('--force', '-f', action='store_true',
 help='Force doing it.')
 def doit(self, force=False):
 # Do stuff here.

When the module is loaded, the decorators tell mach about all handlers.
When mach runs, it takes the assembled metadata from these handlers and
hooks it up to the command line driver. Under the hood, arguments passed
to the decorators are being used to help mach parse command arguments,
formulate arguments to the methods, etc. See the documentation in the
mach.base module for more.

The Python modules defining mach commands do not need to live inside the
main mach source tree.

Conditionally Filtering Commands

Sometimes it might only make sense to run a command given a certain
context. For example, running tests only makes sense if the product
they are testing has been built, and said build is available. To make
sure a command is only runnable from within a correct context, you can
define a series of conditions on the
Command decorator.

A condition is simply a function that takes an instance of the
mach.decorators.CommandProvider() class as an argument, and
returns True or False. If any of the conditions defined on a
command return False, the command will not be runnable. The
docstring of a condition function is used in error messages, to explain
why the command cannot currently be run.

Here is an example:

from mach.decorators import (
 CommandProvider,
 Command,
)

def build_available(cls):
 """The build needs to be available."""
 return cls.build_path is not None

 @CommandProvider
class MyClass(MachCommandBase):
 def __init__(self, build_path=None):
 self.build_path = build_path

 @Command('run_tests', conditions=[build_available])
 def run_tests(self):
 # Do stuff here.

It is important to make sure that any state needed by the condition is
available to instances of the command provider.

By default all commands without any conditions applied will be runnable,
but it is possible to change this behaviour by setting
require_conditions to True:

m = mach.main.Mach()
m.require_conditions = True

Minimizing Code in Commands

Mach command modules, classes, and methods work best when they are
minimal dispatchers. The reason is import bloat. Currently, the mach
core needs to import every Python file potentially containing mach
commands for every command invocation. If you have dozens of commands or
commands in modules that import a lot of Python code, these imports
could slow mach down and waste memory.

It is thus recommended that mach modules, classes, and methods do as
little work as possible. Ideally the module should only import from
the mach package. If you need external modules, you should
import them from within the command method.

To keep code size small, the body of a command method should be limited
to:

	Obtaining user input (parsing arguments, prompting, etc)

	Calling into some other Python package

	Formatting output

Of course, these recommendations can be ignored if you want to risk
slower performance.

In the future, the mach driver may cache the dispatching information or
have it intelligently loaded to facilitate lazy loading.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	mach

Drivers

Entry Points

It is possible to use setuptools’ entry points to load commands
directly from python packages. A mach entry point is a function which
returns a list of files or directories containing mach command
providers. e.g.:

def list_providers():
 providers = []
 here = os.path.abspath(os.path.dirname(__file__))
 for p in os.listdir(here):
 if p.endswith('.py'):
 providers.append(os.path.join(here, p))
 return providers

See http://pythonhosted.org/setuptools/setuptools.html#dynamic-discovery-of-services-and-plugins
for more information on creating an entry point. To search for entry
point plugins, you can call
mach.main.Mach.load_commands_from_entry_point(). e.g.:

mach.load_commands_from_entry_point("mach.external.providers")

Adding Global Arguments

Arguments to mach commands are usually command-specific. However,
mach ships with a handful of global arguments that apply to all
commands.

It is possible to extend the list of global arguments. In your
mach driver, simply call
mach.main.Mach.add_global_argument(). e.g.:

mach = mach.main.Mach(os.getcwd())

Will allow --example to be specified on every mach command.
mach.add_global_argument('--example', action='store_true',
 help='Demonstrate an example global argument.')

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	mach

Logging

Mach configures a built-in logging facility so commands can easily log
data.

What sets the logging facility apart from most loggers you’ve seen is
that it encourages structured logging. Instead of conventional logging
where simple strings are logged, the internal logging mechanism logs all
events with the following pieces of information:

	A string action

	A dict of log message fields

	A formatting string

Essentially, instead of assembling a human-readable string at
logging-time, you create an object holding all the pieces of data that
will constitute your logged event. For each unique type of logged event,
you assign an action name.

Depending on how logging is configured, your logged event could get
written a couple of different ways.

JSON Logging

Where machines are the intended target of the logging data, a JSON
logger is configured. The JSON logger assembles an array consisting of
the following elements:

	Decimal wall clock time in seconds since UNIX epoch

	String action of message

	Object with structured message data

The JSON-serialized array is written to a configured file handle.
Consumers of this logging stream can just perform a readline() then feed
that into a JSON deserializer to reconstruct the original logged
message. They can key off the action element to determine how to
process individual events. There is no need to invent a parser.
Convenient, isn’t it?

Logging for Humans

Where humans are the intended consumer of a log message, the structured
log message are converted to more human-friendly form. This is done by
utilizing the formatting string provided at log time. The logger
simply calls the format method of the formatting string, passing the
dict containing the message’s fields.

When mach is used in a terminal that supports it, the logging facility
also supports terminal features such as colorization. This is done
automatically in the logging layer - there is no need to control this at
logging time.

In addition, messages intended for humans typically prepends every line
with the time passed since the application started.

Logging HOWTO

Structured logging piggybacks on top of Python’s built-in logging
infrastructure provided by the logging package. We accomplish this by
taking advantage of logging.Logger.log()‘s extra argument. To this
argument, we pass a dict with the fields action and params. These
are the string action and dict of message fields, respectively. The
formatting string is passed as the msg argument, like normal.

If you were logging to a logger directly, you would do something like:

logger.log(logging.INFO, 'My name is {name}',
 extra={'action': 'my_name', 'params': {'name': 'Gregory'}})

The JSON logging would produce something like:

[1339985554.306338, "my_name", {"name": "Gregory"}]

Human logging would produce something like:

0.52 My name is Gregory

Since there is a lot of complexity using logger.log directly, it is
recommended to go through a wrapping layer that hides part of the
complexity for you. The easiest way to do this is by utilizing the
LoggingMixin:

import logging
from mach.mixin.logging import LoggingMixin

class MyClass(LoggingMixin):
 def foo(self):
 self.log(logging.INFO, 'foo_start', {'bar': True},
 'Foo performed. Bar: {bar}')

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	mach

Settings

Mach can read settings in from a set of configuration files. These
configuration files are either named machrc or .machrc and
are specified by the bootstrap script. In mozilla-central, these files
can live in ~/.mozbuild and/or topsrcdir.

Settings can be specified anywhere, and used both by mach core or
individual commands.

Core Settings

These settings are implemented by mach core.

	alias - Create a command alias. This is useful if you want to alias a command to something else, optionally including some defaults. It can either be used to create an entire new command, or provide defaults for an existing one. For example:

[alias]
mochitest = mochitest -f browser
browser-test = mochitest -f browser

Defining Settings

Settings need to be explicitly defined, along with their type,
otherwise mach will throw when trying to access them.

To define settings, use the SettingsProvider()
decorator in an existing mach command module. E.g:

from mach.decorators import SettingsProvider

@SettingsProvider
class ArbitraryClassName(object):
 config_settings = [
 ('foo.bar', 'string'),
 ('foo.baz', 'int', 0, set([0,1,2])),
]

@SettingsProvider‘s must specify a variable called config_settings
that returns a list of tuples. Alternatively, it can specify a function
called config_settings that returns a list of tuples.

Each tuple is of the form:

('<section>.<option>', '<type>', default, extra)

type is a string and can be one of:
string, boolean, int, pos_int, path

default is optional, and provides a default value in case none was
specified by any of the configuration files.

extra is also optional and is a dict containing additional key/value
pairs to add to the setting’s metadata. The following keys may be specified
in the extra dict:

	choices - A set of allowed values for the setting.

Wildcards

Sometimes a section should allow arbitrarily defined options from the user, such
as the alias section mentioned above. To define a section like this, use *
as the option name. For example:

('foo.*', 'string')

This allows configuration files like this:

[foo]
arbitrary1 = some string
arbitrary2 = some other string

Documenting Settings

All settings must at least be documented in the en_US locale. Otherwise,
running mach settings will raise. Mach uses gettext to perform localization.

A handy command exists to generate the localization files:

mach settings locale-gen <section>

You’ll be prompted to add documentation for all options in section with the
en_US locale. To add documentation in another locale, pass in --locale.

Accessing Settings

Now that the settings are defined and documented, they’re accessible from
individual mach commands if the command receives a context in its constructor.
For example:

from mach.decorators import (
 Command,
 CommandProvider,
 SettingsProvider,
)

@SettingsProvider
class ExampleSettings(object):
 config_settings = [
 ('a.b', 'string', 'default'),
 ('foo.bar', 'string'),
 ('foo.baz', 'int', 0, {'choices': set([0,1,2])}),
]

@CommandProvider
class Commands(object):
 def __init__(self, context):
 self.settings = context.settings

 @Command('command', category='misc',
 description='Prints a setting')
 def command(self):
 print(self.settings.a.b)
 for option in self.settings.foo:
 print(self.settings.foo[option])

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

CloudSync

CloudSync is a service that provides access to tabs and bookmarks data
for third-party sync addons. Addons can read local bookmarks and tabs.
Bookmarks and tab data can be merged from remote devices.

Addons are responsible for maintaining an upstream representation, as
well as sending and receiving data over the network.

	Architecture

	Data Format

	Example

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	CloudSync

Architecture

CloudSync offers functionality similar to Firefox Sync for data sources. Third-party addons
(sync adapters) consume local data, send and receive updates from the cloud, and merge remote data.

Files

	CloudSync.jsm

	Main module; Includes other modules and exposes them.

	CloudSyncAdapters.jsm

	Provides an API for addons to register themselves. Will be used to
list available adapters and to notify adapters when sync operations
are requested manually by the user.

	CloudSyncBookmarks.jsm

	Provides operations for interacting with bookmarks.

	CloudSyncBookmarksFolderCache.jsm

	Implements a cache used to store folder hierarchy for filtering bookmark events.

	CloudSyncEventSource.jsm

	Implements an event emitter. Used to provide addEventListener and removeEventListener
for tabs and bookmarks.

	CloudSyncLocal.jsm

	Provides information about the local device, such as name and a unique id.

	CloudSyncPlacesWrapper.jsm

	Wraps parts of the Places API in promises. Some methods are implemented to be asynchronous
where they are not in the places API.

	CloudSyncTabs.jsm

	Provides operations for fetching local tabs and for populating the about:sync-tabs page.

Data Sources

CloudSync provides data for tabs and bookmarks. For tabs, local open pages can be enumerated and
remote tabs can be merged for displaying in about:sync-tabs. For bookmarks, updates are tracked
for a named folder (given by each adapter) and handled by callbacks registered using addEventListener,
and remote changes can be merged into the local database.

Versioning

The API carries an integer version number (clouySync.version). Data records are versioned separately and individually.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	CloudSync

Data Format

All fields are required unless noted otherwise.

Bookmarks

Record

	type:

	record type; one of CloudSync.bookmarks.{BOOKMARK, FOLDER, SEPARATOR, QUERY, LIVEMARK}

	id:

	GUID for this bookmark item

	parent:

	id of parent folder

	index:

	item index in parent folder; should be unique and contiguous, or they will be adjusted internally

	title:

	bookmark or folder title; not meaningful for separators

	dateAdded:

	timestamp (in milliseconds) for item added

	lastModified:

	timestamp (in milliseconds) for last modification

	uri:

	bookmark URI; not meaningful for folders or separators

	version:

	data layout version

Tabs

ClientRecord

	id:

	GUID for this client

	name:

	name for this client; not guaranteed to be unique

	tabs:

	list of tabs open on this client; see TabRecord

	version:

	data layout version

TabRecord

	title:

	name for this tab

	url:

	URL for this tab; only one tab for each URL is stored

	icon:

	favicon URL for this tab; optional

	lastUsed:

	timetamp (in milliseconds) for last use

	version:

	data layout version

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	CloudSync

Example

Cu.import("resource://gre/modules/CloudSync.jsm");

let HelloWorld = {
 onLoad: function() {
 let cloudSync = CloudSync();
 console.log("CLOUDSYNC -- hello world", cloudSync.local.id, cloudSync.local.name, cloudSync.adapters);
 cloudSync.adapters.register('helloworld', {});
 console.log("CLOUDSYNC -- " + JSON.stringify(cloudSync.adapters.getAdapterNames()));

 cloudSync.tabs.addEventListener("change", function() {
 console.log("tab change");
 cloudSync.tabs.getLocalTabs().then(
 function(records) {
 console.log(JSON.stringify(records));
 }
);
 });

 cloudSync.tabs.getLocalTabs().then(
 function(records) {
 console.log(JSON.stringify(records));
 }
);

 let remoteClient = {
 id: "001",
 name: "FakeClient",
 };
 let remoteTabs1 = [
 {url:"https://www.google.ca",title:"Google",icon:"https://www.google.ca/favicon.ico",lastUsed:Date.now()},
];
 let remoteTabs2 = [
 {url:"https://www.google.ca",title:"Google Canada",icon:"https://www.google.ca/favicon.ico",lastUsed:Date.now()},
 {url:"http://www.reddit.com",title:"Reddit",icon:"http://www.reddit.com/favicon.ico",lastUsed:Date.now()},
];
 cloudSync.tabs.mergeRemoteTabs(remoteClient, remoteTabs1).then(
 function() {
 return cloudSync.tabs.mergeRemoteTabs(remoteClient, remoteTabs2);
 }
).then(
 function() {
 return cloudSync.tabs.getRemoteTabs();
 }
).then(
 function(tabs) {
 console.log("remote tabs:", tabs);
 }
);

 cloudSync.bookmarks.getRootFolder("Hello World").then(
 function(rootFolder) {
 console.log(rootFolder.name, rootFolder.id);
 rootFolder.addEventListener("add", function(guid) {
 console.log("CLOUDSYNC -- bookmark item added: " + guid);
 rootFolder.getLocalItemsById([guid]).then(
 function(items) {
 console.log("CLOUDSYNC -- items: " + JSON.stringify(items));
 }
);
 });
 rootFolder.addEventListener("remove", function(guid) {
 console.log("CLOUDSYNC -- bookmark item removed: " + guid);
 rootFolder.getLocalItemsById([guid]).then(
 function(items) {
 console.log("CLOUDSYNC -- items: " + JSON.stringify(items));
 }
);
 });
 rootFolder.addEventListener("change", function(guid) {
 console.log("CLOUDSYNC -- bookmark item changed: " + guid);
 rootFolder.getLocalItemsById([guid]).then(
 function(items) {
 console.log("CLOUDSYNC -- items: " + JSON.stringify(items));
 }
);
 });
 rootFolder.addEventListener("move", function(guid) {
 console.log("CLOUDSYNC -- bookmark item moved: " + guid);
 rootFolder.getLocalItemsById([guid]).then(
 function(items) {
 console.log("CLOUDSYNC -- items: " + JSON.stringify(items));
 }
);
 });

 function logLocalItems() {
 return rootFolder.getLocalItems().then(
 function(items) {
 console.log("CLOUDSYNC -- local items: " + JSON.stringify(items));
 }
);
 }

 let items = [
 {"id":"9fdoci2KOME6","type":rootFolder.FOLDER,"parent":rootFolder.id,"title":"My Bookmarks 1"},
 {"id":"1fdoci2KOME5","type":rootFolder.FOLDER,"parent":rootFolder.id,"title":"My Bookmarks 2"},
 {"id":"G_UL4ZhOyX8m","type":rootFolder.BOOKMARK,"parent":"1fdoci2KOME5","title":"reddit: the front page of the internet","uri":"http://www.reddit.com/"},
];
 function mergeSomeItems() {
 return rootFolder.mergeRemoteItems(items);
 }

 logLocalItems().then(
 mergeSomeItems
).then(
 function(processedItems) {
 console.log("!!!", processedItems);
 console.log("merge complete");
 },
 function(error) {
 console.log("merge failed:", error);
 }
).then(
 logLocalItems
);
 }
);

 },
};

window.addEventListener("load", function(e) { HelloWorld.onLoad(e); }, false);

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

TaskCluster Task-Graph Generation

The taskcluster directory contains support for defining the graph of tasks
that must be executed to build and test the Gecko tree. This is more complex
than you might suppose! This implementation supports:

	A huge array of tasks

	Different behavior for different repositories

	“Try” pushes, with special means to select a subset of the graph for execution

	Optimization – skipping tasks that have already been performed

	Extremely flexible generation of a variety of tasks using an approach of
incrementally transforming job descriptions into task definitions.

This section of the documentation describes the process in some detail,
referring to the source where necessary. If you are reading this with a
particular goal in mind and would rather avoid becoming a task-graph expert,
check out the how-to section.

	TaskGraph Mach Command
	Concepts

	Kinds

	Dependencies

	Decision Task

	Graph Generation

	Optimization

	Action Tasks

	Mach commands

	Task Parameterization

	Taskgraph JSON Format

	Parameters
	Push Information

	Tree Information

	Target Set

	Task Attributes
	kind

	build_platform

	build_type

	test_platform

	unittest_suite

	unittest_flavor

	unittest_try_name

	talos_try_name

	test_chunk

	e10s

	legacy_kind

	job

	post_build

	image_name

	Task Kinds
	Builds

	Tests
	desktop-test

	android-test

	legacy

	docker-image

	Transforms
	Overview

	Schemas

	Keyed By

	Task-Generation Transforms

	Test Transforms

	Task Definition YAML Templates
	Inheritance

	Substitution

	How Tos
	Hacking Task Graphs

	Common Changes
	Changing Test Characteristics

	Adding a Test Suite

	Greening Up a New Test

	Something Else?

	Docker Images
	Adding Extra Files to Images

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	TaskCluster Task-Graph Generation

TaskGraph Mach Command

The task graph is built by linking different kinds of tasks together, pruning
out tasks that are not required, then optimizing by replacing subgraphs with
links to already-completed tasks.

Concepts

	Task Kind - Tasks are grouped by kind, where tasks of the same kind do not
have interdependencies but have substantial similarities, and may depend on
tasks of other kinds. Kinds are the primary means of supporting diversity,
in that a developer can add a new kind to do just about anything without
impacting other kinds.

	Task Attributes - Tasks have string attributes by which can be used for
filtering. Attributes are documented in Task Attributes.

	Task Labels - Each task has a unique identifier within the graph that is
stable across runs of the graph generation algorithm. Labels are replaced
with TaskCluster TaskIds at the latest time possible, facilitating analysis
of graphs without distracting noise from randomly-generated taskIds.

	Optimization - replacement of a task in a graph with an equivalent,
already-completed task, or a null task, avoiding repetition of work.

Kinds

Kinds are the focal point of this system. They provide an interface between
the large-scale graph-generation process and the small-scale task-definition
needs of different kinds of tasks. Each kind may implement task generation
differently. Some kinds may generate task definitions entirely internally (for
example, symbol-upload tasks are all alike, and very simple), while other kinds
may do little more than parse a directory of YAML files.

A kind.yml file contains data about the kind, as well as referring to a
Python class implementing the kind in its implementation key. That
implementation may rely on lots of code shared with other kinds, or contain a
completely unique implementation of some functionality.

The full list of pre-defined keys in this file is:

	implementation

	Class implementing this kind, in the form <module-path>:<object-path>.
This class should be a subclass of taskgraph.kind.base:Kind.

	kind-dependencies

	Kinds which should be loaded before this one. This is useful when the kind
will use the list of already-created tasks to determine which tasks to
create, for example adding an upload-symbols task after every build task.

Any other keys are subject to interpretation by the kind implementation.

The result is a nice segmentation of implementation so that the more esoteric
in-tree projects can do their crazy stuff in an isolated kind without making
the bread-and-butter build and test configuration more complicated.

Dependencies

Dependencies between tasks are represented as labeled edges in the task graph.
For example, a test task must depend on the build task creating the artifact it
tests, and this dependency edge is named ‘build’. The task graph generation
process later resolves these dependencies to specific taskIds.

Decision Task

The decision task is the first task created when a new graph begins. It is
responsible for creating the rest of the task graph.

The decision task for pushes is defined in-tree, in .taskcluster.yml. That
task description invokes mach taskcluster decision with some metadata about
the push. That mach command determines the optimized task graph, then calls
the TaskCluster API to create the tasks.

Note that this mach command is not designed to be invoked directly by humans.
Instead, use the mach commands described below, supplying parameters.yml
from a recent decision task. These commands allow testing everything the
decision task does except the command-line processing and the
queue.createTask calls.

Graph Generation

Graph generation, as run via mach taskgraph decision, proceeds as follows:

	For all kinds, generate all tasks. The result is the “full task set”

	Create links between tasks using kind-specific mechanisms. The result is
the “full task graph”.

	Select the target tasks (based on try syntax or a tree-specific
specification). The result is the “target task set”.

	Based on the full task graph, calculate the transitive closure of the target
task set. That is, the target tasks and all requirements of those tasks.
The result is the “target task graph”.

	Optimize the target task graph based on kind-specific optimization methods.
The result is the “optimized task graph” with fewer nodes than the target
task graph.

	Create tasks for all tasks in the optimized task graph.

Optimization

The objective of optimization to remove as many tasks from the graph as
possible, as efficiently as possible, thereby delivering useful results as
quickly as possible. For example, ideally if only a test script is modified in
a push, then the resulting graph contains only the corresponding test suite
task.

A task is said to be “optimized” when it is either replaced with an equivalent,
already-existing task, or dropped from the graph entirely.

A task can be optimized if all of its dependencies can be optimized and none of
its inputs have changed. For a task on which no other tasks depend (a “leaf
task”), the optimizer can determine what has changed by looking at the
version-control history of the push: if the relevant files are not modified in
the push, then it considers the inputs unchanged. For tasks on which other
tasks depend (“non-leaf tasks”), the optimizer must replace the task with
another, equivalent task, so it generates a hash of all of the inputs and uses
that to search for a matching, existing task.

In some cases, such as try pushes, tasks in the target task set have been
explicitly requested and are thus excluded from optimization. In other cases,
the target task set is almost the entire task graph, so targetted tasks are
considered for optimization. This behavior is controlled with the
optimize_target_tasks parameter.

Action Tasks

Action Tasks are tasks which help you to schedule new jobs via Treeherder’s
“Add New Jobs” feature. The Decision Task creates a YAML file named
action.yml which can be used to schedule Action Tasks after suitably replacing
{{decision_task_id}} and {{task_labels}}, which correspond to the decision
task ID of the push and a comma separated list of task labels which need to be
scheduled.

This task invokes mach taskgraph action-task which builds up a task graph of
the requested tasks. This graph is optimized using the tasks running initially in
the same push, due to the decision task.

So for instance, if you had already requested a build task in the try command,
and you wish to add a test which depends on this build, the original build task
is re-used.

This feature is only present on try pushes for now.

Mach commands

A number of mach subcommands are available aside from mach taskgraph
decision to make this complex system more accesssible to those trying to
understand or modify it. They allow you to run portions of the
graph-generation process and output the results.

	mach taskgraph tasks

	Get the full task set

	mach taskgraph full

	Get the full task graph

	mach taskgraph target

	Get the target task set

	mach taskgraph target-graph

	Get the target task graph

	mach taskgraph optimized

	Get the optimized task graph

Each of these commands taskes a --parameters option giving a file with
parameters to guide the graph generation. The decision task helpfully produces
such a file on every run, and that is generally the easiest way to get a
parameter file. The parameter keys and values are described in
Parameters; using that information, you may modify an existing
parameters.yml or create your own.

Task Parameterization

A few components of tasks are only known at the very end of the decision task
– just before the queue.createTask call is made. These are specified
using simple parameterized values, as follows:

	{"relative-datestamp": "certain number of seconds/hours/days/years"}

	Objects of this form will be replaced with an offset from the current time
just before the queue.createTask call is made. For example, an
artifact expiration might be specified as {"relative-timestamp": "1
year"}.

	{"task-reference": "string containing <dep-name>"}

	The task definition may contain “task references” of this form. These will
be replaced during the optimization step, with the appropriate taskId for
the named dependency substituted for <dep-name> in the string.
Multiple labels may be substituted in a single string, and <<> can be
used to escape a literal <.

The mach taskgraph action-task subcommand is used by Action Tasks to
create a task graph of the requested jobs and its non-optimized dependencies.
Action Tasks are currently scheduled by
[pulse_actions](https://github.com/mozilla/pulse_actions)

Taskgraph JSON Format

Task graphs – both the graph artifacts produced by the decision task and those
output by the --json option to the mach taskgraph commands – are JSON
objects, keyed by label, or for optimized task graphs, by taskId. For
convenience, the decision task also writes out label-to-taskid.json
containing a mapping from label to taskId. Each task in the graph is
represented as a JSON object.

Each task has the following properties:

	task_id

	The task’s taskId (only for optimized task graphs)

	label

	The task’s label

	attributes

	The task’s attributes

	dependencies

	The task’s in-graph dependencies, represented as an object mapping
dependency name to label (or to taskId for optimized task graphs)

	task

	The task’s TaskCluster task definition.

	kind_implementation

	The module and the class name which was used to implement this particular task.
It is always of the form <module-path>:<object-path>

The results from each command are in the same format, but with some differences
in the content:

	The tasks and target subcommands both return graphs with no edges.
That is, just collections of tasks without any dependencies indicated.

	The optimized subcommand returns tasks that have been assigned taskIds.
The dependencies array, too, contains taskIds instead of labels, with
dependencies on optimized tasks omitted. However, the task.dependencies
array is populated with the full list of dependency taskIds. All task
references are resolved in the optimized graph.

The output of the mach taskgraph commands are suitable for processing with
the jq [https://stedolan.github.io/jq/] utility. For example, to extract all
tasks’ labels and their dependencies:

jq 'to_entries | map({label: .value.label, dependencies: .value.dependencies})'

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	TaskCluster Task-Graph Generation

Parameters

Task-graph generation takes a collection of parameters as input, in the form of
a JSON or YAML file.

During decision-task processing, some of these parameters are supplied on the
command line or by environment variables. The decision task helpfully produces
a full parameters file as one of its output artifacts. The other mach
taskgraph commands can take this file as input. This can be very helpful
when working on a change to the task graph.

The properties of the parameters object are described here, divided rougly by
topic.

Push Information

	base_repository

	The repository from which to do an initial clone, utilizing any available
caching.

	head_repository

	The repository containing the changeset to be built. This may differ from
base_repository in cases where base_repository is likely to be cached
and only a few additional commits are needed from head_repository.

	head_rev

	The revision to check out; this can be a short revision string

	head_ref

	For Mercurial repositories, this is the same as head_rev. For
git repositories, which do not allow pulling explicit revisions, this gives
the symbolic ref containing head_rev that should be pulled from
head_repository.

	owner

	Email address indicating the person who made the push. Note that this
value may be forged and must not be relied on for authentication.

	message

	The commit message

	pushlog_id

	The ID from the hg.mozilla.org pushlog

Tree Information

	project

	Another name for what may otherwise be called tree or branch or
repository. This is the unqualified name, such as mozilla-central or
cedar.

	level

	The SCM level associated with this tree. This dictates the names
of resources used in the generated tasks, and those tasks will fail if it
is incorrect.

Target Set

The “target set” is the set of task labels which must be included in a task
graph. The task graph generation process will include any tasks required by
those in the target set, recursively. In a decision task, this set can be
specified programmatically using one of a variety of methods (e.g., parsing try
syntax or reading a project-specific configuration file).

The decision task writes its task set to the target_tasks.json artifact,
and this can be copied into parameters.target_tasks and
parameters.target_tasks_method set to "from_parameters" for debugging
with other mach taskgraph commands.

	target_tasks_method

	(optional) The method to use to determine the target task set. This is the
suffix of one of the functions in tascluster/taskgraph/target_tasks.py.
If omitted, all tasks are targeted.

	target_tasks

	(optional) The target set method from_parameters reads the target set, as
a list of task labels, from this parameter.

	optimize_target_tasks

	(optional; default True) If true, then target tasks are eligible for
optimization.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	TaskCluster Task-Graph Generation

Task Attributes

Tasks can be filtered, for example to support “try” pushes which only perform a
subset of the task graph or to link dependent tasks. This filtering is the
difference between a full task graph and a target task graph.

Filtering takes place on the basis of attributes. Each task has a dictionary
of attributes and filters over those attributes can be expressed in Python. A
task may not have a value for every attribute.

The attributes, and acceptable values, are defined here. In general, attribute
names and values are the short, lower-case form, with underscores.

kind

A task’s kind attribute gives the name of the kind that generated it, e.g.,
build or legacy.

build_platform

The build platform defines the platform for which the binary was built. It is
set for both build and test jobs, although test jobs may have a different
test_platform.

build_type

The type of build being performed. This is a subdivision of build_platform,
used for different kinds of builds that target the same platform. Values are

	debug

	opt

test_platform

The test platform defines the platform on which tests are run. It is only
defined for test jobs and may differ from build_platform when the same binary
is tested on several platforms (for example, on several versions of Windows).
This applies for both talos and unit tests.

Unlike build_platform, the test platform is represented in a slash-separated
format, e.g., linux64/opt.

unittest_suite

This is the unit test suite being run in a unit test task. For example,
mochitest or cppunittest.

unittest_flavor

If a unittest suite has subdivisions, those are represented as flavors. Not
all suites have flavors, in which case this attribute should be set to match
the suite. Examples: mochitest-devtools-chrome-chunked or a11y.

unittest_try_name

(deprecated) This is the name used to refer to a unit test via try syntax. It
may not match either of unittest_suite or unittest_flavor.

talos_try_name

(deprecated) This is the name used to refer to a talos job via try syntax.

test_chunk

This is the chunk number of a chunked test suite (talos or unittest). Note
that this is a string!

e10s

For test suites which distinguish whether they run with or without e10s, this
boolean value identifies this particular run.

legacy_kind

(deprecated) The kind of task as created by the legacy kind. This is valid
only for the legacy kind. One of build, unittest,, talos,
post_build, or job.

job

(deprecated) The name of the job (corresponding to a -j option or the name
of a post-build job). This is valid only for the legacy kind.

post_build

(deprecated) The name of the post-build activity. This is valid only for the
legacy kind.

image_name

For the docker_image kind, this attribute contains the docker image name.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	TaskCluster Task-Graph Generation

Task Kinds

This section lists and documents the available task kinds.

Builds

Builds are currently implemented by the legacy kind.

Tests

Test tasks for Gecko products are divided into several kinds, but share a
common implementation. The process goes like this, based on a set of YAML
files named in kind.yml:

	For each build task, determine the related test platforms based on the build
platform. For example, a Windows 2010 build might be tested on Windows 7
and Windows 10. Each test platform specifies a “test set” indicating which
tests to run. This is configured in the file named
test-platforms.yml.

	Each test set is expanded to a list of tests to run. This is configured in
the file named by test-sets.yml.

	Each named test is looked up in the file named by tests.yml to find a
test description. This test description indicates what the test does, how
it is reported to treeherder, and how to perform the test, all in a
platform-independent fashion.

	Each test description is converted into one or more tasks. This is
performed by a sequence of transforms defined in the transforms key in
kind.yml. See Transforms: for more information on these
transforms.

	The resulting tasks become a part of the task graph.

Important

This process generates all test jobs, regardless of tree or try syntax.
It is up to a later stage of the task-graph generation (the target set) to
select the tests that will actually be performed.

desktop-test

The desktop-test kind defines tests for Desktop builds. Its tests.yml
defines the full suite of desktop tests and their particulars, leaving it to
the transforms to determine how those particulars apply to Linux, OS X, and
Windows.

android-test

The android-test kind defines tests for Android builds.

It is very similar to desktop-test, but the details of running the tests
differ substantially, so they are defined separately.

legacy

The legacy kind is the old, templated-yaml-based task definition mechanism. It
is still used for builds and generic tasks, but not for long!

docker-image

Tasks of the docker-image kind build the Docker images in which other
Docker tasks run.

The tasks to generate each docker image have predictable labels:
build-docker-image-<name>.

Docker images are built from subdirectories of testing/docker, using
docker build. There is currently no capability for one Docker image to
depend on another in-tree docker image, without uploading the latter to a
Docker repository

The task definition used to create the image-building tasks is given in
image.yml in the kind directory, and is interpreted as a YAML
Template.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	TaskCluster Task-Graph Generation

Transforms

Many task kinds generate tasks by a process of transforming job descriptions
into task definitions. The basic operation is simple, although the sequence of
transforms applied for a particular kind may not be!

Overview

To begin, a kind implementation generates a collection of items. For example,
the test kind implementation generates a list of tests to run for each matching
build, representing each as a test description. The items are simply Python
dictionaries.

The kind also defines a sequence of transformations. These are applied, in
order, to each item. Early transforms might apply default values or break
items up into smaller items (for example, chunking a test suite). Later
transforms rewrite the items entirely, with the final result being a task
definition.

Each transformation looks like this:

The config argument is a Python object containing useful configuration for
the kind, and is a subclass of
taskgraph.transforms.base.TransformConfig, which specifies a few of
its attributes. Kinds may subclass and add additional attributes if necessary.

While most transforms yield one item for each item consumed, this is not always
true: items that are not yielded are effectively filtered out. Yielding
multiple items for each consumed item implements item duplication; this is how
test chunking is accomplished, for example.

The transforms object is an instance of
taskgraph.transforms.base.TransformSequence, which serves as a simple
mechanism to combine a sequence of transforms into one.

Schemas

The items used in transforms are validated against some simple schemas at
various points in the transformation process. These schemas accomplish two
things: they provide a place to add comments about the meaning of each field,
and they enforce that the fields are actually used in the documented fashion.

Keyed By

Several fields in the input items can be “keyed by” another value in the item.
For example, a test description’s chunks may be keyed by test-platform.
In the item, this looks like:

chunks:
 by-test-platform:
 linux64/debug: 12
 linux64/opt: 8
 default: 10

This is a simple but powerful way to encode business rules in the items
provided as input to the transforms, rather than expressing those rules in the
transforms themselves. If you are implementing a new business rule, prefer
this mode where possible. The structure is easily resolved to a single value
using taskgraph.transform.base.get_keyed_by().

Task-Generation Transforms

Every kind needs to create tasks, and all of those tasks have some things in
common. They all run on one of a small set of worker implementations, each
with their own idiosyncracies. And they all report to TreeHerder in a similar
way.

The transforms in taskcluster/taskgraph/transforms/make_task.py implement
this common functionality. They expect a “task description”, and produce a
task definition. The schema for a task description is defined at the top of
make_task.py, with copious comments. The result is a dictionary with keys
label, attributes, task, and dependencies, with the latter
having the same format as the input dependencies.

These transforms assign names to treeherder groups using an internal list of
group names. Feel free to add additional groups to this list as necessary.

Test Transforms

The transforms configured for test kinds proceed as follows, based on
configuration in kind.yml:

	The test description is validated to conform to the schema in
taskcluster/taskgraph/transforms/tests/test_description.py. This schema
is extensively documented and is a the primary reference for anyone
modifying tests.

	Kind-specific transformations are applied. These may apply default
settings, split tests (e.g., one to run with feature X enabled, one with it
disabled), or apply across-the-board business rules such as “all desktop
debug test platforms should have a max-run-time of 5400s”.

	Transformations generic to all tests are applied. These apply policies
which apply to multiple kinds, e.g., for treeherder tiers. This is also the
place where most values which differ based on platform are resolved, and
where chunked tests are split out into a test per chunk.

	The test is again validated against the same schema. At this point it is
still a test description, just with defaults and policies applied, and
per-platform options resolved. So transforms up to this point do not modify
the “shape” of the test description, and are still governed by the schema in
test_description.py.

	The taskgraph.transforms.tests.make_task_description:transforms then
take the test description and create a task description. This transform
embodies the specifics of how test runs work: invoking mozharness, various
worker options, and so on.

	Finally, the taskgraph.transforms.make_task:transforms, described above
under “Task-Generation Transforms”, are applied.

Test dependencies are produced in the form of a dictionary mapping dependency
name to task label.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	TaskCluster Task-Graph Generation

Task Definition YAML Templates

Many kinds of tasks are described using templated YAML files. These files
allow some limited forms of inheritance and template substitution as well as
the usual YAML features, as described below.

Please use these features sparingly. In many cases, it is better to add a
feature to the implementation of a task kind rather than add complexity to the
YAML files.

Inheritance

One YAML file can “inherit” from another by including a top-level $inherits
key. That key specifies the parent file in from, and optionally a
collection of variables in variables. For example:

$inherits:
 from: 'tasks/builds/base_linux32.yml'
 variables:
 build_name: 'linux32'
 build_type: 'dbg'

Inheritance proceeds as follows: First, the child document has its template
substitutions performed and is parsed as YAML. Then, the parent document is
parsed, with substitutions specified by variables added to the template
substitutions. Finally, the child document is merged with the parent.

To merge two JSON objects (dictionaries), each value is merged individually.
Lists are merged by concatenating the lists from the parent and child
documents. Atomic values (strings, numbers, etc.) are merged by preferring the
child document’s value.

Substitution

Each document is expanded using the PyStache template engine before it is
parsed as YAML. The parameters for this expansion are specific to the task
kind.

Simple value substitution looks like {{variable}}. Function calls look
like {{#function}}argument{{/function}}.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	TaskCluster Task-Graph Generation

How Tos

All of this equipment is here to help you get your work done more efficiently.
However, learning how task-graphs are generated is probably not the work you
are interested in doing. This section should help you accomplish some of the
more common changes to the task graph with minimal fuss.

Important

If you cannot accomplish what you need with the information provided here,
please consider whether you can achieve your goal in a different way.
Perhaps something simpler would cost a bit more in compute time, but save
the much more expensive resource of developers’ mental bandwidth.
Task-graph generation is already complex enough!

If you want to proceed, you may need to delve into the implementation of
task-graph generation. The documentation and code are designed to help, as
are the authors - hg blame may help track down helpful people.

As you write your new transform or add a new kind, please consider the next
developer. Where possible, make your change data-driven and general, so
that others can make a much smaller change. Document the semantics of what
you are changing clearly, especially if it involves modifying a transform
schema. And if you are adding complexity temporarily while making a
gradual transition, please open a new bug to remind yourself to remove the
complexity when the transition is complete.

Hacking Task Graphs

The recommended process for changing task graphs is this:

	Find a recent decision task on the project or branch you are working on,
and download its parameters.yml from the Task Inspector. This file
contains all of the inputs to the task-graph generation process. Its
contents are simple enough if you would like to modify it, and it is
documented in Parameters.

	Run one of the mach taskgraph subcommands (see TaskGraph Mach Command) to
generate a baseline against which to measure your changes. For example:

./mach taskgraph --json -p parameters.yml tasks > old-tasks.json

	Make your modifications under tsakcluster/.

	Run the same mach taskgraph command, sending the output to a new file,
and use diff to compare the old and new files. Make sure your changes
have the desired effect and no undesirable side-effects.

	When you are satisfied with the changes, push them to try to ensure that the
modified tasks work as expected.

Common Changes

Changing Test Characteristics

First, find the test description. This will be in
taskcluster/ci/*/tests.yml, for the appropriate kind (consult
Task Kinds). You will find a YAML stanza for each test suite, and each
stanza defines the test’s characteristics. For example, the chunks
property gives the number of chunks to run. This can be specified as a simple
integer if all platforms have the same chunk count, or it can be keyed by test
platform. For example:

chunks:
 by-test-platform:
 linux64/debug: 10
 default: 8

The full set of available properties is in
taskcluster/taskgraph/transform/tests/test_description.py. Some other
commonly-modified properties are max-run-time (useful if tests are being
killed for exceeding maxRunTime) and treeherder-symbol.

Note

Android tests are also chunked at the mozharness level, so you will need to
modify the relevant mozharness config, as well.

Adding a Test Suite

To add a new test suite, you will need to know the proper mozharness invocation
for that suite, and which kind it fits into (consult Task Kinds).

Add a new stanza to taskcluster/ci/<kind>/tests.yml, copying from the other
stanzas in that file. The meanings should be clear, but authoritative
documentation is in
taskcluster/taskgraph/transform/tests/test_description.py should you need
it. The stanza name is the name by which the test will be referenced in try
syntax.

Add your new test to a test set in test-sets.yml in the same directory. If
the test should only run on a limited set of platforms, you may need to define
a new test set and reference that from the appropriate platforms in
test-platforms.yml. If you do so, include some helpful comments in
test-sets.yml for the next person.

Greening Up a New Test

When a test is not yet reliably green, configuration for that test should not
be landed on integration branches. Of course, you can control where the
configuration is landed! For many cases, it is easiest to green up a test in
try: push the configuration to run the test to try along with your work to fix
the remaining test failures.

When working with a group, check out a “twig” repository to share among your
group, and land the test configuration in that repository. Once the test is
green, merge to an integration branch and the test will begin running there as
well.

Something Else?

If you make another change not described here that turns out to be simple or
common, please include an update to this file in your patch.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	TaskCluster Task-Graph Generation

Docker Images

TaskCluster Docker images are defined in the source directory under
testing/docker. Each directory therein contains the name of an
image used as part of the task graph.

Adding Extra Files to Images

Dockerfile syntax has been extended to allow any file from the
source checkout to be added to the image build context. (Traditionally
you can only ADD files from the same directory as the Dockerfile.)

Simply add the following syntax as a comment in a Dockerfile:

%include <path>

e.g.

%include mach
%include testing/mozharness

The argument to # %include is a relative path from the root level of
the source directory. It can be a file or a directory. If a file, only that
file will be added. If a directory, every file under that directory will be
added (even files that are untracked or ignored by version control).

Files added using # %include syntax are available inside the build
context under the topsrcdir/ path.

Files are added as they exist on disk. e.g. executable flags should be
preserved. However, the file owner/group is changed to root and the
mtime of the file is normalized.

Here is an example Dockerfile snippet:

%include mach
ADD topsrcdir/mach /home/worker/mach

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

Crash Manager

The Crash Manager is a service and interface for managing crash
data within the Gecko application.

From JavaScript, the service can be accessed via:

Cu.import("resource://gre/modules/Services.jsm");
let crashManager = Services.crashmanager;

That will give you an instance of CrashManager from CrashManager.jsm.
From there, you can access and manipulate crash data.

Other Documents

	Crash Events

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Crash Manager

Crash Events

Crash Events refers to a special subsystem of Gecko that aims to capture
events of interest related to process crashing and hanging.

When an event worthy of recording occurs, a file containing that event’s
information is written to a well-defined location on the filesystem. The Gecko
process periodically scans for produced files and consolidates information
into a more unified and efficient backend store.

Crash Event Files

When a crash-related event occurs, a file describing that event is written
to a well-defined directory. That directory is likely in the directory of
the currently-active profile. However, if a profile is not yet active in
the Gecko process, that directory likely resides in the user’s app data
directory (UAppData from the directory service).

The filename of the event file is not relevant. However, producers need
to choose a filename intelligently to avoid name collisions and race
conditions. Since file locking is potentially dangerous at crash time,
the convention of generating a UUID and using it as a filename has been
adopted.

File Format

All crash event files share the same high-level file format. The format
consists of the following fields delimited by a UNIX newline (n)
character:

	String event name (valid UTF-8, but likely ASCII)

	String representation of integer seconds since UNIX epoch

	Payload

The payload is event specific and may contain UNIX newline characters.
The recommended method for parsing is to split at most 3 times on UNIX
newline and then dispatch to an event-specific parsed based on the
event name.

If an unknown event type is encountered, the event can safely be ignored
until later. This helps ensure that application downgrades (potentially
due to elevated crash rate) don’t result in data loss.

The format and semantics of each event type are meant to be constant once
that event type is committed to the main Firefox repository. If new metadata
needs to be captured or the meaning of data captured in an event changes,
that change should be expressed through the invention of a new event type.
For this reason, event names are highly recommended to contain a version.
e.g. instead of a Gecko process crashed event, we prefer a Gecko process
crashed v1 event.

Event Types

Each subsection documents the different types of crash events that may be
produced. Each section name corresponds to the first line of the crash
event file.

Currently only main process crashes produce event files. Because crashes and
hangs in child processes can be easily recorded by the main process, we do not
foresee the need for writing event files for child processes, design
considerations below notwithstanding.

crash.main.2

This event is produced when the main process crashes.

The payload of this event is delimited by UNIX newlines (n) and contains the
following fields:

	The crash ID string, very likely a UUID

	0 or more lines of metadata, each containing one key=value pair of text

crash.main.1

This event is produced when the main process crashes.

The payload of this event is the string crash ID, very likely a UUID.
There should be UUID.dmp and UUID.extra files on disk, saved by
Breakpad.

crash.submission.1

This event is produced when a crash is submitted.

The payload of this event is delimited by UNIX newlines (n) and contains the
following fields:

	The crash ID string

	“true” if the submission succeeded or “false” otherwise

	The remote crash ID string if the submission succeeded

Aggregated Event Log

Crash events are aggregated together into a unified event log. Currently,
this log is really a JSON file. However, this is an implementation detail
and it could change at any time. The interface to crash data provided by
the JavaScript API is the only supported interface.

Design Considerations

There are many considerations influencing the design of this subsystem.
We attempt to document them in this section.

Decoupling of Event Files from Final Data Structure

While it is certainly possible for the Gecko process to write directly to
the final data structure on disk, there is an intentional decoupling between
the production of events and their transition into final storage. Along the
same vein, the choice to have events written to multiple files by producers
is deliberate.

Some recorded events are written immediately after a process crash. This is
a very uncertain time for the host system. There is a high liklihood the
system is in an exceptional state, such as memory exhaustion. Therefore, any
action taken after crashing needs to be very deliberate about what it does.
Excessive memory allocation and certain system calls may cause the system
to crash again or the machine’s condition to worsen. This means that the act
of recording a crash event must be very light weight. Writing a new file from
nothing is very light weight. This is one reason we write separate files.

Another reason we write separate files is because if the main Gecko process
itself crashes (as opposed to say a plugin process), the crash reporter (not
Gecko) is running and the crash reporter needs to handle the writing of the
event info. If this writing is involved (say loading, parsing, updating, and
reserializing back to disk), this logic would need to be implemented in both
Gecko and the crash reporter or would need to be implemented in such a way
that both could use. Neither of these is very practical from a software
lifecycle management perspective. It’s much easier to have separate processes
write a simple file and to let a single implementation do all the complex
work.

Idempotent Event Processing

Processing of event files has been designed such that the result is
idempotent regardless of what order those files are processed in. This is
not only a good design decision, but it is arguably necessary. While event
files are processed in order by file mtime, filesystem times may not have
the resolution required for proper sorting. Therefore, processing order is
merely an optimistic assumption.

Aggregated Storage Format

Crash events are aggregated into a unified data structure on disk. That data
structure is currently LZ4-compressed JSON and is represented by a single file.

The choice of a single JSON file was initially driven by time and complexity
concerns. Before changing the format or adding significant amounts of new
data, some considerations must be taken into account.

First, in well-behaving installs, crash data should be minimal. Crashes and
hangs will be rare and thus the size of the crash data should remain small
over time.

The choice of a single JSON file has larger implications as the amount of
crash data grows. As new data is accumulated, we need to read and write
an entire file to make small updates. LZ4 compression helps reduce I/O.
But, there is a potential for unbounded file growth. We establish a
limit for the max age of records. Anything older than that limit is
pruned. We also establish a daily limit on the number of crashes we will
store. All crashes beyond the first N in a day have no payload and are
only recorded by the presence of a count. This count ensures we can
distinguish between N and 100 * N, which are very different
values!

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

Telemetry

Telemetry is a feature that allows data collection. This is being used to collect performance metrics and other information about how Firefox performs in the wild.

Client-side, this consists of:

	data collection in Histograms [https://developer.mozilla.org/en-US/docs/Mozilla/Performance/Adding_a_new_Telemetry_probe], Scalars and other data structures

	assembling Telemetry pings with the general information and the data payload

	sending them to the server and local ping retention

Note: the data collection policy [https://wiki.mozilla.org/Firefox/Data_Collection] documents the process and requirements that are applied here.

	Concepts

	Data collection

	Data documentation
	Common ping format

	Environment

	“main” ping

	“deletion” ping

	“crash” ping

	“core” ping

	“heartbeat” ping

	“sync” ping

	“uitour-tag” ping

	Internals
	Preferences

	Firefox Health Report (Obsolete)
	Architecture

	Payload Format

	Identifiers

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Telemetry

Concepts

There are common concepts used throughout Telemetry:

	pings - the packets we use to submit data

	sessions & subsessions - how we slice a users time in the browser

	measurements - how we collect data

	opt-in & opt-out - the different sets of data we collect

	submission - how we send data to the servers

	archiving - retaining ping data locally

	crashes - the different data crashes generate

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Telemetry

 	Concepts

Telemetry pings

A Telemetry ping is the data that we send to Mozillas Telemetry servers.

That data is stored as a JSON object client-side and contains common information to all pings and a payload specific to a certain ping types.

The top-level structure is defined by the common ping format format.
It contains:

	some basic information shared between different ping types

	the environment data (optional)

	the data specific to the ping type, the payload.

Ping types

We send Telemetry with different ping types. The main ping is the ping that contains the bulk of the Telemetry measurements for Firefox. For more specific use-cases, we send other ping types.

Pings sent from code that ships with Firefox are listed in the data documentation.

Important examples are:

	main - contains the information collected by Telemetry (Histograms, hang stacks, ...)

	saved-session - has the same format as a main ping, but it contains the “classic” Telemetry payload with measurements covering the whole browser session. This is only a separate type to make storage of saved-session easier server-side. This is temporary and will be removed soon.

	crash - a ping that is captured and sent after Firefox crashed.

	activation - planned - sent right after installation or profile creation

	upgrade - planned - sent right after an upgrade

	deletion - sent when FHR upload is disabled, requesting deletion of the data associated with this user

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Telemetry

 	Concepts

Crashes

There are many different kinds of crashes for Firefox, there is not a single system used to record all of them.

Main process crashes

If the Firefox main process dies, that should be recorded as an aborted session. We would submit a main ping with the reason aborted-session.
If we have a crash dump for that crash, we should also submit a crash ping.

The aborted-session information is first written to disk 60 seconds after startup, any earlier crashes will not trigger an aborted-session ping.
Also, the aborted-session is updated at least every 5 minutes, so it may lag behind the last session state.

Crashes during startup should be recorded in the next sessions main ping in the STARTUP_CRASH_DETECTED histogram.

Child process crashes

If a Firefox plugin, content or gmplugin process dies unexpectedly, this is recorded in the main pings SUBPROCESS_ABNORMAL_ABORT keyed histogram.

If we catch a crash report for this, then additionally the SUBPROCESS_CRASHES_WITH_DUMP keyed histogram is incremented.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Telemetry

 	Concepts

Archiving

When archiving is enabled through the relative preference, pings submitted to TelemetryController are also stored locally in the user profile directory, in <profile-dir>/datareporting/archived.

To allow for cheaper lookup of archived pings, storage follows a specific naming scheme for both the directory and the ping file name: <YYYY-MM>/<timestamp>.<UUID>.<type>.json.

	<YYYY-MM> - The subdirectory name, generated from the ping creation date.

	<timestamp> - Timestamp of the ping creation date.

	<UUID> - The ping identifier.

	<type> - The ping type.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Telemetry

 	Concepts

Sessions

A session is the time from when Firefox starts until it shut down.
A session can be very long-running. E.g. for Mac users that are used to always put their laptops into sleep-mode, Firefox may run for weeks.
We slice the sessions into smaller logical units called subsessions.

Subsessions

A subsessions data consists of:

	general information: the date the subsession started, how long it lasted, etc.

	specific measurements: histogram & scalar data, etc.

This has some advantages:

	Latency - Sending a ping with all the data of a subsession immediately after it ends means we get the data from installs faster. For main pings, we aim to send a ping at least daily by starting a new subsession at local midnight.

	Correlation - By starting new subsessions when fundamental settings change (i.e. changes to the environment), we can correlate a subsessions data better to those settings.

Subsession splits

The first subsession starts when the browser starts. After that, we split the subsession for different reasons:

	daily, when crossing local midnight. This keeps latency acceptable by triggering a ping at least daily for most active users.

	environment-change, when a change to the environment happens. This happens for important changes to the Firefox settings and when addons activate or deactivate.

On a subsession split, a main ping with that reason will be submitted. We store the reason in the pings payload, to see what triggered it.

A session always ends with a subsession with one of two reason:

	shutdown, when the browser was cleanly shut down. To avoid delaying shutdown, we only save this ping to disk and send it at the next opportunity (typically the next browsing session).

	aborted-session, when the browser crashed. While Firefox is active, we write the current main ping data to disk every 5 minutes. If the browser crashes, we find this data on disk on the next start and send it with this reason.

[image: ../../../../../_images/subsession_triggers.png]

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Telemetry

 	Concepts

Submission

Note: The server-side behaviour is documented in the HTTP Edge Server specification [https://wiki.mozilla.org/CloudServices/DataPipeline/HTTPEdgeServerSpecification].

Pings are submitted via a common API on TelemetryController.
If a ping fails to successfully submit to the server immediately (e.g. because
of missing internet connection), Telemetry will store it on disk and retry to
send it until the maximum ping age is exceeded (14 days).

Note: the main pings are kept locally even after successful submission to enable the HealthReport and SelfSupport features. They will be deleted after their retention period of 180 days.

Submission logic

Sending of pending pings starts as soon as the delayed startup is finished. They are sent in batches, newest-first, with up
to 10 persisted pings per batch plus all unpersisted pings.
The send logic then waits for each batch to complete.

If it succeeds we trigger the next send of a ping batch. This is delayed as needed to only trigger one batch send per minute.

If ping sending encounters an error that means retrying later, a backoff timeout behavior is
triggered, exponentially increasing the timeout for the next try from 1 minute up to a limit of 120 minutes.
Any new ping submissions and “idle-daily” events reset this behavior as a safety mechanism and trigger immediate ping sending.

Status codes

The telemetry server team is working towards the common services status codes [https://wiki.mozilla.org/CloudServices/DataPipeline/HTTPEdgeServerSpecification#Server_Responses], but for now the following logic is sufficient for Telemetry:

	2XX - success, don’t resubmit

	4XX - there was some problem with the request - the client should not try to resubmit as it would just receive the same response

	5XX - there was a server-side error, the client should try to resubmit later

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Telemetry

Data collection

There are different APIs and formats to collect data in Firefox, all suiting different use cases.

In general, we aim to submit data in a common format where possible. This has several advantages; from common code and tooling to sharing analysis know-how.

In cases where this isn’t possible and more flexibility is needed, we can submit custom pings or consider adding different data formats to existing pings.

Note: Every new data collection must go through a data collection review [https://wiki.mozilla.org/Firefox/Data_Collection].

The current data collection possibilities include:

	Scalars allow recording of a single value (string, boolean, a number)

	Histograms can efficiently record multiple data points

	environment data records information about the system and settings a session occurs in

	TelemetryLog allows collecting ordered event entries

	measuring elapsed time

	custom pings

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Telemetry

 	Data collection

Scalars

Historically we started to overload our histogram mechanism to also collect scalar data,
such as flag values, counts, labels and others.
The scalar measurement types are the suggested way to collect that kind of scalar data.
We currently only support recording of scalars from the parent process.
The serialized scalar data is submitted with the main pings.

The API

Scalar probes can be managed either through the nsITelemetry interface [https://dxr.mozilla.org/mozilla-central/source/toolkit/components/telemetry/nsITelemetry.idl]
or the C++ API [https://dxr.mozilla.org/mozilla-central/source/toolkit/components/telemetry/Telemetry.h].

JS API

Probes in privileged JavaScript code can use the following functions to manipulate scalars:

Services.telemetry.scalarAdd(aName, aValue);
Services.telemetry.scalarSet(aName, aValue);
Services.telemetry.scalarSetMaximum(aName, aValue);

These functions can throw if, for example, an operation is performed on a scalar type that doesn’t support it
(e.g. calling scalarSetMaximum on a scalar of the string kind). Please look at the code documentation for
additional informations.

C++ API

Probes in native code can use the more convenient helper functions declared in Telemetry.h [https://dxr.mozilla.org/mozilla-central/source/toolkit/components/telemetry/Telemetry.h]:

void ScalarAdd(mozilla::Telemetry::ScalarID aId, uint32_t aValue);
void ScalarSet(mozilla::Telemetry::ScalarID aId, uint32_t aValue);
void ScalarSet(mozilla::Telemetry::ScalarID aId, const nsAString& aValue);
void ScalarSet(mozilla::Telemetry::ScalarID aId, bool aValue);
void ScalarSetMaximum(mozilla::Telemetry::ScalarID aId, uint32_t aValue);

The YAML definition file

Scalar probes are required to be registered, both for validation and transparency reasons,
in the Scalars.yaml [https://dxr.mozilla.org/mozilla-central/source/toolkit/components/telemetry/Scalars.yaml]
definition file.

The probes in the definition file are represented in a fixed-depth, two-level structure:

The following is a group.
a.group.hierarchy:
 a_probe_name:
 kind: uint
 ...
 another_probe:
 kind: string
 ...
 ...
group2:
 probe:
 kind: int
 ...

Group and probe names need to follow a few rules:

	they cannot exceed 40 characters each;

	group names must be alpha-numeric + ., with no leading/trailing digit or .;

	probe names must be alpha-numeric + _, with no leading/trailing digit or _.

A probe can be defined as follows:

a.group.hierarchy:
 a_scalar:
 bug_numbers:
 - 1276190
 description: A nice one-line description.
 expires: never
 kind: uint
 notification_emails:
 - telemetry-client-dev@mozilla.com

Required Fields

	bug_numbers: A list of unsigned integers representing the number of the bugs the probe was introduced in.

	description: A single or multi-line string describing what data the probe collects and when it gets collected.

	expires: The version number in which the scalar expires, e.g. “30”; a version number of type “N” and “N.0” is automatically converted to “N.0a1” in order to expire the scalar also in the development channels. A telemetry probe acting on an expired scalar will print a warning into the browser console. For scalars that never expire the value never can be used.

	kind: A string representing the scalar type. Allowed values are uint, string and boolean.

	notification_emails: A list of email addresses to notify with alerts of expiring probes. More importantly, these are used by the data steward to verify that the probe is still useful.

Optional Fields

	cpp_guard: A string that gets inserted as an #ifdef directive around the automatically generated C++ declaration. This is typically used for platform-specific scalars, e.g. ANDROID.

	release_channel_collection: This can be either opt-in (default) or opt-out. With the former the scalar is submitted by default on pre-release channels; on the release channel only if the user opted into additional data collection. With the latter the scalar is submitted by default on release and pre-release channels, unless the user opted out.

String type restrictions

To prevent abuses, the content of a string scalar is limited to 50 characters in length. Trying
to set a longer string will result in an error and no string being set.

The processor scripts

The scalar definition file is processed and checked for correctness at compile time. If it
conforms to the specification, the processor scripts generate two C++ headers files, included
by the Telemetry C++ core.

gen-scalar-data.py

This script is called by the build system to generate the TelemetryScalarData.h C++ header
file out of the scalar definitions.
This header file contains an array holding the scalar names and version strings, in addition
to an array of ScalarInfo structures representing all the scalars.

gen-scalar-enum.py

This script is called by the build system to generate the TelemetryScalarEnums.h C++ header
file out of the scalar definitions.
This header file contains an enum class with all the scalar identifiers used to access them
from code through the C++ API.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Telemetry

 	Data collection

Histograms

Recording into histograms is currently documented in a MDN article [https://developer.mozilla.org/en-US/docs/Mozilla/Performance/Adding_a_new_Telemetry_probe].

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Telemetry

 	Data collection

Environment

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Telemetry

 	Data collection

Measuring elapsed time

To make it easier to measure how long operations take, we have helpers for both JavaScript and C++.
These helpers record the elapsed time into histograms, so you have to create suitable histograms for them first.

From JavaScript

JavaScript can measure elapsed time using TelemetryStopwatch.jsm [https://dxr.mozilla.org/mozilla-central/source/toolkit/components/telemetry/TelemetryStopwatch.jsm].

TelemetryStopwatch is a helper that simplifies recording elapsed time (in milliseconds) into histograms (plain or keyed).

API:

TelemetryStopwatch = {
 // Start, cancel & finish recording elapsed time into a histogram.
 // |aObject| is optional. If specificied, the timer is associated with this
 // object, so multiple time measurements can be done concurrently.
 start(histogramId, aObject);
 cancel(histogramId, aObject);
 finish(histogramId, aObject);
 // Start, cancel & finished recording elapsed time into a keyed histogram.
 // |key| specificies the key to record into.
 // |aObject| is optional and used as above.
 startKeyed(histogramId, key, aObject);
 cancelKeyed(histogramId, key, aObject);
 finishKeyed(histogramId, key, aObject);
};

Example:

TelemetryStopwatch.start("SAMPLE_FILE_LOAD_TIME_MS");
// ... start loading file.
if (failedToOpenFile) {
 // Cancel this if the operation failed early etc.
 TelemetryStopwatch.cancel("SAMPLE_FILE_LOAD_TIME_MS");
 return;
}
// ... do more work.
TelemetryStopwatch.finish("SAMPLE_FILE_LOAD_TIME_MS");

From C++

API:

// This helper class is the preferred way to record elapsed time.
template<ID id, TimerResolution res = MilliSecond>
class AutoTimer {
 // Record into a plain histogram.
 explicit AutoTimer(TimeStamp aStart = TimeStamp::Now());
 // Record into a keyed histogram, with key |aKey|.
 explicit AutoTimer(const nsCString& aKey,
 TimeStamp aStart = TimeStamp::Now());
};

void AccumulateTimeDelta(ID id, TimeStamp start, TimeStamp end = TimeStamp::Now());

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Telemetry

 	Data collection

Submitting custom pings

Custom pings can be submitted from JavaScript using:

TelemetryController.submitExternalPing(type, payload, options)

	type - a string that is the type of the ping, limited to /^[a-z0-9][a-z0-9-]+[a-z0-9]$/i.

	payload - the actual payload data for the ping, should be a JSON style object.

	
	options - optional, an object containing additional options:

	
	addClientId- whether to add the client id to the ping, defaults to false

	addEnvironment - whether to add the environment data to the ping, defaults to false

	overrideEnvironment - a JSON style object that overrides the environment data

TelemetryController will assemble a ping with the passed payload and the specified options.
That ping will be archived locally for use with Shield and inspection in about:telemetry.
If the preferences allow upload of Telemetry pings, the ping will be uploaded at the next opportunity (this is subject to throttling, retry-on-failure, etc.).

Tools

Helpful tools for designing new pings include:

	gzipServer [https://github.com/vdjeric/gzipServer] - a Python script that can run locally and receives and saves Telemetry pings. Making Firefox send to it allows inspecting outgoing pings easily.

	about:telemetry - allows inspecting submitted pings from the local archive, including all custom ones.

Designing custom pings

In general, creating a new custom ping means you don’t benefit automatically from the existing tooling. Further work is needed to make data show up in re:dash or other analysis tools.

Other questions to guide a new pings design include:

	
	Submission interval & triggers:

	
	What events trigger ping submission?

	What interval is the ping submitted in?

	Is there a throttling mechanism?

	What is the desired latency? (submitting “at least daily” still leads to longer latency tails)

	
	Size and volume:

	
	What’s the size of the submitted payload?

	What’s the full ping size including metadata in the pipeline?

	What’s the target population?

	What’s the overall estimated volume?

	
	Dataset:

	
	Is it opt-out?

	Does it need to be opt-out?

	Does it need to be in a separate ping? (why can’t the data live in probes?)

	
	Privacy:

	
	Is there risk to leak PII?

	How is that risk mitigated?

	
	Data contents:

	
	Does the submitted data answer the posed product questions?

	Does the shape of the data allow to answer the questions efficiently?

	Is the data limited to whats needed to answer the questions?

	Does the data use common formats? (i.e. can we re-use tooling or analysis know-how)

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Telemetry

Data documentation

	Common ping format

	Environment

	“main” ping

	“deletion” ping

	“crash” ping

	“core” ping

	“heartbeat” ping

	“sync” ping

	“uitour-tag” ping

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Telemetry

 	Data documentation

Common ping format

This defines the top-level structure of a Telemetry ping.
It contains basic information shared between different ping types, which enables proper storage and processing of the raw pings server-side.

It also contains optional further information:

	the environment data, which contains important info to correlate the measurements against

	the clientId, a UUID identifying a profile and allowing user-oriented correlation of data

Note: Both are not submitted with all ping types due to privacy concerns. This and the data it that can be correlated against is inspected under the data collection policy [https://wiki.mozilla.org/Firefox/Data_Collection].

Finally, the structure also contains the payload, which is the specific data submitted for the respective ping type.

Structure:

{
 type: <string>, // "main", "activation", "deletion", "saved-session", ...
 id: <UUID>, // a UUID that identifies this ping
 creationDate: <ISO date>, // the date the ping was generated
 version: <number>, // the version of the ping format, currently 4

 application: {
 architecture: <string>, // build architecture, e.g. x86
 buildId: <string>, // "20141126041045"
 name: <string>, // "Firefox"
 version: <string>, // "35.0"
 displayVersion: <string>, // "35.0b3"
 vendor: <string>, // "Mozilla"
 platformVersion: <string>, // "35.0"
 xpcomAbi: <string>, // e.g. "x86-msvc"
 channel: <string>, // "beta"
 },

 clientId: <UUID>, // optional
 environment: { ... }, // optional, not all pings contain the environment
 payload: { ... }, // the actual payload data for this ping type
}

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Telemetry

 	Data documentation

Environment

The environment consists of data that is expected to be characteristic for performance and other behavior and not expected to change too often.

Changes to most of these data points are detected (where possible and sensible) and will lead to a session split in the “main” ping.
The environment data may also be submitted by other ping types.

Note: This is not submitted with all ping types due to privacy concerns. This and other data is inspected under the data collection policy [https://wiki.mozilla.org/Firefox/Data_Collection].

Some parts of the environment must be fetched asynchronously at startup. We don’t want other Telemetry components to block on waiting for the environment, so some items may be missing from it until the async fetching finished.
This currently affects the following sections:

	profile

	addons

Structure:

{
 build: {
 applicationId: <string>, // nsIXULAppInfo.ID
 applicationName: <string>, // "Firefox"
 architecture: <string>, // e.g. "x86", build architecture for the active build
 architecturesInBinary: <string>, // e.g. "i386-x86_64", from nsIMacUtils.architecturesInBinary, only present for mac universal builds
 buildId: <string>, // e.g. "20141126041045"
 version: <string>, // e.g. "35.0"
 vendor: <string>, // e.g. "Mozilla"
 platformVersion: <string>, // e.g. "35.0"
 xpcomAbi: <string>, // e.g. "x86-msvc"
 hotfixVersion: <string>, // e.g. "20141211.01"
 },
 settings: {
 addonCompatibilityCheckEnabled: <bool>, // Whether application compatibility is respected for add-ons
 blocklistEnabled: <bool>, // true on failure
 isDefaultBrowser: <bool>, // null on failure, not available on Android
 defaultSearchEngine: <string>, // e.g. "yahoo"
 defaultSearchEngineData: {, // data about the current default engine
 name: <string>, // engine name, e.g. "Yahoo"; or "NONE" if no default
 loadPath: <string>, // where the engine line is located; missing if no default
 origin: <string>, // 'default', 'verified', 'unverified', or 'invalid'; based on the presence and validity of the engine's loadPath verification hash.
 submissionURL: <string> // missing if no default or for user-installed engines
 },
 searchCohort: <string>, // optional, contains an identifier for any active search A/B experiments
 e10sEnabled: <bool>, // whether e10s is on, i.e. browser tabs open by default in a different process
 e10sCohort: <string>, // which e10s cohort was assigned for this user
 telemetryEnabled: <bool>, // false on failure
 locale: <string>, // e.g. "it", null on failure
 update: {
 channel: <string>, // e.g. "release", null on failure
 enabled: <bool>, // true on failure
 autoDownload: <bool>, // true on failure
 },
 userPrefs: {
 // Only prefs which are changed from the default value are listed
 // in this block
 "pref.name.value": value // some prefs send the value
 "pref.name.url": "<user-set>" // For some privacy-sensitive prefs
 // only the fact that the value has been changed is recorded
 },
 },
 profile: {
 creationDate: <integer>, // integer days since UNIX epoch, e.g. 16446
 resetDate: <integer>, // integer days since UNIX epoch, e.g. 16446 - optional
 },
 partner: { // This section may not be immediately available on startup
 distributionId: <string>, // pref "distribution.id", null on failure
 distributionVersion: <string>, // pref "distribution.version", null on failure
 partnerId: <string>, // pref mozilla.partner.id, null on failure
 distributor: <string>, // pref app.distributor, null on failure
 distributorChannel: <string>, // pref app.distributor.channel, null on failure
 partnerNames: [
 // list from prefs app.partner.<name>=<name>
],
 },
 system: {
 memoryMB: <number>,
 virtualMaxMB: <number>, // windows-only
 isWow64: <bool>, // windows-only
 cpu: {
 count: <number>, // desktop only, e.g. 8, or null on failure - logical cpus
 cores: <number>, // desktop only, e.g., 4, or null on failure - physical cores
 vendor: <string>, // desktop only, e.g. "GenuineIntel", or null on failure
 family: <number>, // desktop only, null on failure
 model: <number, // desktop only, null on failure
 stepping: <number>, // desktop only, null on failure
 l2cacheKB: <number>, // L2 cache size in KB, only on windows & mac
 l3cacheKB: <number>, // desktop only, L3 cache size in KB
 speedMHz: <number>, // desktop only, cpu clock speed in MHz
 extensions: [
 <string>,
 ...
 // as applicable:
 // "MMX", "SSE", "SSE2", "SSE3", "SSSE3", "SSE4A", "SSE4_1",
 // "SSE4_2", "AVX", "AVX2", "EDSP", "ARMv6", "ARMv7", "NEON"
],
 },
 device: { // This section is only available on mobile devices.
 model: <string>, // the "device" from FHR, null on failure
 manufacturer: <string>, // null on failure
 hardware: <string>, // null on failure
 isTablet: <bool>, // null on failure
 },
 os: {
 name: <string>, // "Windows_NT" or null on failure
 version: <string>, // e.g. "6.1", null on failure
 kernelVersion: <string>, // android/b2g only or null on failure
 servicePackMajor: <number>, // windows only or null on failure
 servicePackMinor: <number>, // windows only or null on failure
 windowsBuildNumber: <number>, // windows 10 only or null on failure
 windowsUBR: <number>, // windows 10 only or null on failure
 installYear: <number>, // windows only or null on failure
 locale: <string>, // "en" or null on failure
 },
 hdd: {
 profile: { // hdd where the profile folder is located
 model: <string>, // windows only or null on failure
 revision: <string>, // windows only or null on failure
 },
 binary: { // hdd where the application binary is located
 model: <string>, // windows only or null on failure
 revision: <string>, // windows only or null on failure
 },
 system: { // hdd where the system files are located
 model: <string>, // windows only or null on failure
 revision: <string>, // windows only or null on failure
 },
 },
 gfx: {
 D2DEnabled: <bool>, // null on failure
 DWriteEnabled: <bool>, // null on failure
 //DWriteVersion: <string>, // temporarily removed, pending bug 1154500
 adapters: [
 {
 description: <string>, // e.g. "Intel(R) HD Graphics 4600", null on failure
 vendorID: <string>, // null on failure
 deviceID: <string>, // null on failure
 subsysID: <string>, // null on failure
 RAM: <number>, // in MB, null on failure
 driver: <string>, // null on failure
 driverVersion: <string>, // null on failure
 driverDate: <string>, // null on failure
 GPUActive: <bool>, // currently always true for the first adapter
 },
 ...
],
 // Note: currently only added on Desktop. On Linux, only a single
 // monitor is returned representing the entire virtual screen.
 monitors: [
 {
 screenWidth: <number>, // screen width in pixels
 screenHeight: <number>, // screen height in pixels
 refreshRate: <number>, // refresh rate in hertz (present on Windows only).
 // (values <= 1 indicate an unknown value)
 pseudoDisplay: <bool>, // networked screen (present on Windows only)
 scale: <number>, // backing scale factor (present on Mac only)
 },
 ...
],
 features: {
 compositor: <string>, // Layers backend for compositing (eg "d3d11", "none", "opengl")

 // Each the following features can have one of the following statuses:
 // "unused" - This feature has not been requested.
 // "unavailable" - Safe Mode or OS restriction prevents use.
 // "blocked" - Blocked due to an internal condition such as safe mode.
 // "blacklisted" - Blocked due to a blacklist restriction.
 // "disabled" - User explicitly disabled this default feature.
 // "failed" - This feature was attempted but failed to initialize.
 // "available" - User has this feature available.
 "d3d11" { // This feature is Windows-only.
 status: <string>,
 warp: <bool>, // Software rendering (WARP) mode was chosen.
 textureSharing: <bool> // Whether or not texture sharing works.
 version: <number>, // The D3D11 device feature level.
 blacklisted: <bool>, // Whether D3D11 is blacklisted; use to see whether WARP
 // was blacklist induced or driver-failure induced.
 },
 "d2d" { // This feature is Windows-only.
 status: <string>,
 version: <string>, // Either "1.0" or "1.1".
 },
 },
 },
 },
 addons: {
 activeAddons: { // the currently enabled addons
 <addon id>: {
 blocklisted: <bool>,
 description: <string>, // null if not available
 name: <string>,
 userDisabled: <bool>,
 appDisabled: <bool>,
 version: <string>,
 scope: <integer>,
 type: <string>, // "extension", "service", ...
 foreignInstall: <bool>,
 hasBinaryComponents: <bool>
 installDay: <number>, // days since UNIX epoch, 0 on failure
 updateDay: <number>, // days since UNIX epoch, 0 on failure
 signedState: <integer>, // whether the add-on is signed by AMO, only present for extensions
 isSystem: <bool>, // true if this is a System Add-on
 },
 ...
 },
 theme: { // the active theme
 id: <string>,
 blocklisted: <bool>,
 description: <string>,
 name: <string>,
 userDisabled: <bool>,
 appDisabled: <bool>,
 version: <string>,
 scope: <integer>,
 foreignInstall: <bool>,
 hasBinaryComponents: <bool>
 installDay: <number>, // days since UNIX epoch, 0 on failure
 updateDay: <number>, // days since UNIX epoch, 0 on failure
 },
 activePlugins: [
 {
 name: <string>,
 version: <string>,
 description: <string>,
 blocklisted: <bool>,
 disabled: <bool>,
 clicktoplay: <bool>,
 mimeTypes: [<string>, ...],
 updateDay: <number>, // days since UNIX epoch, 0 on failure
 },
 ...
],
 activeGMPlugins: {
 <gmp id>: {
 version: <string>,
 userDisabled: <bool>,
 applyBackgroundUpdates: <integer>,
 },
 ...
 },
 activeExperiment: { // section is empty if there's no active experiment
 id: <string>, // id
 branch: <string>, // branch name
 },
 persona: <string>, // id of the current persona, null on GONK
 },
}

build

buildId

Firefox builds downloaded from mozilla.org use a 14-digit buildId. Builds included in other distributions may have a different format (e.g. only 10 digits).

Settings

defaultSearchEngine

Note: Deprecated, use defaultSearchEngineData instead.

Contains the string identifier or name of the default search engine provider. This will not be present in environment data collected before the Search Service initialization.

The special value NONE could occur if there is no default search engine.

The special value UNDEFINED could occur if a default search engine exists but its identifier could not be determined.

This field’s contents are Services.search.defaultEngine.identifier (if defined) or "other-" + Services.search.defaultEngine.name if not. In other words, search engines without an .identifier are prefixed with other-.

defaultSearchEngineData

Contains data identifying the engine currently set as the default.

The object contains:

	a name property with the name of the engine, or NONE if no
engine is currently set as the default.

	a loadPath property: an anonymized path of the engine xml file, e.g.
jar:[app]/omni.ja!browser/engine.xml
(where ‘browser’ is the name of the chrome package, not a folder)
[profile]/searchplugins/engine.xml
[distribution]/searchplugins/common/engine.xml
[other]/engine.xml

	an origin property: the value will be default for engines that are built-in or from distribution partners, verified for user-installed engines with valid verification hashes, unverified for non-default engines without verification hash, and invalid for engines with broken verification hashes.

	a submissionURL property with the HTTP url we would use to search.
For privacy, we don’t record this for user-installed engines.

loadPath and submissionURL are not present if name is NONE.

searchCohort

If the user has been enrolled into a search default change experiment, this contains the string identifying the experiment the user is taking part in. Most user profiles will never be part of any search default change experiment, and will not send this value.

userPrefs

This object contains user preferences.

Each key in the object is the name of a preference. A key’s value depends on the policy with which the preference was collected. There are two such policies, “value” and “state”. For preferences collected under the “value” policy, the value will be the preference’s value. For preferences collected under the “state” policy, the value will be an opaque marker signifying only that the preference has a user value. The “state” policy is therefore used when user privacy is a concern.

The following is a partial list of collected preferences.

	browser.search.suggest.enabled: The “master switch” for search suggestions everywhere in Firefox (search bar, urlbar, etc.). Defaults to true.

	browser.urlbar.suggest.searches: True if search suggestions are enabled in the urlbar. Defaults to false.

	browser.urlbar.userMadeSearchSuggestionsChoice: True if the user has clicked Yes or No in the urlbar’s opt-in notification. Defaults to false.

	browser.zoom.full: True if zoom is enabled for both text and images, that is if “Zoom Text Only” is not enabled. Defaults to true. Collection of this preference has been enabled in Firefox 50 and will be disabled again in Firefox 53 (Bug 979323 [https://bugzilla.mozilla.org/show_bug.cgi?id=979323]).

partner

If the user is using a partner repack, this contains information identifying the repack being used, otherwise “partnerNames” will be an empty array and other entries will be null. The information may be missing when the profile just becomes available. In Firefox for desktop, the information along with other customizations defined in distribution.ini are processed later in the startup phase, and will be fully applied when “distribution-customization-complete” notification is sent.

Distributions are most reliably identified by the distributionId field. Partner information can be found in the partner repacks [https://github.com/mozilla-partners] (the old one [http://hg.mozilla.org/build/partner-repacks/] is deprecated): it contains one private repository per partner.
Important values for distributionId include:

	“MozillaOnline” for the Mozilla China repack.

	“canonical”, for the Ubuntu Firefox repack [http://bazaar.launchpad.net/~mozillateam/firefox/firefox.trusty/view/head:/debian/distribution.ini].

	“yandex”, for the Firefox Build by Yandex.

system

os

This object contains operating system information.

	name: the name of the OS.

	version: a string representing the OS version.

	kernelVersion: an Android/B2G only string representing the kernel version.

	servicePackMajor: the Windows only major version number for the installed service pack.

	servicePackMinor: the Windows only minor version number for the installed service pack.

	windowsBuildNumber: the Windows build number, only available for Windows >= 10.

	windowsUBR: the Windows UBR number, only available for Windows >= 10. This value is incremented by Windows cumulative updates patches.

	installYear: the Windows only integer representing the year the OS was installed.

	locale: the string representing the OS locale.

addons

activeAddons

Starting from Firefox 44, the length of the following string fields: name, description and version is limited to 100 characters. The same limitation applies to the same fields in theme and activePlugins.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Telemetry

 	Data documentation

“main” ping

This is the “main” Telemetry ping type, whose payload contains most of the measurements that are used to track the performance and health of Firefox in the wild.
It includes the histograms and other performance and diagnostic data.

This ping is triggered by different scenarios, which is documented by the reason field:

	aborted-session - this ping is regularly saved to disk (every 5 minutes), overwriting itself, and deleted at shutdown. If a previous aborted session ping is found at startup, it gets sent to the server. The first aborted-session ping is generated as soon as Telemetry starts

	environment-change - the Environment changed, so the session measurements got reset and a new subsession starts

	shutdown - triggered when the browser session ends

	daily - a session split triggered in 24h hour intervals at local midnight. If an environment-change ping is generated by the time it should be sent, the daily ping is rescheduled for the next midnight

	saved-session - the “classic” Telemetry payload with measurements covering the whole browser session (only submitted for a transition period)

Most reasons lead to a session split, initiating a new subsession. We reset important measurements for those subsessions.

After a new subsession split, the internal-telemetry-after-subsession-split topic is notified to all the observers. This is an internal topic and is only meant for internal Telemetry usage.

Note: saved-session is sent with a different ping type (saved-session, not main), but otherwise has the same format as discussed here.

Structure:

{
 version: 4,

 info: {
 reason: <string>, // what triggered this ping: "saved-session", "environment-change", "shutdown", ...
 revision: <string>, // the Histograms.json revision
 timezoneOffset: <integer>, // time-zone offset from UTC, in minutes, for the current locale
 previousBuildId: <string>, // null if this is the first run, or the previous build ID is unknown

 sessionId: <uuid>, // random session id, shared by subsessions
 subsessionId: <uuid>, // random subsession id
 previousSessionId: <uuid>, // session id of the previous session, null on first run.
 previousSubsessionId: <uuid>, // subsession id of the previous subsession (even if it was in a different session),
 // null on first run.

 subsessionCounter: <unsigned integer>, // the running no. of this subsession since the start of the browser session
 profileSubsessionCounter: <unsigned integer>, // the running no. of all subsessions for the whole profile life time

 sessionStartDate: <ISO date>, // daily precision
 subsessionStartDate: <ISO date>, // daily precision, ISO date in local time
 sessionLength: <integer>, // the session length until now in seconds, monotonic
 subsessionLength: <integer>, // the subsession length in seconds, monotonic

 flashVersion: <string>, // obsolete, use ``environment.addons.activePlugins``
 addons: <string>, // obsolete, use ``environment.addons``
 },

 processes: {...},
 childPayloads: [...], // only present with e10s; reduced payloads from content processes, null on failure
 simpleMeasurements: {...},

 // The following properties may all be null if we fail to collect them.
 histograms: {...},
 keyedHistograms: {...},
 chromeHangs: {...},
 threadHangStats: [...],
 log: [...],
 webrtc: {...},
 fileIOReports: {...},
 lateWrites: {...},
 addonDetails: {...},
 addonHistograms: {...},
 UIMeasurements: [...],
 slowSQL: {...},
 slowSQLstartup: {...},
}

info

sessionLength

The length of the current session so far in seconds.
This uses a monotonic clock, so this may mismatch with other measurements that
are not monotonic like calculations based on Date.now().

If the monotonic clock failed, this will be -1.

subsessionLength

The length of this subsession in seconds.
This uses a monotonic clock, so this may mismatch with other measurements that are not monotonic (e.g. based on Date.now()).

If sessionLength is -1, the monotonic clock is not working.

processes

This section contains per-process data.

Structure:

"processes" : {
 ... other processes ...
 "parent": {
 scalars: {...},
 },
}

scalars

This section contains the Scalars that are valid for the current platform. Scalars are not created nor submitted if no data was added to them, and are only reported with subsession pings. Scalar data is only currently reported for the main process. Their type and format is described by the Scalars.yaml file. Its most recent version is available here [https://dxr.mozilla.org/mozilla-central/source/toolkit/components/telemetry/Scalars.yaml]. The info.revision field indicates the revision of the file that describes the reported scalars.

childPayloads

The Telemetry payloads sent by child processes, recorded on child process shutdown (event content-child-shutdown observed) and whenever TelemetrySession.requestChildPayloads() is called (currently only used in tests). They are reduced session payloads, only available with e10s. Among some other things, they don’t report addon details, addon histograms or UI Telemetry.

Any histogram whose Accumulate call happens on a child process will be accumulated into a childPayload’s histogram, not the parent’s. As such, some histograms in childPayloads will contain different data (e.g. GC_MS will be much different in childPayloads, for instance, because the child GC needs to content with content scripts and parent doesn’t) and some histograms will be absent (EVENTLOOP_UI_ACTIVITY is parent-process-only because it measures inter-event timings where the OS delivers the events in the parent).

Note: Child payloads are not collected and cleared with subsession splits, they are currently only meaningful when analysed from saved-session or main pings with reason set to shutdown.

simpleMeasurements

This section contains a list of simple measurements, or counters. In addition to the ones highlighted below, Telemetry timestamps (see here [https://dxr.mozilla.org/mozilla-central/search?q=%22TelemetryTimestamps.add%22&redirect=false&case=true] and here [https://dxr.mozilla.org/mozilla-central/search?q=%22recordTimestamp%22&redirect=false&case=true]) can be reported.

totalTime

A non-monotonic integer representing the number of seconds the session has been alive.

uptime

A non-monotonic integer representing the number of minutes the session has been alive.

addonManager

Only available in the extended set of measures, it contains a set of counters related to Addons. See here [https://dxr.mozilla.org/mozilla-central/search?q=%22AddonManagerPrivate.recordSimpleMeasure%22&redirect=false&case=true] for a list of recorded measures.

UITelemetry

Only available in the extended set of measures. For more see UITelemetry data format.

startupInterrupted

A boolean set to true if startup was interrupted by an interactive prompt.

js

This section contains a series of counters from the JavaScript engine.

Structure:

"js" : {
 "setProto": <unsigned integer>, // Number of times __proto__ is set
 "customIter": <unsigned integer> // Number of times __iterator__ is used (i.e., is found for a for-in loop)
}

maximalNumberOfConcurrentThreads

An integer representing the highest number of threads encountered so far during the session.

startupSessionRestoreReadBytes

Windows-only integer representing the number of bytes read by the main process up until the session store has finished restoring the windows.

startupSessionRestoreWriteBytes

Windows-only integer representing the number of bytes written by the main process up until the session store has finished restoring the windows.

startupWindowVisibleReadBytes

Windows-only integer representing the number of bytes read by the main process up until after a XUL window is made visible.

startupWindowVisibleWriteBytes

Windows-only integer representing the number of bytes written by the main process up until after a XUL window is made visible.

debuggerAttached

A boolean set to true if a debugger is attached to the main process.

shutdownDuration

The time, in milliseconds, it took to complete the last shutdown.

failedProfileLockCount

The number of times the system failed to lock the user profile.

savedPings

Integer count of the number of pings that need to be sent.

activeTicks

Integer count of the number of five-second intervals (‘ticks’) the user was considered ‘active’ (sending UI events to the window). An extra event is fired immediately when the user becomes active after being inactive. This is for some mouse and gamepad events, and all touch, keyboard, wheel, and pointer events (see EventStateManager.cpp [https://dxr.mozilla.org/mozilla-central/rev/e6463ae7eda2775bc84593bb4a0742940bb87379/dom/events/EventStateManager.cpp#549]).
This measure might be useful to give a trend of how much a user actually interacts with the browser when compared to overall session duration. It does not take into account whether or not the window has focus or is in the foreground. Just if it is receiving these interaction events.
Note that in main pings, this measure is reset on subsession splits, while in saved-session pings it covers the whole browser session.

pingsOverdue

Integer count of pending pings that are overdue.

histograms

This section contains the histograms that are valid for the current platform. Flag and count histograms are always created and submitted, with their default value being respectively false and 0. Other histogram types (see here [https://developer.mozilla.org/en-US/docs/Mozilla/Performance/Adding_a_new_Telemetry_probe#Choosing_a_Histogram_Type]) are not created nor submitted if no data was added to them. The type and format of the reported histograms is described by the Histograms.json file. Its most recent version is available here [https://dxr.mozilla.org/mozilla-central/source/toolkit/components/telemetry/Histograms.json]. The info.revision field indicates the revision of the file that describes the reported histograms.

keyedHistograms

This section contains the keyed histograms available for the current platform.

As of Firefox 48, this section does not contain empty keyed histograms anymore.

threadHangStats

Contains the statistics about the hangs in main and background threads. Note that hangs in this section capture the [C++ pseudostack](https://developer.mozilla.org/en-US/docs/Mozilla/Performance/Profiling_with_the_Built-in_Profiler#Native_stack_vs._Pseudo_stack) and an incomplete JS stack, which is not 100% precise.

To avoid submitting overly large payloads, some limits are applied:

	Identical, adjacent “(chrome script)” or “(content script)” stack entries are collapsed together. If a stack is reduced, the “(reduced stack)” frame marker is added as the oldest frame.

	The depth of the reported stacks is limited to 11 entries. This value represents the 99.9th percentile of the thread hangs stack depths reported by Telemetry.

Structure:

"threadHangStats" : [
 {
 "name" : "Gecko",
 "activity" : {...}, // a time histogram of all task run times
 "hangs" : [
 {
 "stack" : [
 "Startup::XRE_Main",
 "Timer::Fire",
 "(content script)",
 "IPDL::PPluginScriptableObject::SendGetChildProperty",
 ... up to 11 frames ...
],
 "nativeStack": [...], // optionally available
 "histogram" : {...}, // the time histogram of the hang times
 "annotations" : [
 {
 "pluginName" : "Shockwave Flash",
 "pluginVersion" : "18.0.0.209"
 },
 ... other annotations ...
]
 },
],
 },
 ... other threads ...
]

chromeHangs

Contains the statistics about the hangs happening exclusively on the main thread of the parent process. Precise C++ stacks are reported. This is only available on Nightly Release on Windows, when building using “–enable-profiling” switch.

Some limits are applied:

	Reported chrome hang stacks are limited in depth to 50 entries.

	The maximum number of reported stacks is 50.

Structure:

"chromeHangs" : {
 "memoryMap" : [
 ["wgdi32.pdb", "08A541B5942242BDB4AEABD8C87E4CFF2"],
 ["igd10iumd32.pdb", "D36DEBF2E78149B5BE1856B772F1C3991"],
 ... other entries in the format ["module name", "breakpad identifier"] ...
],
 "stacks" : [
 [
 [
 0, // the module index or -1 for invalid module indices
 190649 // the offset of this program counter in its module or an absolute pc
],
 [1, 2540075],
 ... other frames, up to 50 ...
],
 ... other stacks, up to 50 ...
],
 "durations" : [8, ...], // the hang durations (in seconds)
 "systemUptime" : [692, ...], // the system uptime (in minutes) at the time of the hang
 "firefoxUptime" : [672, ...], // the Firefox uptime (in minutes) at the time of the hang
 "annotations" : [
 [
 [0, ...], // the indices of the related hangs
 {
 "pluginName" : "Shockwave Flash",
 "pluginVersion" : "18.0.0.209",
 ... other annotations as key:value pairs ...
 }
],
 ...
]
},

log

This section contains a log of important or unusual events reported through Telemetry.

Structure:

"log": [
 [
 "Event_ID",
 3785, // the timestamp (in milliseconds) for the log entry
 ... other data ...
],
 ...
]

webrtc

Contains special statistics gathered by WebRTC related components.

So far only a bitmask for the ICE candidate type present in a successful or
failed WebRTC connection is getting reported through C++ code as
IceCandidatesStats, because the required bitmask is too big to be represented
in a regular enum histogram. Further this data differentiates between Loop
(aka Firefox Hello) connections and everything else, which is categorized as
WebRTC.

Note: in most cases the webrtc and loop dictionaries inside of
IceCandidatesStats will simply be empty as the user has not used any WebRTC
PeerConnection at all during the ping report time.

Structure:

"webrtc": {
 "IceCandidatesStats": {
 "webrtc": {
 "34526345": {
 "successCount": 5
 },
 "2354353": {
 "failureCount": 1
 }
 },
 "loop": {
 "2349346359": {
 "successCount": 3
 },
 "73424": {
 "successCount": 1,
 "failureCount": 5
 }
 }
 }
},

fileIOReports

Contains the statistics of main-thread I/O recorded during the execution. Only the I/O stats for the XRE and the profile directories are currently reported, neither of them disclosing the full local path.

Structure:

"fileIOReports": {
 "{xre}": [
 totalTime, // Accumulated duration of all operations
 creates, // Number of create/open operations
 reads, // Number of read operations
 writes, // Number of write operations
 fsyncs, // Number of fsync operations
 stats, // Number of stat operations
],
 "{profile}": [...],
 ...
}

lateWrites

This sections reports writes to the file system that happen during shutdown. The reported data contains the stack and the loaded libraries at the time the writes happened.

Structure:

"lateWrites" : {
 "memoryMap" : [
 ["wgdi32.pdb", "08A541B5942242BDB4AEABD8C87E4CFF2"],
 ... other entries in the format ["module name", "breakpad identifier"] ...
],
 "stacks" : [
 [
 [
 0, // the module index or -1 for invalid module indices
 190649 // the offset of this program counter in its module or an absolute pc
],
 [1, 2540075],
 ... other frames ...
],
 ... other stacks ...
],
},

addonDetails

This section contains per-addon telemetry details, as reported by each addon provider. The XPI provider is the only one reporting at the time of writing (see DXR [https://dxr.mozilla.org/mozilla-central/search?q=setTelemetryDetails&case=true]). Telemetry does not manipulate or enforce a specific format for the supplied provider’s data.

Structure:

"addonDetails": {
 "XPI": {
 "adbhelper@mozilla.org": {
 "scan_items": 24,
 "scan_MS": 3,
 "location": "app-profile",
 "name": "ADB Helper",
 "creator": "Mozilla & Android Open Source Project",
 "startup_MS": 30
 },
 ...
 },
 ...
}

addonHistograms

This section contains the histogram registered by the addons (see here [https://dxr.mozilla.org/mozilla-central/rev/584870f1cbc5d060a57e147ce249f736956e2b62/toolkit/components/telemetry/nsITelemetry.idl#303]). This section is not present if no addon histogram is available.

UITelemetry

See the UITelemetry data format documentation.

slowSQL

This section contains the informations about the slow SQL queries for both the main and other threads. The execution of an SQL statement is considered slow if it takes 50ms or more on the main thread or 100ms or more on other threads. Slow SQL statements will be automatically trimmed to 1000 characters. This limit doesn’t include the ellipsis and database name, that are appended at the end of the stored statement.

Structure:

"slowSQL": {
 "mainThread": {
 "Sanitized SQL Statement": [
 1, // the number of times this statement was hit
 200 // the total time (in milliseconds) that was spent on this statement
],
 ...
 },
 "otherThreads": {
 "VACUUM /* places.sqlite */": [
 1,
 330
],
 ...
 }
},

slowSQLStartup

This section contains the slow SQL statements gathered at startup (until the “sessionstore-windows-restored” event is fired). The structure of this section resembles the one for slowSQL.

UIMeasurements

This section contains UI specific telemetry measurements and events. This section is mainly populated with Android-specific data and events (see here [https://dxr.mozilla.org/mozilla-central/search?q=regexp%3AUITelemetry.%28addEvent|startSession|stopSession%29&redirect=false&case=false]).

Structure:

"UIMeasurements": [
 {
 "type": "event", // either "session" or "event"
 "action": "action.1",
 "method": "menu",
 "sessions": [],
 "timestamp": 12345,
 "extras": "settings"
 },
 {
 "type": "session",
 "name": "awesomescreen.1",
 "reason": "commit",
 "start": 123,
 "end": 456
 }
 ...
],

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Telemetry

 	Data documentation

“deletion” ping

This ping is generated when a user turns off FHR upload from the Preferences panel, changing the related datareporting.healthreport.uploadEnabled preference. This requests that all associated data from that user be deleted.

This ping contains the client id and no environment data.

Structure:

{
 version: 4,
 type: "deletion",
 ... common ping data
 clientId: <UUID>,
 payload: { }
}

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Telemetry

 	Data documentation

“crash” ping

This ping is captured after the main Firefox process crashes, whether or not the crash report is submitted to crash-stats.mozilla.org. It includes non-identifying metadata about the crash.

The environment block that is sent with this ping varies: if Firefox was running long enough to record the environment block before the crash, then the environment at the time of the crash will be recorded and hasCrashEnvironment will be true. If Firefox crashed before the environment was recorded, hasCrashEnvironment will be false and the recorded environment will be the environment at time of submission.

The client ID is submitted with this ping.

Structure:

{
 version: 1,
 type: "crash",
 ... common ping data
 clientId: <UUID>,
 environment: { ... },
 payload: {
 crashDate: "YYYY-MM-DD",
 sessionId: <UUID>, // may be missing for crashes that happen early
 // in startup. Added in Firefox 48 with the
 // intention of uplifting to Firefox 46
 metadata: {...}, // Annotations saved while Firefox was running. See nsExceptionHandler.cpp for more information
 hasCrashEnvironment: bool
 }
}

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Telemetry

 	Data documentation

“core” ping

This mobile-specific ping is intended to provide the most critical
data in a concise format, allowing for frequent uploads.

Since this ping is used to measure retention, it should be sent
each time the browser is opened.

Submission will be per the Edge server specification:

/submit/telemetry/docId/docType/appName/appVersion/appUpdateChannel/appBuildID

	docId is a UUID for deduping

	docType is “core”

	appName is “Fennec”

	appVersion is the version of the application (e.g. “46.0a1”)

	appUpdateChannel is “release”, “beta”, etc.

	appBuildID is the build number

Note: Counts below (e.g. search & usage times) are “since the last
ping”, not total for the whole application lifetime.

Structure:

{
 "v": 7, // ping format version
 "clientId": <string>, // client id, e.g.
 // "c641eacf-c30c-4171-b403-f077724e848a"
 "seq": <positive integer>, // running ping counter, e.g. 3
 "locale": <string>, // application locale, e.g. "en-US"
 "os": <string>, // OS name.
 "osversion": <string>, // OS version.
 "device": <string>, // Build.MANUFACTURER + " - " + Build.MODEL
 // where manufacturer is truncated to 12 characters
 // & model is truncated to 19 characters
 "arch": <string>, // e.g. "arm", "x86"
 "profileDate": <pos integer>, // Profile creation date in days since
 // UNIX epoch.
 "defaultSearch": <string>, // Identifier of the default search engine,
 // e.g. "yahoo".
 "distributionId": <string>, // Distribution identifier (optional)
 "created": <string>, // date the ping was created
 // in local time, "yyyy-mm-dd"
 "tz": <integer>, // timezone offset (in minutes) of the
 // device when the ping was created
 "sessions": <integer>, // number of sessions since last upload
 "durations": <integer>, // combined duration, in seconds, of all
 // sessions since last upload
 "searches": <object>, // Optional, object of search use counts in the
 // format: { "engine.source": <pos integer> }
 // e.g.: { "yahoo.suggestion": 3, "other.listitem": 1 }
 "experiments": [<string>, …], // Optional, array of identifiers
 // for the active experiments
}

Field details

device

The device field is filled in with information specified by the hardware
manufacturer. As such, it could be excessively long and use excessive amounts
of limited user data. To avoid this, we limit the length of the field. We’re
more likely have collisions for models within a manufacturer (e.g. “Galaxy S5”
vs. “Galaxy Note”) than we are for shortened manufacturer names so we provide
more characters for the model than the manufacturer.

distributionId

The distributionId contains the distribution ID as specified by
preferences.json for a given distribution. More information on distributions
can be found here [https://wiki.mozilla.org/Mobile/Distribution_Files].

It is optional.

defaultSearch

On Android, this field may be null. To get the engine, we rely on
SearchEngineManager#getDefaultEngine, which searches in several places in
order to find the search engine identifier:

	Shared Preferences

	The distribution (if it exists)

	The localized default engine

If the identifier could not be retrieved, this field is null. If the
identifier is retrieved, we attempt to create an instance of the search
engine from the search plugins (in order):

	In the distribution

	From the localized plugins shipped with the browser

	The third-party plugins that are installed in the profile directory

If the plugins fail to create a search engine instance, this field is also
null.

This field can also be null when a custom search engine is set as the
default.

sessions & durations

On Android, a session is the time when Firefox is focused in the foreground.
sessions tracks the number of sessions since the last upload and
durations is the accumulated duration in seconds of all of these
sessions. Note that showing a dialog (including a Firefox dialog) will
take Firefox out of focus & end the current session.

An implementation that records a session when Firefox is completely hidden is
preferrable (e.g. to avoid the dialog issue above), however, it’s more complex
to implement and so we chose not to, at least for the initial implementation.

profileDate

On Android, this value is created at profile creation time and retrieved or,
for legacy profiles, taken from the package install time (note: this is not the
same exact metric as profile creation time but we compromised in favor of ease
of implementation).

Additionally on Android, this field may be null in the unlikely event that
all of the following events occur:

	The times.json file does not exist

	The package install date could not be persisted to disk

The reason we don’t just return the package install time even if the date could
not be persisted to disk is to ensure the value doesn’t change once we start
sending it: we only want to send consistent values.

searches

In the case a search engine is added by a user, the engine identifier “other” is used, e.g. “other.<source>”.

Sources in Android are based on the existing UI telemetry values and are as
follows:

	actionbar: the user types in the url bar and hits enter to use the default
search engine

	listitem: the user selects a search engine from the list of secondary search
engines at the bottom of the screen

	suggestion: the user clicks on a search suggestion or, in the case that
suggestions are disabled, the row corresponding with the main engine

Other parameters

HTTP “Date” header

This header is used to track the submission date of the core ping in the format
specified by
rfc 2616 sec 14.18 [https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.18],
et al (e.g. “Tue, 01 Feb 2011 14:00:00 GMT”).

Version history

	v7: added sessionCount & sessionDuration

	v6: added searches

	v5: added created & tz

	v4: profileDate will return package install time when times.json is not available

	v3: added defaultSearch

	v2: added distributionId

	v1: initial version

Notes

	distributionId (v2) actually landed after profileDate (v4) but was
uplifted to 46, whereas profileDate landed on 47. The version numbers in
code were updated to be increasing (bug 1264492) and the version history docs
rearranged accordingly.

Android implementation notes

On Android, the uploader has a high probability of delivering the complete data
for a given client but not a 100% probability. This was a conscious decision to
keep the code simple. The cases where we can lose data:

	Resetting the field measurements (including incrementing the sequence number)
and storing a ping for upload are not atomic. Android can kill our process
for memory pressure in between these distinct operations so we can just lose
a ping’s worth of data. That sequence number will be missing on the server.

	If we exceed some number of pings on disk that have not yet been uploaded,
we remove old pings to save storage space. For those pings, we will lose
their data and their sequence numbers will be missing on the server.

Note: we never expect to drop data without also dropping a sequence number so
we are able to determine when data loss occurs.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Telemetry

 	Data documentation

“heartbeat” ping

This ping is submitted after a Firefox Heartbeat survey. Even if the user exits
the browser, closes the survey window, or ignores the survey, Heartbeat will
provide a ping to Telemetry for sending during the same session.

The payload contains the user’s survey response (if any) as well as timestamps
of various Heartbeat events (survey shown, survey closed, link clicked, etc).

The ping will also report the “surveyId”, “surveyVersion” and “testing”
Heartbeat survey parameters (if they are present in the survey config).
These “meta fields” will be repeated verbatim in the payload section.

The environment block and client ID are submitted with this ping.

Structure:

{
 type: "heartbeat",
 version: 4,
 clientId: <UUID>,
 environment: { ... }
 ... common ping data ...
 payload: {
 version: 1,
 flowId: <string>,
 ... timestamps below ...
 offeredTS: <integer epoch timestamp>,
 learnMoreTS: <integer epoch timestamp>,
 votedTS: <integer epoch timestamp>,
 engagedTS: <integer epoch timestamp>,
 closedTS: <integer epoch timestamp>,
 expiredTS: <integer epoch timestamp>,
 windowClosedTS: <integer epoch timestamp>,
 ... user's rating below ...
 score: <integer>,
 ... survey meta fields below ...
 surveyId: <string>,
 surveyVersion: <integer>,
 testing: <boolean>
 }
}

Notes:

	Pings will NOT have all possible timestamps, timestamps are only reported for events that actually occurred.

	
	Timestamp meanings:

	
	offeredTS: when the survey was shown to the user

	learnMoreTS: when the user clicked on the “Learn More” link

	votedTS: when the user voted

	engagedTS: when the user clicked on the survey-provided button (alternative to voting feature)

	closedTS: when the Heartbeat notification bar was closed

	expiredTS: indicates that the survey expired after 2 hours of no interaction (threshold regulated by “browser.uitour.surveyDuration” pref)

	windowClosedTS: the user closed the entire Firefox window containing the survey, thus ending the survey. This timestamp will also be reported when the survey is ended by the browser being shut down.

	The surveyId/surveyVersion fields identify a specific survey (like a “1040EZ” tax paper form). The flowID is a UUID that uniquely identifies a single user’s interaction with the survey. Think of it as a session token.

	The self-support page cannot include additional data in this payload. Only the the 4 flowId/surveyId/surveyVersion/testing fields are under the self-support page’s control.

See also: common ping fields

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Telemetry

 	Data documentation

“sync” ping

This ping is generated after a sync is completed, for both successful and failed syncs. It’s payload contains measurements
pertaining to sync performance and error information. It does not contain the enviroment block, nor the clientId.

A JSON-schema document describing the exact format of the ping’s payload property can be found at services/sync/tests/unit/sync_ping_schema.json [https://dxr.mozilla.org/mozilla-central/source/services/sync/tests/unit/sync_ping_schema.json].

Structure:

{
 version: 4,
 type: "sync",
 ... common ping data
 payload: {
 version: 1,
 when: <integer milliseconds since epoch>,
 took: <integer duration in milliseconds>,
 uid: <string>, // FxA unique ID, or empty string.
 didLogin: <bool>, // Optional, is this the first sync after login? Excluded if we don't know.
 why: <string>, // Optional, why the sync occured, excluded if we don't know.

 // Optional, excluded if there was no error.
 failureReason: {
 name: <string>, // "httperror", "networkerror", "shutdownerror", etc.
 code: <integer>, // Only present for "httperror" and "networkerror".
 error: <string>, // Only present for "othererror" and "unexpectederror".
 from: <string>, // Optional, and only present for "autherror".
 },
 // Internal sync status information. Omitted if it would be empty.
 status: {
 sync: <string>, // The value of the Status.sync property, unless it indicates success.
 service: <string>, // The value of the Status.service property, unless it indicates success.
 },
 // Information about each engine's sync.
 engines: [
 {
 name: <string>, // "bookmarks", "tabs", etc.
 took: <integer duration in milliseconds>, // Optional, values of 0 are omitted.

 status: <string>, // The value of Status.engines, if it holds a non-success value.

 // Optional, excluded if all items would be 0. A missing item indicates a value of 0.
 incoming: {
 applied: <integer>, // Number of records applied
 succeeded: <integer>, // Number of records that applied without error
 failed: <integer>, // Number of records that failed to apply
 newFailed: <integer>, // Number of records that failed for the first time this sync
 reconciled: <integer>, // Number of records that were reconciled
 },

 // Optional, excluded if it would be empty. Records that would be
 // empty (e.g. 0 sent and 0 failed) are omitted.
 outgoing: [
 {
 sent: <integer>, // Number of outgoing records sent. Zero values are omitted.
 failed: <integer>, // Number that failed to send. Zero values are omitted.
 }
],
 // Optional, excluded if there were no errors
 failureReason: { ... }, // Same as above.

 // Optional, excluded if it would be empty or if the engine cannot
 // or did not run validation on itself. Entries with a count of 0
 // are excluded.
 validation: [
 {
 name: <string>, // The problem identified.
 count: <integer>, // Number of times it occurred.
 }
]
 }
]
 }
}

info

took

These values should be monotonic. If we can’t get a monotonic timestamp, -1 will be reported on the payload, and the values will be omitted from the engines. Additionally, the value will be omitted from an engine if it would be 0 (either due to timer inaccuracy or finishing instantaneously).

uid

This property containing the FxA account identifier, which is provided by the FxA auth server APIs: https://github.com/mozilla/fxa-auth-server/blob/master/docs/api.md. It may be an empty string in the case that we are unable to authenticate with FxA, and have never authenticated in the past. If present, it should be a 32 character hexidecimal string.

why

One of the following values:

	startup: This is the first sync triggered after browser startup.

	schedule: This is a sync triggered because it has been too long since the last sync.

	score: This sync is triggered by a high score value one of sync’s trackers, indicating that many changes have occurred since the last sync.

	user: The user manually triggered the sync.

	tabs: The user opened the synced tabs sidebar, which triggers a sync.

status

The engine.status, payload.status.sync, and payload.status.service properties are sync error codes, which are listed in services/sync/modules/constants.js [https://dxr.mozilla.org/mozilla-central/source/services/sync/modules/constants.js], and success values are not reported.

failureReason

Stores error information, if any is present. Always contains the “name” property, which identifies the type of error it is. The types can be.

	httperror: Indicates that we recieved an HTTP error response code, but are unable to be more specific about the error. Contains the following properties:

	code: Integer HTTP status code.

	nserror: Indicates that an exception with the provided error code caused sync to fail.

	code: The nsresult error code (integer).

	shutdownerror: Indicates that the sync failed because we shut down before completion.

	autherror: Indicates an unrecoverable authentication error.

	from: Where the authentication error occurred, one of the following values: tokenserver, fxaccounts, or hawkclient.

	othererror: Indicates that it is a sync error code that we are unable to give more specific information on. As with the syncStatus property, it is a sync error code, which are listed in services/sync/modules/constants.js [https://dxr.mozilla.org/mozilla-central/source/services/sync/modules/constants.js].

	error: String identifying which error was present.

	unexpectederror: Indicates that some other error caused sync to fail, typically an uncaught exception.

	error: The message provided by the error.

engine.name

Third-party engines are not reported, so only the following values are allowed: addons, bookmarks, clients, forms, history, passwords, prefs, and tabs.

engine.validation

For engines that can run validation on themselves, an array of objects describing validation errors that have occurred. Items that would have a count of 0 are excluded. Each engine will have its own set of items that it might put in the name field, but there are a finite number. See BookmarkProblemData.getSummary in services/sync/modules/bookmark_validator.js [https://dxr.mozilla.org/mozilla-central/source/services/sync/modules/bookmark_validator.js] for an example.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Telemetry

 	Data documentation

“uitour-tag” ping

This ping is submitted via the UITour setTreatmentTag API. It may be used by
the tour to record what settings were made by a user or to track the result of
A/B experiments.

The client ID is submitted with this ping.

Structure:

{
 version: 1,
 type: "uitour-tag",
 clientId: <string>,
 payload: {
 tagName: <string>,
 tagValue: <string>
 }
}

See also: common ping fields

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Telemetry

Internals

	Preferences

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Telemetry

 	Internals

Preferences

Telemetry behaviour is controlled through the preferences listed here.

Default behaviors

Sending only happens on official builds (i.e. with MOZILLA_OFFICIAL set) with MOZ_TELEMETRY_REPORTING defined.
All other builds drop all outgoing pings, so they will also not retry sending them later.

Preferences

toolkit.telemetry.unified

This controls whether unified behavior is enabled. If true:

	Telemetry is always enabled and recording base data.

	Telemetry will send additional main pings.

toolkit.telemetry.enabled

If unified is off, this controls whether the Telemetry module is enabled.
If unified is on, this controls whether to record extended data.
This preference is controlled through the Preferences dialog.

Note that the default value here of this pref depends on the define RELEASE_BUILD and the channel.
If RELEASE_BUILD is set, MOZ_TELEMETRY_ON_BY_DEFAULT gets set, which means this pref will default to true.
This is overridden by the preferences code on the “beta” channel, the pref also defaults to true there.

datareporting.healthreport.uploadEnabled

Send the data we record if user has consented to FHR. This preference is controlled through the Preferences dialog.

toolkit.telemetry.archive.enabled

Allow pings to be archived locally. This can only be enabled if unified is on.

toolkit.telemetry.server

The server Telemetry pings are sent to.

toolkit.telemetry.log.level

This sets the Telemetry logging verbosity per Log.jsm, with Trace or 0 being the most verbose and the default being Warn.
By default logging goes only the console service.

toolkit.telemetry.log.dump

Sets whether to dump Telemetry log messages to stdout too.

Data-choices notification

toolkit.telemetry.reportingpolicy.firstRun

This preference is not present until the first run. After, its value is set to false. This is used to show the infobar with a more aggressive timeout if it wasn’t shown yet.

datareporting.policy.dataSubmissionEnabled

This is the data submission master kill switch. If disabled, no policy is shown or upload takes place, ever.

datareporting.policy.dataSubmissionPolicyNotifiedTime

Records the date user was shown the policy. This preference is also used on Android.

datareporting.policy.dataSubmissionPolicyAcceptedVersion

Records the version of the policy notified to the user. This preference is also used on Android.

datareporting.policy.dataSubmissionPolicyBypassNotification

Used in tests, it allows to skip the notification check.

datareporting.policy.currentPolicyVersion

Stores the current policy version, overrides the default value defined in TelemetryReportingPolicy.jsm.

datareporting.policy.minimumPolicyVersion

The minimum policy version that is accepted for the current policy. This can be set per channel.

datareporting.policy.minimumPolicyVersion.channel-NAME

This is the only channel-specific version that we currently use for the minimum policy version.

Testing

The following prefs are for testing purpose only.

toolkit.telemetry.initDelay

Delay before initializing telemetry (seconds).

toolkit.telemetry.minSubsessionLength

Minimum length of a telemetry subsession (seconds).

toolkit.telemetry.collectInterval

Minimum interval between data collection (seconds).

toolkit.telemetry.scheduler.tickInterval

Interval between scheduler ticks (seconds).

toolkit.telemetry.scheduler.idleTickInterval

Interval between scheduler ticks when the user is idle (seconds).

toolkit.telemetry.idleTimeout

Timeout until we decide whether a user is idle or not (seconds).

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Telemetry

Firefox Health Report (Obsolete)

Firefox Health Report (FHR) is obsolete and no longer ships with Firefox.
This documentation will live here for a few more cycles.

Firefox Health Report is a background service that collects application
metrics and periodically submits them to a central server. The core
parts of the service are implemented in this directory. However, the
actual XPCOM service is implemented in the
``data_reporting_service`.

The core types can actually be instantiated multiple times and used to
power multiple data submission services within a single Gecko
application. In other words, everything in this directory is effectively
a reusable library. However, the terminology and some of the features
are very specific to what the Firefox Health Report feature requires.

	Architecture

	Payload Format

	Identifiers

Legal and Privacy Concerns

Because Firefox Health Report collects and submits data to remote
servers and is an opt-out feature, there are legal and privacy
concerns over what data may be collected and submitted. Additions or
changes to submitted data should be signed off by responsible
parties.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Telemetry

 	Firefox Health Report (Obsolete)

Architecture

healthreporter.jsm contains the main interface for FHR, the
HealthReporter type. An instance of this is created by the
``data_reporting_service`.

providers.jsm contains numerous Metrics.Provider and
Metrics.Measurement used for collecting application metrics. If you
are looking for the FHR probes, this is where they are.

Storage

Firefox Health Report stores data in 3 locations:

	Metrics measurements and provider state is stored in a SQLite database
(via Metrics.Storage).

	Service state (such as the IDs of documents uploaded) is stored in a
JSON file on disk (via OS.File).

	Lesser state and run-time options are stored in preferences.

Preferences

Preferences controlling behavior of Firefox Health Report live in the
datareporting.healthreport.* branch.

Service and Data Control

The follow preferences control behavior of the service and data upload.

	service.enabled

	Controls whether the entire health report service runs. The overall
service performs data collection, storing, and submission.

This is the primary kill switch for Firefox Health Report
outside of the build system variable. i.e. if you are using an
official Firefox build and wish to disable FHR, this is what you
should set to false to prevent FHR from not only submitting but
also collecting data.

	uploadEnabled

	Whether uploading of data is enabled. This is the preference the
checkbox in the preferences UI reflects. If this is
disabled, FHR still collects data - it just doesn’t upload it.

	service.loadDelayMsec

	How long (in milliseconds) after initial application start should FHR
wait before initializing.

FHR may initialize sooner than this if the FHR service is requested.
This will happen if e.g. the user goes to about:healthreport.

	service.loadDelayFirstRunMsec

	How long (in milliseconds) FHR should wait to initialize on first
application run.

FHR waits longer than normal to initialize on first application run
because first-time initialization can use a lot of I/O to initialize
the SQLite database and this I/O should not interfere with the
first-run user experience.

	documentServerURI

	The URI of a Bagheera server that FHR should interface with for
submitting documents.

You typically do not need to change this.

	documentServerNamespace

	The namespace on the document server FHR should upload documents to.

You typically do not need to change this.

	infoURL

	The URL of a page containing more info about FHR, it’s privacy
policy, etc.

	about.reportUrl

	The URL to load in about:healthreport.

	about.reportUrlUnified

	The URL to load in about:healthreport. This is used instead of reportUrl for UnifiedTelemetry when it is not opt-in.

	service.providerCategories

	A comma-delimited list of category manager categories that contain
registered Metrics.Provider records. Read below for how provider
registration works.

If the entire service is disabled, you lose data collection. This means
that local data analysis won’t be available because there is no data
to analyze! Keep in mind that Firefox Health Report can be useful even
if it’s not submitting data to remote servers!

Logging

The following preferences allow you to control the logging behavior of
Firefox Health Report.

	logging.consoleEnabled

	Whether to write log messages to the web console. This is true by
default.

	logging.consoleLevel

	The minimum log level FHR messages must have to be written to the
web console. By default, only FHR warnings or errors will be written
to the web console. During normal/expected operation, no messages of
this type should be produced.

	logging.dumpEnabled

	Whether to write log messages via dump(). If true, FHR will write
messages to stdout/stderr.

This is typically only enabled when developing FHR.

	logging.dumpLevel

	The minimum log level messages must have to be written via
dump().

State

	currentDaySubmissionFailureCount

	How many submission failures the client has encountered while
attempting to upload the most recent document.

	lastDataSubmissionFailureTime

	The time of the last failed document upload.

	lastDataSubmissionRequestedTime

	The time of the last document upload attempt.

	lastDataSubmissionSuccessfulTime

	The time of the last successful document upload.

	nextDataSubmissionTime

	The time the next data submission is scheduled for. FHR will not
attempt to upload a new document before this time.

	pendingDeleteRemoteData

	Whether the client currently has a pending request to delete remote
data. If true, the client will attempt to delete all remote data
before an upload is performed.

FHR stores various state in preferences.

Registering Providers

Firefox Health Report providers are registered via the category manager.
See HealthReportComponents.manifest for providers defined in this
directory.

Essentially, the category manager receives the name of a JS type and the
URI of a JSM to import that exports this symbol. At run-time, the
providers registered in the category manager are instantiated.

Providers are registered via the category manager to make registration
simple and less prone to errors. Any XPCOM component can create a
category manager entry. Therefore, new data providers can be added
without having to touch core Firefox Health Report code. Additionally,
category manager registration means providers are more likely to be
registered on FHR’s terms, when it wants. If providers were registered
in code at application run-time, there would be the risk of other
components prematurely instantiating FHR (causing a performance hit if
performed at an inopportune time) or semi-complicated code around
observers or listeners. Category manager entries are only 1 line per
provider and leave FHR in control: they are simple and safe.

Document Generation and Lifecycle

FHR will attempt to submit a JSON document containing data every 24 wall
clock hours.

At upload time, FHR will query the database for all information from
the last 180 days and assemble this data into a JSON document. We
attempt to upload this JSON document with a client-generated UUID to the
configured server.

Before we attempt upload, the generated UUID is stored in the JSON state
file on local disk. At this point, the client assumes the document with
that UUID has been successfully stored on the server.

If the client is aware of other document UUIDs that presumably exist on
the server, those UUIDs are sent with the upload request so the client
can request those UUIDs be deleted. This helps ensure that each client
only has 1 document/UUID on the server at any one time.

Importance of Persisting UUIDs

The choices of how, where, and when document UUIDs are stored and updated
are very important. One should not attempt to change things unless she
has a very detailed understanding of why things are the way they are.

The client is purposefully very conservative about forgetting about
generated UUIDs. In other words, once a UUID is generated, the client
deliberately holds on to that UUID until it’s very confident that UUID
is no longer stored on the server. The reason we do this is because
orphaned documents/UUIDs on the server can lead to faulty analysis,
such as over-reporting the number of Firefox installs that stop being
used.

When uploading a new UUID, we update the state and save the state file
to disk before an upload attempt because if the upload succeeds but
the response never makes it back to the client, we want the client to
know about the uploaded UUID so it can delete it later to prevent an
orphan.

We maintain a list of UUIDs locally (not simply the last UUID) because
multiple upload attempts could fail the same way as the previous
paragraph describes and we have no way of knowing which (if any)
actually succeeded. The safest approach is to assume every document
produced managed to get uploaded some how.

We store the UUIDs on a file on disk and not anywhere else because we
want storage to be robust. We originally stored UUIDs in preferences,
which only flush to disk periodically. Writes to preferences were
apparently getting lost. We switched to writing directly to files to
eliminate this window.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Telemetry

 	Firefox Health Report (Obsolete)

Payload Format

Currently, the Firefox Health Report is submitted as a compressed JSON
document. The root JSON element is an object. A version field defines
the version of the payload which in turn defines the expected contents
the object.

As of 2013-07-03, desktop submits Version 2, and Firefox for Android submits
Version 3 payloads.

Version 3

Version 3 is a complete rebuild of the document format. Events are tracked in
an “environment”. Environments are computed from a large swath of local data
(e.g., add-ons, CPU count, versions), and a new environment comes into being
when one of its attributes changes.

Client documents, then, will include descriptions of many environments, and
measurements will be attributed to one particular environment.

A map of environments is present at the top level of the document, with the
current named “current” in the map. Each environment has a hash identifier and
a set of attributes. The current environment is completely described, and has
its hash present in a “hash” attribute. All other environments are represented
as a tree diff from the current environment, with their hash as the key in the
“environments” object.

A removed add-on has the value ‘null’.

There is no “last” data at present.

Daily data is hierarchical: by day, then by environment, and then by
measurement, and is present in “data”, just as in v2.

Leading by example:

{
 "lastPingDate": "2013-06-29",
 "thisPingDate": "2013-07-03",
 "version": 3,
 "environments": {
 "current": {
 "org.mozilla.sysinfo.sysinfo": {
 "memoryMB": 1567,
 "cpuCount": 4,
 "architecture": "armeabi-v7a",
 "_v": 1,
 "version": "4.1.2",
 "name": "Android"
 },
 "org.mozilla.profile.age": {
 "_v": 1,
 "profileCreation": 15827
 },
 "org.mozilla.addons.active": {
 "QuitNow@TWiGSoftware.com": {
 "appDisabled": false,
 "userDisabled": false,
 "scope": 1,
 "updateDay": 15885,
 "foreignInstall": false,
 "hasBinaryComponents": false,
 "blocklistState": 0,
 "type": "extension",
 "installDay": 15885,
 "version": "1.18.02"
 },
 "{dbbf9331-b713-6eda-1006-205efead09dc}": {
 "appDisabled": false,
 "userDisabled": "askToActivate",
 "scope": 8,
 "updateDay": 15779,
 "foreignInstall": true,
 "blocklistState": 0,
 "type": "plugin",
 "installDay": 15779,
 "version": "11.1 r115"
 },
 "desktopbydefault@bnicholson.mozilla.org": {
 "appDisabled": false,
 "userDisabled": true,
 "scope": 1,
 "updateDay": 15870,
 "foreignInstall": false,
 "hasBinaryComponents": false,
 "blocklistState": 0,
 "type": "extension",
 "installDay": 15870,
 "version": "1.1"
 },
 "{6e092a7f-ba58-4abb-88c1-1a4e50b217e4}": {
 "appDisabled": false,
 "userDisabled": false,
 "scope": 1,
 "updateDay": 15828,
 "foreignInstall": false,
 "hasBinaryComponents": false,
 "blocklistState": 0,
 "type": "extension",
 "installDay": 15828,
 "version": "1.1.0"
 },
 "{46551EC9-40F0-4e47-8E18-8E5CF550CFB8}": {
 "appDisabled": false,
 "userDisabled": true,
 "scope": 1,
 "updateDay": 15879,
 "foreignInstall": false,
 "hasBinaryComponents": false,
 "blocklistState": 0,
 "type": "extension",
 "installDay": 15879,
 "version": "1.3.2"
 },
 "_v": 1
 },
 "org.mozilla.appInfo.appinfo": {
 "_v": 3,
 "appLocale": "en_us",
 "osLocale": "en_us",
 "distribution": "",
 "acceptLangIsUserSet": 0,
 "isTelemetryEnabled": 1,
 "isBlocklistEnabled": 1
 },
 "geckoAppInfo": {
 "updateChannel": "nightly",
 "id": "{aa3c5121-dab2-40e2-81ca-7ea25febc110}",
 "os": "Android",
 "platformBuildID": "20130703031323",
 "platformVersion": "25.0a1",
 "vendor": "Mozilla",
 "name": "fennec",
 "xpcomabi": "arm-eabi-gcc3",
 "appBuildID": "20130703031323",
 "_v": 1,
 "version": "25.0a1"
 },
 "hash": "tB4Pnnep9yTxnMDymc3dAB2RRB0=",
 "org.mozilla.addons.counts": {
 "extension": 4,
 "plugin": 1,
 "_v": 1,
 "theme": 0
 }
 },
 "k2O3hlreMeS7L1qtxeMsYWxgWWQ=": {
 "geckoAppInfo": {
 "platformBuildID": "20130630031138",
 "appBuildID": "20130630031138",
 "_v": 1
 },
 "org.mozilla.appInfo.appinfo": {
 "_v": 2,
 }
 },
 "1+KN9TutMpzdl4TJEl+aCxK+xcw=": {
 "geckoAppInfo": {
 "platformBuildID": "20130626031100",
 "appBuildID": "20130626031100",
 "_v": 1
 },
 "org.mozilla.addons.active": {
 "QuitNow@TWiGSoftware.com": null,
 "{dbbf9331-b713-6eda-1006-205efead09dc}": null,
 "desktopbydefault@bnicholson.mozilla.org": null,
 "{6e092a7f-ba58-4abb-88c1-1a4e50b217e4}": null,
 "{46551EC9-40F0-4e47-8E18-8E5CF550CFB8}": null,
 "_v": 1
 },
 "org.mozilla.addons.counts": {
 "extension": 0,
 "plugin": 0,
 "_v": 1
 }
 }
 },
 "data": {
 "last": {},
 "days": {
 "2013-07-03": {
 "tB4Pnnep9yTxnMDymc3dAB2RRB0=": {
 "org.mozilla.appSessions": {
 "normal": [
 {
 "r": "P",
 "d": 2,
 "sj": 653
 },
 {
 "r": "P",
 "d": 22
 },
 {
 "r": "P",
 "d": 5
 },
 {
 "r": "P",
 "d": 0
 },
 {
 "r": "P",
 "sg": 3560,
 "d": 171,
 "sj": 518
 },
 {
 "r": "P",
 "d": 16
 },
 {
 "r": "P",
 "d": 1079
 }
],
 "_v": "4"
 }
 },
 "k2O3hlreMeS7L1qtxeMsYWxgWWQ=": {
 "org.mozilla.appSessions": {
 "normal": [
 {
 "r": "P",
 "d": 27
 },
 {
 "r": "P",
 "d": 19
 },
 {
 "r": "P",
 "d": 55
 }
],
 "_v": "4"
 },
 "org.mozilla.searches.counts": {
 "bartext": {
 "google": 1
 },
 "_v": "4"
 },
 "org.mozilla.experiment": {
 "lastActive": "some.experiment.id"
 "_v": "1"
 }
 }
 }
 }
 }
}

App sessions in Version 3

Sessions are divided into “normal” and “abnormal”. Session objects are stored as discrete JSON:

"org.mozilla.appSessions": {
 _v: 4,
 "normal": [
 {"r":"P", "d": 123},
],
 "abnormal": [
 {"r":"A", "oom": true, "stopped": false}
]
}

Keys are:

	“r”

	reason. Values are “P” (activity paused), “A” (abnormal termination).

	“d”

	duration. Value in seconds.

	“sg”

	Gecko startup time (msec). Present if this is a clean launch. This
corresponds to the telemetry timer FENNEC_STARTUP_TIME_GECKOREADY.

	“sj”

	Java activity init time (msec). Present if this is a clean launch. This
corresponds to the telemetry timer FENNEC_STARTUP_TIME_JAVAUI,
and includes initialization tasks beyond initial
onWindowFocusChanged.

Abnormal terminations will be missing a duration and will feature these keys:

	“oom”

	was the session killed by an OOM exception?

	“stopped”

	was the session stopped gently?

Version 3.2

As of Firefox 35, the search counts measurement is now bumped to v6, including the activity location for the search activity.

Version 3.1

As of Firefox 27, appinfo is now bumped to v3, including osLocale,
appLocale (currently always the same as osLocale), distribution (a string
containing the distribution ID and version, separated by a colon), and
acceptLangIsUserSet, an integer-boolean that describes whether the user set
an intl.accept_languages preference.

The search counts measurement is now at version 5, which indicates that
non-partner searches are recorded. You’ll see identifiers like “other-Foo Bar”
rather than “other”.

Version 3.2

In Firefox 32, Firefox for Android includes a device configuration section
in the environment description:

"org.mozilla.device.config": {
 "hasHardwareKeyboard": false,
 "screenXInMM": 58,
 "screenLayout": 2,
 "uiType": "default",
 "screenYInMM": 103,
 "_v": 1,
 "uiMode": 1
}

Of these, the only keys that need explanation are:

	uiType

	One of “default”, “smalltablet”, “largetablet”.

	uiMode

	A mask of the Android Configuration.uiMode value, e.g.,
UI_MODE_TYPE_CAR.

	screenLayout

	A mask of the Android Configuration.screenLayout value. One of the
SCREENLAYOUT_SIZE_ constants.

Note that screen dimensions can be incorrect due to device inaccuracies and platform limitations.

Other notable differences from Version 2

	There is no default browser indicator on Android.

	Add-ons include a blocklistState attribute, as returned by AddonManager.

	Searches are now version 4, and are hierarchical: how the search was started
(bartext, barkeyword, barsuggest), and then counts per provider.

Version 2

Version 2 is the same as version 1 with the exception that it has an additional
top-level field, geckoAppInfo, which contains basic application info.

geckoAppInfo

This field is an object that is a simple map of string keys and values
describing basic application metadata. It is very similar to the appinfo
measurement in the last section. The difference is this field is almost
certainly guaranteed to exist whereas the one in the data part of the
payload may be omitted in certain scenarios (such as catastrophic client
error).

Its keys are as follows:

	appBuildID

	The build ID/date of the application. e.g. “20130314113542”.

	version

	The value of nsXREAppData.version. This is the application’s version. e.g.
“21.0.0”.

	vendor

	The value of nsXREAppData.vendor. Can be empty an empty string. For
official Mozilla builds, this will be “Mozilla”.

	name

	The value of nsXREAppData.name. For official Firefox builds, this
will be “Firefox”.

	id

	The value of nsXREAppData.ID.

	platformVersion

	The version of the Gecko platform (as opposed to the app version). For
Firefox, this is almost certainly equivalent to the version field.

	platformBuildID

	The build ID/date of the Gecko platfor (as opposed to the app version).
This is commonly equivalent to appBuildID.

	os

	The name of the operating system the application is running on.

	xpcomabi

	The binary architecture of the build.

	updateChannel

	The name of the channel used for application updates. Official Mozilla
builds have one of the values {release, beta, aurora, nightly}. Local and
test builds have default as the channel.

Version 1

Top-level Properties

The main JSON object contains the following properties:

	lastPingDate

	UTC date of the last upload. If this is the first upload from this client,
this will not be present.

	thisPingDate

	UTC date when this payload was constructed.

	version

	Integer version of this payload format. Currently only 1 is defined.

	clientID

	An identifier that identifies the client that is submitting data.

This property may not be present in older clients.

See Identifiers for more info on identifiers.

	clientIDVersion

	Integer version associated with the generation semantics for the
clientID.

If the value is 1, clientID is a randomly-generated UUID.

This property may not be present in older clients.

	data

	Object holding data constituting health report.

Data Properties

The bulk of the health report is contained within the data object. This
object has the following keys:

	days

	Object mapping UTC days to measurements from that day. Keys are in the
YYYY-MM-DD format. e.g. “2013-03-14”

	last

	Object mapping measurement names to their values.

The value of days and last are objects mapping measurement names to that
measurement’s values. The values are always objects. Each object contains
a _v property. This property defines the version of this measurement.
Additional non-underscore-prefixed properties are defined by the measurement
itself (see sections below).

Example

Here is an example JSON document for version 1:

{
 "version": 1,
 "thisPingDate": "2013-03-11",
 "lastPingDate": "2013-03-10",
 "data": {
 "last": {
 "org.mozilla.addons.active": {
 "masspasswordreset@johnathan.nightingale": {
 "userDisabled": false,
 "appDisabled": false,
 "version": "1.05",
 "type": "extension",
 "scope": 1,
 "foreignInstall": false,
 "hasBinaryComponents": false,
 "installDay": 14973,
 "updateDay": 15317
 },
 "places-maintenance@bonardo.net": {
 "userDisabled": false,
 "appDisabled": false,
 "version": "1.3",
 "type": "extension",
 "scope": 1,
 "foreignInstall": false,
 "hasBinaryComponents": false,
 "installDay": 15268,
 "updateDay": 15379
 },
 "_v": 1
 },
 "org.mozilla.appInfo.appinfo": {
 "_v": 1,
 "appBuildID": "20130309030841",
 "distributionID": "",
 "distributionVersion": "",
 "hotfixVersion": "",
 "id": "{ec8030f7-c20a-464f-9b0e-13a3a9e97384}",
 "locale": "en-US",
 "name": "Firefox",
 "os": "Darwin",
 "platformBuildID": "20130309030841",
 "platformVersion": "22.0a1",
 "updateChannel": "nightly",
 "vendor": "Mozilla",
 "version": "22.0a1",
 "xpcomabi": "x86_64-gcc3"
 },
 "org.mozilla.profile.age": {
 "_v": 1,
 "profileCreation": 12444
 },
 "org.mozilla.appSessions.current": {
 "_v": 3,
 "startDay": 15773,
 "activeTicks": 522,
 "totalTime": 70858,
 "main": 1245,
 "firstPaint": 2695,
 "sessionRestored": 3436
 },
 "org.mozilla.sysinfo.sysinfo": {
 "_v": 1,
 "cpuCount": 8,
 "memoryMB": 16384,
 "architecture": "x86-64",
 "name": "Darwin",
 "version": "12.2.1"
 }
 },
 "days": {
 "2013-03-11": {
 "org.mozilla.addons.counts": {
 "_v": 1,
 "extension": 15,
 "plugin": 12,
 "theme": 1
 },
 "org.mozilla.places.places": {
 "_v": 1,
 "bookmarks": 757,
 "pages": 104858
 },
 "org.mozilla.appInfo.appinfo": {
 "_v": 1,
 "isDefaultBrowser": 1
 }
 },
 "2013-03-10": {
 "org.mozilla.addons.counts": {
 "_v": 1,
 "extension": 15,
 "plugin": 12,
 "theme": 1
 },
 "org.mozilla.places.places": {
 "_v": 1,
 "bookmarks": 757,
 "pages": 104857
 },
 "org.mozilla.searches.counts": {
 "_v": 1,
 "google.urlbar": 4
 },
 "org.mozilla.appInfo.appinfo": {
 "_v": 1,
 "isDefaultBrowser": 1
 }
 }
 }
 }
}

Measurements

The bulk of payloads consists of measurement data. An individual measurement
is merely a collection of related values e.g. statistics about the Places
database or system information.

Each measurement has an integer version number attached. When the fields in
a measurement or the semantics of data within that measurement change, the
version number is incremented.

All measurements are defined alphabetically in the sections below.

org.mozilla.addons.addons

This measurement contains information about the currently-installed add-ons.

Version 2

This version adds the human-readable fields name and description, both
coming directly from the Addon instance as most properties in version 1.
Also, all plugin details are now in org.mozilla.addons.plugins.

Version 1

The measurement object is a mapping of add-on IDs to objects containing
add-on metadata.

Each add-on contains the following properties:

	userDisabled

	appDisabled

	version

	type

	scope

	foreignInstall

	hasBinaryComponents

	installDay

	updateDay

With the exception of installDay and updateDay, all these properties
come direct from the Addon instance. See https://developer.mozilla.org/en-US/docs/Addons/Add-on_Manager/Addon.
installDay and updateDay are the number of days since UNIX epoch of
the add-ons installDate and updateDate properties, respectively.

Notes

Add-ons that have opted out of AMO updates via the
extensions._id_.getAddons.cache.enabled preference are, since Bug 868306
(Firefox 24), included in the list of submitted add-ons.

Example

"org.mozilla.addons.addons": {
 "_v": 2,
 "{d10d0bf8-f5b5-c8b4-a8b2-2b9879e08c5d}": {
 "userDisabled": false,
 "appDisabled": false,
 "name": "Adblock Plus",
 "version": "2.4.1",
 "type": "extension",
 "scope": 1,
 "description": "Ads were yesterday!",
 "foreignInstall": false,
 "hasBinaryComponents": false,
 "installDay": 16093,
 "updateDay": 16093
 },
 "{e4a8a97b-f2ed-450b-b12d-ee082ba24781}": {
 "userDisabled": true,
 "appDisabled": false,
 "name": "Greasemonkey",
 "version": "1.14",
 "type": "extension",
 "scope": 1,
 "description": "A User Script Manager for Firefox",
 "foreignInstall": false,
 "hasBinaryComponents": false,
 "installDay": 16093,
 "updateDay": 16093
 }
}

org.mozilla.addons.plugins

This measurement contains information about the currently-installed plugins.

Version 1

The measurement object is a mapping of plugin IDs to objects containing
plugin metadata.

The plugin ID is constructed of the plugins filename, name, version and
description. Every plugin has at least a filename and a name.

Each plugin contains the following properties:

	name

	version

	description

	blocklisted

	disabled

	clicktoplay

	mimeTypes

	updateDay

With the exception of updateDay and mimeTypes, all these properties come
directly from nsIPluginTag via nsIPluginHost.
updateDay is the number of days since UNIX epoch of the plugins last modified
time.
mimeTypes is the list of mimetypes the plugin supports, see
nsIPluginTag.getMimeTypes().

Example

"org.mozilla.addons.plugins": {
 "_v": 1,
 "Flash Player.plugin:Shockwave Flash:12.0.0.38:Shockwave Flash 12.0 r0": {
 "mimeTypes": [
 "application/x-shockwave-flash",
 "application/futuresplash"
],
 "name": "Shockwave Flash",
 "version": "12.0.0.38",
 "description": "Shockwave Flash 12.0 r0",
 "blocklisted": false,
 "disabled": false,
 "clicktoplay": false
 },
 "Default Browser.plugin:Default Browser Helper:537:Provides information about the default web browser": {
 "mimeTypes": [
 "application/apple-default-browser"
],
 "name": "Default Browser Helper",
 "version": "537",
 "description": "Provides information about the default web browser",
 "blocklisted": false,
 "disabled": true,
 "clicktoplay": false
 }
}

org.mozilla.addons.counts

This measurement contains information about historical add-on counts.

Version 1

The measurement object consists of counts of different add-on types. The
properties are:

	extension

	Integer count of installed extensions.

	plugin

	Integer count of installed plugins.

	theme

	Integer count of installed themes.

	lwtheme

	Integer count of installed lightweigh themes.

Notes

Add-ons opted out of AMO updates are included in the counts. This differs from
the behavior of the active add-ons measurement.

If no add-ons of a particular type are installed, the property for that type
will not be present (as opposed to an explicit property with value of 0).

Example

"2013-03-14": {
 "org.mozilla.addons.counts": {
 "_v": 1,
 "extension": 21,
 "plugin": 4,
 "theme": 1
 }
}

org.mozilla.appInfo.appinfo

This measurement contains basic XUL application and Gecko platform
information. It is reported in the last section.

Version 2

In addition to fields present in version 1, this version has the following
fields appearing in the days section:

	isBlocklistEnabled

	Whether the blocklist ping is enabled. This is an integer, 0 or 1.
This does not indicate whether the blocklist ping was sent but merely
whether the application will try to send the blocklist ping.

	isTelemetryEnabled

	Whether Telemetry is enabled. This is an integer, 0 or 1.

Version 1

The measurement object contains mostly string values describing the
current application and build. The properties are:

	vendor

	name

	id

	version

	appBuildID

	platformVersion

	platformBuildID

	os

	xpcomabi

	updateChannel

	distributionID

	distributionVersion

	hotfixVersion

	locale

	isDefaultBrowser

Notes

All of the properties appear in the last section except for
isDefaultBrowser, which appears under days.

Example

This example comes from an official OS X Nightly build:

"org.mozilla.appInfo.appinfo": {
 "_v": 1,
 "appBuildID": "20130311030946",
 "distributionID": "",
 "distributionVersion": "",
 "hotfixVersion": "",
 "id": "{ec8030f7-c20a-464f-9b0e-13a3a9e97384}",
 "locale": "en-US",
 "name": "Firefox",
 "os": "Darwin",
 "platformBuildID": "20130311030946",
 "platformVersion": "22.0a1",
 "updateChannel": "nightly",
 "vendor": "Mozilla",
 "version": "22.0a1",
 "xpcomabi": "x86_64-gcc3"
},

org.mozilla.appInfo.update

This measurement contains information about the application update mechanism
in the application.

Version 1

The following daily values are reported:

	enabled

	Whether automatic application update checking is enabled. 1 for yes,
0 for no.

	autoDownload

	Whether automatic download of available updates is enabled.

Notes

This measurement was merged to mozilla-central for JS FHR on 2013-07-15.

Example

"2013-07-15": {
 "org.mozilla.appInfo.update": {
 "_v": 1,
 "enabled": 1,
 "autoDownload": 1,
 }
}

org.mozilla.appInfo.versions

This measurement contains a history of application version numbers.

Version 2

Version 2 reports more fields than version 1 and is not backwards compatible.
The following fields are present in version 2:

	appVersion

	An array of application version strings.

	appBuildID

	An array of application build ID strings.

	platformVersion

	An array of platform version strings.

	platformBuildID

	An array of platform build ID strings.

When the application is upgraded, the new version and/or build IDs are
appended to their appropriate fields.

Version 1

When the application version (version from org.mozilla.appinfo.appinfo)
changes, we record the new version on the day the change was seen. The new
versions for a day are recorded in an array under the version property.

Notes

If the application isn’t upgraded, this measurement will not be present.
This means this measurement will not be present for most days if a user is
on the release channel (since updates are typically released every 6 weeks).
However, users on the Nightly and Aurora channels will likely have a lot
of these entries since those builds are updated every day.

Values for this measurement are collected when performing the daily
collection (typically occurs at upload time). As a result, it’s possible
the actual upgrade day may not be attributed to the proper day - the
reported day may lag behind.

The app and platform versions and build IDs should be identical for most
clients. If they are different, we are possibly looking at a Frankenfox.

Example

"2013-03-27": {
 "org.mozilla.appInfo.versions": {
 "_v": 2,
 "appVersion": [
 "22.0.0"
],
 "appBuildID": [
 "20130325031100"
],
 "platformVersion": [
 "22.0.0"
],
 "platformBuildID": [
 "20130325031100"
]
 }
}

org.mozilla.appSessions.current

This measurement contains information about the currently running XUL
application’s session.

Version 3

This measurement has the following properties:

	startDay

	Integer days since UNIX epoch when this session began.

	activeTicks

	Integer count of ticks the session was active for. Gecko periodically
sends out a signal when the session is active. Session activity
involves keyboard or mouse interaction with the application. Each tick
represents a window of 5 seconds where there was interaction.

	totalTime

	Integer seconds the session has been alive.

	main

	Integer milliseconds it took for the Gecko process to start up.

	firstPaint

	Integer milliseconds from process start to first paint.

	sessionRestored

	Integer milliseconds from process start to session restore.

Example

"org.mozilla.appSessions.current": {
 "_v": 3,
 "startDay": 15775,
 "activeTicks": 4282,
 "totalTime": 249422,
 "main": 851,
 "firstPaint": 3271,
 "sessionRestored": 5998
}

org.mozilla.appSessions.previous

This measurement contains information about previous XUL application sessions.

Version 3

This measurement contains per-day lists of all the sessions started on that
day. The following properties may be present:

	cleanActiveTicks

	Active ticks of sessions that were properly shut down.

	cleanTotalTime

	Total number of seconds for sessions that were properly shut down.

	abortedActiveTicks

	Active ticks of sessions that were not properly shut down.

	abortedTotalTime

	Total number of seconds for sessions that were not properly shut down.

	main

	Time in milliseconds from process start to main process initialization.

	firstPaint

	Time in milliseconds from process start to first paint.

	sessionRestored

	Time in milliseconds from process start to session restore.

Notes

Sessions are recorded on the date on which they began.

If a session was aborted/crashed, the total time may be less than the actual
total time. This is because we don’t always update total time during periods
of inactivity and the abort/crash could occur after a long period of idle,
before we’ve updated the total time.

The lengths of the arrays for {cleanActiveTicks, cleanTotalTime},
{abortedActiveTicks, abortedTotalTime}, and {main, firstPaint, sessionRestored}
should all be identical.

The length of the clean sessions plus the length of the aborted sessions should
be equal to the length of the {main, firstPaint, sessionRestored} properties.

It is not possible to distinguish the main, firstPaint, and sessionRestored
values from a clean vs aborted session: they are all lumped together.

For sessions spanning multiple UTC days, it’s not possible to know which
days the session was active for. It’s possible a week long session only
had activity for 2 days and there’s no way for us to tell which days.

Example

"org.mozilla.appSessions.previous": {
 "_v": 3,
 "cleanActiveTicks": [
 78,
 1785
],
 "cleanTotalTime": [
 4472,
 88908
],
 "main": [
 32,
 952
],
 "firstPaint": [
 2755,
 3497
],
 "sessionRestored": [
 5149,
 5520
]
}

org.mozilla.crashes.crashes

This measurement contains a historical record of application crashes.

Version 6

This version adds tracking for out-of-memory (OOM) crashes in the main process.
An OOM crash will be counted as both main-crash and main-crash-oom.

This measurement will be reported on each day there was a crash or crash
submission. Records may contain the following fields, whose values indicate
the number of crashes, hangs, or submissions that occurred on the given day:

	content-crash

	content-crash-submission-succeeded

	content-crash-submission-failed

	content-hang

	content-hang-submission-succeeded

	content-hang-submission-failed

	gmplugin-crash

	gmplugin-crash-submission-succeeded

	gmplugin-crash-submission-failed

	main-crash

	main-crash-oom

	main-crash-submission-succeeded

	main-crash-submission-failed

	main-hang

	main-hang-submission-succeeded

	main-hang-submission-failed

	plugin-crash

	plugin-crash-submission-succeeded

	plugin-crash-submission-failed

	plugin-hang

	plugin-hang-submission-succeeded

	plugin-hang-submission-failed

Version 5

This version adds support for Gecko media plugin (GMP) crashes.

This measurement will be reported on each day there was a crash or crash
submission. Records may contain the following fields, whose values indicate
the number of crashes, hangs, or submissions that occurred on the given day:

	content-crash

	content-crash-submission-succeeded

	content-crash-submission-failed

	content-hang

	content-hang-submission-succeeded

	content-hang-submission-failed

	gmplugin-crash

	gmplugin-crash-submission-succeeded

	gmplugin-crash-submission-failed

	main-crash

	main-crash-submission-succeeded

	main-crash-submission-failed

	main-hang

	main-hang-submission-succeeded

	main-hang-submission-failed

	plugin-crash

	plugin-crash-submission-succeeded

	plugin-crash-submission-failed

	plugin-hang

	plugin-hang-submission-succeeded

	plugin-hang-submission-failed

Version 4

This version follows up from version 3, adding submissions which are now
tracked by the Crash Manager.

This measurement will be reported on each day there was a crash or crash
submission. Records may contain the following fields, whose values indicate
the number of crashes, hangs, or submissions that occurred on the given day:

	main-crash

	main-crash-submission-succeeded

	main-crash-submission-failed

	main-hang

	main-hang-submission-succeeded

	main-hang-submission-failed

	content-crash

	content-crash-submission-succeeded

	content-crash-submission-failed

	content-hang

	content-hang-submission-succeeded

	content-hang-submission-failed

	plugin-crash

	plugin-crash-submission-succeeded

	plugin-crash-submission-failed

	plugin-hang

	plugin-hang-submission-succeeded

	plugin-hang-submission-failed

Version 3

This version follows up from version 2, building on improvements to
the Crash Manager.

This measurement will be reported on each day there was a
crash. Records may contain the following fields, whose values indicate
the number of crashes or hangs that occurred on the given day:

	main-crash

	main-hang

	content-crash

	content-hang

	plugin-crash

	plugin-hang

Version 2

The switch to version 2 coincides with the introduction of the
Crash Manager, which provides a more robust source of
crash data.

This measurement will be reported on each day there was a crash. The
following fields may be present in each record:

	mainCrash

	The number of main process crashes that occurred on the given day.

Yes, version 2 does not track submissions like version 1. It is very
likely submissions will be re-added later.

Also absent from version 2 are plugin crashes and hangs. These will be
re-added, likely in version 3.

Version 1

This measurement will be reported on each day there was a crash. The
following properties are reported:

	pending

	The number of crash reports that haven’t been submitted.

	submitted

	The number of crash reports that were submitted.

Notes

Main process crashes are typically submitted immediately after they
occur (by checking a box in the crash reporter, which should appear
automatically after a crash). If the crash reporter submits the crash
successfully, we get a submitted crash. Else, we leave it as pending.

A pending crash does not mean it will eventually be submitted.

Pending crash reports can be submitted post-crash by going to
about:crashes.

If a pending crash is submitted via about:crashes, the submitted count
increments but the pending count does not decrement. This is because FHR
does not know which pending crash was just submitted and therefore it does
not know which day’s pending crash to decrement.

Example

"org.mozilla.crashes.crashes": {
 "_v": 1,
 "pending": 1,
 "submitted": 2
},
"org.mozilla.crashes.crashes": {
 "_v": 2,
 "mainCrash": 2
}
"org.mozilla.crashes.crashes": {
 "_v": 4,
 "main-crash": 2,
 "main-crash-submission-succeeded": 1,
 "main-crash-submission-failed": 1,
 "main-hang": 1,
 "plugin-crash": 2
}

org.mozilla.healthreport.submissions

This measurement contains a history of FHR’s own data submission activity.
It was added in Firefox 23 in early May 2013.

Version 2

This is the same as version 1 except an additional field has been added.

	uploadAlreadyInProgress

	A request for upload was initiated while another upload was in progress.
This should not occur in well-behaving clients. It (along with a lock
preventing simultaneous upload) was added to ensure this never occurs.

Version 1

Daily counts of upload events are recorded.

	firstDocumentUploadAttempt

	An attempt was made to upload the client’s first document to the server.
These are uploads where the client is not aware of a previous document ID
on the server. Unless the client had disabled upload, there should be at
most one of these in the history of the client.

	continuationUploadAttempt

	An attempt was made to upload a document that replaces an existing document
on the server. Most upload attempts should be attributed to this as opposed
to firstDocumentUploadAttempt.

	uploadSuccess

	The upload attempt recorded by firstDocumentUploadAttempt or
continuationUploadAttempt was successful.

	uploadTransportFailure

	An upload attempt failed due to transport failure (network unavailable,
etc).

	uploadServerFailure

	An upload attempt failed due to a server-reported failure. Ideally these
are failures reported by the FHR server itself. However, intermediate
proxies, firewalls, etc may trigger this depending on how things are
configured.

	uploadClientFailure

	An upload attempt failued due to an error/exception in the client.
This almost certainly points to a bug in the client.

The result for an upload attempt is always attributed to the same day as
the attempt, even if the result occurred on a different day from the attempt.
Therefore, the sum of the result counts should equal the result of the attempt
counts.

org.mozilla.hotfix.update

This measurement contains results from the Firefox update hotfix.

The Firefox update hotfix bypasses the built-in application update mechanism
and installs a modern Firefox.

Version 1

The fields in this measurement are dynamically created based on which
versions of the update hotfix state file are found on disk.

The general format of the fields is <version>.<thing> where version
is a hotfix version like v20140527 and thing is a key from the
hotfix state file, e.g. upgradedFrom. Here are some of the things
that can be defined.

	upgradedFrom

	String identifying the Firefox version that the hotfix upgraded from.
e.g. 16.0 or 17.0.1.

	uninstallReason

	String with enumerated values identifying why the hotfix was uninstalled.
Value will be STILL_INSTALLED if the hotfix is still installed.

	downloadAttempts

	Integer number of times the hotfix started downloading an installer.
Download resumes are part of this count.

	downloadFailures

	Integer count of times a download supposedly completed but couldn’t
be validated. This likely represents something wrong with the network
connection. The ratio of this to downloadAttempts should be low.

	installAttempts

	Integer count of times the hotfix attempted to run the installer.
This should ideally be 1. It should only be greater than 1 if UAC
elevation was cancelled or not allowed.

	installFailures

	Integer count of total installation failures this client experienced.
Can be 0. installAttempts - installFailures implies install successes.

	notificationsShown

	Integer count of times a notification was displayed to the user that
they are running an older Firefox.

org.mozilla.places.places

This measurement contains information about the Places database (where Firefox
stores its history and bookmarks).

Version 1

Daily counts of items in the database are reported in the following properties:

	bookmarks

	Integer count of bookmarks present.

	pages

	Integer count of pages in the history database.

Example

"org.mozilla.places.places": {
 "_v": 1,
 "bookmarks": 388,
 "pages": 94870
}

org.mozilla.profile.age

This measurement contains information about the current profile’s age (and
in version 2, the profile’s most recent reset date)

Version 2

profileCreation and profileReset properties are present. Both define
the integer days since UNIX epoch that the current profile was created or
reset accordingly.

Version 1

A single profileCreation property is present. It defines the integer
days since UNIX epoch that the current profile was created.

Notes

It is somewhat difficult to obtain a reliable profile born date due to a
number of factors, but since Version 2, improvements have been made - on a
“profile reset” we copy the profileCreation date from the old profile and
record the time of the reset in profileReset.

Example

"org.mozilla.profile.age": {
 "_v": 2,
 "profileCreation": 15176
 "profileReset": 15576
}

org.mozilla.searches.counts

This measurement contains information about searches performed in the
application.

Version 6 (mobile)

This adds two new search locations: widget and activity, corresponding to the search widget and search activity respectively.

Version 2

This behaves like version 1 except we added all search engines that
Mozilla has a partner agreement with. Like version 1, we concatenate
a search engine ID with a search origin.

Another difference with version 2 is we should no longer misattribute
a search to the other bucket if the search engine name is localized.

The set of search engine providers is:

	amazon-co-uk

	amazon-de

	amazon-en-GB

	amazon-france

	amazon-it

	amazon-jp

	amazondotcn

	amazondotcom

	amazondotcom-de

	aol-en-GB

	aol-web-search

	bing

	eBay

	eBay-de

	eBay-en-GB

	eBay-es

	eBay-fi

	eBay-france

	eBay-hu

	eBay-in

	eBay-it

	google

	google-jp

	google-ku

	google-maps-zh-TW

	mailru

	mercadolibre-ar

	mercadolibre-cl

	mercadolibre-mx

	seznam-cz

	twitter

	twitter-de

	twitter-ja

	yahoo

	yahoo-NO

	yahoo-answer-zh-TW

	yahoo-ar

	yahoo-bid-zh-TW

	yahoo-br

	yahoo-ch

	yahoo-cl

	yahoo-de

	yahoo-en-GB

	yahoo-es

	yahoo-fi

	yahoo-france

	yahoo-fy-NL

	yahoo-id

	yahoo-in

	yahoo-it

	yahoo-jp

	yahoo-jp-auctions

	yahoo-mx

	yahoo-sv-SE

	yahoo-zh-TW

	yandex

	yandex-ru

	yandex-slovari

	yandex-tr

	yandex.by

	yandex.ru-be

And of course, other.

The sources for searches remain:

	abouthome

	contextmenu

	searchbar

	urlbar

The measurement will only be populated with providers and sources that
occurred that day.

If a user switches locales, searches from default providers on the older
locale will still be supported. However, if that same search engine is
added by the user to the new build and is not a default search engine
provider, its searches will be attributed to the other bucket.

Version 1

We record counts of performed searches grouped by search engine and search
origin. Only search engines with which Mozilla has a business relationship
are explicitly counted. All other search engines are grouped into an
other bucket.

The following search engines are explicitly counted:

	Amazon.com

	Bing

	Google

	Yahoo

	Other

The following search origins are distinguished:

	about:home

	Searches initiated from the search text box on about:home.

	context menu

	Searches initiated from the context menu (highlight text, right click,
and select “search for...”)

	search bar

	Searches initiated from the search bar (the text field next to the
Awesomebar)

	url bar

	Searches initiated from the awesomebar/url bar.

Due to the localization of search engine names, non en-US locales may wrongly
attribute searches to the other bucket. This is fixed in version 2.

Example

"org.mozilla.searches.counts": {
 "_v": 1,
 "google.searchbar": 3,
 "google.urlbar": 7
},

org.mozilla.searches.engines

This measurement contains information about search engines.

Version 1

This version debuted with Firefox 31 on desktop. It contains the
following properties:

	default

	Daily string identifier or name of the default search engine provider.

This field will only be collected if Telemetry is enabled. If
Telemetry is enabled and then later disabled, this field may
disappear from future days in the payload.

The special value NONE could occur if there is no default search
engine.

The special value UNDEFINED could occur if a default search
engine exists but its identifier could not be determined.

This field’s contents are
Services.search.defaultEngine.identifier (if defined) or
"other-" + Services.search.defaultEngine.name if not.
In other words, search engines without an .identifier
are prefixed with other-.

Version 2

Starting with Firefox 40, there is an additional optional value:

	cohort

	Daily cohort string identifier, recorded if the user is part of
search defaults A/B testing.

org.mozilla.sync.sync

This daily measurement contains information about the Sync service.

Values should be recorded for every day FHR measurements occurred.

Version 1

This version debuted with Firefox 30 on desktop. It contains the following
properties:

	enabled

	Daily numeric indicating whether Sync is configured and enabled. 1 if so,
0 otherwise.

	preferredProtocol

	String version of the maximum Sync protocol version the client supports.
This will be 1.1 for for legacy Sync and 1.5 for clients that
speak the Firefox Accounts protocol.

	actualProtocol

	The actual Sync protocol version the client is configured to use.

This will be 1.1 if the client is configured with the legacy Sync
service or if the client only supports 1.1.

It will be 1.5 if the client supports 1.5 and either a) the
client is not configured b) the client is using Firefox Accounts Sync.

	syncStart

	Count of sync operations performed.

	syncSuccess

	Count of sync operations that completed successfully.

	syncError

	Count of sync operations that did not complete successfully.

This is a measure of overall sync success. This does not reflect
recoverable errors (such as record conflict) that can occur during
sync. This is thus a rough proxy of whether the sync service is
operating without error.

org.mozilla.sync.devices

This daily measurement contains information about the device type composition
for the configured Sync account.

Version 1

Version 1 was introduced with Firefox 30.

Field names are dynamic according to the client-reported device types from
Sync records. All fields are daily last seen integer values corresponding to
the number of devices of that type.

Common values include:

	desktop

	Corresponds to a Firefox desktop client.

	mobile

	Corresponds to a Fennec client.

org.mozilla.sync.migration

This daily measurement contains information about sync migration (that is, the
semi-automated process of migrating a legacy sync account to an FxA account.)

Measurements will start being recorded after a migration is offered by the
sync server and stop after migration is complete or the user elects to “unlink”
their sync account. In other words, it is expected that users with Sync setup
for FxA or with sync unconfigured will not collect data, and that for users
where data is collected, the collection will only be for a relatively short
period.

Version 1

Version 1 was introduced with Firefox 37 and includes the following properties:

	state

	Corresponds to either a STATE_USER_* string or a STATE_INTERNAL_* string in
FxaMigration.jsm. This reflects a state where we are waiting for the user,
or waiting for some internal process to complete on the way to completing
the migration.

	declined

	Corresponds to the number of times the user closed the migration infobar.

	unlinked

	Set if the user declined to migrate and instead “unlinked” Sync from the
browser.

	accepted

	Corresponds to the number of times the user explicitly elected to start or
continue the migration - it counts how often the user clicked on any UI
created specifically for migration. The “ideal” UX for migration would see
this at exactly 1, some known edge-cases (eg, browser restart required to
finish) could expect this to be 2, and anything more means we are doing
something wrong.

org.mozilla.sysinfo.sysinfo

This measurement contains basic information about the system the application
is running on.

Version 2

This version debuted with Firefox 29 on desktop.

A single property was introduced.

	isWow64

	If present, this property indicates whether the machine supports WoW64.
This property can be used to identify whether the host machine is 64-bit.

This property is only present on Windows machines. It is the preferred way
to identify 32- vs 64-bit support in that environment.

Version 1

The following properties may be available:

	cpuCount

	Integer number of CPUs/cores in the machine.

	memoryMB

	Integer megabytes of memory in the machine.

	manufacturer

	The manufacturer of the device.

	device

	The name of the device (like model number).

	hardware

	Unknown.

	name

	OS name.

	version

	OS version.

	architecture

	OS architecture that the application is built for. This is not the
actual system architecture.

Example

"org.mozilla.sysinfo.sysinfo": {
 "_v": 1,
 "cpuCount": 8,
 "memoryMB": 8192,
 "architecture": "x86-64",
 "name": "Darwin",
 "version": "12.2.0"
}

org.mozilla.translation.translation

This daily measurement contains information about the usage of the translation
feature. It is a special telemetry measurement which will only be recorded in
FHR if telemetry is enabled.

Version 1

Daily counts are reported in the following properties:

	translationOpportunityCount

	Integer count of the number of opportunities there were to translate a page.

	missedTranslationOpportunityCount

	Integer count of the number of missed opportunities there were to translate a page.
A missed opportunity is when the page language is not supported by the translation
provider.

	pageTranslatedCount

	Integer count of the number of pages translated.

	charactersTranslatedCount

	Integer count of the number of characters translated.

	detectedLanguageChangedBefore

	Integer count of the number of times the user manually adjusted the detected
language before translating.

	detectedLanguageChangedAfter

	Integer count of the number of times the user manually adjusted the detected
language after having first translated the page.

	targetLanguageChanged

	Integer count of the number of times the user manually adjusted the target
language.

	deniedTranslationOffer

	Integer count of the number of times the user opted-out offered
page translation, either by the Not Now button or by the notification’s
close button in the “offer” state.

	autoRejectedTranlationOffer

	Integer count of the number of times the user is not offered page
translation because they had previously clicked “Never translate this
language” or “Never translate this site”.

	showOriginalContent

	Integer count of the number of times the user activated the Show Original
command.

Additional daily counts broken down by language are reported in the following
properties:

	translationOpportunityCountsByLanguage

	A mapping from language to count of opportunities to translate that
language.

	missedTranslationOpportunityCountsByLanguage

	A mapping from language to count of missed opportunities to translate that
language.

	pageTranslatedCountsByLanguage

	A mapping from language to the counts of pages translated from that
language. Each language entry will be an object containing a “total” member
along with individual counts for each language translated to.

Other properties:

	detectLanguageEnabled

	Whether automatic language detection is enabled. This is an integer, 0 or 1.

	showTranslationUI

	Whether the translation feature UI will be shown. This is an integer, 0 or 1.

Example

"org.mozilla.translation.translation": {
 "_v": 1,
 "detectLanguageEnabled": 1,
 "showTranslationUI": 1,
 "translationOpportunityCount": 134,
 "missedTranslationOpportunityCount": 32,
 "pageTranslatedCount": 6,
 "charactersTranslatedCount": "1126",
 "detectedLanguageChangedBefore": 1,
 "detectedLanguageChangedAfter": 2,
 "targetLanguageChanged": 0,
 "deniedTranslationOffer": 3,
 "autoRejectedTranlationOffer": 1,
 "showOriginalContent": 2,
 "translationOpportunityCountsByLanguage": {
 "fr": 100,
 "es": 34
 },
 "missedTranslationOpportunityCountsByLanguage": {
 "it": 20,
 "nl": 10,
 "fi": 2
 },
 "pageTranslatedCountsByLanguage": {
 "fr": {
 "total": 6,
 "es": 5,
 "en": 1
 }
 }
}

org.mozilla.experiments.info

Daily measurement reporting information about the Telemetry Experiments service.

Version 1

Property:

	lastActive

	ID of the final Telemetry Experiment that is active on a given day, if any.

Version 2

Adds an additional optional property:

	lastActiveBranch

	If the experiment uses branches, the branch identifier string.

Example

"org.mozilla.experiments.info": {
 "_v": 2,
 "lastActive": "some.experiment.id",
 "lastActiveBranch": "control"
}

org.mozilla.uitour.treatment

Daily measurement reporting information about treatment tagging done
by the UITour module.

Version 1

Daily text values in the following properties:

	<tag>:

	Array of discrete strings corresponding to calls for setTreatmentTag(tag, value).

Example

"org.mozilla.uitour.treatment": {
 "_v": 1,
 "treatment": [
 "optin",
 "optin-DNT"
],
 "another-tag": [
 "foobar-value"
]
}

org.mozilla.passwordmgr.passwordmgr

Daily measurement reporting information about the Password Manager

Version 1

Property:

	numSavedPasswords

	number of passwords saved in the Password Manager

	enabled

	Whether or not the user has disabled the Password Manager in prefernces

Example

"org.mozilla.passwordmgr.passwordmgr": {
 "_v": 1,
 "numSavedPasswords": 5,
 "enabled": 0,
}

Version 2

More detailed measurements of login forms & their behavior

	numNewSavedPasswordsInSession

	Number of passwords saved to the password manager this session.

	numSuccessfulFills

	Number of times the password manager filled in password fields for user this session.

	numTotalLoginsEncountered

	Number of times a login form was encountered by the user in the session.

Example

	::

	
	“org.mozilla.passwordmgr.passwordmgr”: {

	“_v”: 2,
“numSavedPasswords”: 32,
“enabled”: 1,
“numNewSavedPasswords”: 5,
“numSuccessfulFills”: 11,
“numTotalLoginsEncountered”: 23,

}

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Telemetry

 	Firefox Health Report (Obsolete)

Identifiers

Firefox Health Report records some identifiers to keep track of clients
and uploaded documents.

Identifier Types

Document/Upload IDs

A random UUID called the Document ID or Upload ID is generated when the FHR
client creates or uploads a new document.

When clients generate a new Document ID, they persist this ID to disk
before the upload attempt.

As part of the upload, the client sends all old Document IDs to the server
and asks the server to delete them. In well-behaving clients, the server
has a single record for each client with a randomly-changing Document ID.

Client IDs

A Client ID is an identifier that attempts to uniquely identify an
individual FHR client. Please note the emphasis on attempts in that last
sentence: Client IDs do not guarantee uniqueness.

The Client ID is generated when the client first runs or as needed.

The Client ID is transferred to the server as part of every upload. The
server is thus able to affiliate multiple document uploads with a single
Client ID.

Client ID Versions

The semantics for how a Client ID is generated are versioned.

	Version 1

	The Client ID is a randomly-generated UUID.

History of Identifiers

In the beginning, there were just Document IDs. The thinking was clients
would clean up after themselves and leave at most 1 active document on the
server.

Unfortunately, this did not work out. Using brute force analysis to
deduplicate records on the server, a number of interesting patterns emerged.

	Orphaning

	Clients would upload a new payload while not deleting the old payload.

	Divergent records

	Records would share data up to a certain date and then the data would
almost completely diverge. This appears to be indicative of profile
copying.

	Rollback

	Records would share data up to a certain date. Each record in this set
would contain data for a day or two but no extra data. This could be
explained by filesystem rollback on the client.

A significant percentage of the records on the server belonged to
misbehaving clients. Identifying these records was extremely resource
intensive and error-prone. These records were undermining the ability
to use Firefox Health Report data.

Thus, the Client ID was born. The intent of the Client ID was to
uniquely identify clients so the extreme effort required and the
questionable reliability of deduplicating server data would become
problems of the past.

The Client ID was originally a randomly-generated UUID (version 1). This
allowed detection of orphaning and rollback. However, these version 1
Client IDs were still susceptible to use on multiple profiles and
machines if the profile was copied.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

Crash Reporter

Overview

The crash reporter is a subsystem to record and manage application
crash data.

While the subsystem is known as crash reporter, it helps to think of
it more as a process dump manager. This is because the heart of this
subsystem is really managing process dump files and these files are
created not only from process crashes but also from hangs and other
exceptional events.

The crash reporter subsystem is composed of a number of pieces working
together.

	Breakpad

	Breakpad is a library and set of tools to make collecting process
information (notably dumps from crashes) easy. Breakpad is a 3rd
party project (originaly developed by Google) that is imported into
the tree.

	Dump files

	Breakpad produces files called dump files that hold process data
(stacks, heap data, etc).

	Crash Reporter Client

	The crash reporter client is a standalone executable that is launched
to handle dump files. This application optionally submits crashes to
Mozilla (or the configured server).

How Main-Process Crash Handling Works

The crash handler is hooked up very early in the Gecko process lifetime.
It all starts in XREMain::XRE_mainInit() from nsAppRunner.cpp.
Assuming crash reporting is enabled, this startup function registers an
exception handler for the process and tells the crash reporter subsystem
about basic metadata such as the application name and version.

The registration of the crash reporter exception handler doubles as
initialization of the crash reporter itself. This happens in
CrashReporter::SetExceptionHandler() from nsExceptionHandler.cpp.
The crash reporter figures out what application to use for reporting
dumped crashes and where to store these dump files on disk. The Breakpad
exception handler (really just a mechanism for dumping process state) is
initialized as part of this function. The Breakpad exception handler is
a google_breakpad::ExceptionHandler instance and it’s stored as
gExceptionHandler.

As the application runs, various other systems may write annotations
or notes to the crash reporter to indicate state of the application,
help with possible reasons for a current or future crash, etc. These are
performed via CrashReporter::AnnotateCrashReport() and
CrashReporter::AppendAppNotesToCrashReport() from
nsExceptionHandler.h.

For well running applications, this is all that happens. However, if a
crash or similar exceptional event occurs (such as a hang), we need to
write a crash report.

When an event worthy of writing a dump occurs, the Breakpad exception
handler is invoked and Breakpad does its thing. When Breakpad has
finished, it calls back into CrashReporter::MinidumpCallback() from
nsExceptionHandler.cpp to tell the crash reporter about what was
written.

MinidumpCallback() performs a number of actions once a dump has been
written. It writes a file with the time of the crash so other systems can
easily determine the time of the last crash. It supplements the dump
file with an extra file containing Mozilla-specific metadata. This data
includes the annotations set via CrashReporter::AnnotateCrashReport()
as well as time since last crash, whether garbage collection was active at
the time of the crash, memory statistics, etc.

If the crash reporter client is enabled, MinidumpCallback() invokes
it. It simply tries to create a new crash reporter client process (e.g.
crashreporter.exe) with the path to the written minidump file as an
argument.

The crash reporter client performs a number of roles. There’s a lot going
on, so you may want to look at main() in crashreporter.cpp. First,
it verifies the dump data is sane. If it isn’t (e.g. required metadata is
missing), the dump data is ignored. If dump data looks sane, the dump data
is moved into the pending directory for the configured data directory
(defined via the MOZ_CRASHREPORTER_DATA_DIRECTORY environment variable
or from the UI). Once this is done, the main crash reporter UI is displayed
via UIShowCrashUI(). The crash reporter UI is platform specific: there
are separate versions for Windows, OS X, and various *NIX presentation
flavors (such as GTK). The basic gist is a dialog is displayed to the user
and the user has the opportunity to submit this dump data to a remote
server.

If a dump is submitted via the crash reporter, the raw dump files are
removed from the pending directory and a file containing the
crash ID from the remote server for the submitted dump is created in the
submitted directory.

If the user chooses not to submit a dump in the crash reporter UI, the dump
files are deleted.

And that’s pretty much what happens when a crash/dump is written!

Plugin and Child Process Crashes

Crashes in plugin and child processes are also managed by the crash
reporting subsystem.

Child process crashes are handled by the mozilla::dom::CrashReporterParent
class defined in dom/ipc. When a child process crashes, the toplevel IPDL
actor should check for it by calling TakeMinidump in its ActorDestroy
Method: see mozilla::plugins::PluginModuleParent::ActorDestroy and
mozilla::plugins::PluginModuleParent::ProcessFirstMinidump. That method
is responsible for calling
mozilla::dom::CrashReporterParent::GenerateCrashReportForMinidump with
appropriate crash annotations specific to the crash. All child-process
crashes are annotated with a ProcessType annotation, such as “content” or
“plugin”.

Submission of child process crashes is handled by application code. This
code prompts the user to submit crashes in context-appropriate UI and then
submits the crashes using CrashSubmit.jsm.

Memory Reports

When a process detects that it is running low on memory, a memory report is
saved. If the process crashes, the memory report will be included with the crash
report. nsThread::SaveMemoryReportNearOOM() checks to see if the process is
low on memory every 30 seconds at most and saves a report every 3 minutes at
most. Since a child process cannot actually save to the hard drive, it instead
notifies its parent process, which saves the report for it. If a crash does
occur, the memory report is moved to the pending directory with the other dump
data and an annotation is added to indicate the presence of the report. This
happens in nsExceptionHandler.cpp, but occurs in different functions
depending on what process crashed. When the main process crashes, this happens
in MinidumpCallback(). When a child process crashes, it happens in
OnChildProcessDumpRequested(), with the annotation being added in
WriteExtraData().

Flash Process Crashes

On Windows Vista+, the Adobe Flash plugin creates two extra processes in its
Firefox plugin to implement OS-level sandboxing. In order to catch crashes in
these processes, Firefox injects a crash report handler into the process using the code at InjectCrashReporter.cpp. When these crashes occur, the
ProcessType=plugin annotation is present, and an additional annotation
FlashProcessDump has the value “Sandbox” or “Broker”.

Plugin Hangs

Plugin hangs are handled as crash reports. If a plugin doesn’t respond to an
IPC message after 60 seconds, the plugin IPC code will take minidumps of all
of the processes involved and then kill the plugin.

In this case, there will be only one .ini file with the crash report metadata,
but there will be multiple dump files: at least one for the browser process and
one for the plugin process, and perhaps also additional dumps for the Flash
sandbox and broker processes. All of these files are submitted together as a
unit. Before submission, the filenames of the files are linked:

	uuid.ini - annotations, includes an additional_minidumps field

	uuid.dmp - plugin process dump file

	uuid-<other>.dmp - other process dump file as listed in additional_minidumps

Browser Hangs

There is a feature of Firefox that will crash Firefox if it stops processing
messages after a certain period of time. This feature doesn’t work well and is
disabled by default. See xpcom/threads/HangMonitor.cpp. Hang crashes
are annotated with Hang=1.

about:crashes

If the crash reporter subsystem is enabled, the about:crashes
page will be registered with the application. This page provides
information about previous and submitted crashes.

It is also possible to submit crashes from about:crashes.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

Supbrocess Module

The Subprocess module allows a caller to spawn a native host executable, and
communicate with it asynchronously over its standard input and output pipes.

Processes are launched asynchronously Subprocess.call method, based
on the properties of a single options object. The method returns a promise
which resolves, once the process has successfully launched, to a Process
object, which can be used to communicate with and control the process.

A simple Hello World invocation, which writes a message to a process, reads it
back, logs it, and waits for the process to exit looks something like:

let proc = await Subprocess.call({
 command: "/bin/cat",
});

proc.stdin.write("Hello World!");

let result = await proc.stdout.readString();
console.log(result);

proc.stdin.close();
let {exitCode} = await proc.wait();

Input and Output Redirection

Communication with the child process happens entirely via one-way pipes tied
to its standard input, standard output, and standard error file descriptors.
While standard input and output are always redirected to pipes, standard error
is inherited from the parent process by default. Standard error can, however,
optionally be either redirected to its own pipe or merged into the standard
output pipe.

The module is designed primarily for use with processes following a strict
IO protocol, with predictable message sizes. Its read operations, therefore,
either complete after reading the exact amount of data specified, or do not
complete at all. For cases where this is not desirable, read() and
readString may be called without any length argument, and will return a
chunk of data of an arbitrary size.

Process and Pipe Lifecycles

Once the process exits, any buffered data from its output pipes may still be
read until the pipe is explicitly closed. Unless the pipe is explicitly
closed, however, any pending buffered data must be read from the pipe, or
the resources associated with the pipe will not be freed.

Beyond this, no explicit cleanup is required for either processes or their
pipes. So long as the caller ensures that the process exits, and there is no
pending input to be read on its stdout or stderr pipes, all resources
will be freed automatically.

The preferred way to ensure that a process exits is to close its input pipe
and wait for it to exit gracefully. Processes which haven’t exited gracefully
by shutdown time, however, must be forcibly terminated:

let proc = await Subprocess.call({
 command: "/usr/bin/subprocess.py",
});

// Kill the process if it hasn't gracefully exited by shutdown time.
let blocker = () => proc.kill();

AsyncShutdown.profileBeforeChange.addBlocker(
 "Subprocess: Killing hung process",
 blocker);

proc.wait().then(() => {
 // Remove the shutdown blocker once we've exited.
 AsyncShutdown.profileBeforeChange.removeBlocker(blocker);

 // Close standard output, in case there's any buffered data we haven't read.
 proc.stdout.close();
});

// Send a message to the process, and close stdin, so the process knows to
// exit.
proc.stdin.write(message);
proc.stdin.close();

In the simpler case of a short-running process which takes no input, and exits
immediately after producing output, it’s generally enough to simply read its
output stream until EOF:

let proc = await Subprocess.call({
 command: await Subprocess.pathSearch("ifconfig"),
});

// Read all of the process output.
let result = "";
let string;
while ((string = await proc.stdout.readString())) {
 result += string;
}
console.log(result);

// The output pipe is closed and no buffered data remains to be read.
// This means the process has exited, and no further cleanup is necessary.

Bidirectional IO

When performing bidirectional IO, special care needs to be taken to avoid
deadlocks. While all IO operations in the Subprocess API are asynchronous,
careless ordering of operations can still lead to a state where both processes
are blocked on a read or write operation at the same time. For example,

let proc = await Subprocess.call({
 command: "/bin/cat",
});

let size = 1024 * 1024;
await proc.stdin.write(new ArrayBuffer(size));

let result = await proc.stdout.read(size);

The code attempts to write 1MB of data to an input pipe, and then read it back
from the output pipe. Because the data is big enough to fill both the input
and output pipe buffers, though, and because the code waits for the write
operation to complete before attempting any reads, the cat process will
block trying to write to its output indefinitely, and never finish reading the
data from its standard input.

In order to avoid the deadlock, we need to avoid blocking on the write
operation:

let size = 1024 * 1024;
proc.stdin.write(new ArrayBuffer(size));

let result = await proc.stdout.read(size);

There is no silver bullet to avoiding deadlocks in this type of situation,
though. Any input operations that depend on output operations, or vice versa,
have the possibility of triggering deadlocks, and need to be thought out
carefully.

Arguments

Arguments may be passed to the process in the form an array of strings.
Arguments are never split, or subjected to any sort of shell expansion, so the
target process will receive the exact arguments array as passed to
Subprocess.call. Argument 0 will always be the full path to the
executable, as passed via the command argument:

let proc = await Subprocess.call({
 command: "/bin/sh",
 arguments: ["-c", "echo -n $0"],
});

let output = await proc.stdout.readString();
assert(output === "/bin/sh");

Process Environment

By default, the process is launched with the same environment variables and
working directory as the parent process, but either can be changed if
necessary. The working directory may be changed simply by passing a
workdir option:

let proc = await Subprocess.call({
 command: "/bin/pwd",
 workdir: "/tmp",
});

let output = await proc.stdout.readString();
assert(output === "/tmp\n");

The process’s environment variables can be changed using the environment
and environmentAppend options. By default, passing an environment
object replaces the process’s entire environment with the properties in that
object:

let proc = await Subprocess.call({
 command: "/bin/pwd",
 environment: {FOO: "BAR"},
});

let output = await proc.stdout.readString();
assert(output === "FOO=BAR\n");

In order to add variables to, or change variables from, the current set of
environment variables, the environmentAppend object must be passed in
addition:

let proc = await Subprocess.call({
 command: "/bin/pwd",
 environment: {FOO: "BAR"},
 environmentAppend: true,
});

let output = "";
while ((string = await proc.stdout.readString())) {
 output += string;
}

assert(output.includes("FOO=BAR\n"));

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

Toolkit modules

The /toolkit/modules directory contains a number of self-contained toolkit modules considered small enough that they do not deserve individual directories.

	AsyncShutdown

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Toolkit modules

AsyncShutdown

During shutdown of the process, subsystems are closed one after another. AsyncShutdown is a module dedicated to express shutdown-time dependencies between:
- services and their clients;
- shutdown phases (e.g. profile-before-change) and their clients.

Barriers: Expressing shutdown dependencies towards a service

Consider a service FooService. At some point during the shutdown of the process, this service needs to:
- inform its clients that it is about to shut down;
- wait until the clients have completed their final operations based on FooService (often asynchronously);
- only then shut itself down.

This may be expressed as an instance of AsyncShutdown.Barrier. An instance of AsyncShutdown.Barrier provides:
- a capability client that may be published to clients, to let them register or unregister blockers;
- methods for the owner of the barrier to let it consult the state of blockers and wait until all client-registered blockers have been resolved.

Shutdown timeouts

By design, an instance of AsyncShutdown.Barrier will cause a crash
if it takes more than 60 seconds awake for its clients to lift or
remove their blockers (awake meaning that seconds during which the
computer is asleep or too busy to do anything are not counted). This
mechanism helps ensure that we do not leave the process in a state in
which it can neither proceed with shutdown nor be relaunched.

If the CrashReporter is enabled, this crash will report:
- the name of the barrier that failed;
- for each blocker that has not been released yet:

	the name of the blocker;

	the state of the blocker, if a state function has been provided (see Example 3: More sophisticated Barrier client).

Example 1: Simple Barrier client

The following snippet presents an example of a client of FooService that has a shutdown dependency upon FooService. In this case, the client wishes to ensure that FooService is not shutdown before some state has been reached. An example is clients that need write data asynchronously and need to ensure that they have fully written their state to disk before shutdown, even if due to some user manipulation shutdown takes place immediately.

// Some client of FooService called FooClient

Components.utils.import("resource://gre/modules/FooService.jsm", this);

// FooService.shutdown is the `client` capability of a `Barrier`.
// See example 2 for the definition of `FooService.shutdown`
FooService.shutdown.addBlocker(
 "FooClient: Need to make sure that we have reached some state",
 () => promiseReachedSomeState
);
// promiseReachedSomeState should be an instance of Promise resolved once
// we have reached the expected state

Example 2: Simple Barrier owner

The following snippet presents an example of a service FooService that
wishes to ensure that all clients have had a chance to complete any
outstanding operations before FooService shuts down.

// Module FooService

Components.utils.import("resource://gre/modules/AsyncShutdown.jsm", this);
Components.utils.import("resource://gre/modules/Task.jsm", this);

this.exports = ["FooService"];

let shutdown = new AsyncShutdown.Barrier("FooService: Waiting for clients before shutting down");

// Export the `client` capability, to let clients register shutdown blockers
FooService.shutdown = shutdown.client;

// This Task should be triggered at some point during shutdown, generally
// as a client to another Barrier or Phase. Triggering this Task is not covered
// in this snippet.
let onshutdown = Task.async(function*() {
 // Wait for all registered clients to have lifted the barrier
 yield shutdown.wait();

 // Now deactivate FooService itself.
 // ...
});

Frequently, a service that owns a AsyncShutdown.Barrier is itself a client of another Barrier.

Example 3: More sophisticated Barrier client

The following snippet presents FooClient2, a more sophisticated client of FooService that needs to perform a number of operations during shutdown but before the shutdown of FooService. Also, given that this client is more sophisticated, we provide a function returning the state of FooClient2 during shutdown. If for some reason FooClient2’s blocker is never lifted, this state can be reported as part of a crash report.

// Some client of FooService called FooClient2

Components.utils.import("resource://gre/modules/FooService.jsm", this);

FooService.shutdown.addBlocker(
 "FooClient2: Collecting data, writing it to disk and shutting down",
 () => Blocker.wait(),
 () => Blocker.state
);

let Blocker = {
 // This field contains information on the status of the blocker.
 // It can be any JSON serializable object.
 state: "Not started",

 wait: Task.async(function*() {
 // This method is called once FooService starts informing its clients that
 // FooService wishes to shut down.

 // Update the state as we go. If the Barrier is used in conjunction with
 // a Phase, this state will be reported as part of a crash report if FooClient fails
 // to shutdown properly.
 this.state = "Starting";

 let data = yield collectSomeData();
 this.state = "Data collection complete";

 try {
 yield writeSomeDataToDisk(data);
 this.state = "Data successfully written to disk";
 } catch (ex) {
 this.state = "Writing data to disk failed, proceeding with shutdown: " + ex;
 }

 yield FooService.oneLastCall();
 this.state = "Ready";
 }.bind(this)
};

Example 4: A service with both internal and external dependencies

// Module FooService2

Components.utils.import("resource://gre/modules/AsyncShutdown.jsm", this);
Components.utils.import("resource://gre/modules/Task.jsm", this);
Components.utils.import("resource://gre/modules/Promise.jsm", this);

this.exports = ["FooService2"];

let shutdown = new AsyncShutdown.Barrier("FooService2: Waiting for clients before shutting down");

// Export the `client` capability, to let clients register shutdown blockers
FooService2.shutdown = shutdown.client;

// A second barrier, used to avoid shutting down while any connections are open.
let connections = new AsyncShutdown.Barrier("FooService2: Waiting for all FooConnections to be closed before shutting down");

let isClosed = false;

FooService2.openFooConnection = function(name) {
 if (isClosed) {
 throw new Error("FooService2 is closed");
 }

 let deferred = Promise.defer();
 connections.client.addBlocker("FooService2: Waiting for connection " + name + " to close", deferred.promise);

 // ...

 return {
 // ...
 // Some FooConnection object. Presumably, it will have additional methods.
 // ...
 close: function() {
 // ...
 // Perform any operation necessary for closing
 // ...

 // Don't hoard blockers.
 connections.client.removeBlocker(deferred.promise);

 // The barrier MUST be lifted, even if removeBlocker has been called.
 deferred.resolve();
 }
 };
};

// This Task should be triggered at some point during shutdown, generally
// as a client to another Barrier. Triggering this Task is not covered
// in this snippet.
let onshutdown = Task.async(function*() {
 // Wait for all registered clients to have lifted the barrier.
 // These clients may open instances of FooConnection if they need to.
 yield shutdown.wait();

 // Now stop accepting any other connection request.
 isClosed = true;

 // Wait for all instances of FooConnection to be closed.
 yield connections.wait();

 // Now finish shutting down FooService2
 // ...
});

Phases: Expressing dependencies towards phases of shutdown

The shutdown of a process takes place by phase, such as:
- profileBeforeChange (once this phase is complete, there is no guarantee that the process has access to a profile directory);
- webWorkersShutdown (once this phase is complete, JavaScript does not have access to workers anymore);
- ...

Much as services, phases have clients. For instance, all users of web workers MUST have finished using their web workers before the end of phase webWorkersShutdown.

Module AsyncShutdown provides pre-defined barriers for a set of
well-known phases. Each of the barriers provided blocks the corresponding shutdown
phase until all clients have lifted their blockers.

List of phases

AsyncShutdown.profileChangeTeardown

The client capability for clients wishing to block asynchronously
during observer notification “profile-change-teardown”.

AsyncShutdown.profileBeforeChange

The client capability for clients wishing to block asynchronously
during observer notification “profile-change-teardown”. Once the
barrier is resolved, clients other than Telemetry MUST NOT access
files in the profile directory and clients MUST NOT use Telemetry
anymore.

AsyncShutdown.sendTelemetry

The client capability for clients wishing to block asynchronously
during observer notification “profile-before-change-telemetry”.
Once the barrier is resolved, Telemetry must stop its operations.

AsyncShutdown.webWorkersShutdown

The client capability for clients wishing to block asynchronously
during observer notification “web-workers-shutdown”. Once the phase
is complete, clients MUST NOT use web workers.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

Add-on Manager

This is the nascent documentation of the Add-on Manager code.

The public Add-on Manager interfaces are documented on MDN:

https://developer.mozilla.org/en-US/Add-ons/Add-on_Manager

	Firefox System Add-on Update Protocol

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Add-on Manager

Firefox System Add-on Update Protocol

This document describes the protocol that Firefox uses when retrieving updates
for System Add-ons from the automatic update service (AUS, currently Balrog [https://wiki.mozilla.org/Balrog]),
and the expected behavior of Firefox based on the updater service’s response.

System Add-ons

System add-ons:

	Are add-ons that ship with Firefox and cannot be disabled

	Can be updated by Firefox depending on the AUS response to Firefox’s update
request

	Are stored in two locations:
	The default set ships with Firefox and is stored in the application
directory.

	The update set is stored in the user’s profile directory. If an add-on
is both in the update and default set, the update version gets precedence.

Update Request

To determine what updates to install, Firefox makes an HTTP GET request to
AUS once a day via a URL of the form:

https://aus5.mozilla.org/update/3/SystemAddons/%VERSION%/%BUILD_ID%/%BUILD_TARGET%/%LOCALE%/%CHANNEL%/%OS_VERSION%/%DISTRIBUTION%/%DISTRIBUTION_VERSION%/update.xml

The path segments surrounded by % symbols are variable fields that Firefox
fills in with information about itself and the environment it’s running in:

	VERSION

	Firefox version number

	BUILD_ID

	Build ID

	BUILD_TARGET

	Build target

	LOCALE

	Build locale

	CHANNEL

	Update channel

	OS_VERSION

	OS Version

	DISTRIBUTION

	Firefox Distribution

	DISTRIBUTION_VERSION

	Firefox Distribution version

Update Response

AUS should respond with an XML document that looks something like this:

<?xml version="1.0"?>
<updates>
 <addons>
 <addon id="loop@mozilla.org" URL="https://ftp.mozilla.org/pub/system-addons/hello/loop@mozilla.org-1.0.xpi" hashFunction="sha512" hashValue="abcdef123" size="1234" version="1.0"/>
 <addon id="pocket@mozilla.org" URL="https://ftp.mozilla.org/pub/system-addons/pocket/pocket@mozilla.org-1.0.xpi" hashFunction="sha512" hashValue="abcdef123" size="1234" version="1.0"/>
 </addons>
</updates>

	The root element is <updates>, used for all updater responses.

	The only child of <updates> is <addons>, which represents a list of
system add-ons to update.

	Within <addons> are several <addon> tags, each one corresponding to a
system add-on to update.

<addon> tags must have the following attributes:

	id

	The extension ID

	URL

	URL to a signed XPI of the specified add-on version to download

	hashFunction

	Identifier of the hash function used to generate the hashValue attribute.

	hashValue

	Hash of the XPI file linked from the URL attribute, calculated using the function specified in the hashValue attribute.

	size

	Size (in bytes) of the XPI file linked from the URL attribute.

	version

	Version number of the add-on

Update Behavior

After receiving the update response, Firefox modifies the update add-ons
according to the following algorithm:

	If the <addons> tag is empty (<addons></addons>) in the response,
disable all system add-ons, including both the update and default
sets.

	If no add-ons were specified in the response (i.e. the <addons> tag
is not present), do nothing and finish.

	If the update add-on set is equal to the set of add-ons specified in the
update response, do nothing and finish.

	If the set of default add-ons is equal to the set of add-ons specified in
the update response, remove all the update add-ons and finish.

	Download each add-on specified in the update response and store them in the
“downloaded add-on set”. A failed download must abort the entire system
add-on update.

	Validate the downloaded add-ons. The following must be true for all
downloaded add-ons, or the update process is aborted:
	The ID and version of the downloaded add-on must match the specified ID or
version in the update response.

	The hash provided in the update response must match the downloaded add-on
file.

	The downloaded add-on file size must match the size given in the update
response.

	The add-on must be compatible with Firefox (i.e. it must not be for a
different application, such as Thunderbird).

	The add-on must be packed (i.e. be an XPI file).

	The add-on must be restartless.

	The add-on must be signed by the system add-on root certificate.

	Once all downloaded add-ons are validated, install them into the profile
directory as part of the update set.

	Disable any default add-ons that were not present in the update response.

Notes on the update process:

	Add-ons are considered “equal” if they have the same ID and version number.

Examples

The follow section describes common situations that we have or expect to run
into and how the protocol described above handles them.

For simplicity, unless otherwise specified, all examples assume that there are
two system add-ons in existence: Loop and Pocket.

Basic

A user has Firefox 45, which shipped with Loop 1.0 and Pocket 1.0. We want to
update users to Loop 2.0. AUS sends out the following update response:

<updates>
 <addons>
 <addon id="loop@mozilla.org" URL="https://ftp.mozilla.org/pub/system-addons/hello/loop@mozilla.org-2.0.xpi" hashFunction="sha512" hashValue="abcdef123" size="1234" version="2.0"/>
 <addon id="pocket@mozilla.org" URL="https://ftp.mozilla.org/pub/system-addons/pocket/pocket@mozilla.org-1.0.xpi" hashFunction="sha512" hashValue="abcdef123" size="1234" version="1.0"/>
 </addons>
</updates>

Firefox will download Loop 2.0 and Pocket 1.0 and store them in the profile directory.

Missing Add-on

A user has Firefox 45, which shipped with Loop 1.0 and Pocket 1.0. We want to
update users to Loop 2.0, but accidentally forget to specify Pocket in the
update response. AUS sends out the following:

<updates>
 <addons>
 <addon id="loop@mozilla.org" URL="https://ftp.mozilla.org/pub/system-addons/hello/loop@mozilla.org-2.0.xpi" hashFunction="sha512" hashValue="abcdef123" size="1234" version="2.0"/>
 </addons>
</updates>

Firefox will download Loop 2.0 and store it in the profile directory. It will
disable Pocket completely.

Disable all system add-ons

A response from AUS with an empty add-on set will disable all system add-ons:

<updates>
 <addons></addons>
</updates>

Rollout

A user has Firefox 45, which shipped with Loop 1.0 and Pocket 1.0. We want to
rollout Loop 2.0 at a 10% sample rate. 10% of the time, AUS sends out:

<updates>
 <addons>
 <addon id="loop@mozilla.org" URL="https://ftp.mozilla.org/pub/system-addons/hello/loop@mozilla.org-2.0.xpi" hashFunction="sha512" hashValue="abcdef123" size="1234" version="2.0"/>
 <addon id="pocket@mozilla.org" URL="https://ftp.mozilla.org/pub/system-addons/pocket/pocket@mozilla.org-1.0.xpi" hashFunction="sha512" hashValue="abcdef123" size="1234" version="1.0"/>
 </addons>
</updates>

With this response, Firefox will download Pocket 1.0 and Loop 2.0 and install
them into the profile directory.

The other 90% of the time, AUS sends out an empty response:

<updates></updates>

With the empty response, Firefox will not make any changes. This means users who
haven’t seen the 10% update response will stay on Loop 1.0, and users who have
seen it will stay on Loop 2.0.

Once we’re happy with the rollout and want to switch to 100%, AUS will send the
10% update response to 100% of users, upgrading everyone to Loop 2.0.

Rollback

This example continues from the “Rollout” example. If, during the 10% rollout,
we find a major issue with Loop 2.0, we want to roll all users back to Loop 1.0.
AUS sends out the following:

<updates>
 <addons>
 <addon id="loop@mozilla.org" URL="https://ftp.mozilla.org/pub/system-addons/hello/loop@mozilla.org-1.0.xpi" hashFunction="sha512" hashValue="abcdef123" size="1234" version="1.0"/>
 <addon id="pocket@mozilla.org" URL="https://ftp.mozilla.org/pub/system-addons/pocket/pocket@mozilla.org-1.0.xpi" hashFunction="sha512" hashValue="abcdef123" size="1234" version="1.0"/>
 </addons>
</updates>

For users who have updated, Firefox will download Loop 1.0 and Pocket 1.0 and
install them into the profile directory. For users that haven’t yet updated,
Firefox will see that the default add-on set matches the set in the update
ping and clear the update add-on set.

Disable an Add-on

A user has Firefox 45, with Pocket 1.0 and Loop 1.0. Loop 1.0 ends up having a
serious bug, and we want to disable the add-on completely while we work on a
fix. AUS sends out the following:

<updates>
 <addons>
 <addon id="pocket@mozilla.org" URL="https://ftp.mozilla.org/pub/system-addons/pocket/pocket@mozilla.org-1.0.xpi" hashFunction="sha512" hashValue="abcdef123" size="1234" version="1.0"/>
 </addons>
</updates>

Firefox will download Pocket 1.0 and install it to the profile directory, and disable Loop.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

Linting

Linters are used in mozilla-central to help enforce coding style and avoid bad practices. Due to the
wide variety of languages in use and the varying style preferences per team, this is not an easy
task. In addition, linters should be runnable from editors, from the command line, from review tools
and from continuous integration. It’s easy to see how the complexity of running all of these
different kinds of linters in all of these different places could quickly balloon out of control.

Mozlint is a library that accomplishes two goals:

	It provides a standard method for adding new linters to the tree, which can be as easy as
defining a json object in a .lint file. This helps keep lint related code localized, and
prevents different teams from coming up with their own unique lint implementations.

	It provides a streamlined interface for running all linters at once. Instead of running N
different lint commands to test your patch, a single mach lint command will automatically run
all applicable linters. This means there is a single API surface that other tools can use to
invoke linters.

Mozlint isn’t designed to be used directly by end users. Instead, it can be consumed by things
like mach, mozreview and taskcluster.

Linting User Guide

	Running Linters Locally

	Adding a New Linter to the Tree
	Linter Types

	LINTER Definition

	Example

	Flake8
	Run Locally

	Configuration

Indices and tables

	Index

	Module Index

	Search Page

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Linting

Running Linters Locally

You can run all the various linters in the tree using the mach lint command. Simply pass in the
directory or file you wish to lint (defaults to current working directory):

./mach lint path/to/files

Multiple paths are allowed:

./mach lint path/to/foo.js path/to/bar.py path/to/dir

Mozlint will automatically determine which types of files exist, and which linters need to be run
against them. For example, if the directory contains both JavaScript and Python files then mozlint
will automatically run both ESLint and Flake8 against those files respectively.

To restrict which linters are invoked manually, pass in -l/--linter:

./mach lint -l eslint path/to/files

Finally, mozlint can lint the files touched by a set of revisions or the working directory using
the -r/--rev and -w/--workdir arguments respectively. These work both with mercurial and
git. In the case of --rev the value is passed directly to the underlying vcs, so normal revision
specifiers will work. For example, say we want to lint all files touched by the last three commits.
In mercurial, this would be:

./mach lint -r ".~2::."

In git, this would be:

./mach lint -r "HEAD~2 HEAD"

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Linting

Adding a New Linter to the Tree

A linter is a python file with a .lint extension and a global dict called LINTER. Depending on how
complex it is, there may or may not be any actual python code alongside the LINTER definition.

Here’s a trivial example:

no-eval.lint

LINTER = {
 'name': 'EvalLinter',
 'description': "Ensures the string 'eval' doesn't show up."
 'include': "**/*.js",
 'type': 'string',
 'payload': 'eval',
}

Now no-eval.lint gets passed into LintRoller.read().

Linter Types

There are three types of linters, though more may be added in the future.

	string - fails if substring is found

	regex - fails if regex matches

	external - fails if a python function returns a non-empty result list

As seen from the example above, string and regex linters are very easy to create, but they
should be avoided if possible. It is much better to use a context aware linter for the language you
are trying to lint. For example, use eslint to lint JavaScript files, use flake8 to lint python
files, etc.

Which brings us to the third and most interesting type of linter, external. External linters call
an arbitrary python function which is responsible for not only running the linter, but ensuring the
results are structured properly. For example, an external type could shell out to a 3rd party
linter, collect the output and format it into a list of ResultContainer objects.

LINTER Definition

Each .lint file must have a variable called LINTER which is a dict containing metadata about the
linter. Here are the supported keys:

	name - The name of the linter (required)

	description - A brief description of the linter’s purpose (required)

	type - One of ‘string’, ‘regex’ or ‘external’ (required)

	payload - The actual linting logic, depends on the type (required)

	include - A list of glob patterns that must be matched (optional)

	exclude - A list of glob patterns that must not be matched (optional)

	setup - A function that sets up external dependencies (optional)

In addition to the above, some .lint files correspond to a single lint rule. For these, the
following additional keys may be specified:

	message - A string to print on infraction (optional)

	hint - A string with a clue on how to fix the infraction (optional)

	rule - An id string for the lint rule (optional)

	level - The severity of the infraction, either ‘error’ or ‘warning’ (optional)

Example

Here is an example of an external linter that shells out to the python flake8 linter:

import json
import os
import subprocess
from collections import defaultdict

from mozlint import result

FLAKE8_NOT_FOUND = """
Could not find flake8! Install flake8 and try again.
""".strip()

def lint(files, **lintargs):
 import which

 binary = os.environ.get('FLAKE8')
 if not binary:
 try:
 binary = which.which('flake8')
 except which.WhichError:
 print(FLAKE8_NOT_FOUND)
 return 1

 # Flake8 allows passing in a custom format string. We use
 # this to help mold the default flake8 format into what
 # mozlint's ResultContainer object expects.
 cmdargs = [
 binary,
 '--format',
 '{"path":"%(path)s","lineno":%(row)s,"column":%(col)s,"rule":"%(code)s","message":"%(text)s"}',
] + files

 proc = subprocess.Popen(cmdargs, stdout=subprocess.PIPE, env=os.environ)
 output = proc.communicate()[0]

 # all passed
 if not output:
 return []

 results = []
 for line in output.splitlines():
 # res is a dict of the form specified by --format above
 res = json.loads(line)

 # parse level out of the id string
 if 'code' in res and res['code'].startswith('W'):
 res['level'] = 'warning'

 # result.from_linter is a convenience method that
 # creates a ResultContainer using a LINTER definition
 # to populate some defaults.
 results.append(result.from_linter(LINTER, **res))

 return results

LINTER = {
 'name': "flake8",
 'description': "Python linter",
 'include': ['**/*.py'],
 'type': 'external',
 'payload': lint,
}

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Linting

Flake8

Flake8 [https://flake8.readthedocs.io/en/latest/] is a popular lint wrapper for python. Under the hood, it runs three other tools and
combines their results:

	pep8 [http://pep8.readthedocs.io/en/latest/] for checking style

	pyflakes [https://github.com/pyflakes/pyflakes] for checking syntax

	mccabe [https://github.com/pycqa/mccabe] for checking complexity

Run Locally

The mozlint integration of flake8 can be run using mach:

$ mach lint --linter flake8 <file paths>

Alternatively, omit the --linter flake8 and run all configured linters, which will include
flake8.

Configuration

Only directories explicitly whitelisted will have flake8 run against them. To enable flake8 linting
in a source directory, it must be added to the include directive in `tools/lint/flake8.lint.
If you wish to exclude a subdirectory of an included one, you can add it to the exclude
directive.

The default configuration file lives in topsrcdir/.flake8. The default configuration can be
overriden for a given subdirectory by creating a new .flake8 file in the subdirectory. Be warned
that .flake8 files cannot inherit from one another, so all configuration you wish to keep must
be re-defined.

Warning

Only .flake8 files that live in a directory that is explicitly included in the include
directive will be considered. See bug 1277851 [https://bugzilla.mozilla.org/show_bug.cgi?id=1277851] for more details.

For an overview of the supported configuration, see flake8’s documentation [https://flake8.readthedocs.io/en/latest/config.html].

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

Mozilla ESLint Plugin

balanced-listeners checks that every addEventListener has a
removeEventListener (and does the same for on/off).

components-imports adds the filename of imported files e.g.
Cu.import("some/path/Blah.jsm") adds Blah to the global scope.

import-globals-from When the “import-globals-from <path>” comment is found
in a file, then all globals from the file at <path> will be imported in the
current scope.

import-headjs-globals imports globals from head.js and from any files that
should be imported by head.js (as far as we can correctly resolve the path).

mark-test-function-used simply marks test (the test method) as used. This
avoids ESLint telling us that the function is never called.

no-aArgs prevents using the hungarian notation in function arguments.

no-cpows-in-tests checks if the file is a browser mochitest and,
if so, checks for possible CPOW usage.

no-single-arg-cu-import rejects calls to “Cu.import” that do not supply a
second argument (meaning they add the exported properties into global scope).

reject-importGlobalProperties rejects calls to
“Cu.importGlobalProperties”. Use of this function is undesirable in
some parts of the tree.

reject-some-requires rejects some calls to require, according
to a regexp passed in as an option.

this-top-level-scope treats top-level assignments like
this.mumble = value as declaring a global.

Note: These are string matches so we will miss situations where the parent
object is assigned to another variable e.g.:

var b = gBrowser;
b.content // Would not be detected as a CPOW.

var-only-at-top-level marks all var declarations that are not at the top
level invalid.

	Possible values for all rules

	Value
	Meaning

	0
	Deactivated

	1
	Warning

	2
	Error

Example configuration:

"rules": {
 "mozilla/balanced-listeners": 2,
 "mozilla/components-imports": 1,
 "mozilla/import-globals-from": 1,
 "mozilla/import-headjs-globals": 1,
 "mozilla/mark-test-function-used": 1,
 "mozilla/var-only-at-top-level": 1,
 "mozilla/no-cpows-in-tests": 1,
}

	balanced-listeners

	import-headjs-globals

	mark-test-function-used

	no-aArgs

	no-cpows-in-tests

	reject-importGlobalProperties

	reject-some-requires

	var-only-at-top-level

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Mozilla ESLint Plugin

balanced-listeners

Rule Details

Checks that for every occurences of ‘addEventListener’ or ‘on’ there is an
occurence of ‘removeEventListener’ or ‘off’ with the same event name.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Mozilla ESLint Plugin

import-headjs-globals

Rule Details

Import globals from head.js and from any files that were imported by
head.js (as far as we can correctly resolve the path).

The following file import patterns are supported:

	Services.scriptloader.loadSubScript(path)

	loader.loadSubScript(path)

	loadSubScript(path)

	loadHelperScript(path)

	import-globals-from path

If path does not exist because it is generated e.g.
testdir + "/somefile.js" we do our best to resolve it.

The following patterns are supported:

	Cu.import("resource://devtools/client/shared/widgets/ViewHelpers.jsm");

	loader.lazyImporter(this, "name1");

	loader.lazyRequireGetter(this, "name2"

	loader.lazyServiceGetter(this, "name3"

	XPCOMUtils.defineLazyModuleGetter(this, "setNamedTimeout", ...)

	loader.lazyGetter(this, "toolboxStrings"

	XPCOMUtils.defineLazyGetter(this, "clipboardHelper"

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Mozilla ESLint Plugin

mark-test-function-used

Rule Details

Simply marks test (the test method) as used. This avoids ESLint telling
us that the function is never called.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Mozilla ESLint Plugin

no-aArgs

Rule Details

Checks that function argument names don’t start with lowercase ‘a’ followed by a
capital letter. This is to prevent the use of Hungarian notation whereby the
first letter is a prefix that indicates the type or intended use of a variable.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Mozilla ESLint Plugin

no-cpows-in-tests

Rule Details

This rule checks if the file is a browser mochitest and, if so, checks for
possible CPOW usage by checking for the following strings:

	“gBrowser.contentWindow”

	“gBrowser.contentDocument”

	“gBrowser.selectedBrowser.contentWindow”

	“browser.contentDocument”

	“window.content”

	“content”

	“content.”

Note: These are string matches so we will miss situations where the parent
object is assigned to another variable e.g.:

var b = gBrowser;
b.content // Would not be detected as a CPOW.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Mozilla ESLint Plugin

reject-importGlobalProperties

Rule Details

Reject calls to Cu.importGlobalProperties.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Mozilla ESLint Plugin

reject-some-requires

Rule Details

This takes an option, a regular expression. Invocations of
require with a string literal argument are matched against this
regexp; and if it matches, the require use is flagged.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	Mozilla ESLint Plugin

var-only-at-top-level

Rule Details

Marks all var declarations that are not at the top level invalid.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

mach package

Subpackages

	mach.commands package
	Submodules

	mach.commands.commandinfo module

	mach.commands.settings module

	Module contents

	mach.mixin package
	Submodules

	mach.mixin.logging module

	mach.mixin.process module

	Module contents

	mach.test package
	Subpackages
	mach.test.providers package
	Submodules

	mach.test.providers.basic module

	mach.test.providers.conditions module

	mach.test.providers.conditions_invalid module

	mach.test.providers.throw module

	mach.test.providers.throw2 module

	Module contents

	Submodules

	mach.test.common module

	mach.test.test_conditions module

	mach.test.test_config module

	mach.test.test_dispatcher module

	mach.test.test_entry_point module

	mach.test.test_error_output module

	mach.test.test_logger module

	Module contents

Submodules

mach.base module

	
class mach.base.CommandContext(cwd=None, settings=None, log_manager=None, commands=None, **kwargs)

	Bases: object

Holds run-time state so it can easily be passed to command providers.

	
exception mach.base.MachError

	Bases: exceptions.Exception

Base class for all errors raised by mach itself.

	
exception mach.base.NoCommandError

	Bases: mach.base.MachError

No command was passed into mach.

	
exception mach.base.UnknownCommandError(command, verb, suggested_commands=None)

	Bases: mach.base.MachError

Raised when we attempted to execute an unknown command.

	
exception mach.base.UnrecognizedArgumentError(command, arguments)

	Bases: mach.base.MachError

Raised when an unknown argument is passed to mach.

mach.config module

This file defines classes for representing config data/settings.

Config data is modeled as key-value pairs. Keys are grouped together into named
sections. Individual config settings (options) have metadata associated with
them. This metadata includes type, default value, valid values, etc.

The main interface to config data is the ConfigSettings class. 1 or more
ConfigProvider classes are associated with ConfigSettings and define what
settings are available.

Descriptions of individual config options can be translated to multiple
languages using gettext. Each option has associated with it a domain and locale
directory. By default, the domain is the section the option is in and the
locale directory is the “locale” directory beneath the directory containing the
module that defines it.

People implementing ConfigProvider instances are expected to define a complete
gettext .po and .mo file for the en_US locale. The |mach settings locale-gen|
command can be used to populate these files.

	
class mach.config.BooleanType

	Bases: mach.config.ConfigType

	
static from_config(config, section, option)

	

	
static to_config(value)

	

	
static validate(value)

	

	
exception mach.config.ConfigException

	Bases: exceptions.Exception

	
class mach.config.ConfigSettings

	Bases: _abcoll.Mapping

Interface for configuration settings.

This is the main interface to the configuration.

A configuration is a collection of sections. Each section contains
key-value pairs.

When an instance is created, the caller first registers ConfigProvider
instances with it. This tells the ConfigSettings what individual settings
are available and defines extra metadata associated with those settings.
This is used for validation, etc.

Once ConfigProvider instances are registered, a config is populated. It can
be loaded from files or populated by hand.

ConfigSettings instances are accessed like dictionaries or by using
attributes. e.g. the section “foo” is accessed through either
settings.foo or settings[‘foo’].

Sections are modeled by the ConfigSection class which is defined inside
this one. They look just like dicts or classes with attributes. To access
the “bar” option in the “foo” section:

value = settings.foo.bar
value = settings[‘foo’][‘bar’]
value = settings.foo[‘bar’]

Assignment is similar:

settings.foo.bar = value
settings[‘foo’][‘bar’] = value
settings[‘foo’].bar = value

You can even delete user-assigned values:

del settings.foo.bar
del settings[‘foo’][‘bar’]

If there is a default, it will be returned.

When settings are mutated, they are validated against the registered
providers. Setting unknown settings or setting values to illegal values
will result in exceptions being raised.

	
class ConfigSection(config, name, settings)

	Bases: _abcoll.MutableMapping, object

Represents an individual config section.

	
get_meta(option)

	

	
options

	

	
ConfigSettings.load_file(filename)

	

	
ConfigSettings.load_files(filenames)

	Load a config from files specified by their paths.

Files are loaded in the order given. Subsequent files will overwrite
values from previous files. If a file does not exist, it will be
ignored.

	
ConfigSettings.load_fps(fps)

	Load config data by reading file objects.

	
ConfigSettings.option_help(section, option)

	Obtain the translated help messages for an option.

	
ConfigSettings.register_provider(provider)

	Register a SettingsProvider with this settings interface.

	
ConfigSettings.write(fh)

	Write the config to a file object.

	
class mach.config.ConfigType

	Bases: object

Abstract base class for config values.

	
static from_config(config, section, option)

	Obtain the value of this type from a RawConfigParser.

Receives a RawConfigParser instance, a str section name, and the str
option in that section to retrieve.

The implementation may assume the option exists in the RawConfigParser
instance.

Implementations are not expected to validate the value. But, they
should return the appropriate Python type.

	
static to_config(value)

	

	
static validate(value)

	Validates a Python value conforms to this type.

Raises a TypeError or ValueError if it doesn’t conform. Does not do
anything if the value is valid.

	
class mach.config.DefaultValue

	Bases: object

	
class mach.config.IntegerType

	Bases: mach.config.ConfigType

	
static from_config(config, section, option)

	

	
static validate(value)

	

	
class mach.config.PathType

	Bases: mach.config.StringType

	
static from_config(config, section, option)

	

	
static validate(value)

	

	
class mach.config.PositiveIntegerType

	Bases: mach.config.IntegerType

	
static validate(value)

	

	
class mach.config.StringType

	Bases: mach.config.ConfigType

	
static from_config(config, section, option)

	

	
static validate(value)

	

	
mach.config.reraise_attribute_error(func)

	Used to make sure __getattr__ wrappers around __getitem__
raise AttributeError instead of KeyError.

mach.decorators module

	
class mach.decorators.Command(name, **kwargs)

	Bases: object

Decorator for functions or methods that provide a mach command.

The decorator accepts arguments that define basic attributes of the
command. The following arguments are recognized:

	category – The string category to which this command belongs. Mach’s

	help will group commands by category.

description – A brief description of what the command does.

	parser – an optional argparse.ArgumentParser instance or callable

	that returns an argparse.ArgumentParser instance to use as the
basis for the command arguments.

For example:

@Command(‘foo’, category=’misc’, description=’Run the foo action’)
def foo(self):

pass

	
class mach.decorators.CommandArgument(*args, **kwargs)

	Bases: object

Decorator for additional arguments to mach subcommands.

This decorator should be used to add arguments to mach commands. Arguments
to the decorator are proxied to ArgumentParser.add_argument().

For example:

@Command(‘foo’, help=’Run the foo action’)
@CommandArgument(‘-b’, ‘–bar’, action=’store_true’, default=False,

help=’Enable bar mode.’)

	def foo(self):

	pass

	
class mach.decorators.CommandArgumentGroup(group_name)

	Bases: object

Decorator for additional argument groups to mach commands.

This decorator should be used to add arguments groups to mach commands.
Arguments to the decorator are proxied to
ArgumentParser.add_argument_group().

For example:

@Command(‘foo’, helps=’Run the foo action’)
@CommandArgumentGroup(‘group1’)
@CommandArgument(‘-b’, ‘–bar’, group=’group1’, action=’store_true’,

default=False, help=’Enable bar mode.’)

	def foo(self):

	pass

The name should be chosen so that it makes sense as part of the phrase
‘Command Arguments for <name>’ because that’s how it will be shown in the
help message.

	
mach.decorators.CommandProvider(cls)

	Class decorator to denote that it provides subcommands for Mach.

When this decorator is present, mach looks for commands being defined by
methods inside the class.

	
mach.decorators.SettingsProvider(cls)

	Class decorator to denote that this class provides Mach settings.

When this decorator is encountered, the underlying class will automatically
be registered with the Mach registrar and will (likely) be hooked up to the
mach driver.

	
class mach.decorators.SubCommand(command, subcommand, description=None)

	Bases: object

Decorator for functions or methods that provide a sub-command.

Mach commands can have sub-commands. e.g. mach command foo or
mach command bar. Each sub-command has its own parser and is
effectively its own mach command.

The decorator accepts arguments that define basic attributes of the
sub command:

command – The string of the command this sub command should be
attached to.

subcommand – The string name of the sub command to register.

description – A textual description for this sub command.

mach.dispatcher module

	
class mach.dispatcher.CommandAction(option_strings, dest, required=True, default=None, registrar=None, context=None)

	Bases: argparse.Action

An argparse action that handles mach commands.

This class is essentially a reimplementation of argparse’s sub-parsers
feature. We first tried to use sub-parsers. However, they were missing
features like grouping of commands (http://bugs.python.org/issue14037).

The way this works involves light magic and a partial understanding of how
argparse works.

Arguments registered with an argparse.ArgumentParser have an action
associated with them. An action is essentially a class that when called
does something with the encountered argument(s). This class is one of those
action classes.

An instance of this class is created doing something like:

parser.add_argument(‘command’, action=CommandAction, registrar=r)

Note that a mach.registrar.Registrar instance is passed in. The Registrar
holds information on all the mach commands that have been registered.

When this argument is registered with the ArgumentParser, an instance of
this class is instantiated. One of the subtle but important things it does
is tell the argument parser that it’s interested in all of the remaining
program arguments. So, when the ArgumentParser calls this action, we will
receive the command name plus all of its arguments.

For more, read the docs in __call__.

	
class mach.dispatcher.CommandFormatter(prog, indent_increment=2, max_help_position=24, width=None)

	Bases: argparse.HelpFormatter

Custom formatter to format just a subcommand.

	
add_usage(*args)

	

	
class mach.dispatcher.DispatchSettings

	
	
config_settings = [(u'alias.*', u'string')]

	

	
config_settings_locale_directory = u'/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/checkouts/latest/python/mach/mach/locale'

	

	
class mach.dispatcher.NoUsageFormatter(prog, indent_increment=2, max_help_position=24, width=None)

	Bases: argparse.HelpFormatter

	
mach.dispatcher.format_docstring(docstring)

	Format a raw docstring into something suitable for presentation.

This function is based on the example function in PEP-0257.

mach.logging module

	
class mach.logging.ConvertToStructuredFilter(name='')

	Bases: logging.Filter

Filter that converts unstructured records into structured ones.

	
filter(record)

	

	
class mach.logging.LoggingManager

	Bases: object

Holds and controls global logging state.

An application should instantiate one of these and configure it as needed.

This class provides a mechanism to configure the output of logging data
both from mach and from the overall logging system (e.g. from other
modules).

	
add_json_handler(fh)

	Enable JSON logging on the specified file object.

	
add_terminal_logging(fh=<open file '<stdout>', mode 'w'>, level=20, write_interval=False, write_times=True)

	Enable logging to the terminal.

	
disable_unstructured()

	Disable logging of unstructured messages.

	
enable_unstructured()

	Enable logging of unstructured messages.

	
register_structured_logger(logger)

	Register a structured logger.

This needs to be called for all structured loggers that don’t chain up
to the mach logger in order for their output to be captured.

	
replace_terminal_handler(handler)

	Replace the installed terminal handler.

Returns the old handler or None if none was configured.
If the new handler is None, removes any existing handler and disables
logging to the terminal.

	
terminal

	

	
class mach.logging.StructuredHumanFormatter(start_time, write_interval=False, write_times=True)

	Bases: logging.Formatter

Log formatter that writes structured messages for humans.

It is important that this formatter never be added to a logger that
produces unstructured/classic log messages. If it is, the call to format()
could fail because the string could contain things (like JSON) that look
like formatting character sequences.

Because of this limitation, format() will fail with a KeyError if an
unstructured record is passed or if the structured message is malformed.

	
format(record)

	

	
class mach.logging.StructuredJSONFormatter(fmt=None, datefmt=None)

	Bases: logging.Formatter

Log formatter that writes a structured JSON entry.

	
format(record)

	

	
class mach.logging.StructuredTerminalFormatter(start_time, write_interval=False, write_times=True)

	Bases: mach.logging.StructuredHumanFormatter

Log formatter for structured messages writing to a terminal.

	
format(record)

	

	
set_terminal(terminal)

	

	
mach.logging.format_seconds(total)

	Format number of seconds to MM:SS.DD form.

mach.main module

	
class mach.main.ArgumentParser(prog=None, usage=None, description=None, epilog=None, version=None, parents=[], formatter_class=<class 'argparse.HelpFormatter'>, prefix_chars='-', fromfile_prefix_chars=None, argument_default=None, conflict_handler='error', add_help=True)

	Bases: argparse.ArgumentParser

Custom implementation argument parser to make things look pretty.

	
error(message)

	Custom error reporter to give more helpful text on bad commands.

	
format_help()

	

	
class mach.main.ContextWrapper(context, handler)

	Bases: object

	
class mach.main.Mach(cwd)

	Bases: object

Main mach driver type.

This type is responsible for holding global mach state and dispatching
a command from arguments.

The following attributes may be assigned to the instance to influence
behavior:

	populate_context_handler – If defined, it must be a callable. The

	
	callable signature is the following:

	populate_context_handler(context, key=None)

It acts as a fallback getter for the mach.base.CommandContext
instance.
This allows to augment the context instance with arbitrary data
for use in command handlers.
For backwards compatibility, it is also called before command
dispatch without a key, allowing the context handler to add
attributes to the context instance.

	require_conditions – If True, commands that do not have any condition

	functions applied will be skipped. Defaults to False.

	settings_paths – A list of files or directories in which to search

	for settings files to load.

	
USAGE = u'%(prog)s [global arguments] command [command arguments]\n\nmach (German for "do") is the main interface to the Mozilla build system and\ncommon developer tasks.\n\nYou tell mach the command you want to perform and it does it for you.\n\nSome common commands are:\n\n %(prog)s build Build/compile the source tree.\n %(prog)s help Show full help, including the list of all commands.\n\nTo see more help for a specific command, run:\n\n %(prog)s help <command>\n'

	

	
add_global_argument(*args, **kwargs)

	Register a global argument with the argument parser.

Arguments are proxied to ArgumentParser.add_argument()

	
define_category(name, title, description, priority=50)

	Provide a description for a named command category.

	
get_argument_parser(context)

	Returns an argument parser for the command-line interface.

	
load_commands_from_directory(path)

	Scan for mach commands from modules in a directory.

This takes a path to a directory, loads the .py files in it, and
registers and found mach command providers with this mach instance.

	
load_commands_from_entry_point(group=u'mach.providers')

	Scan installed packages for mach command provider entry points. An
entry point is a function that returns a list of paths to files or
directories containing command providers.

This takes an optional group argument which specifies the entry point
group to use. If not specified, it defaults to ‘mach.providers’.

	
load_commands_from_file(path, module_name=None)

	Scan for mach commands from a file.

This takes a path to a file and loads it as a Python module under the
module name specified. If no name is specified, a random one will be
chosen.

	
load_settings(paths)

	Load the specified settings files.

If a directory is specified, the following basenames will be
searched for in this order:

machrc, .machrc

	
log(level, action, params, format_str)

	Helper method to record a structured log event.

	
require_conditions

	

	
run(argv, stdin=None, stdout=None, stderr=None)

	Runs mach with arguments provided from the command line.

Returns the integer exit code that should be used. 0 means success. All
other values indicate failure.

mach.registrar module

	
class mach.registrar.MachRegistrar

	Bases: object

Container for mach command and config providers.

	
dispatch(name, context=None, argv=None, subcommand=None, **kwargs)

	Dispatch/run a command.

Commands can use this to call other commands.

	
register_category(name, title, description, priority=50)

	

	
register_command_handler(handler)

	

	
register_settings_provider(cls)

	

mach.terminal module

This file contains code for interacting with terminals.

All the terminal interaction code is consolidated so the complexity can be in
one place, away from code that is commonly looked at.

	
class mach.terminal.LoggingHandler

	Bases: logging.Handler

Custom logging handler that works with terminal window dressing.

This is alternative terminal logging handler which contains smarts for
emitting terminal control characters properly. Currently, it has generic
support for “footer” elements at the bottom of the screen. Functionality
can be added when needed.

	
emit(record)

	

	
flush()

	

	
class mach.terminal.TerminalFooter(terminal)

	Bases: object

Represents something drawn on the bottom of a terminal.

	
clear()

	

	
draw()

	

Module contents

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	mach package

mach.commands package

Submodules

mach.commands.commandinfo module

mach.commands.settings module

Module contents

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	mach package

mach.mixin package

Submodules

mach.mixin.logging module

	
class mach.mixin.logging.LoggingMixin

	Bases: object

Provides functionality to control logging.

	
log(level, action, params, format_str)

	Log a structured log event.

A structured log event consists of a logging level, a string action, a
dictionary of attributes, and a formatting string.

The logging level is one of the logging.* constants, such as
logging.INFO.

The action string is essentially the enumeration of the event. Each
different type of logged event should have a different action.

The params dict is the metadata constituting the logged event.

The formatting string is used to convert the structured message back to
human-readable format. Conversion back to human-readable form is
performed by calling format() on this string, feeding into it the dict
of attributes constituting the event.

	self.log(logging.DEBUG, ‘login’, {‘username’: ‘johndoe’},

	‘User login: {username}’)

	
populate_logger(name=None)

	Ensure this class instance has a logger associated with it.

Users of this mixin that call log() will need to ensure self._logger is
a logging.Logger instance before they call log(). This function ensures
self._logger is defined by populating it if it isn’t.

mach.mixin.process module

	
class mach.mixin.process.ProcessExecutionMixin

	Bases: mach.mixin.logging.LoggingMixin

Mix-in that provides process execution functionality.

	
run_process(args=None, cwd=None, append_env=None, explicit_env=None, log_name=None, log_level=20, line_handler=None, require_unix_environment=False, ensure_exit_code=0, ignore_children=False, pass_thru=False)

	Runs a single process to completion.

Takes a list of arguments to run where the first item is the
executable. Runs the command in the specified directory and
with optional environment variables.

	append_env – Dict of environment variables to append to the current

	set of environment variables.

	explicit_env – Dict of environment variables to set for the new

	process. Any existing environment variables will be ignored.

require_unix_environment if True will ensure the command is executed
within a UNIX environment. Basically, if we are on Windows, it will
execute the command via an appropriate UNIX-like shell.

ignore_children is proxied to mozprocess’s ignore_children.

ensure_exit_code is used to ensure the exit code of a process matches
what is expected. If it is an integer, we raise an Exception if the
exit code does not match this value. If it is True, we ensure the exit
code is 0. If it is False, we don’t perform any exit code validation.

pass_thru is a special execution mode where the child process inherits
this process’s standard file handles (stdin, stdout, stderr) as well as
additional file descriptors. It should be used for interactive processes
where buffering from mozprocess could be an issue. pass_thru does not
use mozprocess. Therefore, arguments like log_name, line_handler,
and ignore_children have no effect.

Module contents

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	mach package

mach.test package

Subpackages

	mach.test.providers package
	Submodules

	mach.test.providers.basic module

	mach.test.providers.conditions module

	mach.test.providers.conditions_invalid module

	mach.test.providers.throw module

	mach.test.providers.throw2 module

	Module contents

Submodules

mach.test.common module

	
class mach.test.common.TestBase(methodName='runTest')

	Bases: unittest.case.TestCase

	
get_mach(provider_file=None, entry_point=None, context_handler=None)

	

	
provider_dir = u'/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/checkouts/latest/python/mach/mach/test/providers'

	

mach.test.test_conditions module

	
class mach.test.test_conditions.TestConditions(methodName='runTest')

	Bases: mach.test.common.TestBase

Tests for conditionally filtering commands.

	
test_conditions_pass()

	Test that a command which passes its conditions is runnable.

	
test_help_message()

	Test that commands that are not runnable do not show up in help.

	
test_invalid_context_message()

	Test that commands which do not pass all their conditions
print the proper failure message.

	
test_invalid_type()

	Test that a condition which is not callable raises an exception.

mach.test.test_config module

	
class mach.test.test_config.Provider1

	Bases: object

	
config_settings = [(u'foo.bar', <class 'mach.config.StringType'>), (u'foo.baz', <class 'mach.config.PathType'>)]

	

	
config_settings_locale_directory = u'/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/checkouts/latest/python/mach/mach/test/locale'

	

	
class mach.test.test_config.Provider2

	Bases: object

	
config_settings = [(u'a.string', <class 'mach.config.StringType'>), (u'a.boolean', <class 'mach.config.BooleanType'>), (u'a.pos_int', <class 'mach.config.PositiveIntegerType'>), (u'a.int', <class 'mach.config.IntegerType'>), (u'a.path', <class 'mach.config.PathType'>)]

	

	
config_settings_locale_directory = u'/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/checkouts/latest/python/mach/mach/test/locale'

	

	
class mach.test.test_config.Provider3

	Bases: object

	
classmethod config_settings()

	

	
config_settings_locale_directory = u'/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/checkouts/latest/python/mach/mach/test/locale'

	

	
class mach.test.test_config.Provider4

	Bases: object

	
config_settings = [(u'foo.abc', <class 'mach.config.StringType'>, u'a', {u'choices': set([u'a', u'c', u'b'])}), (u'foo.xyz', <class 'mach.config.StringType'>, u'w', {u'choices': set([u'y', u'x', u'z'])})]

	

	
config_settings_locale_directory = u'/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/checkouts/latest/python/mach/mach/test/locale'

	

	
class mach.test.test_config.Provider5

	Bases: object

	
config_settings = [(u'foo.*', u'string'), (u'foo.bar', u'string')]

	

	
config_settings_locale_directory = u'/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/checkouts/latest/python/mach/mach/test/locale'

	

	
class mach.test.test_config.ProviderDuplicate

	Bases: object

	
config_settings = [(u'dupesect.foo', <class 'mach.config.StringType'>), (u'dupesect.foo', <class 'mach.config.StringType'>)]

	

	
config_settings_locale_directory = u'/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/checkouts/latest/python/mach/mach/test/locale'

	

	
class mach.test.test_config.TestConfigSettings(methodName='runTest')

	Bases: unittest.case.TestCase

	
retrieval_type_helper(provider)

	

	
test_assignment_validation()

	

	
test_choices_validation()

	

	
test_duplicate_option()

	

	
test_empty()

	

	
test_file_reading_missing()

	Missing files should silently be ignored.

	
test_file_reading_multiple()

	Loading multiple files has proper overwrite behavior.

	
test_file_reading_single()

	

	
test_file_writing()

	

	
test_retrieval_type()

	

	
test_simple()

	

	
test_wildcard_options()

	

mach.test.test_dispatcher module

	
class mach.test.test_dispatcher.TestDispatcher(methodName='runTest')

	Bases: mach.test.common.TestBase

Tests dispatch related code

	
get_parser(config=None)

	

	
test_command_aliases()

	

mach.test.test_entry_point module

	
class mach.test.test_entry_point.Entry(providers)

	Stub replacement for pkg_resources.EntryPoint

	
load()

	

	
class mach.test.test_entry_point.TestEntryPoints(methodName='runTest')

	Bases: mach.test.common.TestBase

Test integrating with setuptools entry points

	
provider_dir = u'/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/checkouts/latest/python/mach/mach/test/providers'

	

	
test_load_entry_point_from_directory(*args, **keywargs)

	

	
test_load_entry_point_from_file(*args, **keywargs)

	

mach.test.test_error_output module

	
class mach.test.test_error_output.TestErrorOutput(methodName='runTest')

	Bases: mach.test.common.TestBase

	
test_command_error()

	

	
test_invoked_error()

	

mach.test.test_logger module

	
class mach.test.test_logger.DummyLogger(cb)

	Bases: logging.Logger

	
handle(record)

	

	
class mach.test.test_logger.TestStructuredHumanFormatter(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_non_ascii_logging()

	

Module contents

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	mach package

 	mach.test package

mach.test.providers package

Submodules

mach.test.providers.basic module

mach.test.providers.conditions module

mach.test.providers.conditions_invalid module

mach.test.providers.throw module

mach.test.providers.throw2 module

	
mach.test.providers.throw2.throw_deep(message)

	

	
mach.test.providers.throw2.throw_real(message)

	

Module contents

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

mozbuild package

Subpackages

	mozbuild.action package
	Submodules

	mozbuild.action.buildlist module

	mozbuild.action.cl module

	mozbuild.action.explode_aar module

	mozbuild.action.file_generate module

	mozbuild.action.generate_browsersearch module

	mozbuild.action.generate_suggestedsites module

	mozbuild.action.generate_symbols_file module

	mozbuild.action.jar_maker module

	mozbuild.action.make_dmg module

	mozbuild.action.package_fennec_apk module

	mozbuild.action.package_geckolibs_aar module

	mozbuild.action.preprocessor module

	mozbuild.action.process_define_files module

	mozbuild.action.process_install_manifest module

	mozbuild.action.test_archive module

	mozbuild.action.webidl module

	mozbuild.action.xpccheck module

	mozbuild.action.xpidl-process module

	mozbuild.action.zip module

	Module contents

	mozbuild.backend package
	Submodules

	mozbuild.backend.android_eclipse module

	mozbuild.backend.base module

	mozbuild.backend.common module

	mozbuild.backend.configenvironment module

	mozbuild.backend.cpp_eclipse module

	mozbuild.backend.fastermake module

	mozbuild.backend.mach_commands module

	mozbuild.backend.recursivemake module

	mozbuild.backend.visualstudio module

	Module contents

	mozbuild.codecoverage package
	Submodules

	mozbuild.codecoverage.chrome_map module

	mozbuild.codecoverage.packager module

	Module contents

	mozbuild.compilation package
	Submodules

	mozbuild.compilation.codecomplete module

	mozbuild.compilation.database module

	mozbuild.compilation.util module

	mozbuild.compilation.warnings module

	Module contents

	mozbuild.configure package
	Submodules

	mozbuild.configure.check_debug_ranges module

	mozbuild.configure.constants module

	mozbuild.configure.help module

	mozbuild.configure.libstdcxx module

	mozbuild.configure.options module

	mozbuild.configure.util module

	Module contents

	mozbuild.controller package
	Submodules

	mozbuild.controller.building module

	mozbuild.controller.clobber module

	Module contents

	mozbuild.frontend package
	Submodules

	mozbuild.frontend.context module

	mozbuild.frontend.data module

	mozbuild.frontend.emitter module

	mozbuild.frontend.gyp_reader module

	mozbuild.frontend.mach_commands module

	mozbuild.frontend.reader module

	mozbuild.frontend.sandbox module

	Module contents

	mozbuild.test package
	Subpackages
	mozbuild.test.backend package
	Submodules

	mozbuild.test.backend.common module

	mozbuild.test.backend.test_android_eclipse module

	mozbuild.test.backend.test_build module

	mozbuild.test.backend.test_configenvironment module

	mozbuild.test.backend.test_recursivemake module

	mozbuild.test.backend.test_visualstudio module

	Module contents

	mozbuild.test.compilation package
	Submodules

	mozbuild.test.compilation.test_warnings module

	Module contents

	mozbuild.test.controller package
	Submodules

	mozbuild.test.controller.test_ccachestats module

	mozbuild.test.controller.test_clobber module

	Module contents

	mozbuild.test.frontend package
	Submodules

	mozbuild.test.frontend.test_context module

	mozbuild.test.frontend.test_emitter module

	mozbuild.test.frontend.test_namespaces module

	mozbuild.test.frontend.test_reader module

	mozbuild.test.frontend.test_sandbox module

	Module contents

	Submodules

	mozbuild.test.common module

	mozbuild.test.test_android_version_code module

	mozbuild.test.test_base module

	mozbuild.test.test_containers module

	mozbuild.test.test_dotproperties module

	mozbuild.test.test_expression module

	mozbuild.test.test_jarmaker module

	mozbuild.test.test_line_endings module

	mozbuild.test.test_makeutil module

	mozbuild.test.test_mozconfig module

	mozbuild.test.test_mozinfo module

	mozbuild.test.test_preprocessor module

	mozbuild.test.test_pythonutil module

	mozbuild.test.test_testing module

	mozbuild.test.test_util module

	Module contents

Submodules

mozbuild.android_version_code module

	
mozbuild.android_version_code.android_version_code(buildid, *args, **kwargs)

	

	
mozbuild.android_version_code.android_version_code_v0(buildid, cpu_arch=None, min_sdk=0, max_sdk=0)

	

	
mozbuild.android_version_code.android_version_code_v1(buildid, cpu_arch=None, min_sdk=0, max_sdk=0)

	Generate a v1 android:versionCode.

The important consideration is that version codes be monotonically
increasing (per Android package name) for all published builds. The input
build IDs are based on timestamps and hence are always monotonically
increasing.

The generated v1 version codes look like (in binary):

0111 1000 0010 tttt tttt tttt tttt txpg

The 17 bits labelled ‘t’ represent the number of hours since midnight on
September 1, 2015. (2015090100 in YYYYMMMDDHH format.) This yields a
little under 15 years worth of hourly build identifiers, since 2**17 / (366
* 24) =~ 14.92.

The bits labelled ‘x’, ‘p’, and ‘g’ are feature flags.

The bit labelled ‘x’ is 1 if the build is for an x86 architecture and 0
otherwise, which means the build is for an ARM architecture. (Fennec no
longer supports ARMv6, so ARM is equivalent to ARMv7 and above.)

The bit labelled ‘p’ is a placeholder that is always 0 (for now).

Firefox no longer supports API 14 or earlier.

This version code computation allows for a split on API levels that allowed
us to ship builds specifically for Gingerbread (API 9-10); we preserve
that functionality for sanity’s sake, and to allow us to reintroduce a
split in the future.

At present, the bit labelled ‘g’ is 1 if the build is an ARM build
targeting API 15+, which will always be the case.

We throw an explanatory exception when we are within one calendar year of
running out of build events. This gives lots of time to update the version
scheme. The responsible individual should then bump the range (to allow
builds to continue) and use the time remaining to update the version scheme
via the reserved high order bits.

N.B.: the reserved 0 bit to the left of the highest order ‘t’ bit can,
sometimes, be used to bump the version scheme. In addition, by reducing the
granularity of the build identifiers (for example, moving to identifying
builds every 2 or 4 hours), the version scheme may be adjusted further still
without losing a (valuable) high order bit.

	
mozbuild.android_version_code.main(argv)

	

mozbuild.artifacts module

mozbuild.base module

	
exception mozbuild.base.BadEnvironmentException

	Bases: exceptions.Exception

Base class for errors raised when the build environment is not sane.

	
exception mozbuild.base.BuildEnvironmentNotFoundException

	Bases: mozbuild.base.BadEnvironmentException

Raised when we could not find a build environment.

	
class mozbuild.base.ExecutionSummary(summary_format, **data)

	Bases: dict

Helper for execution summaries.

	
extend(summary_format, **data)

	

	
class mozbuild.base.MachCommandBase(context)

	Bases: mozbuild.base.MozbuildObject

Base class for mach command providers that wish to be MozbuildObjects.

This provides a level of indirection so MozbuildObject can be refactored
without having to change everything that inherits from it.

	
class mozbuild.base.MachCommandConditions

	Bases: object

A series of commonly used condition functions which can be applied to
mach commands with providers deriving from MachCommandBase.

	
static is_android()

	Must have an Android build.

	
static is_b2g()

	Must have a B2G build.

	
static is_b2g_desktop()

	Must have a B2G desktop build.

	
static is_emulator()

	Must have a B2G build with an emulator configured.

	
static is_firefox()

	Must have a Firefox build.

	
static is_git()

	Must have a git source checkout.

	
static is_hg()

	Must have a mercurial source checkout.

	
static is_mulet()

	Must have a Mulet build.

	
class mozbuild.base.MozbuildObject(topsrcdir, settings, log_manager, topobjdir=None, mozconfig=<object object>)

	Bases: mach.mixin.process.ProcessExecutionMixin

Base class providing basic functionality useful to many modules.

Modules in this package typically require common functionality such as
accessing the current config, getting the location of the source directory,
running processes, etc. This classes provides that functionality. Other
modules can inherit from this class to obtain this functionality easily.

	
bindir

	

	
config_environment

	Returns the ConfigEnvironment for the current build configuration.

This property is only available once configure has executed.

If configure’s output is not available, this will raise.

	
defines

	

	
distdir

	

	
classmethod from_environment(cwd=None, detect_virtualenv_mozinfo=True)

	Create a MozbuildObject by detecting the proper one from the env.

This examines environment state like the current working directory and
creates a MozbuildObject from the found source directory, mozconfig, etc.

The role of this function is to identify a topsrcdir, topobjdir, and
mozconfig file.

If the current working directory is inside a known objdir, we always
use the topsrcdir and mozconfig associated with that objdir.

If the current working directory is inside a known srcdir, we use that
topsrcdir and look for mozconfigs using the default mechanism, which
looks inside environment variables.

If the current Python interpreter is running from a virtualenv inside
an objdir, we use that as our objdir.

If we’re not inside a srcdir or objdir, an exception is raised.

detect_virtualenv_mozinfo determines whether we should look for a
mozinfo.json file relative to the virtualenv directory. This was
added to facilitate testing. Callers likely shouldn’t change the
default.

	
get_binary_path(what=u'app', validate_exists=True, where=u'default')

	Obtain the path to a compiled binary for this build configuration.

The what argument is the program or tool being sought after. See the
code implementation for supported values.

If validate_exists is True (the default), we will ensure the found path
exists before returning, raising an exception if it doesn’t.

If where is ‘staged-package’, we will return the path to the binary in
the package staging directory.

If no arguments are specified, we will return the main binary for the
configured XUL application.

	
have_winrm()

	

	
includedir

	

	
is_clobber_needed()

	

	
mozconfig

	Returns information about the current mozconfig file.

This a dict as returned by MozconfigLoader.read_mozconfig()

	
non_global_defines

	

	
notify(msg)

	Show a desktop notification with the supplied message

On Linux and Mac, this will show a desktop notification with the message,
but on Windows we can only flash the screen.

	
remove_objdir()

	Remove the entire object directory.

	
static resolve_config_guess(mozconfig, topsrcdir)

	

	
static resolve_mozconfig_topobjdir(topsrcdir, mozconfig, default=None)

	

	
statedir

	

	
substs

	

	
topobjdir

	

	
virtualenv_manager

	

	
exception mozbuild.base.ObjdirMismatchException(objdir1, objdir2)

	Bases: mozbuild.base.BadEnvironmentException

Raised when the current dir is an objdir and doesn’t match the mozconfig.

	
class mozbuild.base.PathArgument(arg, topsrcdir, topobjdir, cwd=None)

	Bases: object

Parse a filesystem path argument and transform it in various ways.

	
objdir_path()

	

	
relpath()

	Return a path relative to the topsrcdir or topobjdir.

If the argument is a path to a location in one of the base directories
(topsrcdir or topobjdir), then strip off the base directory part and
just return the path within the base directory.

	
srcdir_path()

	

	
mozbuild.base.ancestors(path)

	Emit the parent directories of a path.

	
mozbuild.base.samepath(path1, path2)

	

mozbuild.config_status module

	
mozbuild.config_status.config_status(topobjdir='.', topsrcdir='.', defines=None, non_global_defines=None, substs=None, source=None, mozconfig=None)

	Main function, providing config.status functionality.

Contrary to config.status, it doesn’t use CONFIG_FILES or CONFIG_HEADERS
variables.

Without the -n option, this program acts as config.status and considers
the current directory as the top object directory, even when config.status
is in a different directory. It will, however, treat the directory
containing config.status as the top object directory with the -n option.

The options to this function are passed when creating the
ConfigEnvironment. These lists, as well as the actual wrapper script
around this function, are meant to be generated by configure.
See build/autoconf/config.status.m4.

mozbuild.doctor module

	
class mozbuild.doctor.Doctor(srcdir, objdir, fix)

	Bases: object

	
check_all()

	

	
check_disk_8dot3(path, disk)

	

	
check_mount_lastaccess(mount)

	

	
cpu

	

	
fs_8dot3

	

	
fs_lastaccess

	

	
getmount(path)

	

	
memory

	

	
mozillabuild

	

	
platform

	

	
prompt_bool(prompt, limit=5)

	Prompts the user with prompt and requires a boolean value.

	
report(results)

	

	
storage_freespace

	

mozbuild.dotproperties module

	
class mozbuild.dotproperties.DotProperties(file=None)

	A thin representation of a key=value .properties file.

	
get(key, default=None)

	

	
get_dict(prefix, required_keys=[])

	Turns {‘foo.title’:’title’, ...} into {‘title’:’title’, ...}.

If |required_keys| is present, it must be an iterable of required key
names. If a required key is not present, ValueError is thrown.

Returns {} to indicate an empty or missing dict.

	
get_list(prefix)

	Turns {‘list.0’:’foo’, ‘list.1’:’bar’} into [‘foo’, ‘bar’].

Returns [] to indicate an empty or missing list.

	
update(file)

	Updates properties from a file name or file-like object.

Ignores empty lines and comment lines.

mozbuild.html_build_viewer module

	
class mozbuild.html_build_viewer.BuildViewerServer(address=u'localhost', port=0)

	Bases: object

	
add_resource_json_file(key, path)

	Register a resource JSON file with the server.

The file will be made available under the name/key specified.

	
add_resource_json_url(key, url)

	Register a resource JSON file at a URL.

	
run()

	

	
url

	

	
class mozbuild.html_build_viewer.HTTPHandler(request, client_address, server)

	Bases: BaseHTTPServer.BaseHTTPRequestHandler

	
do_GET()

	

	
do_POST()

	

	
serve_docroot(root, path)

	

mozbuild.jar module

jarmaker.py provides a python class to package up chrome content by
processing jar.mn files.

See the documentation for jar.mn on MDC for further details on the format.

	
class mozbuild.jar.JarMaker(outputFormat='flat', useJarfileManifest=True, useChromeManifest=False)

	Bases: object

JarMaker reads jar.mn files and process those into jar files or
flat directories, along with chrome.manifest files.

	
class OutputHelper_flat(basepath)

	Bases: object

Provide getDestModTime and getOutput for a given flat
output directory. The helper method ensureDirFor is used by
the symlink subclass.

	
ensureDirFor(name)

	

	
getDestModTime(aPath)

	

	
getOutput(name)

	

	
class JarMaker.OutputHelper_jar(jarfile)

	Bases: object

Provide getDestModTime and getOutput for a given jarfile.

	
getDestModTime(aPath)

	

	
getOutput(name)

	

	
class JarMaker.OutputHelper_symlink(basepath)

	Bases: mozbuild.jar.OutputHelper_flat

Subclass of OutputHelper_flat that provides a helper for
creating a symlink including creating the parent directories.

	
symlink(src, dest)

	

	
JarMaker.finalizeJar(jardir, jarbase, jarname, chromebasepath, register, doZip=True)

	
	Helper method to write out the chrome registration entries to

	jarfile.manifest or chrome.manifest, or both.

The actual file processing is done in updateManifest.

	
JarMaker.generateLocaleDirs(relativesrcdir)

	

	
JarMaker.getCommandLineParser()

	Get a optparse.OptionParser for jarmaker.

This OptionParser has the options for jarmaker as well as
the options for the inner PreProcessor.

	
JarMaker.makeJar(infile, jardir)

	makeJar is the main entry point to JarMaker.

It takes the input file, the output directory, the source dirs and the
top source dir as argument, and optionally the l10n dirs.

	
JarMaker.processJarSection(jarinfo, jardir)

	Internal method called by makeJar to actually process a section
of a jar.mn file.

	
JarMaker.updateManifest(manifestPath, chromebasepath, register)

	updateManifest replaces the % in the chrome registration entries
with the given chrome base path, and updates the given manifest file.

mozbuild.mach_commands module

mozbuild.makeutil module

	
class mozbuild.makeutil.Makefile

	Bases: object

Provides an interface for writing simple makefiles

Instances of this class are created, populated with rules, then
written.

	
add_statement(statement)

	Add a raw statement in the makefile. Meant to be used for
simple variable assignments.

	
create_rule(targets=[])

	Create a new rule in the makefile for the given targets.
Returns the corresponding Rule instance.

	
dump(fh, removal_guard=True)

	Dump all the rules to the given file handle. Optionally (and by
default), add guard rules for file removals (empty rules for other
rules’ dependencies)

	
class mozbuild.makeutil.Rule(targets=[])

	Bases: object

Class handling simple rules in the form:
target1 target2 ... : dep1 dep2 ...

command1
command2
...

	
add_commands(commands)

	Add commands to the rule.

	
add_dependencies(deps)

	Add dependencies to the rule.

	
add_targets(targets)

	Add additional targets to the rule.

	
commands()

	Return an iterator on the rule commands.

	
dependencies()

	Return an iterator on the rule dependencies.

	
dump(fh)

	Dump the rule to the given file handle.

	
targets()

	Return an iterator on the rule targets.

	
mozbuild.makeutil.read_dep_makefile(fh)

	Read the file handler containing a dep makefile (simple makefile only
containing dependencies) and returns an iterator of the corresponding Rules
it contains. Ignores removal guard rules.

	
mozbuild.makeutil.write_dep_makefile(fh, target, deps)

	Write a Makefile containing only target’s dependencies to the file handle
specified.

mozbuild.milestone module

	
mozbuild.milestone.get_milestone_ab_with_num(milestone)

	Returns the alpha and beta tag with its number (a1, a2, b3, ...).

	
mozbuild.milestone.get_milestone_major(milestone)

	Returns the major (first) part of the milestone.

	
mozbuild.milestone.get_official_milestone(path)

	Returns the contents of the first line in path that starts with a digit.

	
mozbuild.milestone.main(args)

	

mozbuild.mozconfig module

	
exception mozbuild.mozconfig.MozconfigFindException

	Bases: exceptions.Exception

Raised when a mozconfig location is not defined properly.

	
exception mozbuild.mozconfig.MozconfigLoadException(path, message, output=None)

	Bases: exceptions.Exception

Raised when a mozconfig could not be loaded properly.

This typically indicates a malformed or misbehaving mozconfig file.

	
class mozbuild.mozconfig.MozconfigLoader(topsrcdir)

	Bases: object

Handles loading and parsing of mozconfig files.

	
AUTODETECT = <object object>

	

	
DEFAULT_TOPSRCDIR_PATHS = (u'.mozconfig', u'mozconfig')

	

	
DEPRECATED_HOME_PATHS = (u'.mozconfig', u'.mozconfig.sh', u'.mozmyconfig.sh')

	

	
DEPRECATED_TOPSRCDIR_PATHS = (u'mozconfig.sh', u'myconfig.sh')

	

	
ENVIRONMENT_VARIABLES = set([u'LDFLAGS', u'CXX', u'CXXFLAGS', u'CC', u'CFLAGS', u'MOZ_OBJDIR'])

	

	
IGNORE_SHELL_VARIABLES = set([u'_'])

	

	
RE_MAKE_VARIABLE = <_sre.SRE_Pattern object>

	

	
find_mozconfig(env={'LANG': 'C.UTF-8', 'READTHEDOCS_PROJECT': 'gfritzsche-demo', 'READTHEDOCS': 'True', 'APPDIR': '/app', 'DEBIAN_FRONTEND': 'noninteractive', 'OLDPWD': '/', 'HOSTNAME': 'build-4258433-project-55928-gfritzsche-demo', u'SHELL': u'/bin/bash', 'PWD': '/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/checkouts/latest/tools/docs', 'BIN_PATH': '/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/envs/latest/bin', 'READTHEDOCS_VERSION': 'latest', 'PATH': '/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/checkouts/latest/tools/docs/_build/epub/_venv/bin:/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/envs/latest/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin', 'HOME': '/home/docs'})

	Find the active mozconfig file for the current environment.

This emulates the logic in mozconfig-find.

	If ENV[MOZCONFIG] is set, use that

	If $TOPSRCDIR/mozconfig or $TOPSRCDIR/.mozconfig exists, use it.

	If both exist or if there are legacy locations detected, error out.

The absolute path to the found mozconfig will be returned on success.
None will be returned if no mozconfig could be found. A
MozconfigFindException will be raised if there is a bad state,
including conditions from #3 above.

	
read_mozconfig(path=None, moz_build_app=None)

	Read the contents of a mozconfig into a data structure.

This takes the path to a mozconfig to load. If the given path is
AUTODETECT, will try to find a mozconfig from the environment using
find_mozconfig().

mozconfig files are shell scripts. So, we can’t just parse them.
Instead, we run the shell script in a wrapper which allows us to record
state from execution. Thus, the output from a mozconfig is a friendly
static data structure.

mozbuild.mozinfo module

	
mozbuild.mozinfo.build_dict(config, env={'LANG': 'C.UTF-8', 'READTHEDOCS_PROJECT': 'gfritzsche-demo', 'READTHEDOCS': 'True', 'APPDIR': '/app', 'DEBIAN_FRONTEND': 'noninteractive', 'OLDPWD': '/', 'HOSTNAME': 'build-4258433-project-55928-gfritzsche-demo', u'SHELL': u'/bin/bash', 'PWD': '/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/checkouts/latest/tools/docs', 'BIN_PATH': '/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/envs/latest/bin', 'READTHEDOCS_VERSION': 'latest', 'PATH': '/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/checkouts/latest/tools/docs/_build/epub/_venv/bin:/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/envs/latest/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin', 'HOME': '/home/docs'})

	Build a dict containing data about the build configuration from
the environment.

	
mozbuild.mozinfo.write_mozinfo(file, config, env={'LANG': 'C.UTF-8', 'READTHEDOCS_PROJECT': 'gfritzsche-demo', 'READTHEDOCS': 'True', 'APPDIR': '/app', 'DEBIAN_FRONTEND': 'noninteractive', 'OLDPWD': '/', 'HOSTNAME': 'build-4258433-project-55928-gfritzsche-demo', u'SHELL': u'/bin/bash', 'PWD': '/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/checkouts/latest/tools/docs', 'BIN_PATH': '/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/envs/latest/bin', 'READTHEDOCS_VERSION': 'latest', 'PATH': '/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/checkouts/latest/tools/docs/_build/epub/_venv/bin:/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/envs/latest/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin', 'HOME': '/home/docs'})

	Write JSON data about the configuration specified in config and an
environment variable dict to |file|, which may be a filename or file-like
object.
See build_dict for information about what environment variables are used,
and what keys are produced.

mozbuild.preprocessor module

This is a very primitive line based preprocessor, for times when using
a C preprocessor isn’t an option.

It currently supports the following grammar for expressions, whitespace is
ignored:

	expression :

	and_cond (‘||’ expression) ? ;

	and_cond:

	test (‘&&’ and_cond) ? ;

	test:

	unary ((‘==’ | ‘!=’) unary) ? ;

	unary :

	‘!’? value ;

	value :

	[0-9]+ # integer
| ‘defined(‘ w+ ‘)’
| w+ # string identifier or value;

	
class mozbuild.preprocessor.Context

	Bases: dict

This class holds variable values by subclassing dict, and while it
truthfully reports True and False on

name in context

it returns the variable name itself on

context[“name”]

to reflect the ambiguity between string literals and preprocessor
variables.

	
class mozbuild.preprocessor.Expression(expression_string)

	
	
exception ParseError(expression)

	Bases: exceptions.StandardError

Error raised when parsing fails.
It has two members, offset and content, which give the offset of the
error and the offending content.

	
Expression.evaluate(context)

	Evaluate the expression with the given context

	
class mozbuild.preprocessor.Preprocessor(defines=None, marker='#')

	Class for preprocessing text files.

	
exception Error(cpp, MSG, context)

	Bases: exceptions.RuntimeError

	
Preprocessor.addDefines(defines)

	Adds the specified defines to the preprocessor.
defines may be a dictionary object or an iterable of key/value pairs
(as tuples or other iterables of length two)

	
Preprocessor.applyFilters(aLine)

	

	
Preprocessor.clone()

	Create a clone of the current processor, including line ending
settings, marker, variable definitions, output stream.

	
Preprocessor.computeDependencies(input)

	Reads the input stream, and computes the dependencies for that input.

	
Preprocessor.do_define(args)

	

	
Preprocessor.do_elif(args)

	

	
Preprocessor.do_elifdef(args)

	

	
Preprocessor.do_elifndef(args)

	

	
Preprocessor.do_else(args, ifState=2)

	

	
Preprocessor.do_endif(args)

	

	
Preprocessor.do_error(args)

	

	
Preprocessor.do_expand(args)

	

	
Preprocessor.do_filter(args)

	

	
Preprocessor.do_if(args, replace=False)

	

	
Preprocessor.do_ifdef(args, replace=False)

	

	
Preprocessor.do_ifndef(args, replace=False)

	

	
Preprocessor.do_include(args, filters=True)

	Preprocess a given file.
args can either be a file name, or a file-like object.
Files should be opened, and will be closed after processing.

	
Preprocessor.do_includesubst(args)

	

	
Preprocessor.do_literal(args)

	

	
Preprocessor.do_undef(args)

	

	
Preprocessor.do_unfilter(args)

	

	
Preprocessor.ensure_not_else()

	

	
Preprocessor.failUnused(file)

	

	
Preprocessor.filter_attemptSubstitution(aLine)

	

	
Preprocessor.filter_emptyLines(aLine)

	

	
Preprocessor.filter_slashslash(aLine)

	

	
Preprocessor.filter_spaces(aLine)

	

	
Preprocessor.filter_substitution(aLine, fatal=True)

	

	
Preprocessor.getCommandLineParser(unescapeDefines=False)

	

	
Preprocessor.handleCommandLine(args, defaultToStdin=False)

	Parse a commandline into this parser.
Uses OptionParser internally, no args mean sys.argv[1:].

	
Preprocessor.handleLine(aLine)

	Handle a single line of input (internal).

	
Preprocessor.noteLineInfo()

	

	
Preprocessor.processFile(input, output, depfile=None)

	Preprocesses the contents of the input stream and writes the result
to the output stream. If depfile is set, the dependencies of
output file are written to depfile in Makefile format.

	
Preprocessor.setMarker(aMarker)

	Set the marker to be used for processing directives.
Used for handling CSS files, with pp.setMarker(‘%’), for example.
The given marker may be None, in which case no markers are processed.

	
Preprocessor.setSilenceDirectiveWarnings(value)

	Sets whether missing directive warnings are silenced, according to
value. The default behavior of the preprocessor is to emit
such warnings.

	
Preprocessor.write(aLine)

	Internal method for handling output.

	
mozbuild.preprocessor.preprocess(includes=[<open file '<stdin>', mode 'r' at 0x7f5e81d710c0>], defines={}, output=<open file '<stdout>', mode 'w'>, marker='#')

	

mozbuild.pythonutil module

	
mozbuild.pythonutil.iter_modules_in_path(*paths)

	

mozbuild.shellutil module

	
exception mozbuild.shellutil.MetaCharacterException(char)

	Bases: exceptions.Exception

	
mozbuild.shellutil.split(cline)

	Split the given command line string.

	
mozbuild.shellutil.quote(*strings)

	Given one or more strings, returns a quoted string that can be used
literally on a shell command line.

>>> quote('a', 'b')
"a b"
>>> quote('a b', 'c')
"'a b' c"

mozbuild.sphinx module

	
class mozbuild.sphinx.MozbuildSymbols(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine)

	Bases: docutils.parsers.rst.Directive

Directive to insert mozbuild sandbox symbol information.

	
required_arguments = 1

	

	
run()

	

	
mozbuild.sphinx.format_module(m)

	

	
mozbuild.sphinx.function_reference(f, attr, args, doc)

	

	
mozbuild.sphinx.setup(app)

	

	
mozbuild.sphinx.special_reference(v, func, typ, doc)

	

	
mozbuild.sphinx.variable_reference(v, st_type, in_type, doc)

	

mozbuild.testing module

	
class mozbuild.testing.SupportFilesConverter

	Bases: object

Processes a “support-files” entry from a test object, either from
a parsed object from a test manifests or its representation in
moz.build and returns the installs to perform for this test object.

Processing the same support files multiple times will not have any further
effect, and the structure of the parsed objects from manifests will have a
lot of repeated entries, so this class takes care of memoizing.

	
convert_support_files(test, install_root, manifest_dir, out_dir)

	

	
class mozbuild.testing.TestInstallInfo

	Bases: object

	
class mozbuild.testing.TestMetadata(filename=None)

	Bases: object

Holds information about tests.

This class provides an API to query tests active in the build
configuration.

	
resolve_tests(paths=None, flavor=None, subsuite=None, under_path=None, tags=None)

	Resolve tests from an identifier.

This is a generator of dicts describing each test.

paths can be an iterable of values to use to identify tests to run.
If an entry is a known test file, tests associated with that file are
returned (there may be multiple configurations for a single file). If
an entry is a directory, or a prefix of a directory containing tests,
all tests in that directory are returned. If the string appears in a
known test file, that test file is considered. If the path contains
a wildcard pattern, tests matching that pattern are returned.

If under_path is a string, it will be used to filter out tests that
aren’t in the specified path prefix relative to topsrcdir or the
test’s installed dir.

If flavor is a string, it will be used to filter returned tests
to only be the flavor specified. A flavor is something like
xpcshell.

If subsuite is a string, it will be used to filter returned tests
to only be in the subsuite specified.

If tags are specified, they will be used to filter returned tests
to only those with a matching tag.

	
tests_with_flavor(flavor)

	Obtain all tests having the specified flavor.

This is a generator of dicts describing each test.

	
class mozbuild.testing.TestResolver(*args, **kwargs)

	Bases: mozbuild.base.MozbuildObject

Helper to resolve tests from the current environment to test files.

	
resolve_tests(cwd=None, **kwargs)

	Resolve tests in the context of the current environment.

This is a more intelligent version of TestMetadata.resolve_tests().

This function provides additional massaging and filtering of low-level
results.

Paths in returned tests are automatically translated to the paths in
the _tests directory under the object directory.

If cwd is defined, we will limit our results to tests under the
directory specified. The directory should be defined as an absolute
path under topsrcdir or topobjdir for it to work properly.

	
mozbuild.testing.all_test_flavors()

	

	
mozbuild.testing.install_test_files(topsrcdir, topobjdir, tests_root, test_objs)

	Installs the requested test files to the objdir. This is invoked by
test runners to avoid installing tens of thousands of test files when
only a few tests need to be run.

	
mozbuild.testing.read_manifestparser_manifest(context, manifest_path)

	

	
mozbuild.testing.read_reftest_manifest(context, manifest_path)

	

	
mozbuild.testing.read_wpt_manifest(context, paths)

	

	
mozbuild.testing.rewrite_test_base(test, new_base, honor_install_to_subdir=False)

	Rewrite paths in a test to be under a new base path.

This is useful for running tests from a separate location from where they
were defined.

honor_install_to_subdir and the underlying install-to-subdir field are a
giant hack intended to work around the restriction where the mochitest
runner can’t handle single test files with multiple configurations. This
argument should be removed once the mochitest runner talks manifests
(bug 984670).

mozbuild.util module

	
class mozbuild.util.DefinesAction(option_strings, dest, nargs=None, const=None, default=None, type=None, choices=None, required=False, help=None, metavar=None)

	Bases: argparse.Action

An ArgumentParser action to handle -Dvar[=value] type of arguments.

	
class mozbuild.util.EmptyValue

	Bases: unicode

A dummy type that behaves like an empty string and sequence.

This type exists in order to support
mozbuild.frontend.reader.EmptyConfig. It should likely not be
used elsewhere.

	
class mozbuild.util.EnumString(value)

	Bases: unicode

A string type that only can have a limited set of values, similarly to
an Enum, and can only be compared against that set of values.

The class is meant to be subclassed, where the subclass defines
POSSIBLE_VALUES. The subclass method is a helper to create such
subclasses.

	
POSSIBLE_VALUES = ()

	

	
static subclass(*possible_values)

	

	
exception mozbuild.util.EnumStringComparisonError

	Bases: exceptions.Exception

	
class mozbuild.util.FileAvoidWrite(filename, capture_diff=False, dry_run=False, mode=u'rU')

	Bases: _io.BytesIO

File-like object that buffers output and only writes if content changed.

We create an instance from an existing filename. New content is written to
it. When we close the file object, if the content in the in-memory buffer
differs from what is on disk, then we write out the new content. Otherwise,
the original file is untouched.

Instances can optionally capture diffs of file changes. This feature is not
enabled by default because it a) doesn’t make sense for binary files b)
could add unwanted overhead to calls.

Additionally, there is dry run mode where the file is not actually written
out, but reports whether the file was existing and would have been updated
still occur, as well as diff capture if requested.

	
close()

	Stop accepting writes, compare file contents, and rewrite if needed.

Returns a tuple of bools indicating what action was performed:

(file existed, file updated)

If capture_diff was specified at construction time and the
underlying file was changed, .diff will be populated with the diff
of the result.

	
write(buf)

	

	
mozbuild.util.FlagsFactory(flags)

	Returns a class which holds optional flags for an item in a list.

The flags are defined in the dict given as argument, where keys are
the flag names, and values the type used for the value of that flag.

The resulting class is used by the various <TypeName>WithFlagsFactory
functions below.

	
class mozbuild.util.HierarchicalStringList

	Bases: object

A hierarchy of lists of strings.

Each instance of this object contains a list of strings, which can be set or
appended to. A sub-level of the hierarchy is also an instance of this class,
can be added by appending to an attribute instead.

For example, the moz.build variable EXPORTS is an instance of this class. We
can do:

EXPORTS += [‘foo.h’]
EXPORTS.mozilla.dom += [‘bar.h’]

In this case, we have 3 instances (EXPORTS, EXPORTS.mozilla, and
EXPORTS.mozilla.dom), and the first and last each have one element in their
list.

	
class StringListAdaptor(hsl)

	Bases: _abcoll.Sequence

	
HierarchicalStringList.walk()

	Walk over all HierarchicalStringLists in the hierarchy.

This is a generator of (path, sequence).

The path is ‘’ for the root level and ‘/’-delimited strings for
any descendants. The sequence is a read-only sequence of the
strings contained at that level.

	
class mozbuild.util.KeyedDefaultDict(default_factory, *args, **kwargs)

	Bases: dict

Like a defaultdict, but the default_factory function takes the key as
argument

	
class mozbuild.util.List(iterable=None, **kwargs)

	Bases: mozbuild.util.ListMixin, list

A list specialized for moz.build environments.

We overload the assignment and append operations to require that the
appended thing is a list. This avoids bad surprises coming from appending
a string to a list, which would just add each letter of the string.

	
class mozbuild.util.ListMixin(iterable=None, **kwargs)

	Bases: object

	
extend(l)

	

	
class mozbuild.util.ListWithAction(iterable=None, **kwargs)

	Bases: mozbuild.util.ListMixin, mozbuild.util.ListWithActionMixin, list

A list that accepts a callable to be applied to each item.

A callable (action) may optionally be passed to the constructor to run on
each item of input. The result of calling the callable on each item will be
stored in place of the original input.

	
class mozbuild.util.ListWithActionMixin(iterable=None, action=None)

	Bases: object

Mixin to create lists with pre-processing. See ListWithAction.

	
extend(l)

	

	
class mozbuild.util.LockFile(lockfile)

	Bases: object

LockFile is used by the lock_file method to hold the lock.

This object should not be used directly, but only through
the lock_file method below.

	
exception mozbuild.util.MozbuildDeletionError

	Bases: exceptions.Exception

	
class mozbuild.util.OrderedDefaultDict(default_factory, *args, **kwargs)

	Bases: collections.OrderedDict

A combination of OrderedDict and defaultdict.

	
class mozbuild.util.ReadOnlyDefaultDict(default_factory, *args, **kwargs)

	Bases: mozbuild.util.ReadOnlyDict

A read-only dictionary that supports default values on retrieval.

	
class mozbuild.util.ReadOnlyDict(*args, **kwargs)

	Bases: dict

A read-only dictionary.

	
update(*args, **kwargs)

	

	
class mozbuild.util.ReadOnlyKeyedDefaultDict(default_factory, *args, **kwargs)

	Bases: mozbuild.util.KeyedDefaultDict, mozbuild.util.ReadOnlyDict

Like KeyedDefaultDict, but read-only.

	
class mozbuild.util.ReadOnlyNamespace(**kwargs)

	Bases: object

A class for objects with immutable attributes set at initialization.

	
class mozbuild.util.StrictOrderingOnAppendList(iterable=None, **kwargs)

	Bases: mozbuild.util.ListMixin, mozbuild.util.StrictOrderingOnAppendListMixin, list

A list specialized for moz.build environments.

We overload the assignment and append operations to require that incoming
elements be ordered. This enforces cleaner style in moz.build files.

	
class mozbuild.util.StrictOrderingOnAppendListMixin(iterable=None, **kwargs)

	Bases: object

	
static ensure_sorted(l)

	

	
extend(l)

	

	
class mozbuild.util.StrictOrderingOnAppendListWithAction(iterable=None, **kwargs)

	Bases: mozbuild.util.StrictOrderingOnAppendListMixin, mozbuild.util.ListMixin, mozbuild.util.ListWithActionMixin, list

An ordered list that accepts a callable to be applied to each item.

A callable (action) passed to the constructor is run on each item of input.
The result of running the callable on each item will be stored in place of
the original input, but the original item must be used to enforce sortedness.
Note that the order of superclasses is therefore significant.

	
class mozbuild.util.StrictOrderingOnAppendListWithFlags(iterable=None, **kwargs)

	Bases: mozbuild.util.StrictOrderingOnAppendList

A list with flags specialized for moz.build environments.

Each subclass has a set of typed flags; this class lets us use isinstance
for natural testing.

	
mozbuild.util.StrictOrderingOnAppendListWithFlagsFactory(flags)

	Returns a StrictOrderingOnAppendList-like object, with optional
flags on each item.

The flags are defined in the dict given as argument, where keys are
the flag names, and values the type used for the value of that flag.

	Example:

	
	FooList = StrictOrderingOnAppendListWithFlagsFactory({

	‘foo’: bool, ‘bar’: unicode

})
foo = FooList([‘a’, ‘b’, ‘c’])
foo[‘a’].foo = True
foo[‘b’].bar = ‘bar’

	
mozbuild.util.TypedList

	A list with type coercion.

The given type is what list elements are being coerced to. It may do
strict validation, throwing ValueError exceptions.

A base_class type can be given for more specific uses than a List. For
example, a Typed StrictOrderingOnAppendList can be created with:

TypedList(unicode, StrictOrderingOnAppendList)

	
class mozbuild.util.TypedListMixin(iterable=None, **kwargs)

	Bases: object

Mixin for a list with type coercion. See TypedList.

	
append(other)

	

	
extend(l)

	

	
mozbuild.util.TypedNamedTuple(name, fields)

	Factory for named tuple types with strong typing.

Arguments are an iterable of 2-tuples. The first member is the
the field name. The second member is a type the field will be validated
to be.

Construction of instances varies from collections.namedtuple.

First, if a single tuple argument is given to the constructor, this is
treated as the equivalent of passing each tuple value as a separate
argument into __init__. e.g.:

t = (1, 2)
TypedTuple(t) == TypedTuple(1, 2)

This behavior is meant for moz.build files, so vanilla tuples are
automatically cast to typed tuple instances.

Second, fields in the tuple are validated to be instances of the specified
type. This is done via an isinstance() check. To allow multiple types,
pass a tuple as the allowed types field.

	
exception mozbuild.util.UnsortedError(srtd, original)

	Bases: exceptions.Exception

	
mozbuild.util.ensureParentDir(path)

	Ensures the directory parent to the given file exists.

	
mozbuild.util.exec_(object, globals=None, locals=None)

	Wrapper around the exec statement to avoid bogus errors like:

SyntaxError: unqualified exec is not allowed in function ...
it is a nested function.

or

SyntaxError: unqualified exec is not allowed in function ...
it contains a nested function with free variable

which happen with older versions of python 2.7.

	
mozbuild.util.expand_variables(s, variables)

	Given a string with $(var) variable references, replace those references
with the corresponding entries from the given variables dict.

If a variable value is not a string, it is iterated and its items are
joined with a whitespace.

	
mozbuild.util.group_unified_files(files, unified_prefix, unified_suffix, files_per_unified_file)

	Return an iterator of (unified_filename, source_filenames) tuples.

We compile most C and C++ files in “unified mode”; instead of compiling
a.cpp, b.cpp, and c.cpp separately, we compile a single file
that looks approximately like:

#include "a.cpp"
#include "b.cpp"
#include "c.cpp"

This function handles the details of generating names for the unified
files, and determining which original source files go in which unified
file.

	
mozbuild.util.hash_file(path, hasher=None)

	Hashes a file specified by the path given and returns the hex digest.

	
mozbuild.util.lock_file(lockfile, max_wait=600)

	Create and hold a lockfile of the given name, with the given timeout.

To release the lock, delete the returned object.

	
class mozbuild.util.memoize(func)

	Bases: dict

A decorator to memoize the results of function calls depending
on its arguments.
Both functions and instance methods are handled, although in the
instance method case, the results are cache in the instance itself.

	
method_call(instance, *args)

	

	
class mozbuild.util.memoized_property(func)

	Bases: object

A specialized version of the memoize decorator that works for
class instance properties.

	
mozbuild.util.mkdir(path, not_indexed=False)

	Ensure a directory exists.

If not_indexed is True, an attribute is set that disables content
indexing on the directory.

	
mozbuild.util.pair(iterable)

	Given an iterable, returns an iterable pairing its items.

	For example,

	list(pair([1,2,3,4,5,6]))

	returns

	[(1,2), (3,4), (5,6)]

	
mozbuild.util.resolve_target_to_make(topobjdir, target)

	Resolve target (a target, directory, or file) to a make target.

topobjdir is the object directory; all make targets will be
rooted at or below the top-level Makefile in this directory.

Returns a pair (reldir, target) where reldir is a directory
relative to topobjdir containing a Makefile and target is a
make target (possibly None).

A directory resolves to the nearest directory at or above
containing a Makefile, and target None.

A regular (non-Makefile) file resolves to the nearest directory at
or above the file containing a Makefile, and an appropriate
target.

A Makefile resolves to the nearest parent strictly above the
Makefile containing a different Makefile, and an appropriate
target.

	
mozbuild.util.simple_diff(filename, old_lines, new_lines)

	Returns the diff between old_lines and new_lines, in unified diff form,
as a list of lines.

old_lines and new_lines are lists of non-newline terminated lines to
compare.
old_lines can be None, indicating a file creation.
new_lines can be None, indicating a file deletion.

	
class mozbuild.util.undefined_default

	Bases: object

Represents an undefined argument value that isn’t None.

mozbuild.virtualenv module

	
class mozbuild.virtualenv.VirtualenvManager(topsrcdir, topobjdir, virtualenv_path, log_handle, manifest_path)

	Bases: object

Contains logic for managing virtualenvs for building the tree.

	
activate()

	Activate the virtualenv in this Python context.

If you run a random Python script and wish to “activate” the
virtualenv, you can simply instantiate an instance of this class
and call .ensure() and .activate() to make the virtualenv active.

	
activate_path

	

	
bin_path

	

	
build(python='/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/envs/latest/bin/python')

	Build a virtualenv per tree conventions.

This returns the path of the created virtualenv.

	
call_setup(directory, arguments)

	Calls setup.py in a directory.

	
create(python='/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/envs/latest/bin/python')

	Create a new, empty virtualenv.

Receives the path to virtualenv’s virtualenv.py script (which will be
called out to), the path to create the virtualenv in, and a handle to
write output to.

	
ensure(python='/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/envs/latest/bin/python')

	Ensure the virtualenv is present and up to date.

If the virtualenv is up to date, this does nothing. Otherwise, it
creates and populates the virtualenv as necessary.

This should be the main API used from this class as it is the
highest-level.

	
get_exe_info()

	Returns the version and file size of the python executable that was in
use when this virutalenv was created.

	
install_pip_package(package)

	Install a package via pip.

The supplied package is specified using a pip requirement specifier.
e.g. ‘foo’ or ‘foo==1.0’.

If the package is already installed, this is a no-op.

	
packages()

	

	
populate()

	Populate the virtualenv.

The manifest file consists of colon-delimited fields. The first field
specifies the action. The remaining fields are arguments to that
action. The following actions are supported:

	setup.py – Invoke setup.py for a package. Expects the arguments:

	
	relative path directory containing setup.py.

	argument(s) to setup.py. e.g. “develop”. Each program argument
is delimited by a colon. Arguments with colons are not yet
supported.

	filename.pth – Adds the path given as argument to filename.pth under

	the virtualenv site packages directory.

	optional – This denotes the action as optional. The requested action

	is attempted. If it fails, we issue a warning and go on. The
initial “optional” field is stripped then the remaining line is
processed like normal. e.g.
“optional:setup.py:python/foo:built_ext:-i”

	copy – Copies the given file in the virtualenv site packages

	directory.

	packages.txt – Denotes that the specified path is a child manifest. It

	will be read and processed as if its contents were concatenated
into the manifest being read.

	objdir – Denotes a relative path in the object directory to add to the

	search path. e.g. “objdir:build” will add $topobjdir/build to the
search path.

Note that the Python interpreter running this function should be the
one from the virtualenv. If it is the system Python or if the
environment is not configured properly, packages could be installed
into the wrong place. This is how virtualenv’s work.

	
python_path

	

	
up_to_date(python='/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/envs/latest/bin/python')

	Returns whether the virtualenv is present and up to date.

	
virtualenv_script_path

	Path to virtualenv’s own populator script.

	
write_exe_info(python)

	Records the the version of the python executable that was in use when
this virutalenv was created. We record this explicitly because
on OS X our python path may end up being a different or modified
executable.

	
mozbuild.virtualenv.verify_python_version(log_handle)

	Ensure the current version of Python is sufficient.

Module contents

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	mozbuild package

mozbuild.action package

Submodules

mozbuild.action.buildlist module

A generic script to add entries to a file
if the entry does not already exist.

Usage: buildlist.py <filename> <entry> [<entry> ...]

	
mozbuild.action.buildlist.addEntriesToListFile(listFile, entries)

	Given a file |listFile| containing one entry per line,
add each entry in |entries| to the file, unless it is already
present.

	
mozbuild.action.buildlist.main(args)

	

mozbuild.action.cl module

mozbuild.action.explode_aar module

	
mozbuild.action.explode_aar.explode(aar, destdir)

	

	
mozbuild.action.explode_aar.main(argv)

	

mozbuild.action.file_generate module

mozbuild.action.generate_browsersearch module

Script to generate the browsersearch.json file for Fennec.

This script follows these steps:

1. Read the region.properties file in all the given source directories (see
srcdir option). Merge all properties into a single dict accounting for the
priority of source directories.

	Read the default search plugin from ‘browser.search.defaultenginename’.

3. Read the list of search plugins from the ‘browser.search.order.INDEX’
properties with values identifying particular search plugins by name.

4. Read each region-specific default search plugin from each property named like
‘browser.search.defaultenginename.REGION’.

5. Read the list of region-specific search plugins from the
‘browser.search.order.REGION.INDEX’ properties with values identifying
particular search plugins by name. Here, REGION is derived from a REGION for
which we have seen a region-specific default plugin.

6. Generate a JSON representation of the above information, and write the result
to browsersearch.json in the locale-specific raw resource directory
e.g. raw/browsersearch.json, raw-pt-rBR/browsersearch.json.

	
mozbuild.action.generate_browsersearch.main(args)

	

	
mozbuild.action.generate_browsersearch.merge_properties(filename, srcdirs)

	Merges properties from the given file in the given source directories.

mozbuild.action.generate_suggestedsites module

Script to generate the suggestedsites.json file for Fennec.

This script follows these steps:

1. Read the region.properties file in all the given source directories
(see srcdir option). Merge all properties into a single dict accounting for
the priority of source directories.

2. Read the list of sites from the list ‘browser.suggestedsites.list.INDEX’ and
‘browser.suggestedsites.restricted.list.INDEX’ properties with value of these keys
being an identifier for each suggested site e.g. browser.suggestedsites.list.0=mozilla,
browser.suggestedsites.list.1=fxmarketplace.

3. For each site identifier defined by the list keys, look for matching branches
containing the respective properties i.e. url, title, etc. For example,
for a ‘mozilla’ identifier, we’ll look for keys like:
browser.suggestedsites.mozilla.url, browser.suggestedsites.mozilla.title, etc.

4. Generate a JSON representation of each site, join them in a JSON array, and
write the result to suggestedsites.json on the locale-specific raw resource
directory e.g. raw/suggestedsites.json, raw-pt-rBR/suggestedsites.json.

	
mozbuild.action.generate_suggestedsites.main(args)

	

	
mozbuild.action.generate_suggestedsites.merge_properties(filename, srcdirs)

	Merges properties from the given file in the given source directories.

mozbuild.action.generate_symbols_file module

mozbuild.action.jar_maker module

	
mozbuild.action.jar_maker.main(args)

	

mozbuild.action.make_dmg module

	
mozbuild.action.make_dmg.main(args)

	

	
mozbuild.action.make_dmg.make_dmg(source_directory, output_dmg)

	

mozbuild.action.package_fennec_apk module

mozbuild.action.package_geckolibs_aar module

Script to produce an Android ARchive (.aar) containing the compiled
Gecko library binaries. The AAR file is intended for use by local
developers using Gradle.

	
mozbuild.action.package_geckolibs_aar.main(args)

	

	
mozbuild.action.package_geckolibs_aar.package_geckolibs_aar(topsrcdir, distdir, appname, output_file)

	

	
mozbuild.action.package_geckolibs_aar.package_geckoview_aar(topsrcdir, distdir, appname, output_file)

	

mozbuild.action.preprocessor module

	
mozbuild.action.preprocessor.main(args)

	

mozbuild.action.process_define_files module

mozbuild.action.process_install_manifest module

	
mozbuild.action.process_install_manifest.main(argv)

	

	
mozbuild.action.process_install_manifest.process_manifest(destdir, paths, track=None, remove_unaccounted=True, remove_all_directory_symlinks=True, remove_empty_directories=True, defines={})

	

mozbuild.action.test_archive module

mozbuild.action.webidl module

	
mozbuild.action.webidl.main(argv)

	Perform WebIDL code generation required by the build system.

mozbuild.action.xpccheck module

A generic script to verify all test files are in the
corresponding .ini file.

Usage: xpccheck.py <directory> [<directory> ...]

	
mozbuild.action.xpccheck.getIniTests(testdir)

	

	
mozbuild.action.xpccheck.main(argv)

	

	
mozbuild.action.xpccheck.verifyDirectory(initests, directory)

	

	
mozbuild.action.xpccheck.verifyIniFile(initests, directory)

	

mozbuild.action.xpidl-process module

mozbuild.action.zip module

	
mozbuild.action.zip.main(args)

	

Module contents

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	mozbuild package

mozbuild.backend package

Submodules

mozbuild.backend.android_eclipse module

	
class mozbuild.backend.android_eclipse.AndroidEclipseBackend(environment)

	Bases: mozbuild.backend.common.CommonBackend

Backend that generates Android Eclipse project files.

	
consume_finished()

	The common backend handles WebIDL and test files. We don’t handle
these, so we don’t call our superclass.

	
consume_object(obj)

	Write out Android Eclipse project files.

	
summary()

	

	
mozbuild.backend.android_eclipse.pretty_print(element)

	Return a pretty-printed XML string for an Element.

mozbuild.backend.base module

	
class mozbuild.backend.base.BuildBackend(environment)

	Bases: mach.mixin.logging.LoggingMixin

Abstract base class for build backends.

A build backend is merely a consumer of the build configuration (the output
of the frontend processing). It does something with said data. What exactly
is the discretion of the specific implementation.

	
consume(objs)

	Consume a stream of TreeMetadata instances.

This is the main method of the interface. This is what takes the
frontend output and does something with it.

Child classes are not expected to implement this method. Instead, the
base class consumes objects and calls methods (possibly) implemented by
child classes.

	
consume_finished()

	Called when consume() has completed handling all objects.

	
consume_object(obj)

	Consumes an individual TreeMetadata instance.

This is the main method used by child classes to react to build
metadata.

	
summary()

	

	
mozbuild.backend.base.HybridBackend(*backends)

	A HybridBackend is the combination of one or more PartialBackends
with a non-partial BuildBackend.

Build configuration objects are passed to each backend, stopping at the
first of them that declares having handled them.

	
class mozbuild.backend.base.PartialBackend(environment)

	Bases: mozbuild.backend.base.BuildBackend

A PartialBackend is a BuildBackend declaring that its consume_object
method may not handle all build configuration objects it’s passed, and
that it’s fine.

mozbuild.backend.common module

	
class mozbuild.backend.common.BinariesCollection

	Bases: object

Tracks state of binaries produced by the build.

	
class mozbuild.backend.common.CommonBackend(environment)

	Bases: mozbuild.backend.base.BuildBackend

Holds logic common to all build backends.

	
consume_finished()

	

	
consume_object(obj)

	

	
class mozbuild.backend.common.TestManager(config)

	Bases: object

Helps hold state related to tests.

	
add(t, flavor, topsrcdir, default_supp_files)

	

	
add_installs(obj, topsrcdir)

	

	
class mozbuild.backend.common.WebIDLCollection

	Bases: object

Collects WebIDL info referenced during the build.

	
all_basenames()

	

	
all_non_static_basenames()

	

	
all_non_static_sources()

	

	
all_preprocessed_sources()

	

	
all_regular_basenames()

	

	
all_regular_bindinggen_stems()

	

	
all_regular_cpp_basenames()

	

	
all_regular_sources()

	

	
all_regular_stems()

	

	
all_sources()

	

	
all_static_sources()

	

	
all_stems()

	

	
all_test_basenames()

	

	
all_test_cpp_basenames()

	

	
all_test_sources()

	

	
all_test_stems()

	

	
generated_events_basenames()

	

	
generated_events_stems()

	

	
class mozbuild.backend.common.XPIDLManager(config)

	Bases: object

Helps manage XPCOM IDLs in the context of the build system.

	
register_idl(idl, allow_existing=False)

	Registers an IDL file with this instance.

The IDL file will be built, installed, etc.

mozbuild.backend.configenvironment module

	
class mozbuild.backend.configenvironment.BuildConfig

	Bases: object

Represents the output of configure.

	
classmethod from_config_status(path)

	Create an instance from a config.status file.

	
class mozbuild.backend.configenvironment.ConfigEnvironment(topsrcdir, topobjdir, defines=None, non_global_defines=None, substs=None, source=None, mozconfig=None)

	Bases: object

Perform actions associated with a configured but bare objdir.

The purpose of this class is to preprocess files from the source directory
and output results in the object directory.

There are two types of files: config files and config headers,
each treated through a different member function.

	Creating a ConfigEnvironment requires a few arguments:

	
	topsrcdir and topobjdir are, respectively, the top source and
the top object directory.

	defines is a dict filled from AC_DEFINE and AC_DEFINE_UNQUOTED in
autoconf.

	non_global_defines are a list of names appearing in defines above
that are not meant to be exported in ACDEFINES (see below)

	substs is a dict filled from AC_SUBST in autoconf.

ConfigEnvironment automatically defines one additional substs variable
from all the defines not appearing in non_global_defines:

	ACDEFINES contains the defines in the form -DNAME=VALUE, for use on
preprocessor command lines. The order in which defines were given
when creating the ConfigEnvironment is preserved.

	and two other additional subst variables from all the other substs:

	
	ALLSUBSTS contains the substs in the form NAME = VALUE, in sorted
order, for use in autoconf.mk. It includes ACDEFINES
Only substs with a VALUE are included, such that the resulting file
doesn’t change when new empty substs are added.
This results in less invalidation of build dependencies in the case
of autoconf.mk..

	ALLEMPTYSUBSTS contains the substs with an empty value, in the form
NAME =.

ConfigEnvironment expects a “top_srcdir” subst to be set with the top
source directory, in msys format on windows. It is used to derive a
“srcdir” subst when treating config files. It can either be an absolute
path or a path relative to the topobjdir.

	
static from_config_status(path)

	

	
is_artifact_build

	

mozbuild.backend.cpp_eclipse module

	
class mozbuild.backend.cpp_eclipse.CppEclipseBackend(environment)

	Bases: mozbuild.backend.common.CommonBackend

Backend that generates Cpp Eclipse project files.

	
consume_finished()

	

	
consume_object(obj)

	

	
static get_workspace_path(topsrcdir, topobjdir)

	

	
summary()

	

mozbuild.backend.fastermake module

	
class mozbuild.backend.fastermake.FasterMakeBackend(environment)

	Bases: mozbuild.backend.common.CommonBackend, mozbuild.backend.base.PartialBackend

	
consume_finished()

	

	
consume_object(obj)

	

mozbuild.backend.mach_commands module

mozbuild.backend.recursivemake module

	
class mozbuild.backend.recursivemake.BackendMakeFile(srcdir, objdir, environment, topsrcdir, topobjdir)

	Bases: object

Represents a generated backend.mk file.

This is both a wrapper around a file handle as well as a container that
holds accumulated state.

It’s worth taking a moment to explain the make dependencies. The
generated backend.mk as well as the Makefile.in (if it exists) are in the
GLOBAL_DEPS list. This means that if one of them changes, all targets
in that Makefile are invalidated. backend.mk also depends on all of its
input files.

It’s worth considering the effect of file mtimes on build behavior.

Since we perform an “all or none” traversal of moz.build files (the whole
tree is scanned as opposed to individual files), if we were to blindly
write backend.mk files, the net effect of updating a single mozbuild file
in the tree is all backend.mk files have new mtimes. This would in turn
invalidate all make targets across the whole tree! This would effectively
undermine incremental builds as any mozbuild change would cause the entire
tree to rebuild!

The solution is to not update the mtimes of backend.mk files unless they
actually change. We use FileAvoidWrite to accomplish this.

	
add_statement(stmt)

	

	
close()

	

	
diff

	

	
write(buf)

	

	
write_once(buf)

	

	
class mozbuild.backend.recursivemake.RecursiveMakeBackend(environment)

	Bases: mozbuild.backend.common.CommonBackend

Backend that integrates with the existing recursive make build system.

This backend facilitates the transition from Makefile.in to moz.build
files.

This backend performs Makefile.in -> Makefile conversion. It also writes
out .mk files containing content derived from moz.build files. Both are
consumed by the recursive make builder.

This backend may eventually evolve to write out non-recursive make files.
However, as long as there are Makefile.in files in the tree, we are tied to
recursive make and thus will need this backend.

	
class Substitution

	Bases: object

BaseConfigSubstitution-like class for use with _create_makefile.

	
config

	

	
input_path

	

	
output_path

	

	
topobjdir

	

	
topsrcdir

	

	
RecursiveMakeBackend.consume_finished()

	

	
RecursiveMakeBackend.consume_object(obj)

	Write out build files necessary to build with recursive make.

	
RecursiveMakeBackend.summary()

	

	
class mozbuild.backend.recursivemake.RecursiveMakeTraversal

	Bases: object

Helper class to keep track of how the “traditional” recursive make backend
recurses subdirectories. This is useful until all adhoc rules are removed
from Makefiles.

	Each directory may have one or more types of subdirectories:

	
	(normal) dirs

	tests

	
class SubDirectories

	Bases: mozbuild.backend.recursivemake.SubDirectories

	
RecursiveMakeTraversal.SubDirectoriesTuple

	alias of SubDirectories

	
RecursiveMakeTraversal.SubDirectoryCategories = [u'dirs', u'tests']

	

	
RecursiveMakeTraversal.add(dir, dirs=[], tests=[])

	Adds a directory to traversal, registering its subdirectories,
sorted by categories. If the directory was already added to
traversal, adds the new subdirectories to the already known lists.

	
RecursiveMakeTraversal.call_filter(current, filter)

	Helper function to call a filter from compute_dependencies and
traverse.

	
RecursiveMakeTraversal.compute_dependencies(filter=None)

	Compute make dependencies corresponding to the registered directory
traversal.

	filter is a function with the following signature:

	def filter(current, subdirs)

where current is the directory being traversed, and subdirs the
SubDirectories instance corresponding to it.
The filter function returns a tuple (filtered_current, filtered_parallel,
filtered_dirs) where filtered_current is either current or None if
the current directory is to be skipped, and filtered_parallel and
filtered_dirs are lists of parallel directories and sequential
directories, which can be rearranged from whatever is given in the
SubDirectories members.

The default filter corresponds to a default recursive traversal.

	
static RecursiveMakeTraversal.default_filter(current, subdirs)

	Default filter for use with compute_dependencies and traverse.

	
RecursiveMakeTraversal.get_subdirs(dir)

	Returns all direct subdirectories under the given directory.

	
RecursiveMakeTraversal.traverse(start, filter=None)

	Iterate over the filtered subdirectories, following the traditional
make traversal order.

	
mozbuild.backend.recursivemake.make_quote(s)

	

mozbuild.backend.visualstudio module

	
class mozbuild.backend.visualstudio.VisualStudioBackend(environment)

	Bases: mozbuild.backend.common.CommonBackend

Generate Visual Studio project files.

This backend is used to produce Visual Studio projects and a solution
to foster developing Firefox with Visual Studio.

This backend is currently considered experimental. There are many things
not optimal about how it works.

	
consume_finished()

	

	
consume_object(obj)

	

	
summary()

	

	
static write_vs_project(fh, version, project_id, name, includes=[], forced_includes=[], defines=[], build_command=None, clean_command=None, debugger=None, headers=[], sources=[])

	

	
mozbuild.backend.visualstudio.get_id(name)

	

	
mozbuild.backend.visualstudio.visual_studio_product_to_platform_toolset_version(version)

	

	
mozbuild.backend.visualstudio.visual_studio_product_to_solution_version(version)

	

Module contents

	
mozbuild.backend.get_backend_class(name)

	

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	mozbuild package

mozbuild.codecoverage package

Submodules

mozbuild.codecoverage.chrome_map module

	
class mozbuild.codecoverage.chrome_map.ChromeManifestHandler

	Bases: object

	
handle_manifest_entry(entry)

	

	
class mozbuild.codecoverage.chrome_map.ChromeMapBackend(environment)

	Bases: mozbuild.backend.common.CommonBackend

	
consume_finished()

	

	
consume_object(obj)

	

mozbuild.codecoverage.packager module

	
mozbuild.codecoverage.packager.cli(args=['-T', '-b', 'epub', '-d', '_build/doctrees-epub', '-D', 'language=en', '.', '_build/epub'])

	

	
mozbuild.codecoverage.packager.package_gcno_tree(root, output_file)

	

Module contents

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	mozbuild package

mozbuild.compilation package

Submodules

mozbuild.compilation.codecomplete module

mozbuild.compilation.database module

	
class mozbuild.compilation.database.CompileDBBackend(environment)

	Bases: mozbuild.backend.common.CommonBackend

	
CFLAGS = {'.c': 'CFLAGS', '.mm': 'CXXFLAGS', '.cpp': 'CXXFLAGS', '.m': 'CFLAGS'}

	

	
COMPILERS = {'.c': 'CC', '.mm': 'CXX', '.cpp': 'CXX', '.m': 'CC'}

	

	
consume_finished()

	

	
consume_object(obj)

	

mozbuild.compilation.util module

	
mozbuild.compilation.util.check_top_objdir(topobjdir)

	

	
mozbuild.compilation.util.get_build_vars(directory, cmd)

	

	
mozbuild.compilation.util.sanitize_cflags(flags)

	

mozbuild.compilation.warnings module

	
class mozbuild.compilation.warnings.CompilerWarning

	Bases: dict

Represents an individual compiler warning.

	
class mozbuild.compilation.warnings.WarningsCollector(database=None, objdir=None, resolve_files=True)

	Bases: object

Collects warnings from text data.

Instances of this class receive data (usually the output of compiler
invocations) and parse it into warnings and add these warnings to a
database.

The collector works by incrementally receiving data, usually line-by-line
output from the compiler. Therefore, it can maintain state to parse
multi-line warning messages.

	
process_line(line)

	Take a line of text and process it for a warning.

	
class mozbuild.compilation.warnings.WarningsDatabase

	Bases: object

Holds a collection of warnings.

The warnings database is a semi-intelligent container that holds warnings
encountered during builds.

The warnings database is backed by a JSON file. But, that is transparent
to consumers.

Under most circumstances, the warnings database is insert only. When a
warning is encountered, the caller simply blindly inserts it into the
database. The database figures out whether it is a dupe, etc.

During the course of development, it is common for warnings to change
slightly as source code changes. For example, line numbers will disagree.
The WarningsDatabase handles this by storing the hash of a file a warning
occurred in. At warning insert time, if the hash of the file does not match
what is stored in the database, the existing warnings for that file are
purged from the database.

Callers should periodically prune old, invalid warnings from the database
by calling prune(). A good time to do this is at the end of a build.

	
deserialize(fh)

	Load serialized content from a handle into the current instance.

	
has_file(filename)

	Whether we have any warnings for the specified file.

	
insert(warning, compute_hash=True)

	

	
load_from_file(filename)

	Load the database from a file.

	
prune()

	Prune the contents of the database.

This removes warnings that are no longer valid. A warning is no longer
valid if the file it was in no longer exists or if the content has
changed.

The check for changed content catches the case where a file previously
contained warnings but no longer does.

	
save_to_file(filename)

	Save the database to a file.

	
serialize(fh)

	Serialize the database to an open file handle.

	
type_counts(dirpath=None)

	Returns a mapping of warning types to their counts.

	
warnings

	All the CompilerWarning instances in this database.

	
warnings_for_file(filename)

	Obtain the warnings for the specified file.

Module contents

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	mozbuild package

mozbuild.configure package

Submodules

mozbuild.configure.check_debug_ranges module

	
mozbuild.configure.check_debug_ranges.get_range_for(compilation_unit, debug_info)

	Returns the range offset for a given compilation unit
in a given debug_info.

	
mozbuild.configure.check_debug_ranges.get_range_length(range, debug_ranges)

	Returns the number of items in the range starting at the
given offset.

	
mozbuild.configure.check_debug_ranges.main(bin, compilation_unit)

	

mozbuild.configure.constants module

mozbuild.configure.help module

	
class mozbuild.configure.help.HelpFormatter(argv0)

	Bases: object

	
add(option)

	

	
usage(out)

	

mozbuild.configure.libstdcxx module

	
mozbuild.configure.libstdcxx.cmp_ver(a, b)

	Compare versions in the form ‘a.b.c’

	
mozbuild.configure.libstdcxx.encode_ver(v)

	Encode the version as a single number.

	
mozbuild.configure.libstdcxx.find_version(e)

	Given the value of environment variable CXX or HOST_CXX, find the
version of the libstdc++ it uses.

	
mozbuild.configure.libstdcxx.parse_ld_line(x)

	Parse a line from the output of ld -t. The output of gold is just
the full path, gnu ld prints “-lstdc++ (path)”.

	
mozbuild.configure.libstdcxx.parse_readelf_line(x)

	Return the version from a readelf line that looks like:
0x00ec: Rev: 1 Flags: none Index: 8 Cnt: 2 Name: GLIBCXX_3.4.6

	
mozbuild.configure.libstdcxx.split_ver(v)

	Covert the string ‘1.2.3’ into the list [1,2,3]

mozbuild.configure.options module

	
class mozbuild.configure.options.CommandLineHelper(environ={'LANG': 'C.UTF-8', 'READTHEDOCS_PROJECT': 'gfritzsche-demo', 'READTHEDOCS': 'True', 'APPDIR': '/app', 'DEBIAN_FRONTEND': 'noninteractive', 'OLDPWD': '/', 'HOSTNAME': 'build-4258433-project-55928-gfritzsche-demo', u'SHELL': u'/bin/bash', 'PWD': '/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/checkouts/latest/tools/docs', 'BIN_PATH': '/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/envs/latest/bin', 'READTHEDOCS_VERSION': 'latest', 'PATH': '/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/checkouts/latest/tools/docs/_build/epub/_venv/bin:/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/envs/latest/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin', 'HOME': '/home/docs'}, argv=['/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/envs/latest/bin/sphinx-build', '-T', '-b', 'epub', '-d', '_build/doctrees-epub', '-D', 'language=en', '.', '_build/epub'])

	Bases: object

Helper class to handle the various ways options can be given either
on the command line of through the environment.

For instance, an Option(‘–foo’, env=’FOO’) can be passed as –foo on the
command line, or as FOO=1 in the environment or on the command line.

If multiple variants are given, command line is prefered over the
environment, and if different values are given on the command line, the
last one wins. (This mimicks the behavior of autoconf, avoiding to break
existing mozconfigs using valid options in weird ways)

Extra options can be added afterwards through API calls. For those,
conflicting values will raise an exception.

	
add(arg, origin=u'command-line', args=None)

	

	
handle(option)

	Return the OptionValue corresponding to the given Option instance,
depending on the command line, environment, and extra arguments, and
the actual option or variable that set it.
Only works once for a given Option.

	
exception mozbuild.configure.options.ConflictingOptionError(message, **format_data)

	Bases: mozbuild.configure.options.InvalidOptionError

	
exception mozbuild.configure.options.InvalidOptionError

	Bases: exceptions.Exception

	
class mozbuild.configure.options.NegativeOptionValue(origin=u'unknown')

	Bases: mozbuild.configure.options.OptionValue

Represents the value for a negative option (–disable/–without)

This is effectively an empty tuple with a origin attribute.

	
class mozbuild.configure.options.Option(name=None, env=None, nargs=None, default=None, possible_origins=None, choices=None, help=None)

	Bases: object

Represents a configure option

A configure option can be a command line flag or an environment variable
or both.

	name is the full command line flag (e.g. –enable-foo).

	env is the environment variable name (e.g. ENV)

	nargs is the number of arguments the option may take. It can be a
number or the special values ‘?’ (0 or 1), ‘*’ (0 or more), or ‘+’ (1 or
more).

	default can be used to give a default value to the option. When the
name of the option starts with ‘–enable-‘ or ‘–with-‘, the implied
default is an empty PositiveOptionValue. When it starts with ‘–disable-‘
or ‘–without-‘, the implied default is a NegativeOptionValue.

	choices restricts the set of values that can be given to the option.

	help is the option description for use in the –help output.

	possible_origins is a tuple of strings that are origins accepted for
this option. Example origins are ‘mozconfig’, ‘implied’, and ‘environment’.

	
choices

	

	
default

	

	
env

	

	
get_value(option=None, origin=u'unknown')

	Given a full command line option (e.g. –enable-foo=bar) or a
variable assignment (FOO=bar), returns the corresponding OptionValue.

Note: variable assignments can come from either the environment or
from the command line (e.g. ../configure CFLAGS=-O2)

	
help

	

	
id

	

	
maxargs

	

	
minargs

	

	
name

	

	
nargs

	

	
option

	

	
possible_origins

	

	
prefix

	

	
static split_option(option)

	Split a flag or variable into a prefix, a name and values

Variables come in the form NAME=values (no prefix).
Flags come in the form –name=values or –prefix-name=values
where prefix is one of ‘with’, ‘without’, ‘enable’ or ‘disable’.
The ‘=values’ part is optional. Values are separated with commas.

	
class mozbuild.configure.options.OptionValue(values=(), origin=u'unknown')

	Bases: tuple

Represents the value of a configure option.

This class is not meant to be used directly. Use its subclasses instead.

The origin attribute holds where the option comes from (e.g. environment,
command line, or default)

	
format(option)

	

	
class mozbuild.configure.options.PositiveOptionValue(values=(), origin=u'unknown')

	Bases: mozbuild.configure.options.OptionValue

Represents the value for a positive option (–enable/–with/–foo)
in the form of a tuple for when values are given to the option (in the form
–option=value[,value2...].

	
mozbuild.configure.options.istupleofstrings(obj)

	

mozbuild.configure.util module

	
class mozbuild.configure.util.ConfigureOutputHandler(stdout=<open file '<stdout>', mode 'w'>, stderr=<open file '<stderr>', mode 'w'>, maxlen=20)

	Bases: logging.Handler

A logging handler class that sends info messages to stdout and other
messages to stderr.

Messages sent to stdout are not formatted with the attached Formatter.
Additionally, if they end with ‘... ‘, no newline character is printed,
making the next message printed follow the ‘... ‘.

Only messages above log level INFO (included) are logged.

Messages below that level can be kept until an ERROR message is received,
at which point the last maxlen accumulated messages below INFO are
printed out. This feature is only enabled under the queue_debug context
manager.

	
INTERRUPTED = 2

	

	
KEEP = 1

	

	
PRINT = 2

	

	
THROW = 0

	

	
WAITING = 1

	

	
emit(record)

	

	
queue_debug(*args, **kwds)

	

	
class mozbuild.configure.util.LineIO(callback)

	Bases: object

File-like class that sends each line of the written data to a callback
(without carriage returns).

	
close()

	

	
write(buf)

	

	
class mozbuild.configure.util.Version(version)

	Bases: distutils.version.LooseVersion

A simple subclass of distutils.version.LooseVersion.
Adds attributes for major, minor, patch for the first three
version components so users can easily pull out major/minor
versions, like:

v = Version(‘1.2b’)
v.major == 1
v.minor == 2
v.patch == 0

	
mozbuild.configure.util.getpreferredencoding()

	

Module contents

	
exception mozbuild.configure.ConfigureError

	Bases: exceptions.Exception

	
class mozbuild.configure.ConfigureSandbox(config, environ={'LANG': 'C.UTF-8', 'READTHEDOCS_PROJECT': 'gfritzsche-demo', 'READTHEDOCS': 'True', 'APPDIR': '/app', 'DEBIAN_FRONTEND': 'noninteractive', 'OLDPWD': '/', 'HOSTNAME': 'build-4258433-project-55928-gfritzsche-demo', u'SHELL': u'/bin/bash', 'PWD': '/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/checkouts/latest/tools/docs', 'BIN_PATH': '/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/envs/latest/bin', 'READTHEDOCS_VERSION': 'latest', 'PATH': '/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/checkouts/latest/tools/docs/_build/epub/_venv/bin:/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/envs/latest/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin', 'HOME': '/home/docs'}, argv=['/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/envs/latest/bin/sphinx-build', '-T', '-b', 'epub', '-d', '_build/doctrees-epub', '-D', 'language=en', '.', '_build/epub'], stdout=<open file '<stdout>', mode 'w'>, stderr=<open file '<stderr>', mode 'w'>, logger=None)

	Bases: dict

Represents a sandbox for executing Python code for build configuration.
This is a different kind of sandboxing than the one used for moz.build
processing.

The sandbox has 8 primitives:
- option
- depends
- template
- imports
- include
- set_config
- set_define
- imply_option

option, include, set_config, set_define and imply_option are
functions. depends, template, and imports are decorators.

These primitives are declared as name_impl methods to this class and
the mapping name -> name_impl is done automatically in __getitem__.

Additional primitives should be frowned upon to keep the sandbox itself as
simple as possible. Instead, helpers should be created within the sandbox
with the existing primitives.

The sandbox is given, at creation, a dict where the yielded configuration
will be stored.

config = {}
sandbox = ConfigureSandbox(config)
sandbox.run(path)
do_stuff(config)

	
BUILTINS = {u'None': None, u'set': <type 'set'>, u'tuple': <type 'tuple'>, u'int': <type 'int'>, '__import__': <function forbidden_import at 0x7f5e7989e668>, u'all': <built-in function all>, u'len': <built-in function len>, u'enumerate': <type 'enumerate'>, u'isinstance': <built-in function isinstance>, u'any': <built-in function any>, u'hasattr': <built-in function hasattr>, u'False': False, u'zip': <built-in function zip>, u'list': <type 'list'>, u'getattr': <built-in function getattr>, u'range': <built-in function range>, u'bool': <type 'bool'>, 'str': <type 'unicode'>, u'dict': <type 'dict'>, u'True': True}

	

	
OS = <ReadOnlyNamespace {'path': <ReadOnlyNamespace {'isdir': <function isdir at 0x7f5e81cd91b8>, 'realpath': <function realpath at 0x7f5e80b5f1b8>, 'join': <function join at 0x7f5e80b5f2a8>, 'exists': <function exists at 0x7f5e81cd90c8>, 'abspath': <function abspath at 0x7f5e80b5f230>, 'isabs': <function isabs at 0x7f5e81ce4050>, 'normcase': <function normcase at 0x7f5e81cd9f50>, 'normpath': <function normpath at 0x7f5e80b5f320>, 'dirname': <function dirname at 0x7f5e80b5f398>, 'isfile': <function isfile at 0x7f5e81cd9140>, 'basename': <function basename at 0x7f5e80b5f488>, 'relpath': <function relpath at 0x7f5e80b5f140>}>}>

	

	
RE_MODULE = <_sre.SRE_Pattern object>

	

	
depends_impl(*args)

	Implementation of @depends()
This function is a decorator. It returns a function that subsequently
takes a function and returns a dummy function. The dummy function
identifies the actual function for the sandbox, while preventing
further function calls from within the sandbox.

@depends() takes a variable number of option strings or dummy function
references. The decorated function is called as soon as the decorator
is called, and the arguments it receives are the OptionValue or
function results corresponding to each of the arguments to @depends.
As an exception, when a HelpFormatter is attached, only functions that
have ‘–help’ in their @depends argument list are called.

The decorated function is altered to use a different global namespace
for its execution. This different global namespace exposes a limited
set of functions from os.path.

	
imply_option_impl(option, value, reason=None)

	Implementation of imply_option().
Injects additional options as if they had been passed on the command
line. The option argument is a string as in option()’s name or
env. The option must be declared after imply_option references it.
The value argument indicates the value to pass to the option.
It can be:
- True. In this case imply_option injects the positive option

	(–enable-foo/–with-foo).

	imply_option(‘–enable-foo’, True)
imply_option(‘–disable-foo’, True)

are both equivalent to –enable-foo on the command line.

	False. In this case imply_option injects the negative option
(–disable-foo/–without-foo).

imply_option(‘–enable-foo’, False)
imply_option(‘–disable-foo’, False)

are both equivalent to –disable-foo on the command line.

	
	None. In this case imply_option does nothing.

	imply_option(‘–enable-foo’, None)
imply_option(‘–disable-foo’, None)

are both equivalent to not passing any flag on the command line.

	a string or a tuple. In this case imply_option injects the positive
option with the given value(s).

imply_option(‘–enable-foo’, ‘a’)
imply_option(‘–disable-foo’, ‘a’)

	are both equivalent to –enable-foo=a on the command line.

	imply_option(‘–enable-foo’, (‘a’, ‘b’))
imply_option(‘–disable-foo’, (‘a’, ‘b’))

are both equivalent to –enable-foo=a,b on the command line.

Because imply_option(‘–disable-foo’, ...) can be misleading, it is
recommended to use the positive form (‘–enable’ or ‘–with’) for
option.

The value argument can also be (and usually is) a reference to a
@depends function, in which case the result of that function will be
used as per the descripted mapping above.

The reason argument indicates what caused the option to be implied.
It is necessary when it cannot be inferred from the value.

	
imports_impl(_import, _from=None, _as=None)

	Implementation of @imports.
This decorator imports the given _import from the given _from module
optionally under a different _as name.
The options correspond to the various forms for the import builtin.

@imports(‘sys’)
@imports(_from=’mozpack’, _import=’path’, _as=’mozpath’)

	
include_file(path)

	Include one file in the sandbox. Users of this class probably want

Note: this will execute all template invocations, as well as @depends
functions that depend on ‘–help’, but nothing else.

	
include_impl(what)

	Implementation of include().
Allows to include external files for execution in the sandbox.
It is possible to use a @depends function as argument, in which case
the result of the function is the file name to include. This latter
feature is only really meant for –enable-application/–enable-project.

	
option_impl(*args, **kwargs)

	Implementation of option()
This function creates and returns an Option() object, passing it the
resolved arguments (uses the result of functions when functions are
passed). In most cases, the result of this function is not expected to
be used.
Command line argument/environment variable parsing for this Option is
handled here.

	
run(path=None)

	Executes the given file within the sandbox, as well as everything
pending from any other included file, and ensure the overall
consistency of the executed script(s).

	
set_config_impl(name, value)

	Implementation of set_config().
Set the configuration items with the given name to the given value.
Both name and value can be references to @depends functions,
in which case the result from these functions is used. If the result
of either function is None, the configuration item is not set.

	
set_define_impl(name, value)

	Implementation of set_define().
Set the define with the given name to the given value. Both name and
value can be references to @depends functions, in which case the
result from these functions is used. If the result of either function
is None, the define is not set. If the result is False, the define is
explicitly undefined (-U).

	
template_impl(func)

	Implementation of @template.
This function is a decorator. Template functions are called
immediately. They are altered so that their global namespace exposes
a limited set of functions from os.path, as well as depends and
option.
Templates allow to simplify repetitive constructs, or to implement
helper decorators and somesuch.

	
class mozbuild.configure.DependsFunction

	Bases: object

Sandbox-visible representation of @depends functions.

	
class mozbuild.configure.SandboxedGlobal

	Bases: dict

Identifiable dict type for use as function global

	
mozbuild.configure.forbidden_import(*args, **kwargs)

	

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	mozbuild package

mozbuild.controller package

Submodules

mozbuild.controller.building module

	
class mozbuild.controller.building.BuildDriver(topsrcdir, settings, log_manager, topobjdir=None, mozconfig=<object object>)

	Bases: mozbuild.base.MozbuildObject

Provides a high-level API for build actions.

	
install_tests(test_objs)

	Install test files.

	
class mozbuild.controller.building.BuildMonitor(topsrcdir, settings, log_manager, topobjdir=None, mozconfig=<object object>)

	Bases: mozbuild.base.MozbuildObject

Monitors the output of the build.

	
ccache_stats()

	

	
finish(record_usage=True)

	Record the end of the build.

	
get_resource_usage()

	Produce a data structure containing the low-level resource usage information.

This data structure can e.g. be serialized into JSON and saved for
subsequent analysis.

If no resource usage is available, None is returned.

	
have_excessive_swapping()

	Determine whether there was excessive swapping during the build.

Returns a tuple of (excessive, swap_in, swap_out). All values are None
if no swap information is available.

	
have_high_finder_usage()

	Determine whether there was high Finder CPU usage during the build.

Returns True if there was high Finder CPU usage, False if there wasn’t,
or None if there is nothing to report.

	
have_resource_usage

	Whether resource usage is available.

	
init(warnings_path)

	Create a new monitor.

warnings_path is a path of a warnings database to use.

	
log_resource_usage(usage)

	Summarize the resource usage of this build in a log message.

	
on_line(line)

	Consume a line of output from the build system.

This will parse the line for state and determine whether more action is
needed.

Returns a BuildOutputResult instance.

In this named tuple, warning will be an object describing a new parsed
warning. Otherwise it will be None.

state_changed indicates whether the build system changed state with
this line. If the build system changed state, the caller may want to
query this instance for the current state in order to update UI, etc.

for_display is a boolean indicating whether the line is relevant to the
user. This is typically used to filter whether the line should be
presented to the user.

	
start()

	Record the start of the build.

	
start_resource_recording()

	

	
class mozbuild.controller.building.BuildOutputResult(warning, state_changed, for_display)

	Bases: tuple

	
for_display

	Alias for field number 2

	
state_changed

	Alias for field number 1

	
warning

	Alias for field number 0

	
class mozbuild.controller.building.CCacheStats(output=None)

	Bases: object

Holds statistics from ccache.

Instances can be subtracted from each other to obtain differences.
print() or str() the object to show a ccache -s like output
of the captured stats.

	
ABSOLUTE_KEYS = set([u'cache_size', u'cache_files', u'cache_max_size'])

	

	
DIRECTORY_DESCRIPTION = u'cache directory'

	

	
FORMAT_KEYS = set([u'cache_size', u'cache_max_size'])

	

	
GiB = 1073741824

	

	
KiB = 1024

	

	
MiB = 1048576

	

	
PRIMARY_CONFIG_DESCRIPTION = u'primary config'

	

	
SECONDARY_CONFIG_DESCRIPTION = u'secondary config (readonly)'

	

	
STATS_KEYS = [(u'cache_hit_direct', u'cache hit (direct)'), (u'cache_hit_preprocessed', u'cache hit (preprocessed)'), (u'cache_miss', u'cache miss'), (u'link', u'called for link'), (u'preprocessing', u'called for preprocessing'), (u'multiple', u'multiple source files'), (u'stdout', u'compiler produced stdout'), (u'no_output', u'compiler produced no output'), (u'empty_output', u'compiler produced empty output'), (u'failed', u'compile failed'), (u'error', u'ccache internal error'), (u'preprocessor_error', u'preprocessor error'), (u'cant_use_pch', u"can't use precompiled header"), (u'compiler_missing', u"couldn't find the compiler"), (u'cache_file_missing', u'cache file missing'), (u'bad_args', u'bad compiler arguments'), (u'unsupported_lang', u'unsupported source language'), (u'compiler_check_failed', u'compiler check failed'), (u'autoconf', u'autoconf compile/link'), (u'unsupported_compiler_option', u'unsupported compiler option'), (u'out_stdout', u'output to stdout'), (u'out_device', u'output to a non-regular file'), (u'no_input', u'no input file'), (u'bad_extra_file', u'error hashing extra file'), (u'cache_files', u'files in cache'), (u'cache_size', u'cache size'), (u'cache_max_size', u'max cache size')]

	

	
hit_rate_message()

	

	
hit_rates()

	

	
class mozbuild.controller.building.TierStatus(resources)

	Bases: object

Represents the state and progress of tier traversal.

The build system is organized into linear phases called tiers. Each tier
executes in the order it was defined, 1 at a time.

	
add_resource_fields_to_dict(d)

	

	
add_resources_to_dict(entry, start=None, end=None, phase=None)

	Helper function to append resource information to a dict.

	
begin_tier(tier)

	Record that execution of a tier has begun.

	
finish_tier(tier)

	Record that execution of a tier has finished.

	
set_tiers(tiers)

	Record the set of known tiers.

	
tiered_resource_usage()

	Obtains an object containing resource usage for tiers.

The returned object is suitable for serialization.

mozbuild.controller.clobber module

	
class mozbuild.controller.clobber.Clobberer(topsrcdir, topobjdir)

	Bases: object

	
clobber_cause()

	Obtain the cause why a clobber is required.

This reads the cause from the CLOBBER file.

This returns a list of lines describing why the clobber was required.
Each line is stripped of leading and trailing whitespace.

	
clobber_needed()

	Returns a bool indicating whether a tree clobber is required.

	
ensure_objdir_state()

	Ensure the CLOBBER file in the objdir exists.

This is called as part of the build to ensure the clobber information
is configured properly for the objdir.

	
maybe_do_clobber(cwd, allow_auto=False, fh=<open file '<stderr>', mode 'w'>)

	Perform a clobber if it is required. Maybe.

This is the API the build system invokes to determine if a clobber
is needed and to automatically perform that clobber if we can.

This returns a tuple of (bool, bool, str). The elements are:

	Whether a clobber was/is required.

	Whether a clobber was performed.

	The reason why the clobber failed or could not be performed. This
will be None if no clobber is required or if we clobbered without
error.

	
mozbuild.controller.clobber.main(args, env, cwd, fh=<open file '<stderr>', mode 'w'>)

	

Module contents

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	mozbuild package

mozbuild.frontend package

Submodules

mozbuild.frontend.context module

This module contains the data structure (context) holding the configuration
from a moz.build. The data emitted by the frontend derives from those contexts.

It also defines the set of variables and functions available in moz.build.
If you are looking for the absolute authority on what moz.build files can
contain, you’ve come to the right place.

	
class mozbuild.frontend.context.AbsolutePath(context, value=None)

	Bases: mozbuild.frontend.context.Path

Like Path, but allows arbitrary paths outside the source and object directories.

	
class mozbuild.frontend.context.Context(allowed_variables={}, config=None, finder=None)

	Bases: mozbuild.util.KeyedDefaultDict

Represents a moz.build configuration context.

Instances of this class are filled by the execution of sandboxes.
At the core, a Context is a dict, with a defined set of possible keys we’ll
call variables. Each variable is associated with a type.

When reading a value for a given key, we first try to read the existing
value. If a value is not found and it is defined in the allowed variables
set, we return a new instance of the class for that variable. We don’t
assign default instances until they are accessed because this makes
debugging the end-result much simpler. Instead of a data structure with
lots of empty/default values, you have a data structure with only the
values that were read or touched.

Instances of variables classes are created by invoking class_name(),
except when class_name derives from ContextDerivedValue or
SubContext, in which case class_name(instance_of_the_context) or
class_name(self) is invoked. A value is added to those calls when
instances are created during assignment (setitem).

allowed_variables is a dict of the variables that can be set and read in
this context instance. Keys in this dict are the strings representing keys
in this context which are valid. Values are tuples of stored type,
assigned type, default value, a docstring describing the purpose of the
variable, and a tier indicator (see comment above the VARIABLES declaration
in this module).

config is the ConfigEnvironment for this context.

	
add_source(path)

	Adds the given path as source of the data from this context.

	
all_paths

	Returns all paths ever added to the context.

	
error_is_fatal

	Returns True if the error function should be fatal.

	
pop_source()

	Get back to the previous current path for the context.

	
push_source(path)

	Adds the given path as source of the data from this context and make
it the current path for the context.

	
relsrcdir

	

	
source_stack

	Returns the current stack of pushed sources.

	
srcdir

	

	
update(iterable={}, **kwargs)

	Like dict.update(), but using the context’s setitem.

This function is transactional: if setitem fails for one of the values,
the context is not updated at all.

	
mozbuild.frontend.context.ContextDerivedTypedHierarchicalStringList

	Specialized HierarchicalStringList for use with ContextDerivedValue
types.

	
mozbuild.frontend.context.ContextDerivedTypedList

	Specialized TypedList for use with ContextDerivedValue types.

	
mozbuild.frontend.context.ContextDerivedTypedListWithItems

	Specialized TypedList for use with ContextDerivedValue types.

	
mozbuild.frontend.context.ContextDerivedTypedRecord

	Factory for objects with certain properties and dynamic
type checks.

This API is extremely similar to the TypedNamedTuple API,
except that properties may be mutated. This supports syntax like:

	VARIABLE_NAME.property += [

	‘item1’,
‘item2’,

]

	
class mozbuild.frontend.context.ContextDerivedValue

	Bases: object

Classes deriving from this one receive a special treatment in a
Context. See Context documentation.

	
mozbuild.frontend.context.DependentTestsEntry

	alias of _TypedRecord

	
mozbuild.frontend.context.Enum(*values)

	

	
class mozbuild.frontend.context.Files(parent, pattern=None)

	Bases: mozbuild.frontend.context.SubContext

Metadata attached to files.

It is common to want to annotate files with metadata, such as which
Bugzilla component tracks issues with certain files. This sub-context is
where we stick that metadata.

The argument to this sub-context is a file matching pattern that is applied
against the host file’s directory. If the pattern matches a file whose info
is currently being sought, the metadata attached to this instance will be
applied to that file.

Patterns are collections of filename characters with / used as the
directory separate (UNIX-style paths) and * and ** used to denote
wildcard matching.

Patterns without the * character are literal matches and will match at
most one entity.

Patterns with * or ** are wildcard matches. * matches files
at least within a single directory. ** matches files across several
directories.

	foo.html

	Will match only the foo.html file in the current directory.

	*.jsm

	Will match all .jsm files in the current directory.

	**/*.cpp

	Will match all .cpp files in this and all child directories.

	foo/*.css

	Will match all .css files in the foo/ directory.

	bar/*

	Will match all files in the bar/ directory and all of its
children directories.

	bar/**

	This is equivalent to bar/* above.

	bar/**/foo

	Will match all foo files in the bar/ directory and all of its
children directories.

The difference in behavior between * and ** is only evident if
a pattern follows the * or **. A pattern ending with * is
greedy. ** is needed when you need an additional pattern after the
wildcard. e.g. **/foo.

	
VARIABLES = {u'BUG_COMPONENT': (<class 'mozbuild.util.TypedTuple'>, <type 'tuple'>, u"The bug component that tracks changes to these files.\n\n Values are a 2-tuple of unicode describing the Bugzilla product and\n component. e.g. ``('Core', 'Build Config')``.\n "), u'FINAL': (<type 'bool'>, <type 'bool'>, u'Mark variable assignments as finalized.\n\n During normal processing, values from newer Files contexts\n overwrite previously set values. Last write wins. This behavior is\n not always desired. ``FINAL`` provides a mechanism to prevent\n further updates to a variable.\n\n When ``FINAL`` is set, the value of all variables defined in this\n context are marked as frozen and all subsequent writes to them\n are ignored during metadata reading.\n\n See :ref:`mozbuild_files_metadata_finalizing` for more info.\n '), u'IMPACTED_TESTS': (<class 'mozbuild.frontend.context._TypedRecord'>, <type 'list'>, u"File patterns, tags, and flavors for tests relevant to these files.\n\n Maps source files to the tests potentially impacted by those files.\n Tests can be specified by file pattern, tag, or flavor.\n\n For example:\n\n with Files('runtests.py'):\n IMPACTED_TESTS.files += [\n '**',\n]\n\n in testing/mochitest/moz.build will suggest that any of the tests\n under testing/mochitest may be impacted by a change to runtests.py.\n\n File patterns may be made relative to the topsrcdir with a leading\n '/', so\n\n with Files('httpd.js'):\n IMPACTED_TESTS.files += [\n '/testing/mochitest/tests/Harness_sanity/**',\n]\n\n in netwerk/test/httpserver/moz.build will suggest that any change to httpd.js\n will be relevant to the mochitest sanity tests.\n\n Tags and flavors are sorted string lists (flavors are limited to valid\n values).\n\n For example:\n\n with Files('toolkit/devtools/*'):\n IMPACTED_TESTS.tags += [\n 'devtools',\n]\n\n in the root moz.build would suggest that any test tagged 'devtools' would\n potentially be impacted by a change to a file under toolkit/devtools, and\n\n with Files('dom/base/nsGlobalWindow.cpp'):\n IMPACTED_TESTS.flavors += [\n 'mochitest',\n]\n\n Would suggest that nsGlobalWindow.cpp is potentially relevant to\n any plain mochitest.\n ")}

	

	
static aggregate(files)

	Given a mapping of path to Files, obtain aggregate results.

Consumers may want to extract useful information from a collection of
Files describing paths. e.g. given the files info data for N paths,
recommend a single bug component based on the most frequent one. This
function provides logic for deriving aggregate knowledge from a
collection of path File metadata.

Note: the intent of this function is to operate on the result of
mozbuild.frontend.reader.BuildReader.files_info(). The
mozbuild.frontend.context.Files() instances passed in are
thus the “collapsed” (__iadd__``ed) results of all ``Files from all
moz.build files relevant to a specific path, not individual Files
instances from a single moz.build file.

	
asdict()

	Return this instance as a dict with built-in data structures.

Call this to obtain an object suitable for serializing.

	
class mozbuild.frontend.context.FinalTargetValue

	Bases: mozbuild.frontend.context.ContextDerivedValue, unicode

	
class mozbuild.frontend.context.InitializedDefines(context, value=None)

	Bases: mozbuild.frontend.context.ContextDerivedValue, collections.OrderedDict

	
mozbuild.frontend.context.ManifestparserManifestList

	alias of _OrderedListWithAction

	
class mozbuild.frontend.context.ObjDirPath(context, value=None)

	Bases: mozbuild.frontend.context.Path

Like Path, but limited to paths in the object directory.

	
mozbuild.frontend.context.OrderedListWithAction(action)

	Returns a class which behaves as a StrictOrderingOnAppendList, but
invokes the given callable with each input and a context as it is
read, storing a tuple including the result and the original item.

This used to extend moz.build reading to make more data available in
filesystem-reading mode.

	
mozbuild.frontend.context.OrderedSourceList

	alias of _TypedList

	
class mozbuild.frontend.context.Path(context, value=None)

	Bases: mozbuild.frontend.context.ContextDerivedValue, unicode

Stores and resolves a source path relative to a given context

This class is used as a backing type for some of the sandbox variables.
It expresses paths relative to a context. Supported paths are:

	‘/topsrcdir/relative/paths’

	‘srcdir/relative/paths’

	‘!/topobjdir/relative/paths’

	‘!objdir/relative/paths’

	‘%/filesystem/absolute/paths’

	
join(*p)

	ContextDerived equivalent of mozpath.join(self, *p), returning a
new Path instance.

	
class mozbuild.frontend.context.PathMeta

	Bases: type

Meta class for the Path family of classes.

It handles calling __new__ and __init__ with the right arguments
in cases where a Path is instantiated with another instance of
Path instead of having received a context.

It also makes Path(context, value) instantiate one of the
subclasses depending on the value, allowing callers to do
standard type checking (isinstance(path, ObjDirPath)) instead
of checking the value itself (path.startswith(‘!’)).

	
mozbuild.frontend.context.ReftestManifestList

	alias of _OrderedListWithAction

	
class mozbuild.frontend.context.RenamedSourcePath(context, value)

	Bases: mozbuild.frontend.context.SourcePath

Like SourcePath, but with a different base name when installed.

The constructor takes a tuple of (source, target_basename).

This class is not meant to be exposed to moz.build sandboxes as of now,
and is not supported by the RecursiveMake backend.

	
target_basename

	

	
class mozbuild.frontend.context.SourcePath(context, value)

	Bases: mozbuild.frontend.context.Path

Like Path, but limited to paths in the source directory.

	
class mozbuild.frontend.context.SubContext(parent)

	Bases: mozbuild.frontend.context.Context, mozbuild.frontend.context.ContextDerivedValue

A Context derived from another Context.

Sub-contexts are intended to be used as context managers.

Sub-contexts inherit paths and other relevant state from the parent
context.

	
class mozbuild.frontend.context.TemplateContext(template=None, allowed_variables={}, config=None)

	Bases: mozbuild.frontend.context.Context

	
mozbuild.frontend.context.TypedListWithAction(typ, action)

	Returns a class which behaves as a TypedList with the provided type, but
invokes the given given callable with each input and a context as it is
read, storing a tuple including the result and the original item.

This used to extend moz.build reading to make more data available in
filesystem-reading mode.

	
mozbuild.frontend.context.WptManifestList

	alias of _TypedListWithAction

	
mozbuild.frontend.context.cls

	alias of Files

mozbuild.frontend.data module

Data structures representing Mozilla’s source tree.

The frontend files are parsed into static data structures. These data
structures are defined in this module.

All data structures of interest are children of the TreeMetadata class.

Logic for populating these data structures is not defined in this class.
Instead, what we have here are dumb container classes. The emitter module
contains the code for converting executed mozbuild files into these data
structures.

	
class mozbuild.frontend.data.AndroidAssetsDirs(context, paths)

	Bases: mozbuild.frontend.data.ContextDerived

Represents Android assets directories.

	
paths

	

	
class mozbuild.frontend.data.AndroidEclipseProjectData(name)

	Bases: object

Represents an Android Eclipse project.

	
add_classpathentry(path, srcdir, dstdir, exclude_patterns=[], ignore_warnings=False)

	

	
assets

	

	
extra_jars

	

	
filtered_resources

	

	
included_projects

	

	
is_library

	

	
libs

	

	
manifest

	

	
name

	

	
package_name

	

	
recursive_make_targets

	

	
referenced_projects

	

	
res

	

	
class mozbuild.frontend.data.AndroidExtraPackages(context, packages)

	Bases: mozbuild.frontend.data.ContextDerived

Represents Android extra packages.

	
packages

	

	
class mozbuild.frontend.data.AndroidExtraResDirs(context, paths)

	Bases: mozbuild.frontend.data.ContextDerived

Represents Android extra resource directories.

Extra resources are resources provided by libraries and including in a
packaged APK, but not otherwise redistributed. In practice, this means
resources included in Fennec but not in GeckoView.

	
paths

	

	
class mozbuild.frontend.data.AndroidResDirs(context, paths)

	Bases: mozbuild.frontend.data.ContextDerived

Represents Android resource directories.

	
paths

	

	
class mozbuild.frontend.data.BaseConfigSubstitution(context)

	Bases: mozbuild.frontend.data.ContextDerived

Base class describing autogenerated files as part of config.status.

	
input_path

	

	
output_path

	

	
relpath

	

	
class mozbuild.frontend.data.BaseDefines(context, defines)

	Bases: mozbuild.frontend.data.ContextDerived

Context derived container object for DEFINES/HOST_DEFINES,
which are OrderedDicts.

	
defines

	

	
get_defines()

	

	
update(more_defines)

	

	
class mozbuild.frontend.data.BaseLibrary(context, basename)

	Bases: mozbuild.frontend.data.Linkable

Generic context derived container object for libraries.

	
basename

	

	
import_name

	

	
lib_name

	

	
refs

	

	
class mozbuild.frontend.data.BaseProgram(context, program, is_unit_test=False)

	Bases: mozbuild.frontend.data.Linkable

Context derived container object for programs, which is a unicode
string.

This class handles automatically appending a binary suffix to the program
name.
If the suffix is not defined, the program name is unchanged.
Otherwise, if the program name ends with the given suffix, it is unchanged
Otherwise, the suffix is appended to the program name.

	
DICT_ATTRS = set([u'relobjdir', u'install_target', u'KIND', u'program'])

	

	
program

	

	
class mozbuild.frontend.data.BaseSources(context, files, canonical_suffix)

	Bases: mozbuild.frontend.data.ContextDerived

Base class for files to be compiled during the build.

	
canonical_suffix

	

	
files

	

	
class mozbuild.frontend.data.BrandingFiles(sandbox, files)

	Bases: mozbuild.frontend.data.FinalTargetFiles

Sandbox container object for BRANDING_FILES, which is a
HierarchicalStringList.

We need an object derived from ContextDerived for use in the backend, so
this object fills that role. It just has a reference to the underlying
HierarchicalStringList, which is created when parsing BRANDING_FILES.

	
install_target

	

	
class mozbuild.frontend.data.ChromeManifestEntry(context, manifest_path, entry)

	Bases: mozbuild.frontend.data.ContextDerived

Represents a chrome.manifest entry.

	
entry

	

	
path

	

	
class mozbuild.frontend.data.ClassPathEntry

	Bases: object

Represents a classpathentry in an Android Eclipse project.

	
dstdir

	

	
exclude_patterns

	

	
ignore_warnings

	

	
path

	

	
srcdir

	

	
class mozbuild.frontend.data.ConfigFileSubstitution(context)

	Bases: mozbuild.frontend.data.BaseConfigSubstitution

Describes a config file that will be generated using substitutions.

	
class mozbuild.frontend.data.ContextDerived(context)

	Bases: mozbuild.frontend.data.TreeMetadata

Build object derived from a single Context instance.

It holds fields common to all context derived classes. This class is likely
never instantiated directly but is instead derived from.

	
config

	

	
context_all_paths

	

	
context_main_path

	

	
defines

	

	
install_target

	

	
objdir

	

	
relativedir

	

	
relobjdir

	

	
srcdir

	

	
topobjdir

	

	
topsrcdir

	

	
class mozbuild.frontend.data.ContextWrapped(context, wrapped)

	Bases: mozbuild.frontend.data.ContextDerived

Generic context derived container object for a wrapped rich object.

Use this wrapper class to shuttle a rich build system object
completely defined in moz.build files through the tree metadata
emitter to the build backend for processing as-is.

	
wrapped

	

	
class mozbuild.frontend.data.Defines(context, defines)

	Bases: mozbuild.frontend.data.BaseDefines

	
class mozbuild.frontend.data.DirectoryTraversal(context)

	Bases: mozbuild.frontend.data.ContextDerived

Describes how directory traversal for building should work.

This build object is likely only of interest to the recursive make backend.
Other build backends should (ideally) not attempt to mimic the behavior of
the recursive make backend. The only reason this exists is to support the
existing recursive make backend while the transition to mozbuild frontend
files is complete and we move to a more optimal build backend.

Fields in this class correspond to similarly named variables in the
frontend files.

	
dirs

	

	
class mozbuild.frontend.data.ExampleWebIDLInterface(context, name)

	Bases: mozbuild.frontend.data.ContextDerived

An individual WebIDL interface to generate.

	
name

	

	
class mozbuild.frontend.data.Exports(sandbox, files)

	Bases: mozbuild.frontend.data.FinalTargetFiles

Context derived container object for EXPORTS, which is a
HierarchicalStringList.

We need an object derived from ContextDerived for use in the backend, so
this object fills that role. It just has a reference to the underlying
HierarchicalStringList, which is created when parsing EXPORTS.

	
install_target

	

	
class mozbuild.frontend.data.ExternalLibrary

	Bases: object

Empty mixin for libraries built by an external build system.

	
class mozbuild.frontend.data.ExternalSharedLibrary(context, basename, real_name=None, is_sdk=False, soname=None, variant=None, symbols_file=False)

	Bases: mozbuild.frontend.data.SharedLibrary, mozbuild.frontend.data.ExternalLibrary

Context derived container for shared libraries built by an external
build system.

	
class mozbuild.frontend.data.ExternalStaticLibrary(context, basename, real_name=None, is_sdk=False, link_into=None, no_expand_lib=False)

	Bases: mozbuild.frontend.data.StaticLibrary, mozbuild.frontend.data.ExternalLibrary

Context derived container for static libraries built by an external
build system.

	
class mozbuild.frontend.data.FinalTargetFiles(sandbox, files)

	Bases: mozbuild.frontend.data.ContextDerived

Sandbox container object for FINAL_TARGET_FILES, which is a
HierarchicalStringList.

We need an object derived from ContextDerived for use in the backend, so
this object fills that role. It just has a reference to the underlying
HierarchicalStringList, which is created when parsing FINAL_TARGET_FILES.

	
files

	

	
class mozbuild.frontend.data.FinalTargetPreprocessedFiles(sandbox, files)

	Bases: mozbuild.frontend.data.ContextDerived

Sandbox container object for FINAL_TARGET_PP_FILES, which is a
HierarchicalStringList.

We need an object derived from ContextDerived for use in the backend, so
this object fills that role. It just has a reference to the underlying
HierarchicalStringList, which is created when parsing
FINAL_TARGET_PP_FILES.

	
files

	

	
class mozbuild.frontend.data.GeneratedEventWebIDLFile(context, path)

	Bases: mozbuild.frontend.data.ContextDerived

Describes an individual .webidl source file.

	
basename

	

	
class mozbuild.frontend.data.GeneratedFile(context, script, method, outputs, inputs, flags=())

	Bases: mozbuild.frontend.data.ContextDerived

Represents a generated file.

	
flags

	

	
inputs

	

	
method

	

	
outputs

	

	
script

	

	
class mozbuild.frontend.data.GeneratedSources(context, files, canonical_suffix)

	Bases: mozbuild.frontend.data.BaseSources

Represents generated files to be compiled during the build.

	
class mozbuild.frontend.data.GeneratedWebIDLFile(context, path)

	Bases: mozbuild.frontend.data.ContextDerived

Describes an individual .webidl source file that is generated from
build rules.

	
basename

	

	
class mozbuild.frontend.data.HostDefines(context, defines)

	Bases: mozbuild.frontend.data.BaseDefines

	
class mozbuild.frontend.data.HostLibrary(context, basename)

	Bases: mozbuild.frontend.data.HostMixin, mozbuild.frontend.data.BaseLibrary

Context derived container object for a host library

	
KIND = u'host'

	

	
class mozbuild.frontend.data.HostMixin

	Bases: object

	
defines

	

	
class mozbuild.frontend.data.HostProgram(context, program, is_unit_test=False)

	Bases: mozbuild.frontend.data.HostMixin, mozbuild.frontend.data.BaseProgram

Context derived container object for HOST_PROGRAM

	
KIND = u'host'

	

	
SUFFIX_VAR = u'HOST_BIN_SUFFIX'

	

	
class mozbuild.frontend.data.HostSimpleProgram(context, program, is_unit_test=False)

	Bases: mozbuild.frontend.data.HostMixin, mozbuild.frontend.data.BaseProgram

Context derived container object for each program in
HOST_SIMPLE_PROGRAMS

	
KIND = u'host'

	

	
SUFFIX_VAR = u'HOST_BIN_SUFFIX'

	

	
class mozbuild.frontend.data.HostSources(context, files, canonical_suffix)

	Bases: mozbuild.frontend.data.HostMixin, mozbuild.frontend.data.BaseSources

Represents files to be compiled for the host during the build.

	
class mozbuild.frontend.data.IPDLFile(context, path)

	Bases: mozbuild.frontend.data.ContextDerived

Describes an individual .ipdl source file.

	
basename

	

	
class mozbuild.frontend.data.InstallationTarget(context)

	Bases: mozbuild.frontend.data.ContextDerived

Describes the rules that affect where files get installed to.

	
enabled

	

	
is_custom()

	Returns whether or not the target is not derived from the default
given xpiname and subdir.

	
subdir

	

	
target

	

	
xpiname

	

	
class mozbuild.frontend.data.JARManifest(context, path)

	Bases: mozbuild.frontend.data.ContextDerived

Describes an individual JAR manifest file and how to process it.

This class isn’t very useful for optimizing backends yet because we don’t
capture defines. We can’t capture defines safely until all of them are
defined in moz.build and not Makefile.in files.

	
path

	

	
class mozbuild.frontend.data.JavaJarData(name, sources=[], generated_sources=[], extra_jars=[], javac_flags=[])

	Bases: object

Represents a Java JAR file.

	A Java JAR has the following members:

	
	sources - strictly ordered list of input java sources

	generated_sources - strictly ordered list of generated input
java sources

	extra_jars - list of JAR file dependencies to include on the
javac compiler classpath

	javac_flags - list containing extra flags passed to the
javac compiler

	
extra_jars

	

	
generated_sources

	

	
javac_flags

	

	
name

	

	
sources

	

	
class mozbuild.frontend.data.Library(context, basename, real_name=None, is_sdk=False)

	Bases: mozbuild.frontend.data.BaseLibrary

Context derived container object for a library

	
KIND = u'target'

	

	
is_sdk

	

	
class mozbuild.frontend.data.Linkable(context)

	Bases: mozbuild.frontend.data.ContextDerived

Generic context derived container object for programs and libraries

	
lib_defines

	

	
link_library(obj)

	

	
link_system_library(lib)

	

	
linked_libraries

	

	
linked_system_libs

	

	
exception mozbuild.frontend.data.LinkageWrongKindError

	Bases: exceptions.Exception

Error thrown when trying to link objects of the wrong kind

	
class mozbuild.frontend.data.LocalInclude(context, path)

	Bases: mozbuild.frontend.data.ContextDerived

Describes an individual local include path.

	
path

	

	
class mozbuild.frontend.data.ObjdirFiles(sandbox, files)

	Bases: mozbuild.frontend.data.ContextDerived

Sandbox container object for OBJDIR_FILES, which is a
HierarchicalStringList.

	
files

	

	
install_target

	

	
class mozbuild.frontend.data.ObjdirPreprocessedFiles(sandbox, files)

	Bases: mozbuild.frontend.data.ContextDerived

Sandbox container object for OBJDIR_PP_FILES, which is a
HierarchicalStringList.

	
files

	

	
install_target

	

	
class mozbuild.frontend.data.PerSourceFlag(context, file_name, flags)

	Bases: mozbuild.frontend.data.ContextDerived

Describes compiler flags specified for individual source files.

	
file_name

	

	
flags

	

	
class mozbuild.frontend.data.PreprocessedTestWebIDLFile(context, path)

	Bases: mozbuild.frontend.data.ContextDerived

Describes an individual test-only .webidl source file that requires
preprocessing.

	
basename

	

	
class mozbuild.frontend.data.PreprocessedWebIDLFile(context, path)

	Bases: mozbuild.frontend.data.ContextDerived

Describes an individual .webidl source file that requires preprocessing.

	
basename

	

	
class mozbuild.frontend.data.Program(context, program, is_unit_test=False)

	Bases: mozbuild.frontend.data.BaseProgram

Context derived container object for PROGRAM

	
KIND = u'target'

	

	
SUFFIX_VAR = u'BIN_SUFFIX'

	

	
class mozbuild.frontend.data.RustRlibLibrary(context, basename, crate_name, rlib_filename, link_into)

	Bases: mozbuild.frontend.data.Library

Context derived container object for a Rust rlib

	
class mozbuild.frontend.data.SdkFiles(sandbox, files)

	Bases: mozbuild.frontend.data.FinalTargetFiles

Sandbox container object for SDK_FILES, which is a
HierarchicalStringList.

We need an object derived from ContextDerived for use in the backend, so
this object fills that role. It just has a reference to the underlying
HierarchicalStringList, which is created when parsing SDK_FILES.

	
install_target

	

	
class mozbuild.frontend.data.SharedLibrary(context, basename, real_name=None, is_sdk=False, soname=None, variant=None, symbols_file=False)

	Bases: mozbuild.frontend.data.Library

Context derived container object for a shared library

	
COMPONENT = 2

	

	
DICT_ATTRS = set([u'install_target', u'soname', u'basename', u'relobjdir', u'lib_name', u'import_name'])

	

	
FRAMEWORK = 1

	

	
MAX_VARIANT = 3

	

	
soname

	

	
symbols_file

	

	
variant

	

	
class mozbuild.frontend.data.SimpleProgram(context, program, is_unit_test=False)

	Bases: mozbuild.frontend.data.BaseProgram

Context derived container object for each program in SIMPLE_PROGRAMS

	
KIND = u'target'

	

	
SUFFIX_VAR = u'BIN_SUFFIX'

	

	
class mozbuild.frontend.data.Sources(context, files, canonical_suffix)

	Bases: mozbuild.frontend.data.BaseSources

Represents files to be compiled during the build.

	
class mozbuild.frontend.data.StaticLibrary(context, basename, real_name=None, is_sdk=False, link_into=None, no_expand_lib=False)

	Bases: mozbuild.frontend.data.Library

Context derived container object for a static library

	
link_into

	

	
no_expand_lib

	

	
class mozbuild.frontend.data.TestHarnessFiles(sandbox, files)

	Bases: mozbuild.frontend.data.FinalTargetFiles

Sandbox container object for TEST_HARNESS_FILES,
which is a HierarchicalStringList.

	
install_target

	

	
class mozbuild.frontend.data.TestManifest(context, path, manifest, flavor=None, install_prefix=None, relpath=None, dupe_manifest=False)

	Bases: mozbuild.frontend.data.ContextDerived

Represents a manifest file containing information about tests.

	
default_support_files

	

	
deferred_installs

	

	
directory

	

	
dupe_manifest

	

	
external_installs

	

	
flavor

	

	
install_prefix

	

	
installs

	

	
manifest

	

	
manifest_obj_relpath

	

	
manifest_relpath

	

	
path

	

	
pattern_installs

	

	
tests

	

	
class mozbuild.frontend.data.TestWebIDLFile(context, path)

	Bases: mozbuild.frontend.data.ContextDerived

Describes an individual test-only .webidl source file.

	
basename

	

	
class mozbuild.frontend.data.TreeMetadata

	Bases: object

Base class for all data being captured.

	
to_dict()

	

	
class mozbuild.frontend.data.UnifiedSources(context, files, canonical_suffix, files_per_unified_file=16)

	Bases: mozbuild.frontend.data.BaseSources

Represents files to be compiled in a unified fashion during the build.

	
have_unified_mapping

	

	
unified_source_mapping

	

	
class mozbuild.frontend.data.VariablePassthru(context)

	Bases: mozbuild.frontend.data.ContextDerived

A dict of variables to pass through to backend.mk unaltered.

The purpose of this object is to facilitate rapid transitioning of
variables from Makefile.in to moz.build. In the ideal world, this class
does not exist and every variable has a richer class representing it.
As long as we rely on this class, we lose the ability to have flexibility
in our build backends since we will continue to be tied to our rules.mk.

	
variables

	

	
class mozbuild.frontend.data.WebIDLFile(context, path)

	Bases: mozbuild.frontend.data.ContextDerived

Describes an individual .webidl source file.

	
basename

	

	
class mozbuild.frontend.data.XPIDLFile(context, source, module, add_to_manifest)

	Bases: mozbuild.frontend.data.ContextDerived

Describes an XPIDL file to be compiled.

	
add_to_manifest

	

	
basename

	

	
module

	

	
source_path

	

mozbuild.frontend.emitter module

	
class mozbuild.frontend.emitter.TreeMetadataEmitter(config)

	Bases: mach.mixin.logging.LoggingMixin

Converts the executed mozbuild files into data structures.

This is a bridge between reader.py and data.py. It takes what was read by
reader.BuildReader and converts it into the classes defined in the data
module.

	
LIBRARY_NAME_VAR = {u'host': u'HOST_LIBRARY_NAME', u'target': u'LIBRARY_NAME'}

	

	
emit(output)

	Convert the BuildReader output into data structures.

The return value from BuildReader.read_topsrcdir() (a generator) is
typically fed into this function.

	
emit_from_context(context)

	Convert a Context to tree metadata objects.

This is a generator of mozbuild.frontend.data.ContextDerived instances.

	
summary()

	

mozbuild.frontend.gyp_reader module

	
class mozbuild.frontend.gyp_reader.GypContext(config, relobjdir)

	Bases: mozbuild.frontend.context.TemplateContext

Specialized Context for use with data extracted from Gyp.

config is the ConfigEnvironment for this context.
relobjdir is the object directory that will be used for this context,
relative to the topobjdir defined in the ConfigEnvironment.

	
mozbuild.frontend.gyp_reader.encode(value)

	

	
mozbuild.frontend.gyp_reader.read_from_gyp(config, path, output, vars, non_unified_sources=set([]))

	Read a gyp configuration and emits GypContexts for the backend to
process.

config is a ConfigEnvironment, path is the path to a root gyp configuration
file, output is the base path under which the objdir for the various gyp
dependencies will be, and vars a dict of variables to pass to the gyp
processor.

mozbuild.frontend.mach_commands module

mozbuild.frontend.reader module

Read build frontend files into data structures.

In terms of code architecture, the main interface is BuildReader. BuildReader
starts with a root mozbuild file. It creates a new execution environment for
this file, which is represented by the Sandbox class. The Sandbox class is used
to fill a Context, representing the output of an individual mozbuild file. The

The BuildReader contains basic logic for traversing a tree of mozbuild files.
It does this by examining specific variables populated during execution.

	
class mozbuild.frontend.reader.BuildReader(config, finder=<mozpack.files.FileFinder object>)

	Bases: object

Read a tree of mozbuild files into data structures.

This is where the build system starts. You give it a tree configuration
(the output of configuration) and it executes the moz.build files and
collects the data they define.

The reader can optionally call a callable after each sandbox is evaluated
but before its evaluated content is processed. This gives callers the
opportunity to modify contexts before side-effects occur from their
content. This callback receives the Context containing the result of
each sandbox evaluation. Its return value is ignored.

	
all_mozbuild_paths()

	Iterator over all available moz.build files.

This method has little to do with the reader. It should arguably belong
elsewhere.

	
files_info(paths)

	Obtain aggregate data from Files for a set of files.

Given a set of input paths, determine which moz.build files may
define metadata for them, evaluate those moz.build files, and
apply file metadata rules defined within to determine metadata
values for each file requested.

Essentially, for each input path:

	Determine the set of moz.build files relevant to that file by
looking for moz.build files in ancestor directories.

	Evaluate moz.build files starting with the most distant.

	Iterate over Files sub-contexts.

	If the file pattern matches the file we’re seeking info on,
apply attribute updates.

	Return the most recent value of attributes.

	
find_sphinx_variables()

	This function finds all assignments of Sphinx documentation variables.

This is a generator of tuples of (moz.build path, var, key, value). For
variables that assign to keys in objects, key will be defined.

With a little work, this function could be made more generic. But if we
end up writing a lot of ast code, it might be best to import a
high-level AST manipulation library into the tree.

	
read_mozbuild(path, config, descend=True, metadata={})

	Read and process a mozbuild file, descending into children.

This starts with a single mozbuild file, executes it, and descends into
other referenced files per our traversal logic.

The traversal logic is to iterate over the *DIRS variables, treating
each element as a relative directory path. For each encountered
directory, we will open the moz.build file located in that
directory in a new Sandbox and process it.

If descend is True (the default), we will descend into child
directories and files per variable values.

Arbitrary metadata in the form of a dict can be passed into this
function. This feature is intended to facilitate the build reader
injecting state and annotations into moz.build files that is
independent of the sandbox’s execution context.

Traversal is performed depth first (for no particular reason).

	
read_relevant_mozbuilds(paths)

	Read and process moz.build files relevant for a set of paths.

For an iterable of relative-to-root filesystem paths paths,
find all moz.build files that may apply to them based on filesystem
hierarchy and read those moz.build files.

The return value is a 2-tuple. The first item is a dict mapping each
input filesystem path to a list of Context instances that are relevant
to that path. The second item is a list of all Context instances. Each
Context instance is in both data structures.

	
read_topsrcdir()

	Read the tree of linked moz.build files.

This starts with the tree’s top-most moz.build file and descends into
all linked moz.build files until all relevant files have been evaluated.

This is a generator of Context instances. As each moz.build file is
read, a new Context is created and emitted.

	
summary()

	

	
test_defaults_for_path(ctxs)

	

	
exception mozbuild.frontend.reader.BuildReaderError(file_stack, trace, sandbox_exec_error=None, sandbox_load_error=None, validation_error=None, other_error=None, sandbox_called_error=None)

	Bases: exceptions.Exception

Represents errors encountered during BuildReader execution.

The main purpose of this class is to facilitate user-actionable error
messages. Execution errors should say:

	Why they failed

	Where they failed

	What can be done to prevent the error

A lot of the code in this class should arguably be inside sandbox.py.
However, extraction is somewhat difficult given the additions
MozbuildSandbox has over Sandbox (e.g. the concept of included files -
which affect error messages, of course).

	
actual_file

	

	
main_file

	

	
sandbox_error

	

	
class mozbuild.frontend.reader.EmptyConfig(topsrcdir)

	Bases: object

A config object that is empty.

This config object is suitable for using with a BuildReader on a vanilla
checkout, without any existing configuration. The config is simply
bootstrapped from a top source directory path.

	
class PopulateOnGetDict(default_factory, *args, **kwargs)

	Bases: mozbuild.util.ReadOnlyDefaultDict

A variation on ReadOnlyDefaultDict that populates during .get().

This variation is needed because CONFIG uses .get() to access members.
Without it, None (instead of our EmptyValue types) would be returned.

	
get(key, default=None)

	

	
class mozbuild.frontend.reader.MozbuildSandbox(context, metadata={}, finder=<mozpack.files.FileFinder object>)

	Bases: mozbuild.frontend.sandbox.Sandbox

Implementation of a Sandbox tailored for mozbuild files.

We expose a few useful functions and expose the set of variables defining
Mozilla’s build system.

context is a Context instance.

metadata is a dict of metadata that can be used during the sandbox
evaluation.

	
add_android_eclipse_project_helper(name)

	Add an Android Eclipse project target.

	
exec_file(path)

	Override exec_file to normalize paths and restrict file loading.

Paths will be rejected if they do not fall under topsrcdir or one of
the external roots.

	
recompute_exports()

	Recompute the variables to export to subdirectories with the current
values in the subdirectory.

	
exception mozbuild.frontend.reader.SandboxCalledError(file_stack, message)

	Bases: mozbuild.frontend.sandbox.SandboxError

Represents an error resulting from calling the error() function.

	
exception mozbuild.frontend.reader.SandboxValidationError(message, context)

	Bases: exceptions.Exception

Represents an error encountered when validating sandbox results.

	
class mozbuild.frontend.reader.TemplateFunction(func, sandbox)

	Bases: object

	
class RewriteName(sandbox, global_name)

	Bases: ast.NodeTransformer

AST Node Transformer to rewrite variable accesses to go through
a dict.

	
visit_Name(node)

	

	
visit_Str(node)

	

	
TemplateFunction.exec_in_sandbox(sandbox, *args, **kwargs)

	Executes the template function in the given sandbox.

	
mozbuild.frontend.reader.is_read_allowed(path, config)

	Whether we are allowed to load a mozbuild file at the specified path.

This is used as cheap security to ensure the build is isolated to known
source directories.

We are allowed to read from the main source directory and any defined
external source directories. The latter is to allow 3rd party applications
to hook into our build system.

	
mozbuild.frontend.reader.log(logger, level, action, params, formatter)

	

mozbuild.frontend.sandbox module

Python sandbox implementation for build files.

This module contains classes for Python sandboxes that execute in a
highly-controlled environment.

The main class is Sandbox. This provides an execution environment for Python
code and is used to fill a Context instance for the takeaway information from
the execution.

Code in this module takes a different approach to exception handling compared
to what you’d see elsewhere in Python. Arguments to built-in exceptions like
KeyError are machine parseable. This machine-friendly data is used to present
user-friendly error messages in the case of errors.

	
class mozbuild.frontend.sandbox.Sandbox(context, builtins=None, finder=<mozpack.files.FileFinder object>)

	Bases: dict

Represents a sandbox for executing Python code.

This class provides a sandbox for execution of a single mozbuild frontend
file. The results of that execution is stored in the Context instance given
as the context argument.

Sandbox is effectively a glorified wrapper around compile() + exec(). You
point it at some Python code and it executes it. The main difference from
executing Python code like normal is that the executed code is very limited
in what it can do: the sandbox only exposes a very limited set of Python
functionality. Only specific types and functions are available. This
prevents executed code from doing things like import modules, open files,
etc.

Sandbox instances act as global namespace for the sandboxed execution
itself. They shall not be used to access the results of the execution.
Those results are available in the given Context instance after execution.

The Sandbox itself is responsible for enforcing rules such as forbidding
reassignment of variables.

Implementation note: Sandbox derives from dict because exec() insists that
what it is given for namespaces is a dict.

	
BUILTINS = {u'int': <type 'int'>, u'False': False, u'None': None, u'True': True, u'sorted': <function alphabetical_sorted at 0x7f5e7d336c08>}

	

	
exec_file(path)

	Execute code at a path in the sandbox.

The path must be absolute.

	
exec_function(func, args=(), kwargs={}, path=u'', becomes_current_path=True)

	Execute function with the given arguments in the sandbox.

	
exec_source(source, path=u'')

	Execute Python code within a string.

The passed string should contain Python code to be executed. The string
will be compiled and executed.

You should almost always go through exec_file() because exec_source()
does not perform extra path normalization. This can cause relative
paths to behave weirdly.

	
get(key, default=None)

	

	
pop_subcontext(context)

	Pop a SubContext off the execution stack.

SubContexts must be pushed and popped in opposite order. This is
validated as part of the function call to ensure proper consumer API
use.

	
push_subcontext(context)

	Push a SubContext onto the execution stack.

When called, the active context will be set to the specified context,
meaning all variable accesses will go through it. We also record this
SubContext as having been executed as part of this sandbox.

	
exception mozbuild.frontend.sandbox.SandboxError(file_stack)

	Bases: exceptions.Exception

	
exception mozbuild.frontend.sandbox.SandboxExecutionError(file_stack, exc_type, exc_value, trace)

	Bases: mozbuild.frontend.sandbox.SandboxError

Represents errors encountered during execution of a Sandbox.

This is a simple container exception. It’s purpose is to capture state
so something else can report on it.

	
exception mozbuild.frontend.sandbox.SandboxLoadError(file_stack, trace, illegal_path=None, read_error=None)

	Bases: mozbuild.frontend.sandbox.SandboxError

Represents errors encountered when loading a file for execution.

This exception represents errors in a Sandbox that occurred as part of
loading a file. The error could have occurred in the course of executing
a file. If so, the file_stack will be non-empty and the file that caused
the load will be on top of the stack.

	
mozbuild.frontend.sandbox.alphabetical_sorted(iterable, cmp=None, key=<function <lambda>>, reverse=False)

	sorted() replacement for the sandbox, ordering alphabetically by
default.

Module contents

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	mozbuild package

mozbuild.test package

Subpackages

	mozbuild.test.backend package
	Submodules

	mozbuild.test.backend.common module

	mozbuild.test.backend.test_android_eclipse module

	mozbuild.test.backend.test_build module

	mozbuild.test.backend.test_configenvironment module

	mozbuild.test.backend.test_recursivemake module

	mozbuild.test.backend.test_visualstudio module

	Module contents

	mozbuild.test.compilation package
	Submodules

	mozbuild.test.compilation.test_warnings module

	Module contents

	mozbuild.test.controller package
	Submodules

	mozbuild.test.controller.test_ccachestats module

	mozbuild.test.controller.test_clobber module

	Module contents

	mozbuild.test.frontend package
	Submodules

	mozbuild.test.frontend.test_context module

	mozbuild.test.frontend.test_emitter module

	mozbuild.test.frontend.test_namespaces module

	mozbuild.test.frontend.test_reader module

	mozbuild.test.frontend.test_sandbox module

	Module contents

Submodules

mozbuild.test.common module

	
class mozbuild.test.common.MockConfig(topsrcdir=u'/path/to/topsrcdir', extra_substs={}, error_is_fatal=True)

	Bases: object

mozbuild.test.test_android_version_code module

	
class mozbuild.test.test_android_version_code.TestAndroidVersionCode(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_android_version_code_v0()

	

	
test_android_version_code_v0_relative_v1()

	Verify that the first v1 code is greater than the equivalent v0 code.

	
test_android_version_code_v1()

	

	
test_android_version_code_v1_overflow()

	Verify that it is an error to ask for v1 codes that actually does overflow.

	
test_android_version_code_v1_running_low()

	Verify there is an informative message if one asks for v1 codes that are close to overflow.

	
test_android_version_code_v1_underflow()

	Verify that it is an error to ask for v1 codes predating the cutoff.

mozbuild.test.test_base module

mozbuild.test.test_containers module

	
class mozbuild.test.test_containers.TestKeyedDefaultDict(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_defaults()

	

	
test_simple()

	

	
class mozbuild.test.test_containers.TestList(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_add_list()

	

	
test_add_string()

	

	
test_none()

	As a special exception, we allow None to be treated as an empty
list.

	
class mozbuild.test.test_containers.TestOrderedDefaultDict(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_defaults()

	

	
test_simple()

	

	
class mozbuild.test.test_containers.TestReadOnlyDefaultDict(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_assignment()

	

	
test_defaults()

	

	
test_simple()

	

	
class mozbuild.test.test_containers.TestReadOnlyDict(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_basic()

	

	
test_del()

	

	
test_update()

	

	
class mozbuild.test.test_containers.TestReadOnlyKeyedDefaultDict(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_defaults()

	

	
class mozbuild.test.test_containers.TestReadOnlyNamespace(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_basic()

	

mozbuild.test.test_dotproperties module

	
class mozbuild.test.test_dotproperties.TestDotProperties(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_bad_unicode_from_file()

	

	
test_get()

	

	
test_get_dict()

	

	
test_get_dict_with_shared_prefix()

	

	
test_get_dict_with_value_prefix()

	

	
test_get_list()

	

	
test_get_list_with_shared_prefix()

	

	
test_unicode()

	

	
test_update()

	

	
test_valid_unicode_from_file()

	

mozbuild.test.test_expression module

	
class mozbuild.test.test_expression.TestContext(methodName='runTest')

	Bases: unittest.case.TestCase

Unit tests for the Context class

	
setUp()

	

	
test_in()

	test ‘var in context’ to not fall for fallback

	
test_string_literal()

	test string literal, fall-through for undefined var in a Context

	
test_variable()

	test value for defined var in the Context class

	
class mozbuild.test.test_expression.TestExpression(methodName='runTest')

	Bases: unittest.case.TestCase

Unit tests for the Expression class
evaluate() is called with a context {FAIL: ‘PASS’}

	
setUp()

	

	
test_defined()

	Test for the defined() value

	
test_equals()

	Test for the == operator

	
test_logical_and()

	Test for the && operator

	
test_logical_ops()

	Test for the && and || operators precedence

	
test_logical_or()

	Test for the || operator

	
test_not()

	Test for the ! operator

	
test_notequals()

	Test for the != operator

	
test_string_literal()

	Test for a string literal in an Expression

	
test_variable()

	Test for variable value in an Expression

mozbuild.test.test_jarmaker module

	
class mozbuild.test.test_jarmaker.TestJarMaker(methodName='runTest')

	Bases: unittest.case.TestCase

Unit tests for JarMaker.py

	
debug = False

	

	
setUp()

	

	
tearDown()

	

	
test_a_simple_jar()

	Test a simple jar.mn

	
test_a_simple_symlink()

	Test a simple jar.mn with a symlink

	
test_a_wildcard_jar()

	Test a wildcard in jar.mn

	
test_a_wildcard_symlink()

	Test a wildcard in jar.mn with symlinks

	
class mozbuild.test.test_jarmaker.Test_relativesrcdir(methodName='runTest')

	Bases: unittest.case.TestCase

	
setUp()

	

	
tearDown()

	

	
test_en_US()

	

	
test_l10n_merge()

	

	
test_l10n_no_merge()

	

	
test_override()

	

	
test_override_l10n()

	

	
mozbuild.test.test_jarmaker.is_symlink_to(dest, src)

	

	
mozbuild.test.test_jarmaker.symlinks_supported(path)

	

mozbuild.test.test_line_endings module

	
class mozbuild.test.test_line_endings.TestLineEndings(methodName='runTest')

	Bases: unittest.case.TestCase

Unit tests for the Context class

	
createFile(lineendings)

	

	
setUp()

	

	
tearDown()

	

	
testMac()

	

	
testUnix()

	

	
testWindows()

	

mozbuild.test.test_makeutil module

	
class mozbuild.test.test_makeutil.TestMakefile(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_makefile()

	

	
test_path_normalization(*args, **kwargs)

	

	
test_read_dep_makefile()

	

	
test_rule()

	

	
test_statement()

	

	
test_write_dep_makefile()

	

mozbuild.test.test_mozconfig module

	
class mozbuild.test.test_mozconfig.TestMozconfigLoader(methodName='runTest')

	Bases: unittest.case.TestCase

	
get_loader()

	

	
get_temp_dir()

	

	
setUp()

	

	
tearDown()

	

	
test_find_abs_path_not_exist()

	Ensure a missing absolute path is detected.

	
test_find_default_files()

	Ensure default paths are used when present.

	
test_find_deprecated_home_paths()

	Ensure we error when deprecated home directory paths are present.

	
test_find_deprecated_path_srcdir()

	Ensure we error when deprecated path locations are present.

	
test_find_legacy_env()

	Ensure legacy mozconfig path definitions result in error.

	
test_find_multiple_but_identical_configs()

	Ensure multiple relative-path MOZCONFIGs pointing at the same file are OK.

	
test_find_multiple_configs()

	Ensure multiple relative-path MOZCONFIGs result in error.

	
test_find_multiple_defaults()

	Ensure we error when multiple default files are present.

	
test_find_no_relative_configs()

	Ensure a missing relative-path MOZCONFIG is detected.

	
test_find_path_not_file()

	Ensure non-file paths are detected.

	
test_find_relative_mozconfig()

	Ensure a relative MOZCONFIG can be found in the srcdir.

	
test_read_ac_app_options()

	

	
test_read_ac_options_substitution()

	Ensure ac_add_options values are substituted.

	
test_read_capture_ac_options()

	Ensures ac_add_options calls are captured.

	
test_read_capture_mk_options()

	Ensures mk_add_options calls are captured.

	
test_read_capture_mk_options_objdir_environ()

	Ensures mk_add_options calls are captured and override the environ.

	
test_read_empty_mozconfig()

	

	
test_read_empty_mozconfig_objdir_environ()

	

	
test_read_empty_variable_value()

	Ensure empty variable values are parsed properly.

	
test_read_exported_variables()

	Exported variables are caught as new variables.

	
test_read_load_exception()

	Ensure non-0 exit codes in mozconfigs are handled properly.

	
test_read_modify_variables()

	Variables modified by mozconfig are detected.

	
test_read_moz_objdir_substitution()

	Ensure @TOPSRCDIR@ substitution is recognized in MOZ_OBJDIR.

	
test_read_multiline_variables()

	Ensure multi-line variables are captured properly.

	
test_read_new_variables()

	New variables declared in mozconfig file are detected.

	
test_read_no_mozconfig()

	

	
test_read_removed_variables()

	Variables unset by the mozconfig are detected.

	
test_read_topsrcdir_defined()

	Ensure $topsrcdir references work as expected.

	
test_read_unmodified_variables()

	Variables modified by mozconfig are detected.

mozbuild.test.test_mozinfo module

	
class mozbuild.test.test_mozinfo.Base

	Bases: object

	
class mozbuild.test.test_mozinfo.TestBuildDict(methodName='runTest')

	Bases: unittest.case.TestCase, mozbuild.test.test_mozinfo.Base

	
test_android()

	

	
test_arm()

	Test that all arm CPU architectures => arm.

	
test_crashreporter()

	Test that crashreporter values are properly detected.

	
test_debug()

	Test that debug values are properly detected.

	
test_linux()

	

	
test_mac()

	

	
test_mac_universal()

	

	
test_missing()

	Test that missing required values raises.

	
test_unknown()

	Test that unknown values pass through okay.

	
test_win()

	

	
test_x86()

	Test that various i?86 values => x86.

	
class mozbuild.test.test_mozinfo.TestWriteMozinfo(methodName='runTest')

	Bases: unittest.case.TestCase, mozbuild.test.test_mozinfo.Base

Test the write_mozinfo function.

	
setUp()

	

	
tearDown()

	

	
test_basic()

	Test that writing to a file produces correct output.

	
test_fileobj()

	Test that writing to a file-like object produces correct output.

mozbuild.test.test_preprocessor module

	
class mozbuild.test.test_preprocessor.TestPreprocessor(methodName='runTest')

	Bases: unittest.case.TestCase

Unit tests for the Context class

	
do_include_compare(content_lines, expected_lines)

	

	
do_include_pass(content_lines)

	

	
setUp()

	

	
test_command_line_literal_at()

	

	
test_conditional_if_0()

	

	
test_conditional_if_0_elif_1()

	

	
test_conditional_if_0_or_1()

	

	
test_conditional_if_1()

	

	
test_conditional_if_1_elif_1_else()

	

	
test_conditional_if_1_if_1()

	

	
test_conditional_not_0()

	

	
test_conditional_not_0_and_1()

	

	
test_conditional_not_1()

	

	
test_conditional_not_emptyval()

	

	
test_conditional_not_nullval()

	

	
test_default_defines()

	

	
test_error()

	

	
test_expand()

	

	
test_filterDefine()

	

	
test_filter_attemptSubstitution()

	

	
test_filter_emptyLines()

	

	
test_filter_slashslash()

	

	
test_filter_spaces()

	

	
test_filter_substitution()

	

	
test_include()

	

	
test_include_line()

	

	
test_include_literal_at()

	

	
test_include_missing_file()

	

	
test_include_undefined_variable()

	

	
test_javascript_line()

	

	
test_literal()

	

	
test_no_marker()

	

	
test_number_value()

	

	
test_number_value_equals()

	

	
test_number_value_equals_defines()

	

	
test_number_value_not_equals_quoted_defines()

	

	
test_octal_value_equals()

	

	
test_octal_value_equals_defines()

	

	
test_octal_value_not_equals_quoted_defines()

	

	
test_octal_value_quoted_expansion()

	

	
test_string_value()

	

	
test_undef_defined()

	

	
test_undef_undefined()

	

	
test_undefined_variable()

	

	
test_value_quoted_expansion()

	Quoted values on the commandline don’t currently have quotes stripped.
Pike says this is for compat reasons.

	
test_var_directory()

	

	
test_var_file()

	

	
test_var_if_0()

	

	
test_var_if_0_elifdef()

	

	
test_var_if_0_elifndef()

	

	
test_var_ifdef_0()

	

	
test_var_ifdef_1_or_undef()

	

	
test_var_ifdef_undef()

	

	
test_var_ifndef_0()

	

	
test_var_ifndef_0_and_undef()

	

	
test_var_ifndef_undef()

	

	
test_var_line()

	

mozbuild.test.test_pythonutil module

	
class mozbuild.test.test_pythonutil.TestIterModules(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_iter_modules_in_path()

	

mozbuild.test.test_testing module

	
class mozbuild.test.test_testing.Base(methodName='runTest')

	Bases: unittest.case.TestCase

	
setUp()

	

	
tearDown()

	

	
class mozbuild.test.test_testing.TestTestMetadata(methodName='runTest')

	Bases: mozbuild.test.test_testing.Base

	
test_load()

	

	
test_resolve_all()

	

	
test_resolve_by_dir()

	

	
test_resolve_filter_flavor()

	

	
test_resolve_multiple_paths()

	

	
test_resolve_path_prefix()

	

	
test_resolve_support_files()

	

	
test_resolve_under_path()

	

	
class mozbuild.test.test_testing.TestTestResolver(methodName='runTest')

	Bases: mozbuild.test.test_testing.Base

	
FAKE_TOPSRCDIR = u'/Users/gps/src/firefox'

	

	
setUp()

	

	
tearDown()

	

	
test_cwd_children_only()

	If cwd is defined, only resolve tests under the specified cwd.

	
test_subsuites()

	Test filtering by subsuite.

	
test_various_cwd()

	Test various cwd conditions are all equal.

	
test_wildcard_patterns()

	Test matching paths by wildcard.

mozbuild.test.test_util module

	
class mozbuild.test.test_util.TestEnumString(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_string()

	

	
class mozbuild.test.test_util.TestFileAvoidWrite(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_diff_create()

	Diffs are produced when files are created.

	
test_diff_not_default()

	Diffs are not produced by default.

	
test_diff_update()

	Diffs are produced on file update.

	
test_file_avoid_write()

	

	
class mozbuild.test.test_util.TestGroupUnifiedFiles(methodName='runTest')

	Bases: unittest.case.TestCase

	
FILES = [u'a.cpp', u'b.cpp', u'c.cpp', u'd.cpp', u'e.cpp', u'f.cpp', u'g.cpp', u'h.cpp', u'i.cpp', u'j.cpp', u'k.cpp', u'l.cpp', u'm.cpp', u'n.cpp', u'o.cpp', u'p.cpp', u'q.cpp', u'r.cpp', u's.cpp', u't.cpp', u'u.cpp', u'v.cpp', u'w.cpp', u'x.cpp', u'y.cpp', u'z.cpp']

	

	
letter = 'z'

	

	
test_multiple_files()

	

	
test_unsorted_files()

	

	
class mozbuild.test.test_util.TestHashing(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_hash_file_known_hash()

	Ensure a known hash value is recreated.

	
test_hash_file_large()

	Ensure that hash_file seems to work with a large file.

	
class mozbuild.test.test_util.TestHierarchicalStringList(methodName='runTest')

	Bases: unittest.case.TestCase

	
setUp()

	

	
test_del_exports()

	

	
test_exports_append()

	

	
test_exports_multiple_subdir()

	

	
test_exports_subdir()

	

	
test_invalid_exports_append()

	

	
test_invalid_exports_append_base()

	

	
test_invalid_exports_bool()

	

	
test_invalid_exports_set()

	

	
test_merge()

	

	
test_reassign()

	

	
test_unsorted()

	

	
test_walk()

	

	
class mozbuild.test.test_util.TestListWithAction(methodName='runTest')

	Bases: unittest.case.TestCase

	
assertSameList(expected, actual)

	

	
setUp()

	

	
test_add()

	

	
test_extend()

	

	
test_iadd()

	

	
test_init()

	

	
test_slicing()

	

	
class mozbuild.test.test_util.TestMemoize(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_memoize()

	

	
test_memoize_method()

	

	
test_memoized_property()

	

	
class mozbuild.test.test_util.TestMisc(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_expand_variables()

	

	
test_pair()

	

	
class mozbuild.test.test_util.TestResolveTargetToMake(methodName='runTest')

	Bases: unittest.case.TestCase

	
assertResolve(path, expected)

	

	
setUp()

	

	
test_Makefile()

	

	
test_dir()

	

	
test_regular_file()

	

	
test_root_path()

	

	
test_top_level()

	

	
class mozbuild.test.test_util.TestStrictOrderingOnAppendList(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_add()

	

	
test_add_StrictOrderingOnAppendList()

	

	
test_add_after_iadd()

	

	
test_extend()

	

	
test_iadd()

	

	
test_init()

	

	
test_slicing()

	

	
class mozbuild.test.test_util.TestStrictOrderingOnAppendListWithFlagsFactory(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_strict_ordering_on_append_list_with_flags_factory()

	

	
test_strict_ordering_on_append_list_with_flags_factory_extend()

	

	
class mozbuild.test.test_util.TestTypedList(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_add()

	

	
test_add_coercion()

	

	
test_extend()

	

	
test_iadd()

	

	
test_init()

	

	
test_memoized()

	

	
test_slicing()

	

	
class mozbuild.test.test_util.TestTypedNamedTuple(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_simple()

	

	
class mozbuild.test.test_util.TypedTestStrictOrderingOnAppendList(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_init()

	

Module contents

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	mozbuild package

 	mozbuild.test package

mozbuild.test.backend package

Submodules

mozbuild.test.backend.common module

	
class mozbuild.test.backend.common.BackendTester(methodName='runTest')

	Bases: unittest.case.TestCase

	
setUp()

	

	
tearDown()

	

mozbuild.test.backend.test_android_eclipse module

	
class mozbuild.test.backend.test_android_eclipse.TestAndroidEclipseBackend(*args, **kwargs)

	Bases: mozbuild.test.backend.common.BackendTester

	
assertExists(*args)

	

	
assertInManifest(project_name, *args)

	

	
assertNotExists(*args)

	

	
assertNotInManifest(project_name, *args)

	

	
test_classpathentries()

	Ensure we produce reasonable classpathentries.

	
test_extra_jars()

	Ensure we add class path entries to extra jars iff asked to.

	
test_included_projects()

	Ensure we include another project correctly.

	
test_library_manifest()

	Ensure we generate manifest for library projects.

	
test_library_project_files()

	Ensure we generate reasonable files for library projects.

	
test_library_project_setting()

	Ensure we declare a library project correctly.

	
test_main_project_files()

	Ensure we generate reasonable files for main (non-library) projects.

	
test_manifest_assets()

	Ensure we symlink assets/ iff asked to.

	
test_manifest_classpathentries()

	Ensure we symlink classpathentries correctly.

	
test_manifest_main_manifest()

	Ensure we symlink manifest if asked to for main projects.

	
test_manifest_res()

	Ensure we symlink res/ iff asked to.

	
test_referenced_projects()

	Ensure we reference another project correctly.

mozbuild.test.backend.test_build module

mozbuild.test.backend.test_configenvironment module

	
class mozbuild.test.backend.test_configenvironment.ConfigEnvironment(*args, **kwargs)

	Bases: mozbuild.backend.configenvironment.ConfigEnvironment

	
class mozbuild.test.backend.test_configenvironment.TestEnvironment(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_auto_substs()

	Test the automatically set values of ACDEFINES, ALLSUBSTS
and ALLEMPTYSUBSTS.

mozbuild.test.backend.test_recursivemake module

	
class mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend(methodName='runTest')

	Bases: mozbuild.test.backend.common.BackendTester

	
test_android_eclipse()

	

	
test_backend_mk()

	Ensure backend.mk file is written out properly.

	
test_basic()

	Ensure the RecursiveMakeBackend works without error.

	
test_binary_components()

	Ensure binary components are correctly handled.

	
test_branding_files()

	Ensure BRANDING_FILES is handled properly.

	
test_config()

	Test that CONFIGURE_SUBST_FILES are properly handled.

	
test_defines()

	Test that DEFINES are written to backend.mk correctly.

	
test_exports()

	Ensure EXPORTS is handled properly.

	
test_exports_generated()

	Ensure EXPORTS that are listed in GENERATED_FILES
are handled properly.

	
test_final_target()

	Test that FINAL_TARGET is written to backend.mk correctly.

	
test_final_target_pp_files()

	Test that FINAL_TARGET_PP_FILES is written to backend.mk correctly.

	
test_generated_files()

	Ensure GENERATED_FILES is handled properly.

	
test_generated_includes()

	Test that GENERATED_INCLUDES are written to backend.mk correctly.

	
test_host_defines()

	Test that HOST_DEFINES are written to backend.mk correctly.

	
test_install_manifests_package_tests()

	Ensure test suites honor package_tests=False.

	
test_install_manifests_written()

	

	
test_install_substitute_config_files()

	Ensure we recurse into the dirs that install substituted config files.

	
test_ipdl_sources()

	Test that IPDL_SOURCES are written to ipdlsrcs.mk correctly.

	
test_jar_manifests()

	

	
test_local_includes()

	Test that LOCAL_INCLUDES are written to backend.mk correctly.

	
test_makefile_conversion()

	Ensure Makefile.in is converted properly.

	
test_missing_makefile_in()

	Ensure missing Makefile.in results in Makefile creation.

	
test_mtime_no_change()

	Ensure mtime is not updated if file content does not change.

	
test_old_install_manifest_deleted()

	

	
test_output_files()

	Ensure proper files are generated.

	
test_resources()

	Ensure RESOURCE_FILES is handled properly.

	
test_sdk_files()

	Ensure SDK_FILES is handled properly.

	
test_sources()

	Ensure SOURCES and HOST_SOURCES are handled properly.

	
test_substitute_config_files()

	Ensure substituted config files are produced.

	
test_test_manifest_deffered_installs_written()

	Shared support files are written to their own data file by the backend.

	
test_test_manifest_pattern_matches_recorded()

	Pattern matches in test manifests’ support-files should be recorded.

	
test_test_manifests_duplicate_support_files()

	Ensure duplicate support-files in test manifests work.

	
test_test_manifests_files_written()

	Ensure test manifests get turned into files.

	
test_variable_passthru()

	Ensure variable passthru is written out correctly.

	
test_xpidl_generation()

	Ensure xpidl files and directories are written out.

	
class mozbuild.test.backend.test_recursivemake.TestRecursiveMakeTraversal(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_traversal()

	

	
test_traversal_2()

	

	
test_traversal_filter()

	

mozbuild.test.backend.test_visualstudio module

	
class mozbuild.test.backend.test_visualstudio.TestVisualStudioBackend(methodName='runTest')

	Bases: mozbuild.test.backend.common.BackendTester

	
test_basic(*args, **kwargs)

	Ensure we can consume our stub project.

Module contents

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	mozbuild package

 	mozbuild.test package

mozbuild.test.compilation package

Submodules

mozbuild.test.compilation.test_warnings module

	
class mozbuild.test.compilation.test_warnings.TestCompilerWarning(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_comparison()

	

	
test_equivalence()

	

	
class mozbuild.test.compilation.test_warnings.TestWarningsDatabase(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_basic()

	

	
test_hashing()

	Ensure that hashing files on insert works.

	
test_pruning()

	Ensure old warnings are removed from database appropriately.

	
class mozbuild.test.compilation.test_warnings.TestWarningsParsing(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_clang_parsing()

	

	
test_msvc_parsing()

	

	
mozbuild.test.compilation.test_warnings.get_warning()

	

Module contents

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	mozbuild package

 	mozbuild.test package

mozbuild.test.controller package

Submodules

mozbuild.test.controller.test_ccachestats module

	
class mozbuild.test.controller.test_ccachestats.TestCcacheStats(methodName='runTest')

	Bases: unittest.case.TestCase

	
STAT0 = u'\n cache directory /home/tlin/.ccache\n cache hit (direct) 0\n cache hit (preprocessed) 0\n cache miss 0\n files in cache 0\n cache size 0 Kbytes\n max cache size 16.0 Gbytes'

	

	
STAT1 = u'\n cache directory /home/tlin/.ccache\n cache hit (direct) 100\n cache hit (preprocessed) 200\n cache miss 2500\n called for link 180\n called for preprocessing 6\n compile failed 11\n preprocessor error 3\n bad compiler arguments 6\n unsupported source language 9\n autoconf compile/link 60\n unsupported compiler option 2\n no input file 21\n files in cache 7344\n cache size 1.9 Gbytes\n max cache size 16.0 Gbytes'

	

	
STAT2 = u'\n cache directory /home/tlin/.ccache\n cache hit (direct) 1900\n cache hit (preprocessed) 300\n cache miss 2600\n called for link 361\n called for preprocessing 12\n compile failed 22\n preprocessor error 6\n bad compiler arguments 12\n unsupported source language 18\n autoconf compile/link 120\n unsupported compiler option 4\n no input file 48\n files in cache 7392\n cache size 2.0 Gbytes\n max cache size 16.0 Gbytes'

	

	
STAT3 = u'\n cache directory /Users/tlin/.ccache\n primary config /Users/tlin/.ccache/ccache.conf\n secondary config (readonly) /usr/local/Cellar/ccache/3.2/etc/ccache.conf\n cache hit (direct) 12004\n cache hit (preprocessed) 1786\n cache miss 26348\n called for link 2338\n called for preprocessing 6313\n compile failed 399\n preprocessor error 390\n bad compiler arguments 86\n unsupported source language 66\n autoconf compile/link 2439\n unsupported compiler option 187\n no input file 1068\n files in cache 18044\n cache size 7.5 GB\n max cache size 8.6 GB\n '

	

	
STAT4 = u'\n cache directory /Users/tlin/.ccache\n primary config /Users/tlin/.ccache/ccache.conf\n secondary config (readonly) /usr/local/Cellar/ccache/3.2.1/etc/ccache.conf\n cache hit (direct) 21039\n cache hit (preprocessed) 2315\n cache miss 39370\n called for link 3651\n called for preprocessing 6693\n compile failed 723\n ccache internal error 1\n preprocessor error 588\n bad compiler arguments 128\n unsupported source language 99\n autoconf compile/link 3669\n unsupported compiler option 187\n no input file 1711\n files in cache 18313\n cache size 6.3 GB\n max cache size 6.0 GB\n '

	

	
STAT5 = u'\n cache directory /Users/tlin/.ccache\n primary config /Users/tlin/.ccache/ccache.conf\n secondary config (readonly) /usr/local/Cellar/ccache/3.2.1/etc/ccache.conf\n cache hit (direct) 21039\n cache hit (preprocessed) 2315\n cache miss 39372\n called for link 3653\n called for preprocessing 6693\n compile failed 723\n ccache internal error 1\n preprocessor error 588\n bad compiler arguments 128\n unsupported source language 99\n autoconf compile/link 3669\n unsupported compiler option 187\n no input file 1711\n files in cache 17411\n cache size 6.0 GB\n max cache size 6.0 GB\n '

	

	
STAT_GARBAGE = u'A garbage line which should be failed to parse'

	

	
test_cache_size_shrinking()

	

	
test_hit_rate_of_diff_stats()

	

	
test_parse_garbage_stats_message()

	

	
test_parse_zero_stats_message()

	

	
test_stats_contains_data()

	

	
test_stats_version32()

	

mozbuild.test.controller.test_clobber module

	
class mozbuild.test.controller.test_clobber.TestClobberer(methodName='runTest')

	Bases: unittest.case.TestCase

	
get_tempdir()

	

	
get_topsrcdir()

	

	
setUp()

	

	
tearDown()

	

	
test_cwd_is_topobjdir()

	If cwd is topobjdir, we can still clobber.

	
test_cwd_under_topobjdir()

	If cwd is under topobjdir, we can’t clobber.

	
test_mozconfig_opt_in()

	Auto clobber iff AUTOCLOBBER is in the environment.

	
test_no_objdir()

	If topobjdir does not exist, no clobber is needed.

	
test_objdir_clobber_newer()

	If CLOBBER in topobjdir is newer, do nothing.

	
test_objdir_clobber_older()

	If CLOBBER in topobjdir is older, we clobber.

	
test_objdir_is_srcdir()

	If topobjdir is the topsrcdir, refuse to clobber.

	
test_objdir_no_clobber_file()

	If CLOBBER does not exist in topobjdir, treat as empty.

Module contents

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	mozbuild package

 	mozbuild.test package

mozbuild.test.frontend package

Submodules

mozbuild.test.frontend.test_context module

	
class mozbuild.test.frontend.test_context.TestContext(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_context_dirs()

	

	
test_context_paths()

	

	
test_defaults()

	

	
test_type_check()

	

	
test_update()

	

	
class mozbuild.test.frontend.test_context.TestFiles(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_aggregate_empty()

	

	
test_multiple_bug_components()

	

	
test_no_recommended_bug_component()

	If there is no clear count winner, we don’t recommend a bug component.

	
test_single_bug_component()

	

	
class mozbuild.test.frontend.test_context.TestPaths(methodName='runTest')

	Bases: unittest.case.TestCase

	
classmethod setUpClass()

	

	
test_absolute_path()

	

	
test_objdir_path()

	

	
test_path()

	

	
test_path_typed_hierarchy_list()

	

	
test_path_typed_list()

	

	
test_path_with_mixed_contexts()

	

	
test_source_path()

	

	
class mozbuild.test.frontend.test_context.TestSymbols(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_documentation_formatting()

	

	
class mozbuild.test.frontend.test_context.TestTypedRecord(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_coercion()

	

	
test_fields()

	

mozbuild.test.frontend.test_emitter module

	
class mozbuild.test.frontend.test_emitter.TestEmitterBasic(methodName='runTest')

	Bases: unittest.case.TestCase

	
read_topsrcdir(reader, filter_common=True)

	

	
reader(name, enable_tests=False, extra_substs=None)

	

	
setUp()

	

	
tearDown()

	

	
test_android_res_dirs()

	Test that ANDROID_RES_DIRS works properly.

	
test_binary_components()

	Test that IS_COMPONENT/NO_COMPONENTS_MANIFEST work properly.

	
test_branding_files()

	

	
test_config_file_substitution()

	

	
test_defines()

	

	
test_dirs_traversal_simple()

	

	
test_empty_test_manifest_rejected()

	A test manifest without any entries is rejected.

	
test_exports()

	

	
test_exports_generated()

	

	
test_exports_missing()

	Missing files in EXPORTS is an error.

	
test_exports_missing_generated()

	An objdir file in EXPORTS that is not in GENERATED_FILES is an error.

	
test_final_target_pp_files()

	Test that FINAL_TARGET_PP_FILES works properly.

	
test_final_target_pp_files_non_srcdir()

	Test that non-srcdir paths in FINAL_TARGET_PP_FILES throws errors.

	
test_generated_files()

	

	
test_generated_files_absolute_script()

	

	
test_generated_files_method_names()

	

	
test_generated_files_no_inputs()

	

	
test_generated_files_no_python_script()

	

	
test_generated_files_no_script()

	

	
test_generated_includes()

	Test that GENERATED_INCLUDES is emitted correctly.

	
test_generated_sources()

	Test that GENERATED_SOURCES works properly.

	
test_host_defines()

	

	
test_host_sources()

	Test that HOST_SOURCES works properly.

	
test_install_shared_lib()

	Test that we can install a shared library with TEST_HARNESS_FILES

	
test_ipdl_sources()

	

	
test_jar_manifests()

	

	
test_jar_manifests_multiple_files()

	

	
test_library_defines()

	Test that LIBRARY_DEFINES is propagated properly.

	
test_local_includes()

	Test that LOCAL_INCLUDES is emitted correctly.

	
test_missing_final_target_pp_files()

	Test that FINAL_TARGET_PP_FILES with missing files throws errors.

	
test_missing_local_includes()

	LOCAL_INCLUDES containing non-existent directories should be rejected.

	
test_program()

	

	
test_python_unit_test_missing()

	Missing files in PYTHON_UNIT_TESTS should raise.

	
test_sdk_files()

	

	
test_sources()

	Test that SOURCES works properly.

	
test_test_harness_files()

	

	
test_test_harness_files_root()

	

	
test_test_manifest_absolute_support_files()

	Support files starting with ‘/’ are placed relative to the install root

	
test_test_manifest_deffered_install_missing()

	A non-existent shared support file reference produces an error.

	
test_test_manifest_dupe_support_files()

	A test manifest with dupe support-files in a single test is not
supported.

	
test_test_manifest_includes()

	Ensure that manifest objects from the emitter list a correct manifest.

	
test_test_manifest_install_includes()

	Ensure that any [include:foo.ini] are copied to the objdir.

	
test_test_manifest_install_to_subdir()

	

	
test_test_manifest_just_support_files()

	A test manifest with no tests but support-files is not supported.

	
test_test_manifest_keys_extracted()

	Ensure all metadata from test manifests is extracted.

	
test_test_manifest_missing_manifest()

	A missing manifest file should result in an error.

	
test_test_manifest_missing_test_error()

	Missing test files should result in error.

	
test_test_manifest_missing_test_error_unfiltered()

	Missing test files should result in error, even when the test list is not filtered.

	
test_test_manifest_parent_support_files_dir()

	support-files referencing a file in a parent directory works.

	
test_test_manifest_shared_support_files()

	Support files starting with ‘!’ are given separate treatment, so their
installation can be resolved when running tests.

	
test_test_manifest_unmatched_generated()

	

	
test_traversal_all_vars()

	

	
test_traversal_all_vars_enable_tests()

	

	
test_unified_sources()

	Test that UNIFIED_SOURCES works properly.

	
test_unified_sources_non_unified()

	Test that UNIFIED_SOURCES with FILES_PER_UNIFIED_FILE=1 works properly.

	
test_use_yasm()

	

	
test_variable_passthru()

	

	
test_xpidl_module_no_sources()

	XPIDL_MODULE without XPIDL_SOURCES should be rejected.

mozbuild.test.frontend.test_namespaces module

	
class mozbuild.test.frontend.test_namespaces.Fuga(value)

	Bases: object

	
class mozbuild.test.frontend.test_namespaces.Piyo(context, value)

	Bases: mozbuild.frontend.context.ContextDerivedValue

	
lower()

	

	
class mozbuild.test.frontend.test_namespaces.TestContext(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_allowed_set()

	

	
test_coercion()

	

	
test_context_derived_coercion()

	

	
test_context_derived_typed_list()

	

	
test_context_derived_typed_list_with_items()

	

	
test_key_checking()

	

	
test_key_rejection()

	

	
test_value_checking()

	

mozbuild.test.frontend.test_reader module

	
class mozbuild.test.frontend.test_reader.TestBuildReader(methodName='runTest')

	Bases: unittest.case.TestCase

	
config(name, **kwargs)

	

	
file_path(name, *args)

	

	
reader(name, enable_tests=False, error_is_fatal=True, **kwargs)

	

	
setUp()

	

	
tearDown()

	

	
test_dirs_traversal_all_variables()

	

	
test_dirs_traversal_no_descend()

	

	
test_dirs_traversal_simple()

	

	
test_error_bad_dir()

	

	
test_error_basic()

	

	
test_error_empty_list()

	

	
test_error_error_func()

	

	
test_error_error_func_ok()

	

	
test_error_illegal_path()

	

	
test_error_included_from()

	

	
test_error_missing_include_path()

	

	
test_error_read_unknown_global()

	

	
test_error_repeated_dir()

	

	
test_error_script_error()

	

	
test_error_syntax_error()

	

	
test_error_write_bad_value()

	

	
test_error_write_unknown_global()

	

	
test_file_test_deps()

	

	
test_file_test_deps_default()

	

	
test_file_test_deps_tags()

	

	
test_files_bad_bug_component()

	

	
test_files_bug_component_different_matchers()

	

	
test_files_bug_component_final()

	

	
test_files_bug_component_simple()

	

	
test_files_bug_component_static()

	

	
test_find_relevant_mozbuilds()

	

	
test_inheriting_variables()

	

	
test_invalid_flavor()

	

	
test_outside_topsrcdir()

	

	
test_read_relevant_mozbuilds()

	

	
test_relative_dirs()

	

	
test_repeated_dirs_ignored()

	

mozbuild.test.frontend.test_sandbox module

	
class mozbuild.test.frontend.test_sandbox.TestMozbuildSandbox(methodName='runTest')

	Bases: unittest.case.TestCase

	
sandbox(data_path=None, metadata={})

	

	
test_config_access()

	

	
test_default_state()

	

	
test_error()

	

	
test_exec_source_reassign_exported()

	

	
test_function_args()

	

	
test_include_basic()

	

	
test_include_error_stack()

	

	
test_include_missing()

	

	
test_include_outside_topsrcdir()

	

	
test_include_relative_from_child_dir()

	

	
test_include_topsrcdir_relative()

	

	
test_invalid_exports_set_base()

	

	
test_invalid_utf8_substs()

	Ensure invalid UTF-8 in substs is converted with an error.

	
test_path_calculation()

	

	
test_special_variables()

	

	
test_substitute_config_files()

	

	
test_symbol_presence()

	

	
test_templates()

	

	
class mozbuild.test.frontend.test_sandbox.TestSandbox(methodName='runTest')

	Bases: unittest.case.TestCase

	
sandbox()

	

	
test_exec_compile_error()

	

	
test_exec_import_denied()

	

	
test_exec_source_illegal_key_set()

	

	
test_exec_source_multiple()

	

	
test_exec_source_reassign()

	

	
test_exec_source_reassign_builtin()

	

	
test_exec_source_success()

	

	
class mozbuild.test.frontend.test_sandbox.TestedSandbox(context, metadata={}, finder=<mozpack.files.FileFinder object>)

	Bases: mozbuild.frontend.reader.MozbuildSandbox

Version of MozbuildSandbox with a little more convenience for testing.

It automatically normalizes paths given to exec_file and exec_source. This
helps simplify the test code.

	
exec_file(path)

	

	
exec_source(source, path=u'')

	

	
normalize_path(path)

	

	
source_path(path)

	

Module contents

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

mozlint package

Subpackages

	mozlint.formatters package
	Submodules

	mozlint.formatters.stylish module

	mozlint.formatters.treeherder module

	Module contents

Submodules

mozlint.cli module

	
class mozlint.cli.MozlintParser(**kwargs)

	Bases: argparse.ArgumentParser

	
arguments = [[[u'paths'], {u'default': None, u'nargs': u'*', u'help': u"Paths to file or directories to lint, like 'browser/components/loop' or 'mobile/android'. Defaults to the current directory if not given."}], [[u'-l', u'--linter'], {u'dest': u'linters', u'default': [], u'action': u'append', u'help': u"Linters to run, e.g 'eslint'. By default all linters are run for all the appropriate files."}], [[u'-f', u'--format'], {u'dest': u'fmt', u'default': u'stylish', u'help': u"Formatter to use. Defaults to 'stylish'."}], [[u'-n', u'--no-filter'], {u'dest': u'use_filters', u'default': True, u'action': u'store_false', u'help': u"Ignore all filtering. This is useful for quickly testing a directory that otherwise wouldn't be run, without needing to modify the config file."}], [[u'-r', u'--rev'], {u'default': None, u'help': u'Lint files touched by the given revision(s). Works with mercurial or git.'}], [[u'-w', u'--workdir'], {u'default': False, u'action': u'store_true', u'help': u"Lint files touched by changes in the working directory (i.e haven't been committed yet). Works with mercurial or git."}]]

	

	
class mozlint.cli.VCFiles

	Bases: object

	
by_rev(rev)

	

	
by_workdir()

	

	
is_git

	

	
is_hg

	

	
vcs

	

	
mozlint.cli.find_linters(linters=None)

	

	
mozlint.cli.run(paths, linters, fmt, rev, workdir, **lintargs)

	

mozlint.errors module

	
exception mozlint.errors.LintException

	Bases: exceptions.Exception

	
exception mozlint.errors.LinterNotFound(path)

	Bases: mozlint.errors.LintException

	
exception mozlint.errors.LinterParseError(path, message)

	Bases: mozlint.errors.LintException

	
exception mozlint.errors.LintersNotConfigured

	Bases: mozlint.errors.LintException

mozlint.parser module

	
class mozlint.parser.Parser

	Bases: object

Reads and validates .lint files.

	
parse(path)

	Read a linter and return its LINTER definition.

	Parameters:	path – Path to the linter.

	Returns:	Linter definition (dict)

	Raises:	LinterNotFound, LinterParseError

	
required_attributes = ('name', 'description', 'type', 'payload')

	

mozlint.pathutils module

	
class mozlint.pathutils.FilterPath(path, exclude=None)

	Bases: object

Helper class to make comparing and matching file paths easier.

	
contains(other)

	Return True if other is a subdirectory of self or equals self.

	
exists

	

	
finder

	

	
isdir

	

	
isfile

	

	
join(*args)

	

	
match(patterns)

	

	
mozlint.pathutils.filterpaths(paths, include=None, exclude=None)

	Filters a list of paths.

Given a list of paths, and a list of include and exclude
directives, return the set of paths that should be linted.

	Parameters:	
	paths – A starting list of paths to possibly lint.

	include – A list of include directives. May contain glob patterns.

	exclude – A list of exclude directives. May contain glob patterns.

	Returns:	A tuple containing a list of file paths to lint, and a list
of file paths that should be excluded (but that the algorithm
was unable to apply).

mozlint.result module

	
class mozlint.result.ResultContainer(linter, path, message, lineno, column=None, hint=None, source=None, level=None, rule=None, lineoffset=None)

	Bases: object

Represents a single lint error and its related metadata.

	Parameters:	
	linter – name of the linter that flagged this error

	path – path to the file containing the error

	message – text describing the error

	lineno – line number that contains the error

	column – column containing the error

	level – severity of the error, either ‘warning’ or ‘error’ (default ‘error’)

	hint – suggestion for fixing the error (optional)

	source – source code context of the error (optional)

	rule – name of the rule that was violated (optional)

	lineoffset – denotes an error spans multiple lines, of the form
(<lineno offset>, <num lines>) (optional)

	
column

	

	
hint

	

	
level

	

	
lineno

	

	
lineoffset

	

	
linter

	

	
message

	

	
path

	

	
rule

	

	
source

	

	
class mozlint.result.ResultEncoder(skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, encoding='utf-8', default=None)

	Bases: json.encoder.JSONEncoder

Class for encoding :class:`~result.ResultContainer`s to json.

Usage:

json.dumps(results, cls=ResultEncoder)

	
default(o)

	

	
mozlint.result.from_linter(lintobj, **kwargs)

	Create a ResultContainer from a LINTER definition.

Convenience method that pulls defaults from a LINTER
definition and forwards them.

	Parameters:	
	lintobj – LINTER obj as defined in a .lint file

	kwargs – same as ResultContainer

	Returns:	ResultContainer object

mozlint.roller module

	
class mozlint.roller.LintRoller(**lintargs)

	Bases: object

Registers and runs linters.

	Parameters:	lintargs – Arguments to pass to the underlying linter(s).

	
read(paths)

	Parse one or more linters and add them to the registry.

	Parameters:	paths – A path or iterable of paths to linter definitions.

	
roll(paths, num_procs=None)

	Run all of the registered linters against the specified file paths.

	Parameters:	
	paths – An iterable of files and/or directories to lint.

	num_procs – The number of processes to use. Default: cpu count

	Returns:	A dictionary with file names as the key, and a list of
:class:`~result.ResultContainer`s as the value.

mozlint.types module

	
class mozlint.types.BaseType

	Bases: object

Abstract base class for all types of linters.

	
batch = False

	

	
class mozlint.types.ExternalType

	Bases: mozlint.types.BaseType

Linter type that runs an external function.

The function is responsible for properly formatting the results
into a list of ResultContainer objects.

	
batch = True

	

	
class mozlint.types.LineType

	Bases: mozlint.types.BaseType

Abstract base class for linter types that check each line individually.

Subclasses of this linter type will read each file and check the provided
payload against each line one by one.

	
condition(payload, line)

	

	
class mozlint.types.RegexType

	Bases: mozlint.types.LineType

Linter type that checks whether a regex match is found.

	
condition(payload, line)

	

	
class mozlint.types.StringType

	Bases: mozlint.types.LineType

Linter type that checks whether a substring is found.

	
condition(payload, line)

	

	
mozlint.types.supported_types = {u'regex': <mozlint.types.RegexType object at 0x7f5e776a0550>, u'string': <mozlint.types.StringType object at 0x7f5e776a0510>, u'external': <mozlint.types.ExternalType object at 0x7f5e776a0590>}

	Mapping of type string to an associated instance.

Module contents

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	mozlint package

mozlint.formatters package

Submodules

mozlint.formatters.stylish module

	
class mozlint.formatters.stylish.NullTerminal

	Bases: object

Replacement for blessings.Terminal() that does no formatting.

	
class NullCallableString

	Bases: unicode

A dummy callable Unicode stolen from blessings

	
class mozlint.formatters.stylish.StylishFormatter(disable_colors=None)

	Bases: object

Formatter based on the eslint default.

	
fmt = u' {c1}{lineno}{column} {c2}{level}{normal} {message} {c1}{rule}({linter}){normal}'

	

	
fmt_summary = u'{t.bold}{c}\u2716 {problem} ({error}, {warning}){t.normal}'

	

mozlint.formatters.treeherder module

	
class mozlint.formatters.treeherder.TreeherderFormatter

	Bases: object

Formatter for treeherder friendly output.

This formatter looks ugly, but prints output such that
treeherder is able to highlight the errors and warnings.
This is a stop-gap until bug 1276486 is fixed.

	
fmt = u'TEST-UNEXPECTED-{level} | {path}:{lineno}{column} | {message} ({rule})'

	

Module contents

	
class mozlint.formatters.JSONFormatter

	Bases: object

	
mozlint.formatters.get(name, **fmtargs)

	

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

mozpack package

Subpackages

	mozpack.chrome package
	Submodules

	mozpack.chrome.flags module

	mozpack.chrome.manifest module

	Module contents

	mozpack.packager package
	Submodules

	mozpack.packager.formats module

	mozpack.packager.l10n module

	mozpack.packager.unpack module

	Module contents

	mozpack.test package
	Submodules

	mozpack.test.test_archive module

	mozpack.test.test_chrome_flags module

	mozpack.test.test_chrome_manifest module

	mozpack.test.test_copier module

	mozpack.test.test_errors module

	mozpack.test.test_files module

	mozpack.test.test_manifests module

	mozpack.test.test_mozjar module

	mozpack.test.test_packager module

	mozpack.test.test_packager_formats module

	mozpack.test.test_packager_l10n module

	mozpack.test.test_packager_unpack module

	mozpack.test.test_path module

	mozpack.test.test_unify module

	Module contents

Submodules

mozpack.archive module

	
mozpack.archive.create_tar_bz2_from_files(fp, files, compresslevel=9)

	Create a tar.bz2 file deterministically from files.

This is a glorified wrapper around create_tar_from_files that
adds bzip2 compression.

This function is similar to create_tar_gzip_from_files().

	
mozpack.archive.create_tar_from_files(fp, files)

	Create a tar file deterministically.

Receives a dict mapping names of files in the archive to local filesystem
paths.

The files will be archived and written to the passed file handle opened
for writing.

Only regular files can be written.

FUTURE accept mozpack.files classes for writing
FUTURE accept a filename argument (or create APIs to write files)

	
mozpack.archive.create_tar_gz_from_files(fp, files, filename=None, compresslevel=9)

	Create a tar.gz file deterministically from files.

This is a glorified wrapper around create_tar_from_files that
adds gzip compression.

The passed file handle should be opened for writing in binary mode.
When the function returns, all data has been written to the handle.

mozpack.copier module

	
class mozpack.copier.FileCopier

	Bases: mozpack.copier.FileRegistry

FileRegistry with the ability to copy the registered files to a separate
directory.

	
copy(destination, skip_if_older=True, remove_unaccounted=True, remove_all_directory_symlinks=True, remove_empty_directories=True)

	Copy all registered files to the given destination path. The given
destination can be an existing directory, or not exist at all. It
can’t be e.g. a file.
The copy process acts a bit like rsync: files are not copied when they
don’t need to (see mozpack.files for details on file.copy).

By default, files in the destination directory that aren’t
registered are removed and empty directories are deleted. In
addition, all directory symlinks in the destination directory
are deleted: this is a conservative approach to ensure that we
never accidently write files into a directory that is not the
destination directory. In the worst case, we might have a
directory symlink in the object directory to the source
directory.

To disable removing of unregistered files, pass
remove_unaccounted=False. To disable removing empty
directories, pass remove_empty_directories=False. In rare
cases, you might want to maintain directory symlinks in the
destination directory (at least those that are not required to
be regular directories): pass
remove_all_directory_symlinks=False. Exercise caution with
this flag: you almost certainly do not want to preserve
directory symlinks.

Returns a FileCopyResult that details what changed.

	
class mozpack.copier.FileCopyResult

	Bases: object

Represents results of a FileCopier.copy operation.

	
existing_files_count

	

	
removed_directories_count

	

	
removed_files_count

	

	
updated_files_count

	

	
class mozpack.copier.FileRegistry

	Bases: object

Generic container to keep track of a set of BaseFile instances. It
preserves the order under which the files are added, but doesn’t keep
track of empty directories (directories are not stored at all).
The paths associated with the BaseFile instances are relative to an
unspecified (virtual) root directory.

registry = FileRegistry()
registry.add(‘foo/bar’, file_instance)

	
add(path, content)

	Add a BaseFile instance to the container, under the given path.

	
contains(pattern)

	Return whether the container contains paths matching the given
pattern. See the mozpack.path.match documentation for a description of
the handled patterns.

	
match(pattern)

	Return the list of paths, stored in the container, matching the
given pattern. See the mozpack.path.match documentation for a
description of the handled patterns.

	
paths()

	Return all paths stored in the container, in the order they were added.

	
remove(pattern)

	Remove paths matching the given pattern from the container. See the
mozpack.path.match documentation for a description of the handled
patterns.

	
required_directories()

	Return the set of directories required by the paths in the container,
in no particular order. The returned directories are relative to an
unspecified (virtual) root directory (and do not include said root
directory).

	
class mozpack.copier.FileRegistrySubtree(base, registry)

	Bases: object

A proxy class to give access to a subtree of an existing FileRegistry.

Note this doesn’t implement the whole FileRegistry interface.

	
add(path, content)

	

	
contains(pattern)

	

	
match(pattern)

	

	
paths()

	

	
remove(pattern)

	

	
class mozpack.copier.Jarrer(compress=True, optimize=True)

	Bases: mozpack.copier.FileRegistry, mozpack.files.BaseFile

FileRegistry with the ability to copy and pack the registered files as a
jar file. Also acts as a BaseFile instance, to be copied with a FileCopier.

	
add(path, content, compress=None)

	

	
copy(dest, skip_if_older=True)

	Pack all registered files in the given destination jar. The given
destination jar may be a path to jar file, or a Dest instance for
a jar file.
If the destination jar file exists, its (compressed) contents are used
instead of the registered BaseFile instances when appropriate.

	
open()

	

	
preload(paths)

	Add the given set of paths to the list of preloaded files. See
mozpack.mozjar.JarWriter documentation for details on jar preloading.

mozpack.dmg module

	
mozpack.dmg.check_tools(*tools)

	Check that each tool named in tools exists in SUBSTS and is executable.

	
mozpack.dmg.chmod(dir)

	Set permissions of DMG contents correctly

	
mozpack.dmg.create_dmg(source_directory, output_dmg, volume_name, extra_files)

	Create a DMG disk image at the path output_dmg from source_directory.

Use volume_name as the disk image volume name, and
use extra_files as a list of tuples of (filename, relative path) to copy
into the disk image.

	
mozpack.dmg.create_dmg_from_staged(stagedir, output_dmg, tmpdir, volume_name)

	Given a prepared directory stagedir, produce a DMG at output_dmg.

	
mozpack.dmg.mkdir(dir)

	

	
mozpack.dmg.rsync(source, dest)

	rsync the contents of directory source into directory dest

	
mozpack.dmg.set_folder_icon(dir)

	Set HFS attributes of dir to use a custom icon

mozpack.errors module

	
exception mozpack.errors.AccumulatedErrors

	Bases: exceptions.Exception

Exception type raised from errors.accumulate()

	
class mozpack.errors.ErrorCollector

	Bases: object

Error handling/logging class. A global instance, errors, is provided for
convenience.

Warnings, errors and fatal errors may be logged by calls to the following
functions:

errors.warn(message)
errors.error(message)
errors.fatal(message)

Warnings only send the message on the logging output, while errors and
fatal errors send the message and throw an ErrorMessage exception. The
exception, however, may be deferred. See further below.

	Errors may be ignored by calling:

	errors.ignore_errors()

After calling that function, only fatal errors throw an exception.

The warnings, errors or fatal errors messages may be augmented with context
information when a context is provided. Context is defined by a pair
(filename, linenumber), and may be set with errors.context() used as a
context manager:

	with errors.context(filename, linenumber):

	errors.warn(message)

	Arbitrary nesting is supported, both for errors.context calls:

	
	with errors.context(filename1, linenumber1):

	errors.warn(message)
with errors.context(filename2, linenumber2):

errors.warn(message)

	as well as for function calls:

	
	def func():

	errors.warn(message)

	with errors.context(filename, linenumber):

	func()

Errors and fatal errors can have their exception thrown at a later time,
allowing for several different errors to be reported at once before
throwing. This is achieved with errors.accumulate() as a context manager:

	with errors.accumulate():

	
	if test1:

	errors.error(message1)

	if test2:

	errors.error(message2)

In such cases, a single AccumulatedErrors exception is thrown, but doesn’t
contain information about the exceptions. The logged messages do.

	
ERROR = 2

	

	
FATAL = 3

	

	
WARN = 1

	

	
accumulate(*args, **kwds)

	

	
context(*args, **kwds)

	

	
count

	

	
error(msg)

	

	
fatal(msg)

	

	
get_context()

	

	
ignore_errors(ignore=True)

	

	
out = <open file '<stderr>', mode 'w'>

	

	
warn(msg)

	

	
exception mozpack.errors.ErrorMessage

	Bases: exceptions.Exception

Exception type raised from errors.error() and errors.fatal()

mozpack.executables module

	
mozpack.executables.elfhack(path)

	Execute the elfhack command on the given path.

	
mozpack.executables.get_type(path)

	Check the signature of the give file and returns what kind of executable
matches.

	
mozpack.executables.is_executable(path)

	Return whether a given file path points to an executable or a library,
where an executable or library is identified by:

	the file extension on OS/2 and WINNT

	the file signature on OS/X and ELF systems (GNU/Linux, Android, BSD,
Solaris)

As this function is intended for use to choose between the ExecutableFile
and File classes in FileFinder, and choosing ExecutableFile only matters
on OS/2, OS/X, ELF and WINNT (in GCC build) systems, we don’t bother
detecting other kind of executables.

	
mozpack.executables.may_elfhack(path)

	Return whether elfhack() should be called

	
mozpack.executables.may_strip(path)

	Return whether strip() should be called

	
mozpack.executables.strip(path)

	Execute the STRIP command with STRIP_FLAGS on the given path.

mozpack.files module

	
class mozpack.files.AbsoluteSymlinkFile(path)

	Bases: mozpack.files.File

File class that is copied by symlinking (if available).

This class only works if the target path is absolute.

	
copy(dest, skip_if_older=True)

	

	
class mozpack.files.BaseFile

	Bases: object

Base interface and helper for file copying. Derived class may implement
their own copy function, or rely on BaseFile.copy using the open() member
function and/or the path property.

	
static any_newer(dest, inputs)

	Compares the modification time of dest to multiple input files, and
returns whether any of the inputs is newer (has a later mtime) than
dest.

	
copy(dest, skip_if_older=True)

	Copy the BaseFile content to the destination given as a string or a
Dest instance. Avoids replacing existing files if the BaseFile content
matches that of the destination, or in case of plain files, if the
destination is newer than the original file. This latter behaviour is
disabled when skip_if_older is False.
Returns whether a copy was actually performed (True) or not (False).

	
static is_older(first, second)

	Compares the modification time of two files, and returns whether the
first file is older than the second file.

	
mode

	Return the file’s unix mode, or None if it has no meaning.

	
open()

	Return a file-like object allowing to read() the content of the
associated file. This is meant to be overloaded in subclasses to return
a custom file-like object.

	
read()

	

	
class mozpack.files.BaseFinder(base, minify=False, minify_js=False, minify_js_verify_command=None)

	Bases: object

	
contains(pattern)

	Return whether some files under the base directory match the given
pattern. See the mozpack.path.match documentation for a description of
the handled patterns.

	
find(pattern)

	Yield path, BaseFile_instance pairs for all files under the base
directory and its subdirectories that match the given pattern. See the
mozpack.path.match documentation for a description of the handled
patterns.

	
get(path)

	Obtain a single file.

Where find is tailored towards matching multiple files, this method
is used for retrieving a single file. Use this method when performance
is critical.

Returns a BaseFile if at most one file exists or None otherwise.

	
class mozpack.files.ComposedFinder(finders)

	Bases: mozpack.files.BaseFinder

Composes multiple File Finders in some sort of virtual file system.

A ComposedFinder is initialized from a dictionary associating paths to
*Finder instances.

Note this could be optimized to be smarter than getting all the files
in advance.

	
find(pattern)

	

	
class mozpack.files.DeflatedFile(file)

	Bases: mozpack.files.BaseFile

File class for members of a jar archive. DeflatedFile.copy() effectively
extracts the file from the jar archive.

	
open()

	

	
class mozpack.files.Dest(path)

	Bases: object

Helper interface for BaseFile.copy. The interface works as follows:
- read() and write() can be used to sequentially read/write from the

underlying file.

	a call to read() after a write() will re-open the underlying file and
read from it.

	a call to write() after a read() will re-open the underlying file,
emptying it, and write to it.

	
close()

	

	
exists()

	

	
name

	

	
read(length=-1)

	

	
write(data)

	

	
class mozpack.files.ExecutableFile(path)

	Bases: mozpack.files.File

File class for executable and library files on OS/2, OS/X and ELF systems.
(see mozpack.executables.is_executable documentation).

	
copy(dest, skip_if_older=True)

	

	
class mozpack.files.ExistingFile(required)

	Bases: mozpack.files.BaseFile

File class that represents a file that may exist but whose content comes
from elsewhere.

This purpose of this class is to account for files that are installed via
external means. It is typically only used in manifests or in registries to
account for files.

When asked to copy, this class does nothing because nothing is known about
the source file/data.

Instances of this class come in two flavors: required and optional. If an
existing file is required, it must exist during copy() or an error is
raised.

	
copy(dest, skip_if_older=True)

	

	
class mozpack.files.File(path)

	Bases: mozpack.files.BaseFile

File class for plain files.

	
mode

	Return the file’s unix mode, as returned by os.stat().st_mode.

	
read()

	Return the contents of the file.

	
class mozpack.files.FileFinder(base, find_executables=True, ignore=(), find_dotfiles=False, **kargs)

	Bases: mozpack.files.BaseFinder

Helper to get appropriate BaseFile instances from the file system.

	
get(path)

	

	
class mozpack.files.GeneratedFile(content)

	Bases: mozpack.files.BaseFile

File class for content with no previous existence on the filesystem.

	
open()

	

	
class mozpack.files.JarFinder(base, reader, **kargs)

	Bases: mozpack.files.BaseFinder

Helper to get appropriate DeflatedFile instances from a JarReader.

	
class mozpack.files.ManifestFile(base, entries=None)

	Bases: mozpack.files.BaseFile

File class for a manifest file. It takes individual manifest entries (using
the add() and remove() member functions), and adjusts them to be relative
to the base path for the manifest, given at creation.
Example:

There is a manifest entry “content foobar foobar/content/” relative
to “foobar/chrome”. When packaging, the entry will be stored in
jar:foobar/omni.ja!/chrome/chrome.manifest, which means the entry
will have to be relative to “chrome” instead of “foobar/chrome”. This
doesn’t really matter when serializing the entry, since this base path
is not written out, but it matters when moving the entry at the same
time, e.g. to jar:foobar/omni.ja!/chrome.manifest, which we don’t do
currently but could in the future.

	
add(entry)

	Add the given entry to the manifest. Entries are rebased at open() time
instead of add() time so that they can be more easily remove()d.

	
isempty()

	Return whether there are manifest entries to write

	
open()

	Return a file-like object allowing to read() the serialized content of
the manifest.

	
remove(entry)

	Remove the given entry from the manifest.

	
class mozpack.files.MercurialFile(client, rev, path)

	Bases: mozpack.files.BaseFile

File class for holding data from Mercurial.

	
read()

	

	
class mozpack.files.MercurialRevisionFinder(repo, rev='.', recognize_repo_paths=False, **kwargs)

	Bases: mozpack.files.BaseFinder

A finder that operates on a specific Mercurial revision.

	
get(path)

	

	
class mozpack.files.MinifiedJavaScript(file, verify_command=None)

	Bases: mozpack.files.BaseFile

File class for minifying JavaScript files.

	
open()

	

	
class mozpack.files.MinifiedProperties(file)

	Bases: mozpack.files.BaseFile

File class for minified properties. This wraps around a BaseFile instance,
and removes lines starting with a # from its content.

	
open()

	Return a file-like object allowing to read() the minified content of
the properties file.

	
class mozpack.files.PreprocessedFile(path, depfile_path, marker, defines, extra_depends=None, silence_missing_directive_warnings=False)

	Bases: mozpack.files.BaseFile

File class for a file that is preprocessed. PreprocessedFile.copy() runs
the preprocessor on the file to create the output.

	
copy(dest, skip_if_older=True)

	Invokes the preprocessor to create the destination file.

	
class mozpack.files.XPTFile

	Bases: mozpack.files.GeneratedFile

File class for a linked XPT file. It takes several XPT files as input
(using the add() and remove() member functions), and links them at copy()
time.

	
add(xpt)

	Add the given XPT file (as a BaseFile instance) to the list of XPTs
to link.

	
copy(dest, skip_if_older=True)

	Link the registered XPTs and place the resulting linked XPT at the
destination given as a string or a Dest instance. Avoids an expensive
XPT linking if the interfaces in an existing destination match those of
the individual XPTs to link.
skip_if_older is ignored.

	
isempty()

	Return whether there are XPT files to link.

	
open()

	

	
remove(xpt)

	Remove the given XPT file (as a BaseFile instance) from the list of
XPTs to link.

mozpack.hg module

mozpack.manifests module

	
class mozpack.manifests.InstallManifest(path=None, fileobj=None)

	Bases: object

Describes actions to be used with a copier.FileCopier instance.

This class facilitates serialization and deserialization of data used to
construct a copier.FileCopier and to perform copy operations.

The manifest defines source paths, destination paths, and a mechanism by
which the destination file should come into existence.

Entries in the manifest correspond to the following types:

	copy – The file specified as the source path will be copied to the

	destination path.

	symlink – The destination path will be a symlink to the source path.

	If symlinks are not supported, a copy will be performed.

	exists – The destination path is accounted for and won’t be deleted by

	the FileCopier. If the destination path doesn’t exist, an error is
raised.

	optional – The destination path is accounted for and won’t be deleted by

	the FileCopier. No error is raised if the destination path does not
exist.

	patternsymlink – Paths matched by the expression in the source path

	will be symlinked to the destination directory.

	patterncopy – Similar to patternsymlink except files are copied, not

	symlinked.

	preprocess – The file specified at the source path will be run through

	the preprocessor, and the output will be written to the destination
path.

content – The destination file will be created with the given content.

Version 1 of the manifest was the initial version.
Version 2 added optional path support
Version 3 added support for pattern entries.
Version 4 added preprocessed file support.
Version 5 added content support.

	
CONTENT = 8

	

	
COPY = 2

	

	
CURRENT_VERSION = 5

	

	
FIELD_SEPARATOR = u'\x1f'

	

	
OPTIONAL_EXISTS = 4

	

	
PATTERN_COPY = 6

	

	
PATTERN_SYMLINK = 5

	

	
PREPROCESS = 7

	

	
REQUIRED_EXISTS = 3

	

	
SYMLINK = 1

	

	
add_content(content, dest)

	Add a file with the given content.

	
add_copy(source, dest)

	Add a copy to this manifest.

source will be copied to dest.

	
add_optional_exists(dest)

	Record that a destination file may exist.

This effectively prevents the listed file from being deleted. Unlike a
“required exists” file, files of this type do not raise errors if the
destination file does not exist.

	
add_pattern_copy(base, pattern, dest)

	Add a pattern match that results in copies.

See add_pattern_symlink() for usage.

	
add_pattern_symlink(base, pattern, dest)

	Add a pattern match that results in symlinks being created.

A FileFinder will be created with its base set to base
and FileFinder.find() will be called with pattern to discover
source files. Each source file will be symlinked under dest.

Filenames under dest are constructed by taking the path fragment
after base and concatenating it with dest. e.g.

<base>/foo/bar.h -> <dest>/foo/bar.h

	
add_preprocess(source, dest, deps, marker=u'#', defines={}, silence_missing_directive_warnings=False)

	Add a preprocessed file to this manifest.

source will be passed through preprocessor.py, and the output will be
written to dest.

	
add_required_exists(dest)

	Record that a destination file must exist.

This effectively prevents the listed file from being deleted.

	
add_symlink(source, dest)

	Add a symlink to this manifest.

dest will be a symlink to source.

	
populate_registry(registry, defines_override={})

	Populate a mozpack.copier.FileRegistry instance with data from us.

The caller supplied a FileRegistry instance (or at least something that
conforms to its interface) and that instance is populated with data
from this manifest.

Defines can be given to override the ones in the manifest for
preprocessing.

	
write(path=None, fileobj=None)

	Serialize this manifest to a file or file object.

If path is specified, that file will be written to. If fileobj is specified,
the serialized content will be written to that file object.

It is an error if both are specified.

	
exception mozpack.manifests.UnreadableInstallManifest

	Bases: exceptions.Exception

Raised when an invalid install manifest is parsed.

mozpack.mozjar module

	
class mozpack.mozjar.Deflater(compress=True, compress_level=9)

	Bases: object

File-like interface to zlib compression. The data is actually not
compressed unless the compressed form is smaller than the uncompressed
data.

	
close()

	Close the Deflater.

	
compressed

	Return whether the data should be compressed.

	
compressed_data

	Return the compressed data, if the data should be compressed (real
compressed size smaller than the uncompressed size), or the
uncompressed data otherwise.

	
compressed_size

	Return the compressed size of the data written to the Deflater. If the
Deflater is set not to compress, the uncompressed size is returned.
Otherwise, if the data should not be compressed (the real compressed
size is bigger than the uncompressed size), return the uncompressed
size.

	
crc32

	Return the crc32 of the data written to the Deflater.

	
uncompressed_size

	Return the size of the data written to the Deflater.

	
write(data)

	Append a buffer to the Deflater.

	
class mozpack.mozjar.JarCdirEnd(data=None)

	Bases: mozpack.mozjar.JarStruct

End of central directory record.

	
MAGIC = 101010256

	

	
STRUCT = OrderedDict([('disk_num', 'uint16'), ('cdir_disk', 'uint16'), ('disk_entries', 'uint16'), ('cdir_entries', 'uint16'), ('cdir_size', 'uint32'), ('cdir_offset', 'uint32'), ('comment_size', 'uint16'), ('comment', 'comment_size')])

	

	
class mozpack.mozjar.JarCdirEntry(data=None)

	Bases: mozpack.mozjar.JarStruct

Central directory file header

	
MAGIC = 33639248

	

	
STRUCT = OrderedDict([('creator_version', 'uint16'), ('min_version', 'uint16'), ('general_flag', 'uint16'), ('compression', 'uint16'), ('lastmod_time', 'uint16'), ('lastmod_date', 'uint16'), ('crc32', 'uint32'), ('compressed_size', 'uint32'), ('uncompressed_size', 'uint32'), ('filename_size', 'uint16'), ('extrafield_size', 'uint16'), ('filecomment_size', 'uint16'), ('disknum', 'uint16'), ('internal_attr', 'uint16'), ('external_attr', 'uint32'), ('offset', 'uint32'), ('filename', 'filename_size'), ('extrafield', 'extrafield_size'), ('filecomment', 'filecomment_size')])

	

	
class mozpack.mozjar.JarFileReader(header, data)

	Bases: object

File-like class for use by JarReader to give access to individual files
within a Jar archive.

	
close()

	Free the uncompressed data buffer.

	
compressed_data

	Return the raw compressed data.

	
read(length=-1)

	Read some amount of uncompressed data.

	
readlines()

	Return a list containing all the lines of data in the uncompressed
data.

	
seek(pos, whence=0)

	Change the current position in the uncompressed data. Subsequent reads
will start from there.

	
uncompressed_data

	Return the uncompressed data.

	
class mozpack.mozjar.JarLocalFileHeader(data=None)

	Bases: mozpack.mozjar.JarStruct

Local file header

	
MAGIC = 67324752

	

	
STRUCT = OrderedDict([('min_version', 'uint16'), ('general_flag', 'uint16'), ('compression', 'uint16'), ('lastmod_time', 'uint16'), ('lastmod_date', 'uint16'), ('crc32', 'uint32'), ('compressed_size', 'uint32'), ('uncompressed_size', 'uint32'), ('filename_size', 'uint16'), ('extra_field_size', 'uint16'), ('filename', 'filename_size'), ('extra_field', 'extra_field_size')])

	

	
class mozpack.mozjar.JarLog(file=None, fileobj=None)

	Bases: dict

Helper to read the file Gecko generates when setting MOZ_JAR_LOG_FILE.
The jar log is then available as a dict with the jar path as key (see
canonicalize for more details on the key value), and the corresponding
access log as a list value. Only the first access to a given member of
a jar is stored.

	
static canonicalize(url)

	The jar path is stored in a MOZ_JAR_LOG_FILE log as a url. This method
returns a unique value corresponding to such urls.
- file:///{path} becomes {path}
- jar:file:///{path}!/{subpath} becomes ({path}, {subpath})
- jar:jar:file:///{path}!/{subpath}!/{subpath2} becomes

({path}, {subpath}, {subpath2})

	
class mozpack.mozjar.JarReader(file=None, fileobj=None, data=None)

	Bases: object

Class with methods to read Jar files. Can open standard jar files as well
as Mozilla jar files (see further details in the JarWriter documentation).

	
close()

	Free some resources associated with the Jar.

	
entries

	Return an ordered dict of central directory entries, indexed by
filename, in the order they appear in the Jar archive central
directory. Directory entries are skipped.

	
is_optimized

	Return whether the jar archive is optimized.

	
last_preloaded

	Return the name of the last file that is set to be preloaded.
See JarWriter documentation for more details on preloading.

	
exception mozpack.mozjar.JarReaderError

	Bases: exceptions.Exception

Error type for Jar reader errors.

	
class mozpack.mozjar.JarStruct(data=None)

	Bases: object

Helper used to define ZIP archive raw data structures. Data structures
handled by this helper all start with a magic number, defined in
subclasses MAGIC field as a 32-bits unsigned integer, followed by data
structured as described in subclasses STRUCT field.

The STRUCT field contains a list of (name, type) pairs where name is a
field name, and the type can be one of ‘uint32’, ‘uint16’ or one of the
field names. In the latter case, the field is considered to be a string
buffer with a length given in that field.
For example,

	STRUCT = [

	(‘version’, ‘uint32’),
(‘filename_size’, ‘uint16’),
(‘filename’, ‘filename_size’)

]

describes a structure with a ‘version’ 32-bits unsigned integer field,
followed by a ‘filename_size’ 16-bits unsigned integer field, followed by a
filename_size-long string buffer ‘filename’.

Fields that are used as other fields size are not stored in objects. In the
above example, an instance of such subclass would only have two attributes:

obj[‘version’]
obj[‘filename’]

filename_size would be obtained with len(obj[‘filename’]).

JarStruct subclasses instances can be either initialized from existing data
(deserialized), or with empty fields.

	
TYPE_MAPPING = {'uint16': ('H', 2), 'uint32': ('I', 4)}

	

	
static get_data(type, data)

	Deserialize a single field of given type (must be one of
JarStruct.TYPE_MAPPING) at the given offset in the given data.

	
serialize()

	Serialize the data structure according to the data structure definition
from self.STRUCT.

	
size

	Return the size of the data structure, given the current values of all
variable length fields.

	
class mozpack.mozjar.JarWriter(file=None, fileobj=None, compress=True, optimize=True, compress_level=9)

	Bases: object

Class with methods to write Jar files. Can write more-or-less standard jar
archives as well as jar archives optimized for Gecko. See the documentation
for the close() member function for a description of both layouts.

	
add(name, data, compress=None, mode=None)

	Add a new member to the jar archive, with the given name and the given
data.
The compress option indicates if the given data should be compressed
(True), not compressed (False), or compressed according to the default
defined when creating the JarWriter (None).
When the data should be compressed (True or None with self.compress ==
True), it is only really compressed if the compressed size is smaller
than the uncompressed size.
The mode option gives the unix permissions that should be stored
for the jar entry.
The given data may be a buffer, a file-like instance, a Deflater or a
JarFileReader instance. The latter two allow to avoid uncompressing
data to recompress it.

	
finish()

	Flush and close the Jar archive.

	Standard jar archives are laid out like the following:

	
	Local file header 1

	File data 1

	Local file header 2

	File data 2

	(...)

	Central directory entry pointing at Local file header 1

	Central directory entry pointing at Local file header 2

	(...)

	End of central directory, pointing at first central directory
entry.

	Jar archives optimized for Gecko are laid out like the following:

	
	32-bits unsigned integer giving the amount of data to preload.

	Central directory entry pointing at Local file header 1

	Central directory entry pointing at Local file header 2

	(...)

	End of central directory, pointing at first central directory
entry.

	Local file header 1

	File data 1

	Local file header 2

	File data 2

	(...)

	End of central directory, pointing at first central directory
entry.

The duplication of the End of central directory is to accomodate some
Zip reading tools that want an end of central directory structure to
follow the central directory entries.

	
preload(files)

	Set which members of the jar archive should be preloaded when opening
the archive in Gecko. This reorders the members according to the order
of given list.

	
exception mozpack.mozjar.JarWriterError

	Bases: exceptions.Exception

Error type for Jar writer errors.

mozpack.path module

	
mozpack.path.abspath(path)

	

	
mozpack.path.basedir(path, bases)

	Given a list of directories (bases), return which one contains the given
path. If several matches are found, the deepest base directory is returned.

basedir(‘foo/bar/baz’, [‘foo’, ‘baz’, ‘foo/bar’]) returns ‘foo/bar’
(‘foo’ and ‘foo/bar’ both match, but ‘foo/bar’ is the deepest match)

	
mozpack.path.basename(path)

	

	
mozpack.path.commonprefix(paths)

	

	
mozpack.path.dirname(path)

	

	
mozpack.path.join(*paths)

	

	
mozpack.path.match(path, pattern)

	Return whether the given path matches the given pattern.
An asterisk can be used to match any string, including the null string, in
one part of the path:

‘foo’ matches ‘*’, ‘f*’ or ‘fo*o’

	However, an asterisk matching a subdirectory may not match the null string:

	‘foo/bar’ does not match ‘foo/*/bar’

If the pattern matches one of the ancestor directories of the path, the
patch is considered matching:

‘foo/bar’ matches ‘foo’

Two adjacent asterisks can be used to match files and zero or more
directories and subdirectories.

‘foo/bar’ matches ‘foo//bar’, or ‘/bar’

	
mozpack.path.normpath(path)

	

	
mozpack.path.normsep(path)

	Normalize path separators, by using forward slashes instead of whatever
os.sep is.

	
mozpack.path.realpath(path)

	

	
mozpack.path.rebase(oldbase, base, relativepath)

	Return relativepath relative to base instead of oldbase.

	
mozpack.path.relpath(path, start)

	

	
mozpack.path.split(path)

	
	Return the normalized path as a list of its components.

	split(‘foo/bar/baz’) returns [‘foo’, ‘bar’, ‘baz’]

	
mozpack.path.splitext(path)

	

mozpack.unify module

	
class mozpack.unify.UnifiedBuildFinder(finder1, finder2, **kargs)

	Bases: mozpack.unify.UnifiedFinder

Specialized UnifiedFinder for Mozilla applications packaging. It allows
“*.manifest” files to differ in their order, and unifies “buildconfig.html”
files by merging their content.

	
unify_file(path, file1, file2)

	Unify files taking Mozilla application special cases into account.
Otherwise defer to UnifiedFinder.unify_file.

	
class mozpack.unify.UnifiedExecutableFile(executable1, executable2)

	Bases: mozpack.files.BaseFile

File class for executable and library files that to be unified with ‘lipo’.

	
copy(dest, skip_if_older=True)

	Create a fat executable from the two Mach-O executable given when
creating the instance.
skip_if_older is ignored.

	
class mozpack.unify.UnifiedFinder(finder1, finder2, sorted=[], **kargs)

	Bases: mozpack.files.BaseFinder

Helper to get unified BaseFile instances from two distinct trees on the
file system.

	
unify_file(path, file1, file2)

	Given two BaseFiles and the path they were found at, check whether
their content match and return the first BaseFile if they do.

	
mozpack.unify.may_unify_binary(file)

	Return whether the given BaseFile instance is an ExecutableFile that
may be unified. Only non-fat Mach-O binaries are to be unified.

Module contents

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	mozpack package

mozpack.chrome package

Submodules

mozpack.chrome.flags module

	
class mozpack.chrome.flags.Flag(name)

	Bases: object

	Class for flags in manifest entries in the form:

	“flag” (same as “flag=true”)
“flag=yes|true|1”
“flag=no|false|0”

	
add_definition(definition)

	Add a flag value definition. Replaces any previously set value.

	
matches(value)

	Return whether the flag value matches the given value. The values
are canonicalized for comparison.

	
class mozpack.chrome.flags.Flags(*flags)

	Bases: collections.OrderedDict

Class to handle a set of flags definitions given on a single manifest
entry.

	
FLAGS = {'process': <class 'mozpack.chrome.flags.StringFlag'>, 'appversion': <class 'mozpack.chrome.flags.VersionFlag'>, 'xpcnativewrappers': <class 'mozpack.chrome.flags.Flag'>, 'contentaccessible': <class 'mozpack.chrome.flags.Flag'>, 'tablet': <class 'mozpack.chrome.flags.Flag'>, 'platform': <class 'mozpack.chrome.flags.Flag'>, 'abi': <class 'mozpack.chrome.flags.StringFlag'>, 'application': <class 'mozpack.chrome.flags.StringFlag'>, 'platformversion': <class 'mozpack.chrome.flags.VersionFlag'>, 'osversion': <class 'mozpack.chrome.flags.VersionFlag'>, 'os': <class 'mozpack.chrome.flags.StringFlag'>}

	

	
RE = <_sre.SRE_Pattern object>

	

	
match(**filter)

	
	Return whether the set of flags match the set of given filters.

	
	flags = Flags(‘contentaccessible=yes’, ‘appversion>=3.5’,

	‘application=foo’)

flags.match(application=’foo’) returns True
flags.match(application=’foo’, appversion=‘3.5’) returns True
flags.match(application=’foo’, appversion=‘3.0’) returns False

	
class mozpack.chrome.flags.StringFlag(name)

	Bases: object

	Class for string flags in manifest entries in the form:

	“flag=string”
“flag!=string”

	
add_definition(definition)

	Add a string flag definition.

	
matches(value)

	Return whether one of the string flag definitions matches the given
value.
For example,

flag = StringFlag(‘foo’)
flag.add_definition(‘foo!=bar’)
flag.matches(‘bar’) returns False
flag.matches(‘qux’) returns True
flag = StringFlag(‘foo’)
flag.add_definition(‘foo=bar’)
flag.add_definition(‘foo=baz’)
flag.matches(‘bar’) returns True
flag.matches(‘baz’) returns True
flag.matches(‘qux’) returns False

	
class mozpack.chrome.flags.VersionFlag(name)

	Bases: object

	Class for version flags in manifest entries in the form:

	“flag=version”
“flag<=version”
“flag<version”
“flag>=version”
“flag>version”

	
add_definition(definition)

	Add a version flag definition.

	
matches(value)

	Return whether one of the version flag definitions matches the given
value.
For example,

flag = VersionFlag(‘foo’)
flag.add_definition(‘foo>=1.0’)
flag.matches(‘1.0’) returns True
flag.matches(‘1.1’) returns True
flag.matches(‘0.9’) returns False
flag = VersionFlag(‘foo’)
flag.add_definition(‘foo>=1.0’)
flag.add_definition(‘foo<0.5’)
flag.matches(‘0.4’) returns True
flag.matches(‘1.0’) returns True
flag.matches(‘0.6’) returns False

mozpack.chrome.manifest module

	
class mozpack.chrome.manifest.Manifest(base, relpath, *flags)

	Bases: mozpack.chrome.manifest.ManifestEntryWithRelPath

	Class for ‘manifest’ entries.

	manifest some/path/to/another.manifest

	
type = 'manifest'

	

	
class mozpack.chrome.manifest.ManifestBinaryComponent(base, relpath, *flags)

	Bases: mozpack.chrome.manifest.ManifestEntryWithRelPath

	Class for ‘binary-component’ entries.

	binary-component some/path/to/a/component.dll

	
type = 'binary-component'

	

	
class mozpack.chrome.manifest.ManifestCategory(base, category, name, value, *flags)

	Bases: mozpack.chrome.manifest.ManifestEntry

	Class for ‘category’ entries.

	category command-line-handler m-browser @mozilla.org/browser/clh;

	
type = 'category'

	

	
class mozpack.chrome.manifest.ManifestChrome(base, name, relpath, *flags)

	Bases: mozpack.chrome.manifest.ManifestEntryWithRelPath

Abstract class for chrome entries.

	
location

	

	
class mozpack.chrome.manifest.ManifestComponent(base, cid, file, *flags)

	Bases: mozpack.chrome.manifest.ManifestEntryWithRelPath

	Class for ‘component’ entries.

	component {b2bba4df-057d-41ea-b6b1-94a10a8ede68} foo.js

	
type = 'component'

	

	
class mozpack.chrome.manifest.ManifestContent(base, name, relpath, *flags)

	Bases: mozpack.chrome.manifest.ManifestChrome

	Class for ‘content’ entries.

	content global content/global/

	
allowed_flags = ['application', 'platformversion', 'os', 'osversion', 'abi', 'xpcnativewrappers', 'tablet', 'process', 'contentaccessible', 'platform']

	

	
type = 'content'

	

	
class mozpack.chrome.manifest.ManifestContract(base, contractID, cid, *flags)

	Bases: mozpack.chrome.manifest.ManifestEntry

	Class for ‘contract’ entries.

	contract @mozilla.org/foo;1 {b2bba4df-057d-41ea-b6b1-94a10a8ede68}

	
type = 'contract'

	

	
class mozpack.chrome.manifest.ManifestEntry(base, *flags)

	Bases: object

Base class for all manifest entry types.
Subclasses may define the following class or member variables:

	localized: indicates whether the manifest entry is used for localized
data.

	type: the manifest entry type (e.g. ‘content’ in
‘content global content/global/’)

	allowed_flags: a set of flags allowed to be defined for the given
manifest entry type.

A manifest entry is attached to a base path, defining where the manifest
entry is bound to, and that is used to find relative paths defined in
entries.

	
allowed_flags = ['application', 'platformversion', 'os', 'osversion', 'abi', 'xpcnativewrappers', 'tablet', 'process']

	

	
localized = False

	

	
move(base)

	Return a new manifest entry with a different base path.

	
rebase(base)

	Return a new manifest entry with all relative paths defined in the
entry relative to a new base directory.
The base class doesn’t define relative paths, so it is equivalent to
move().

	
serialize(*args)

	Serialize the manifest entry.

	
type = None

	

	
class mozpack.chrome.manifest.ManifestEntryWithRelPath(base, relpath, *flags)

	Bases: mozpack.chrome.manifest.ManifestEntry

Abstract manifest entry type with a relative path definition.

	
path

	

	
rebase(base)

	Return a new manifest entry with all relative paths defined in the
entry relative to a new base directory.

	
class mozpack.chrome.manifest.ManifestInterfaces(base, relpath, *flags)

	Bases: mozpack.chrome.manifest.ManifestEntryWithRelPath

	Class for ‘interfaces’ entries.

	interfaces foo.xpt

	
type = 'interfaces'

	

	
class mozpack.chrome.manifest.ManifestLocale(base, name, id, relpath, *flags)

	Bases: mozpack.chrome.manifest.ManifestMultiContent

	Class for ‘locale’ entries.

	locale global en-US content/en-US/
locale global fr content/fr/

	
localized = True

	

	
type = 'locale'

	

	
class mozpack.chrome.manifest.ManifestMultiContent(base, name, id, relpath, *flags)

	Bases: mozpack.chrome.manifest.ManifestChrome

Abstract class for chrome entries with multiple definitions.
Used for locale and skin entries.

	
type = None

	

	
class mozpack.chrome.manifest.ManifestOverlay(base, overloaded, overload, *flags)

	Bases: mozpack.chrome.manifest.ManifestOverload

	Class for ‘overlay’ entries.

	overlay chrome://global/content/viewSource.xul chrome://browser/content/viewSourceOverlay.xul

	
type = 'overlay'

	

	
class mozpack.chrome.manifest.ManifestOverload(base, overloaded, overload, *flags)

	Bases: mozpack.chrome.manifest.ManifestEntry

Abstract class for chrome entries defining some kind of overloading.
Used for overlay, override or style entries.

	
localized

	

	
type = None

	

	
class mozpack.chrome.manifest.ManifestOverride(base, overloaded, overload, *flags)

	Bases: mozpack.chrome.manifest.ManifestOverload

	Class for ‘override’ entries.

	override chrome://global/locale/netError.dtd chrome://browser/locale/netError.dtd

	
type = 'override'

	

	
class mozpack.chrome.manifest.ManifestResource(base, name, target, *flags)

	Bases: mozpack.chrome.manifest.ManifestEntry

	Class for ‘resource’ entries.

	resource gre-resources toolkit/res/
resource services-sync resource://gre/modules/services-sync/

The target may be a relative path or a resource or chrome url.

	
rebase(base)

	

	
type = 'resource'

	

	
class mozpack.chrome.manifest.ManifestSkin(base, name, id, relpath, *flags)

	Bases: mozpack.chrome.manifest.ManifestMultiContent

	Class for ‘skin’ entries.

	skin global classic/1.0 content/skin/classic/

	
type = 'skin'

	

	
class mozpack.chrome.manifest.ManifestStyle(base, overloaded, overload, *flags)

	Bases: mozpack.chrome.manifest.ManifestOverload

	Class for ‘style’ entries.

	style chrome://global/content/customizeToolbar.xul chrome://browser/skin/

	
type = 'style'

	

	
mozpack.chrome.manifest.is_manifest(path)

	Return whether the given path is that of a manifest file.

	
mozpack.chrome.manifest.parse_manifest(root, path, fileobj=None)

	Parse a manifest file.

	
mozpack.chrome.manifest.parse_manifest_line(base, line)

	Parse a line from a manifest file with the given base directory and
return the corresponding ManifestEntry instance.

Module contents

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	mozpack package

mozpack.packager package

Submodules

mozpack.packager.formats module

	
class mozpack.packager.formats.FlatFormatter(copier)

	Bases: mozpack.packager.formats.PiecemealFormatter

Formatter for the flat package format.

	
class mozpack.packager.formats.FlatSubFormatter(copier)

	Bases: object

Sub-formatter for the flat package format.

	
add(path, content)

	

	
add_interfaces(path, content)

	

	
add_manifest(entry)

	

	
contains(path)

	

	
class mozpack.packager.formats.JarFormatter(copier, compress=True, optimize=True)

	Bases: mozpack.packager.formats.PiecemealFormatter

Formatter for the jar package format. Assumes manifest entries related to
chrome are registered before the chrome data files are added. Also assumes
manifest entries for resources are registered after chrome manifest
entries.

	
class mozpack.packager.formats.JarSubFormatter(copier, compress=True, optimize=True)

	Bases: mozpack.packager.formats.PiecemealFormatter

Sub-formatter for the jar package format. It is a PiecemealFormatter that
dispatches between further sub-formatter for each of the jar files it
dispatches the chrome data to, and a FlatSubFormatter for the non-chrome
files.

	
add_manifest(entry)

	

	
class mozpack.packager.formats.OmniJarFormatter(copier, omnijar_name, compress=True, optimize=True, non_resources=())

	Bases: mozpack.packager.formats.JarFormatter

Formatter for the omnijar package format.

	
class mozpack.packager.formats.OmniJarSubFormatter(copier, omnijar_name, compress=True, optimize=True, non_resources=())

	Bases: mozpack.packager.formats.PiecemealFormatter

Sub-formatter for the omnijar package format. It is a PiecemealFormatter
that dispatches between a FlatSubFormatter for the resources data and
another FlatSubFormatter for the other files.

	
add_manifest(entry)

	

	
is_resource(path)

	Return whether the given path corresponds to a resource to be put in an
omnijar archive.

	
class mozpack.packager.formats.PiecemealFormatter(copier)

	Bases: object

Generic formatter that dispatches across different sub-formatters
according to paths.

	
add(path, content)

	

	
add_base(base, addon=False)

	

	
add_interfaces(path, content)

	

	
add_manifest(entry)

	

	
contains(path)

	

	
mozpack.packager.formats.STARTUP_CACHE_PATHS = ['jsloader', 'jssubloader']

	Formatters are classes receiving packaging instructions and creating the
appropriate package layout.

There are three distinct formatters, each handling one of the different chrome
formats:

	flat: essentially, copies files from the source with the same file system
layout. Manifests entries are grouped in a single manifest per directory,
as well as XPT interfaces.

	jar: chrome content is packaged in jar files.

	omni: chrome content, modules, non-binary components, and many other
elements are packaged in an omnijar file for each base directory.

	The base interface provides the following methods:

	
	
	add_base(path [, addon])

	Register a base directory for an application or GRE, or an addon.
Base directories usually contain a root manifest (manifests not
included in any other manifest) named chrome.manifest.
The optional addon argument tells whether the base directory
is that of a packed addon (True), unpacked addon (‘unpacked’) or
otherwise (False).

	
	add(path, content)

	Add the given content (BaseFile instance) at the given virtual path

	
	add_interfaces(path, content)

	Add the given content (BaseFile instance) and link it to other
interfaces in the parent directory of the given virtual path.

	
	add_manifest(entry)

	Add a ManifestEntry.

	
	contains(path)

	Returns whether the given virtual path is known of the formatter.

The virtual paths mentioned above are paths as they would be with a flat
chrome.

Formatters all take a FileCopier instance they will fill with the packaged
data.

mozpack.packager.l10n module

	
class mozpack.packager.l10n.LocaleManifestFinder(finder)

	Bases: object

	
mozpack.packager.l10n.repack(source, l10n, extra_l10n={}, non_resources=[], non_chrome=set([]))

	Replace localized data from the source directory with localized data
from l10n and extra_l10n.

The source argument points to a directory containing a packaged
application (in omnijar, jar or flat form).
The l10n argument points to a directory containing the main localized
data (usually in the form of a language pack addon) to use to replace
in the packaged application.
The extra_l10n argument contains a dict associating relative paths in
the source to separate directories containing localized data for them.
This can be used to point at different language pack addons for different
parts of the package application.
The non_resources argument gives a list of relative paths in the source
that should not be added in an omnijar in case the packaged application
is in that format.
The non_chrome argument gives a list of file/directory patterns for
localized files that are not listed in a chrome.manifest.

mozpack.packager.unpack module

	
class mozpack.packager.unpack.UnpackFinder(*args, **kargs)

	Bases: mozpack.files.FileFinder

Special FileFinder that treats the source package directory as if it were
in the flat chrome format, whatever chrome format it actually is in.

This means that for example, paths like chrome/browser/content/... match
files under jar:chrome/browser.jar!/content/... in case of jar chrome
format.

	
find(path)

	

	
mozpack.packager.unpack.unpack(source)

	Transform a jar chrome or omnijar packaged directory into a flat package.

	
mozpack.packager.unpack.unpack_to_registry(source, registry)

	Transform a jar chrome or omnijar packaged directory into a flat package.

The given registry is filled with the flat package.

Module contents

	
class mozpack.packager.CallDeque

	Bases: collections.deque

Queue of function calls to make.

	
append(function, *args)

	

	
execute()

	

	
class mozpack.packager.Component(name, destdir='')

	Bases: object

Class that represents a component in a package manifest.

	
KEY_VALUE_RE = <_sre.SRE_Pattern object>

	

	
destdir

	

	
static from_string(string)

	Create a component from a string.

	
name

	

	
class mozpack.packager.PackageManifestParser(sink)

	Bases: object

Class for parsing of a package manifest, after preprocessing.

	A package manifest is a list of file paths, with some syntaxic sugar:

	[] designates a toplevel component. Example: [xpcom]
- in front of a file specifies it to be removed
* wildcard support
** expands to all files and zero or more directories
; file comment

The parser takes input from the preprocessor line by line, and pushes
parsed information to a sink object.

The add and remove methods of the sink object are called with the
current Component instance and a path.

	
handle_line(str)

	Handle a line of input and push the parsed information to the sink
object.

	
class mozpack.packager.PreprocessorOutputWrapper(preprocessor, parser)

	Bases: object

File-like helper to handle the preprocessor output and send it to a parser.
The parser’s handle_line method is called in the relevant errors.context.

	
write(str)

	

	
class mozpack.packager.SimpleManifestSink(finder, formatter)

	Bases: object

Parser sink for “simple” package manifests. Simple package manifests use
the format described in the PackageManifestParser documentation, but don’t
support file removals, and require manifests, interfaces and chrome data to
be explicitely listed.
Entries starting with bin/ are searched under bin/ in the FileFinder, but
are packaged without the bin/ prefix.

	
add(component, pattern)

	Add files with the given pattern in the given component.

	
close(auto_root_manifest=True)

	Add possibly missing bits and push all instructions to the formatter.

	
static normalize_path(path)

	Remove any bin/ prefix.

	
remove(component, pattern)

	Remove files with the given pattern in the given component.

	
class mozpack.packager.SimplePackager(formatter)

	Bases: object

Helper used to translate and buffer instructions from the
SimpleManifestSink to a formatter. Formatters expect some information to be
given first that the simple manifest contents can’t guarantee before the
end of the input.

	
UNPACK_ADDON_RE = <_sre.SRE_Pattern object at 0x1880fa0>

	

	
add(path, file)

	Add the given BaseFile instance with the given path.

	
close()

	Push all instructions to the formatter.

	
get_bases(addons=True)

	Return all paths under which root manifests have been found. Root
manifests are manifests that are included in no other manifest.
addons indicates whether to include addon bases as well.

	
mozpack.packager.preprocess(input, parser, defines={})

	Preprocess the file-like input with the given defines, and send the
preprocessed output line by line to the given parser.

	
mozpack.packager.preprocess_manifest(sink, manifest, defines={})

	Preprocess the given file-like manifest with the given defines, and push
the parsed information to a sink. See PackageManifestParser documentation
for more details on the sink.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

 	mozpack package

mozpack.test package

Submodules

mozpack.test.test_archive module

	
class mozpack.test.test_archive.TestArchive(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_create_tar_basic()

	

	
test_create_tar_bz2_basic()

	

	
test_create_tar_gz_basic()

	

	
test_dirs_refused()

	

	
test_executable_preserved()

	

	
test_setuid_setgid_refused()

	

	
test_tar_gz_name()

	

	
mozpack.test.test_archive.file_hash(path)

	

mozpack.test.test_chrome_flags module

	
class mozpack.test.test_chrome_flags.TestFlag(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_flag()

	

	
test_string_flag()

	

	
test_version_flag()

	

	
class mozpack.test.test_chrome_flags.TestFlags(methodName='runTest')

	Bases: unittest.case.TestCase

	
setUp()

	

	
test_flags_match()

	

	
test_flags_match_different()

	

	
test_flags_match_unset()

	

	
test_flags_match_version()

	

	
test_flags_str()

	

mozpack.test.test_chrome_manifest module

	
class mozpack.test.test_chrome_manifest.TestManifest(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_manifest_rebase()

	

	
test_parse_manifest()

	

	
class mozpack.test.test_chrome_manifest.TestManifestErrors(methodName='runTest')

	Bases: mozpack.test.test_errors.TestErrors, unittest.case.TestCase

	
test_parse_manifest_errors()

	

mozpack.test.test_copier module

	
class mozpack.test.test_copier.BaseTestFileRegistry

	Bases: mozpack.test.test_files.MatchTestTemplate

	
add(path)

	

	
do_check(pattern, result)

	

	
do_test_file_registry(registry)

	

	
do_test_registry_paths(registry)

	

	
class mozpack.test.test_copier.TestFileCopier(methodName='runTest')

	Bases: mozpack.test.test_files.TestWithTmpDir

	
all_dirs(base)

	

	
all_files(base)

	

	
test_file_copier()

	

	
test_no_remove()

	

	
test_no_remove_empty_directories()

	

	
test_optional_exists_creates_unneeded_directory()

	Demonstrate that a directory not strictly required, but specified
as the path to an optional file, will be unnecessarily created.

This behaviour is wrong; fixing it is tracked by Bug 972432;
and this test exists to guard against unexpected changes in
behaviour.

	
test_permissions()

	Ensure files without write permission can be deleted.

	
test_remove_unaccounted_directory_symlinks()

	Directory symlinks in destination that are not in the way are
deleted according to remove_unaccounted and
remove_all_directory_symlinks.

	
test_remove_unaccounted_file_registry()

	Test FileCopier.copy(remove_unaccounted=FileRegistry())

	
test_symlink_directory_replaced()

	Directory symlinks in destination are replaced if they need to be
real directories.

	
class mozpack.test.test_copier.TestFileRegistry(methodName='runTest')

	Bases: mozpack.test.test_copier.BaseTestFileRegistry, unittest.case.TestCase

	
test_file_registry()

	

	
test_partial_paths()

	

	
test_registry_paths()

	

	
test_required_directories()

	

	
class mozpack.test.test_copier.TestFileRegistrySubtree(methodName='runTest')

	Bases: mozpack.test.test_copier.BaseTestFileRegistry, unittest.case.TestCase

	
create_registry()

	

	
test_file_registry_subtree()

	

	
test_file_registry_subtree_base()

	

	
test_registry_paths_subtree()

	

	
class mozpack.test.test_copier.TestJarrer(methodName='runTest')

	Bases: unittest.case.TestCase

	
check_jar(dest, copier)

	

	
test_jarrer()

	

	
test_jarrer_compress()

	

mozpack.test.test_errors module

	
class mozpack.test.test_errors.TestErrors

	Bases: object

	
get_output()

	

	
setUp()

	

	
tearDown()

	

	
class mozpack.test.test_errors.TestErrorsImpl(methodName='runTest')

	Bases: mozpack.test.test_errors.TestErrors, unittest.case.TestCase

	
test_error_loop()

	

	
test_errors_context()

	

	
test_ignore_errors()

	

	
test_multiple_errors()

	

	
test_no_error()

	

	
test_plain_error()

	

	
test_simple_error()

	

mozpack.test.test_files module

	
class mozpack.test.test_files.DestNoWrite(path)

	Bases: mozpack.files.Dest

	
write(data)

	

	
class mozpack.test.test_files.MatchTestTemplate

	Bases: object

	
do_finder_test(finder)

	

	
do_match_test()

	

	
prepare_match_test(with_dotfiles=False)

	

	
class mozpack.test.test_files.MockDest

	Bases: _io.BytesIO, mozpack.files.Dest

	
close()

	

	
exists()

	

	
read(length=-1)

	

	
write(data)

	

	
class mozpack.test.test_files.TestAbsoluteSymlinkFile(methodName='runTest')

	Bases: mozpack.test.test_files.TestWithTmpDir

	
test_absolute_relative()

	

	
test_noop()

	

	
test_replace_file_with_symlink()

	

	
test_replace_symlink()

	

	
test_symlink_file()

	

	
class mozpack.test.test_files.TestComposedFinder(methodName='runTest')

	Bases: mozpack.test.test_files.MatchTestTemplate, mozpack.test.test_files.TestWithTmpDir

	
add(path, content=None)

	

	
do_check(pattern, result)

	

	
test_composed_finder()

	

	
class mozpack.test.test_files.TestDeflatedFile(methodName='runTest')

	Bases: mozpack.test.test_files.TestWithTmpDir

	
test_deflated_file()

	Check that DeflatedFile.copy yields the proper content in the
destination file in all situations that trigger different code paths
(see TestFile.test_file)

	
test_deflated_file_no_write()

	Test various conditions where DeflatedFile.copy is expected not to
write in the destination file.

	
test_deflated_file_open()

	Test whether DeflatedFile.open returns an appropriately reset file
object.

	
class mozpack.test.test_files.TestDest(methodName='runTest')

	Bases: mozpack.test.test_files.TestWithTmpDir

	
test_dest()

	

	
class mozpack.test.test_files.TestExistingFile(methodName='runTest')

	Bases: mozpack.test.test_files.TestWithTmpDir

	
test_optional_existing_dest()

	

	
test_optional_missing_dest()

	

	
test_required_existing_dest()

	

	
test_required_missing_dest()

	

	
class mozpack.test.test_files.TestFile(methodName='runTest')

	Bases: mozpack.test.test_files.TestWithTmpDir

	
test_file()

	Check that File.copy yields the proper content in the destination file
in all situations that trigger different code paths:
- different content
- different content of the same size
- same content
- long content

	
test_file_dest()

	Similar to test_file, but for a destination object instead of
a destination file. This ensures the destination object is being
used properly by File.copy, ensuring that other subclasses of Dest
will work.

	
test_file_no_write()

	Test various conditions where File.copy is expected not to write
in the destination file.

	
test_file_open()

	Test whether File.open returns an appropriately reset file object.

	
class mozpack.test.test_files.TestFileFinder(methodName='runTest')

	Bases: mozpack.test.test_files.MatchTestTemplate, mozpack.test.test_files.TestWithTmpDir

	
add(path)

	

	
do_check(pattern, result)

	

	
test_dotfiles()

	Finder can find files beginning with . is configured.

	
test_dotfiles_plus_ignore()

	

	
test_file_finder()

	

	
test_get()

	

	
test_ignored_dirs()

	Ignored directories should not have results returned.

	
test_ignored_files()

	Ignored files should not have results returned.

	
test_ignored_patterns()

	Ignore entries with patterns should be honored.

	
class mozpack.test.test_files.TestGeneratedFile(methodName='runTest')

	Bases: mozpack.test.test_files.TestWithTmpDir

	
test_generated_file()

	Check that GeneratedFile.copy yields the proper content in the
destination file in all situations that trigger different code paths
(see TestFile.test_file)

	
test_generated_file_no_write()

	Test various conditions where GeneratedFile.copy is expected not to
write in the destination file.

	
test_generated_file_open()

	Test whether GeneratedFile.open returns an appropriately reset file
object.

	
class mozpack.test.test_files.TestJarFinder(methodName='runTest')

	Bases: mozpack.test.test_files.MatchTestTemplate, mozpack.test.test_files.TestWithTmpDir

	
add(path)

	

	
do_check(pattern, result)

	

	
test_jar_finder()

	

	
class mozpack.test.test_files.TestManifestFile(methodName='runTest')

	Bases: mozpack.test.test_files.TestWithTmpDir

	
test_manifest_file()

	

	
class mozpack.test.test_files.TestMercurialNativeRevisionFinder(methodName='runTest')

	Bases: mozpack.test.test_files.TestMercurialRevisionFinder

	
class mozpack.test.test_files.TestMercurialRevisionFinder(methodName='runTest')

	Bases: mozpack.test.test_files.MatchTestTemplate, mozpack.test.test_files.TestWithTmpDir

	
add(path)

	

	
do_check(pattern, result)

	

	
setUp()

	

	
test_default_revision()

	

	
test_old_revision()

	

	
test_recognize_repo_paths()

	

	
class mozpack.test.test_files.TestMinifiedJavaScript(methodName='runTest')

	Bases: mozpack.test.test_files.TestWithTmpDir

	
orig_lines = ['// Comment line', 'let foo = "bar";', 'var bar = true;', '', '// Another comment']

	

	
test_minified_javascript()

	

	
test_minified_verify_failure()

	

	
test_minified_verify_success()

	

	
class mozpack.test.test_files.TestMinifiedProperties(methodName='runTest')

	Bases: mozpack.test.test_files.TestWithTmpDir

	
test_minified_properties()

	

	
class mozpack.test.test_files.TestPreprocessedFile(methodName='runTest')

	Bases: mozpack.test.test_files.TestWithTmpDir

	
test_preprocess()

	Test that copying the file invokes the preprocessor

	
test_preprocess_file_dependencies()

	Test that the preprocess runs if the dependencies of the source change

	
test_preprocess_file_no_write()

	Test various conditions where PreprocessedFile.copy is expected not to
write in the destination file.

	
test_replace_symlink()

	Test that if the destination exists, and is a symlink, the target of
the symlink is not overwritten by the preprocessor output.

	
class mozpack.test.test_files.TestWithTmpDir(methodName='runTest')

	Bases: unittest.case.TestCase

	
setUp()

	

	
tearDown()

	

	
tmppath(relpath)

	

	
class mozpack.test.test_files.TestXPTFile(methodName='runTest')

	Bases: mozpack.test.test_files.TestWithTmpDir

	
test_xpt_file()

	

	
mozpack.test.test_files.do_check(test, finder, pattern, result)

	

	
mozpack.test.test_files.read_interfaces(file)

	

mozpack.test.test_manifests module

	
class mozpack.test.test_manifests.TestInstallManifest(methodName='runTest')

	Bases: mozpack.test.test_files.TestWithTmpDir

	
test_adds()

	

	
test_construct()

	

	
test_copier_application()

	

	
test_malformed()

	

	
test_or()

	

	
test_pattern_expansion()

	

	
test_populate_registry()

	

	
test_preprocessor()

	

	
test_preprocessor_dependencies()

	

	
test_serialization()

	

mozpack.test.test_mozjar module

	
class mozpack.test.test_mozjar.TestDeflater(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_deflater_compress()

	

	
test_deflater_compress_no_gain()

	

	
test_deflater_no_compress()

	

	
wrap(data)

	

	
class mozpack.test.test_mozjar.TestDeflaterMemoryView(methodName='runTest')

	Bases: mozpack.test.test_mozjar.TestDeflater

	
wrap(data)

	

	
class mozpack.test.test_mozjar.TestJar(methodName='runTest')

	Bases: unittest.case.TestCase

	
optimize = False

	

	
test_add_from_finder()

	

	
test_jar()

	

	
test_rejar()

	

	
class mozpack.test.test_mozjar.TestJarLog(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_jarlog()

	

	
class mozpack.test.test_mozjar.TestJarStruct(methodName='runTest')

	Bases: unittest.case.TestCase

	
class Foo(data=None)

	Bases: mozpack.mozjar.JarStruct

	
MAGIC = 16909060

	

	
STRUCT = OrderedDict([('foo', 'uint32'), ('bar', 'uint16'), ('qux', 'uint16'), ('length', 'uint16'), ('length2', 'uint16'), ('string', 'length'), ('string2', 'length2')])

	

	
TestJarStruct.do_test_read_jar_struct(data)

	

	
TestJarStruct.test_jar_struct()

	

	
TestJarStruct.test_read_jar_struct()

	

	
TestJarStruct.test_read_jar_struct_memoryview()

	

	
class mozpack.test.test_mozjar.TestOptimizeJar(methodName='runTest')

	Bases: mozpack.test.test_mozjar.TestJar

	
optimize = True

	

	
class mozpack.test.test_mozjar.TestPreload(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_preload()

	

mozpack.test.test_packager module

	
class mozpack.test.test_packager.MockFinder(files)

	Bases: object

	
find(path)

	

	
class mozpack.test.test_packager.MockFormatter

	Bases: object

	
add(*args)

	

	
add_base(*args)

	

	
add_interfaces(*args)

	

	
add_manifest(*args)

	

	
class mozpack.test.test_packager.TestCallDeque(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_call_deque()

	

	
class mozpack.test.test_packager.TestComponent(methodName='runTest')

	Bases: unittest.case.TestCase

	
do_from_string(string, name, destdir='')

	

	
do_split(string, name, options)

	

	
do_split_error(string)

	

	
test_component_from_string()

	

	
test_component_split_component_and_options()

	

	
test_component_split_component_and_options_errors()

	

	
class mozpack.test.test_packager.TestPreprocessManifest(methodName='runTest')

	Bases: unittest.case.TestCase

	
EXPECTED_LOG = [(('/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/checkouts/latest/tools/docs/manifest', 2), 'add', '', 'bar/*'), (('/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/checkouts/latest/tools/docs/manifest', 4), 'add', 'foo', 'foo/*'), (('/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/checkouts/latest/tools/docs/manifest', 5), 'remove', 'foo', 'foo/bar'), (('/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/checkouts/latest/tools/docs/manifest', 6), 'add', 'foo', 'chrome.manifest'), (('/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/checkouts/latest/tools/docs/manifest', 8), 'add', 'zot destdir="destdir"', 'foo/zot')]

	

	
MANIFEST_PATH = '/home/docs/checkouts/readthedocs.org/user_builds/gfritzsche-demo/checkouts/latest/tools/docs/manifest'

	

	
setUp()

	

	
test_preprocess_manifest()

	

	
test_preprocess_manifest_defines()

	

	
test_preprocess_manifest_missing_define()

	

	
class mozpack.test.test_packager.TestSimpleManifestSink(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_simple_manifest_parser()

	

	
class mozpack.test.test_packager.TestSimplePackager(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_simple_packager()

	

	
test_simple_packager_manifest_consistency()

	

mozpack.test.test_packager_formats module

	
class mozpack.test.test_packager_formats.MockDest

	Bases: mozpack.test.test_files.MockDest

	
exists()

	

	
class mozpack.test.test_packager_formats.TestFormatters(methodName='runTest')

	Bases: unittest.case.TestCase

	
do_test_contents(formatter, contents)

	

	
maxDiff = None

	

	
test_bases()

	

	
test_flat_formatter()

	

	
test_flat_formatter_with_base()

	

	
test_jar_formatter()

	

	
test_jar_formatter_with_base()

	

	
test_omnijar_formatter()

	

	
test_omnijar_formatter_with_base()

	

	
test_omnijar_is_resource()

	

	
mozpack.test.test_packager_formats.fill_formatter(formatter, contents)

	

	
mozpack.test.test_packager_formats.get_contents(registry, read_all=False)

	

	
mozpack.test.test_packager_formats.result_with_base(results)

	

mozpack.test.test_packager_l10n module

	
class mozpack.test.test_packager_l10n.TestL10NRepack(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_l10n_repack()

	

mozpack.test.test_packager_unpack module

	
class mozpack.test.test_packager_unpack.TestUnpack(methodName='runTest')

	Bases: mozpack.test.test_files.TestWithTmpDir

	
maxDiff = None

	

	
classmethod setUpClass()

	

	
test_flat_unpack()

	

	
test_jar_unpack()

	

	
test_omnijar_unpack()

	

mozpack.test.test_path module

	
class mozpack.test.test_path.TestPath(methodName='runTest')

	Bases: unittest.case.TestCase

	
test_basedir()

	

	
test_basename()

	

	
test_commonprefix()

	

	
test_dirname()

	

	
test_join()

	

	
test_match()

	

	
test_normpath()

	

	
test_rebase()

	

	
test_relpath()

	

	
test_split()

	

	
test_splitext()

	

mozpack.test.test_unify module

	
class mozpack.test.test_unify.TestUnified(methodName='runTest')

	Bases: mozpack.test.test_files.TestWithTmpDir

	
create_both(path, content)

	

	
create_one(which, path, content)

	

	
class mozpack.test.test_unify.TestUnifiedBuildFinder(methodName='runTest')

	Bases: mozpack.test.test_unify.TestUnified

	
test_unified_build_finder()

	

	
class mozpack.test.test_unify.TestUnifiedFinder(methodName='runTest')

	Bases: mozpack.test.test_unify.TestUnified

	
test_unified_finder()

	

Module contents

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

mozversioncontrol package

Submodules

mozversioncontrol.repoupdate module

Module contents

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Mozilla Source Tree Docs 50.0a1 documentation

mozwebidlcodegen package

Module contents

	
class mozwebidlcodegen.BuildResult

	Bases: object

Represents the result of processing WebIDL files.

This holds a summary of output file generation during code generation.

	
class mozwebidlcodegen.BuildSystemWebIDL(topsrcdir, settings, log_manager, topobjdir=None, mozconfig=<object object>)

	Bases: mozbuild.base.MozbuildObject

	
manager

	

	
class mozwebidlcodegen.WebIDLCodegenManager(config_path, inputs, exported_header_dir, codegen_dir, state_path, cache_dir=None, make_deps_path=None, make_deps_target=None)

	Bases: mach.mixin.logging.LoggingMixin

Manages all code generation around WebIDL.

To facilitate testing, this object is meant to be generic and reusable.
Paths, etc should be parameters and not hardcoded.

	
GLOBAL_DECLARE_FILES = set([u'GeneratedAtomList.h', u'RegisterWorkerBindings.h', u'ResolveSystemBinding.h', u'GeneratedEventList.h', u'UnionConversions.h', u'RegisterBindings.h', u'PrototypeList.h', u'UnionTypes.h', u'RegisterWorkerDebuggerBindings.h'])

	

	
GLOBAL_DEFINE_FILES = set([u'UnionTypes.cpp', u'RegisterWorkerDebuggerBindings.cpp', u'RegisterWorkerBindings.cpp', u'ResolveSystemBinding.cpp', u'RegisterBindings.cpp', u'PrototypeList.cpp'])

	

	
config

	

	
expected_build_output_files()

	Obtain the set of files generate_build_files() should write.

	
generate_build_files()

	Generate files required for the build.

This function is in charge of generating all the .h/.cpp files derived
from input .webidl files. Please note that there are build actions
required to produce .webidl files and these build actions are
explicitly not captured here: this function assumes all .webidl files
are present and up to date.

This routine is called as part of the build to ensure files that need
to exist are present and up to date. This routine may not be called if
the build dependencies (generated as a result of calling this the first
time) say everything is up to date.

Because reprocessing outputs for every .webidl on every invocation
is expensive, we only regenerate the minimal set of files on every
invocation. The rules for deciding what needs done are roughly as
follows:

	If any .webidl changes, reparse all .webidl files and regenerate
the global derived files. Only regenerate output files (.h/.cpp)
impacted by the modified .webidl files.

	If an non-.webidl dependency (Python files, config file) changes,
assume everything is out of date and regenerate the world. This
is because changes in those could globally impact every output
file.

	If an output file is missing, ensure it is present by performing
necessary regeneration.

	
generate_example_files(interface)

	Generates example files for a given interface.

	
class mozwebidlcodegen.WebIDLCodegenManagerState(fh=None)

	Bases: dict

Holds state for the WebIDL code generation manager.

State is currently just an extended dict. The internal implementation of
state should be considered a black box to everyone except
WebIDLCodegenManager. But we’ll still document it.

Fields:

	version

	The integer version of the format. This is to detect incompatible
changes between state. It should be bumped whenever the format
changes or semantics change.

	webidls

	A dictionary holding information about every known WebIDL input.
Keys are the basenames of input WebIDL files. Values are dicts of
metadata. Keys in those dicts are:

	filename - The full path to the input filename.

	inputs - A set of full paths to other webidl files this webidl
depends on.

	outputs - Set of full output paths that are created/derived from
this file.

	sha1 - The hexidecimal SHA-1 of the input filename from the last
processing time.

	global_inputs

	A dictionary defining files that influence all processing. Keys
are full filenames. Values are hexidecimal SHA-1 from the last
processing time.

	
VERSION = 1

	

	
dump(fh)

	Dump serialized state to a file handle.

	
mozwebidlcodegen.create_build_system_manager(topsrcdir, topobjdir, dist_dir)

	Create a WebIDLCodegenManager for use by the build system.

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Mozilla Source Tree Docs 50.0a1 documentation

 Python Module Index

 m

 			

 		
 m	

 	[image: -]
 	
 mach	

 	
 	
 mach.base	

 	
 	
 mach.commands	

 	
 	
 mach.config	

 	
 	
 mach.decorators	

 	
 	
 mach.dispatcher	

 	
 	
 mach.logging	

 	
 	
 mach.main	

 	
 	
 mach.mixin	

 	
 	
 mach.mixin.logging	

 	
 	
 mach.mixin.process	

 	
 	
 mach.registrar	

 	
 	
 mach.terminal	

 	
 	
 mach.test	

 	
 	
 mach.test.common	

 	
 	
 mach.test.providers	

 	
 	
 mach.test.providers.throw2	

 	
 	
 mach.test.test_conditions	

 	
 	
 mach.test.test_config	

 	
 	
 mach.test.test_dispatcher	

 	
 	
 mach.test.test_entry_point	

 	
 	
 mach.test.test_error_output	

 	
 	
 mach.test.test_logger	

 	[image: -]
 	
 mozbuild	

 	
 	
 mozbuild.action	

 	
 	
 mozbuild.action.buildlist	

 	
 	
 mozbuild.action.explode_aar	

 	
 	
 mozbuild.action.generate_browsersearch	

 	
 	
 mozbuild.action.generate_suggestedsites	

 	
 	
 mozbuild.action.jar_maker	

 	
 	
 mozbuild.action.make_dmg	

 	
 	
 mozbuild.action.package_geckolibs_aar	

 	
 	
 mozbuild.action.preprocessor	

 	
 	
 mozbuild.action.process_install_manifest	

 	
 	
 mozbuild.action.webidl	

 	
 	
 mozbuild.action.xpccheck	

 	
 	
 mozbuild.action.zip	

 	
 	
 mozbuild.android_version_code	

 	
 	
 mozbuild.backend	

 	
 	
 mozbuild.backend.android_eclipse	

 	
 	
 mozbuild.backend.base	

 	
 	
 mozbuild.backend.common	

 	
 	
 mozbuild.backend.configenvironment	

 	
 	
 mozbuild.backend.cpp_eclipse	

 	
 	
 mozbuild.backend.fastermake	

 	
 	
 mozbuild.backend.recursivemake	

 	
 	
 mozbuild.backend.visualstudio	

 	
 	
 mozbuild.base	

 	
 	
 mozbuild.codecoverage	

 	
 	
 mozbuild.codecoverage.chrome_map	

 	
 	
 mozbuild.codecoverage.packager	

 	
 	
 mozbuild.compilation	

 	
 	
 mozbuild.compilation.database	

 	
 	
 mozbuild.compilation.util	

 	
 	
 mozbuild.compilation.warnings	

 	
 	
 mozbuild.config_status	

 	
 	
 mozbuild.configure	

 	
 	
 mozbuild.configure.check_debug_ranges	

 	
 	
 mozbuild.configure.constants	

 	
 	
 mozbuild.configure.help	

 	
 	
 mozbuild.configure.libstdcxx	

 	
 	
 mozbuild.configure.options	

 	
 	
 mozbuild.configure.util	

 	
 	
 mozbuild.controller	

 	
 	
 mozbuild.controller.building	

 	
 	
 mozbuild.controller.clobber	

 	
 	
 mozbuild.doctor	

 	
 	
 mozbuild.dotproperties	

 	
 	
 mozbuild.frontend	

 	
 	
 mozbuild.frontend.context	

 	
 	
 mozbuild.frontend.data	

 	
 	
 mozbuild.frontend.emitter	

 	
 	
 mozbuild.frontend.gyp_reader	

 	
 	
 mozbuild.frontend.reader	

 	
 	
 mozbuild.frontend.sandbox	

 	
 	
 mozbuild.html_build_viewer	

 	
 	
 mozbuild.jar	

 	
 	
 mozbuild.makeutil	

 	
 	
 mozbuild.milestone	

 	
 	
 mozbuild.mozconfig	

 	
 	
 mozbuild.mozinfo	

 	
 	
 mozbuild.preprocessor	

 	
 	
 mozbuild.pythonutil	

 	
 	
 mozbuild.shellutil	

 	
 	
 mozbuild.sphinx	

 	
 	
 mozbuild.test	

 	
 	
 mozbuild.test.backend	

 	
 	
 mozbuild.test.backend.common	

 	
 	
 mozbuild.test.backend.test_android_eclipse	

 	
 	
 mozbuild.test.backend.test_configenvironment	

 	
 	
 mozbuild.test.backend.test_recursivemake	

 	
 	
 mozbuild.test.backend.test_visualstudio	

 	
 	
 mozbuild.test.common	

 	
 	
 mozbuild.test.compilation	

 	
 	
 mozbuild.test.compilation.test_warnings	

 	
 	
 mozbuild.test.controller	

 	
 	
 mozbuild.test.controller.test_ccachestats	

 	
 	
 mozbuild.test.controller.test_clobber	

 	
 	
 mozbuild.test.frontend	

 	
 	
 mozbuild.test.frontend.test_context	

 	
 	
 mozbuild.test.frontend.test_emitter	

 	
 	
 mozbuild.test.frontend.test_namespaces	

 	
 	
 mozbuild.test.frontend.test_reader	

 	
 	
 mozbuild.test.frontend.test_sandbox	

 	
 	
 mozbuild.test.test_android_version_code	

 	
 	
 mozbuild.test.test_containers	

 	
 	
 mozbuild.test.test_dotproperties	

 	
 	
 mozbuild.test.test_expression	

 	
 	
 mozbuild.test.test_jarmaker	

 	
 	
 mozbuild.test.test_line_endings	

 	
 	
 mozbuild.test.test_makeutil	

 	
 	
 mozbuild.test.test_mozconfig	

 	
 	
 mozbuild.test.test_mozinfo	

 	
 	
 mozbuild.test.test_preprocessor	

 	
 	
 mozbuild.test.test_pythonutil	

 	
 	
 mozbuild.test.test_testing	

 	
 	
 mozbuild.test.test_util	

 	
 	
 mozbuild.testing	

 	
 	
 mozbuild.util	

 	
 	
 mozbuild.virtualenv	

 	[image: -]
 	
 mozlint	

 	
 	
 mozlint.cli	

 	
 	
 mozlint.errors	

 	
 	
 mozlint.formatters	

 	
 	
 mozlint.formatters.stylish	

 	
 	
 mozlint.formatters.treeherder	

 	
 	
 mozlint.parser	

 	
 	
 mozlint.pathutils	

 	
 	
 mozlint.result	

 	
 	
 mozlint.roller	

 	
 	
 mozlint.types	

 	[image: -]
 	
 mozpack	

 	
 	
 mozpack.archive	

 	
 	
 mozpack.chrome	

 	
 	
 mozpack.chrome.flags	

 	
 	
 mozpack.chrome.manifest	

 	
 	
 mozpack.copier	

 	
 	
 mozpack.dmg	

 	
 	
 mozpack.errors	

 	
 	
 mozpack.executables	

 	
 	
 mozpack.files	

 	
 	
 mozpack.manifests	

 	
 	
 mozpack.mozjar	

 	
 	
 mozpack.packager	

 	
 	
 mozpack.packager.formats	

 	
 	
 mozpack.packager.l10n	

 	
 	
 mozpack.packager.unpack	

 	
 	
 mozpack.path	

 	
 	
 mozpack.test	

 	
 	
 mozpack.test.test_archive	

 	
 	
 mozpack.test.test_chrome_flags	

 	
 	
 mozpack.test.test_chrome_manifest	

 	
 	
 mozpack.test.test_copier	

 	
 	
 mozpack.test.test_errors	

 	
 	
 mozpack.test.test_files	

 	
 	
 mozpack.test.test_manifests	

 	
 	
 mozpack.test.test_mozjar	

 	
 	
 mozpack.test.test_packager	

 	
 	
 mozpack.test.test_packager_formats	

 	
 	
 mozpack.test.test_packager_l10n	

 	
 	
 mozpack.test.test_packager_unpack	

 	
 	
 mozpack.test.test_path	

 	
 	
 mozpack.test.test_unify	

 	
 	
 mozpack.unify	

 	
 	
 mozwebidlcodegen	

 Copyright .
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Mozilla Source Tree Docs 50.0a1 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X

A

 	

 	ABSOLUTE_KEYS (mozbuild.controller.building.CCacheStats attribute)

 	AbsolutePath (class in mozbuild.frontend.context)

 	AbsoluteSymlinkFile (class in mozpack.files)

 	abspath() (in module mozpack.path)

 	accumulate() (mozpack.errors.ErrorCollector method)

 	AccumulatedErrors

 	activate() (mozbuild.virtualenv.VirtualenvManager method)

 	activate_path (mozbuild.virtualenv.VirtualenvManager attribute)

 	actual_file (mozbuild.frontend.reader.BuildReaderError attribute)

 	add() (mozbuild.backend.common.TestManager method)

 	

 	(mozbuild.backend.recursivemake.RecursiveMakeTraversal method)

 	(mozbuild.configure.help.HelpFormatter method)

 	(mozbuild.configure.options.CommandLineHelper method)

 	(mozpack.copier.FileRegistry method)

 	(mozpack.copier.FileRegistrySubtree method)

 	(mozpack.copier.Jarrer method)

 	(mozpack.files.ManifestFile method)

 	(mozpack.files.XPTFile method)

 	(mozpack.mozjar.JarWriter method)

 	(mozpack.packager.SimpleManifestSink method)

 	(mozpack.packager.SimplePackager method)

 	(mozpack.packager.formats.FlatSubFormatter method)

 	(mozpack.packager.formats.PiecemealFormatter method)

 	(mozpack.test.test_copier.BaseTestFileRegistry method)

 	(mozpack.test.test_files.TestComposedFinder method)

 	(mozpack.test.test_files.TestFileFinder method)

 	(mozpack.test.test_files.TestJarFinder method)

 	(mozpack.test.test_files.TestMercurialRevisionFinder method)

 	(mozpack.test.test_packager.MockFormatter method)

 	add_android_eclipse_project_helper() (mozbuild.frontend.reader.MozbuildSandbox method)

 	add_base() (mozpack.packager.formats.PiecemealFormatter method)

 	

 	(mozpack.test.test_packager.MockFormatter method)

 	add_classpathentry() (mozbuild.frontend.data.AndroidEclipseProjectData method)

 	add_commands() (mozbuild.makeutil.Rule method)

 	add_content() (mozpack.manifests.InstallManifest method)

 	add_copy() (mozpack.manifests.InstallManifest method)

 	add_definition() (mozpack.chrome.flags.Flag method)

 	

 	(mozpack.chrome.flags.StringFlag method)

 	(mozpack.chrome.flags.VersionFlag method)

 	add_dependencies() (mozbuild.makeutil.Rule method)

 	add_global_argument() (mach.main.Mach method)

 	add_installs() (mozbuild.backend.common.TestManager method)

 	add_interfaces() (mozpack.packager.formats.FlatSubFormatter method)

 	

 	(mozpack.packager.formats.PiecemealFormatter method)

 	(mozpack.test.test_packager.MockFormatter method)

 	add_json_handler() (mach.logging.LoggingManager method)

 	add_manifest() (mozpack.packager.formats.FlatSubFormatter method)

 	

 	(mozpack.packager.formats.JarSubFormatter method)

 	(mozpack.packager.formats.OmniJarSubFormatter method)

 	(mozpack.packager.formats.PiecemealFormatter method)

 	(mozpack.test.test_packager.MockFormatter method)

 	add_optional_exists() (mozpack.manifests.InstallManifest method)

 	add_pattern_copy() (mozpack.manifests.InstallManifest method)

 	add_pattern_symlink() (mozpack.manifests.InstallManifest method)

 	add_preprocess() (mozpack.manifests.InstallManifest method)

 	add_required_exists() (mozpack.manifests.InstallManifest method)

 	add_resource_fields_to_dict() (mozbuild.controller.building.TierStatus method)

 	add_resource_json_file() (mozbuild.html_build_viewer.BuildViewerServer method)

 	add_resource_json_url() (mozbuild.html_build_viewer.BuildViewerServer method)

 	add_resources_to_dict() (mozbuild.controller.building.TierStatus method)

 	add_source() (mozbuild.frontend.context.Context method)

 	add_statement() (mozbuild.backend.recursivemake.BackendMakeFile method)

 	

 	(mozbuild.makeutil.Makefile method)

 	add_symlink() (mozpack.manifests.InstallManifest method)

 	add_targets() (mozbuild.makeutil.Rule method)

 	add_terminal_logging() (mach.logging.LoggingManager method)

 	add_to_manifest (mozbuild.frontend.data.XPIDLFile attribute)

 	add_usage() (mach.dispatcher.CommandFormatter method)

 	addDefines() (mozbuild.preprocessor.Preprocessor method)

 	addEntriesToListFile() (in module mozbuild.action.buildlist)

 	aggregate() (mozbuild.frontend.context.Files static method)

 	all_basenames() (mozbuild.backend.common.WebIDLCollection method)

 	all_dirs() (mozpack.test.test_copier.TestFileCopier method)

 	all_files() (mozpack.test.test_copier.TestFileCopier method)

 	

 	all_mozbuild_paths() (mozbuild.frontend.reader.BuildReader method)

 	all_non_static_basenames() (mozbuild.backend.common.WebIDLCollection method)

 	all_non_static_sources() (mozbuild.backend.common.WebIDLCollection method)

 	all_paths (mozbuild.frontend.context.Context attribute)

 	all_preprocessed_sources() (mozbuild.backend.common.WebIDLCollection method)

 	all_regular_basenames() (mozbuild.backend.common.WebIDLCollection method)

 	all_regular_bindinggen_stems() (mozbuild.backend.common.WebIDLCollection method)

 	all_regular_cpp_basenames() (mozbuild.backend.common.WebIDLCollection method)

 	all_regular_sources() (mozbuild.backend.common.WebIDLCollection method)

 	all_regular_stems() (mozbuild.backend.common.WebIDLCollection method)

 	all_sources() (mozbuild.backend.common.WebIDLCollection method)

 	all_static_sources() (mozbuild.backend.common.WebIDLCollection method)

 	all_stems() (mozbuild.backend.common.WebIDLCollection method)

 	all_test_basenames() (mozbuild.backend.common.WebIDLCollection method)

 	all_test_cpp_basenames() (mozbuild.backend.common.WebIDLCollection method)

 	all_test_flavors() (in module mozbuild.testing)

 	all_test_sources() (mozbuild.backend.common.WebIDLCollection method)

 	all_test_stems() (mozbuild.backend.common.WebIDLCollection method)

 	allowed_flags (mozpack.chrome.manifest.ManifestContent attribute)

 	

 	(mozpack.chrome.manifest.ManifestEntry attribute)

 	alphabetical_sorted() (in module mozbuild.frontend.sandbox)

 	ancestors() (in module mozbuild.base)

 	android_version_code() (in module mozbuild.android_version_code)

 	android_version_code_v0() (in module mozbuild.android_version_code)

 	android_version_code_v1() (in module mozbuild.android_version_code)

 	AndroidAssetsDirs (class in mozbuild.frontend.data)

 	AndroidEclipseBackend (class in mozbuild.backend.android_eclipse)

 	AndroidEclipseProjectData (class in mozbuild.frontend.data)

 	AndroidExtraPackages (class in mozbuild.frontend.data)

 	AndroidExtraResDirs (class in mozbuild.frontend.data)

 	AndroidResDirs (class in mozbuild.frontend.data)

 	any_newer() (mozpack.files.BaseFile static method)

 	append() (mozbuild.util.TypedListMixin method)

 	

 	(mozpack.packager.CallDeque method)

 	applyFilters() (mozbuild.preprocessor.Preprocessor method)

 	ArgumentParser (class in mach.main)

 	arguments (mozlint.cli.MozlintParser attribute)

 	asdict() (mozbuild.frontend.context.Files method)

 	assertExists() (mozbuild.test.backend.test_android_eclipse.TestAndroidEclipseBackend method)

 	assertInManifest() (mozbuild.test.backend.test_android_eclipse.TestAndroidEclipseBackend method)

 	assertNotExists() (mozbuild.test.backend.test_android_eclipse.TestAndroidEclipseBackend method)

 	assertNotInManifest() (mozbuild.test.backend.test_android_eclipse.TestAndroidEclipseBackend method)

 	assertResolve() (mozbuild.test.test_util.TestResolveTargetToMake method)

 	assertSameList() (mozbuild.test.test_util.TestListWithAction method)

 	assets (mozbuild.frontend.data.AndroidEclipseProjectData attribute)

 	AUTODETECT (mozbuild.mozconfig.MozconfigLoader attribute)

B

 	

 	BackendMakeFile (class in mozbuild.backend.recursivemake)

 	BackendTester (class in mozbuild.test.backend.common)

 	BadEnvironmentException

 	Base (class in mozbuild.test.test_mozinfo)

 	

 	(class in mozbuild.test.test_testing)

 	BaseConfigSubstitution (class in mozbuild.frontend.data)

 	BaseDefines (class in mozbuild.frontend.data)

 	basedir() (in module mozpack.path)

 	BaseFile (class in mozpack.files)

 	BaseFinder (class in mozpack.files)

 	BaseLibrary (class in mozbuild.frontend.data)

 	basename (mozbuild.frontend.data.BaseLibrary attribute)

 	

 	(mozbuild.frontend.data.GeneratedEventWebIDLFile attribute)

 	(mozbuild.frontend.data.GeneratedWebIDLFile attribute)

 	(mozbuild.frontend.data.IPDLFile attribute)

 	(mozbuild.frontend.data.PreprocessedTestWebIDLFile attribute)

 	(mozbuild.frontend.data.PreprocessedWebIDLFile attribute)

 	(mozbuild.frontend.data.TestWebIDLFile attribute)

 	(mozbuild.frontend.data.WebIDLFile attribute)

 	(mozbuild.frontend.data.XPIDLFile attribute)

 	basename() (in module mozpack.path)

 	BaseProgram (class in mozbuild.frontend.data)

 	BaseSources (class in mozbuild.frontend.data)

 	BaseTestFileRegistry (class in mozpack.test.test_copier)

 	BaseType (class in mozlint.types)

 	batch (mozlint.types.BaseType attribute)

 	

 	(mozlint.types.ExternalType attribute)

 	begin_tier() (mozbuild.controller.building.TierStatus method)

 	bin_path (mozbuild.virtualenv.VirtualenvManager attribute)

 	BinariesCollection (class in mozbuild.backend.common)

 	

 	bindir (mozbuild.base.MozbuildObject attribute)

 	BooleanType (class in mach.config)

 	BrandingFiles (class in mozbuild.frontend.data)

 	build() (mozbuild.virtualenv.VirtualenvManager method)

 	build_dict() (in module mozbuild.mozinfo)

 	BuildBackend (class in mozbuild.backend.base)

 	BuildConfig (class in mozbuild.backend.configenvironment)

 	BuildDriver (class in mozbuild.controller.building)

 	BuildEnvironmentNotFoundException

 	BuildMonitor (class in mozbuild.controller.building)

 	BuildOutputResult (class in mozbuild.controller.building)

 	BuildReader (class in mozbuild.frontend.reader)

 	BuildReaderError

 	BuildResult (class in mozwebidlcodegen)

 	BuildSystemWebIDL (class in mozwebidlcodegen)

 	BuildViewerServer (class in mozbuild.html_build_viewer)

 	BUILTINS (mozbuild.configure.ConfigureSandbox attribute)

 	

 	(mozbuild.frontend.sandbox.Sandbox attribute)

 	by_rev() (mozlint.cli.VCFiles method)

 	by_workdir() (mozlint.cli.VCFiles method)

C

 	

 	call_filter() (mozbuild.backend.recursivemake.RecursiveMakeTraversal method)

 	call_setup() (mozbuild.virtualenv.VirtualenvManager method)

 	CallDeque (class in mozpack.packager)

 	canonical_suffix (mozbuild.frontend.data.BaseSources attribute)

 	canonicalize() (mozpack.mozjar.JarLog static method)

 	ccache_stats() (mozbuild.controller.building.BuildMonitor method)

 	CCacheStats (class in mozbuild.controller.building)

 	CFLAGS (mozbuild.compilation.database.CompileDBBackend attribute)

 	check_all() (mozbuild.doctor.Doctor method)

 	check_disk_8dot3() (mozbuild.doctor.Doctor method)

 	check_jar() (mozpack.test.test_copier.TestJarrer method)

 	check_mount_lastaccess() (mozbuild.doctor.Doctor method)

 	check_tools() (in module mozpack.dmg)

 	check_top_objdir() (in module mozbuild.compilation.util)

 	chmod() (in module mozpack.dmg)

 	choices (mozbuild.configure.options.Option attribute)

 	ChromeManifestEntry (class in mozbuild.frontend.data)

 	ChromeManifestHandler (class in mozbuild.codecoverage.chrome_map)

 	ChromeMapBackend (class in mozbuild.codecoverage.chrome_map)

 	ClassPathEntry (class in mozbuild.frontend.data)

 	clear() (mach.terminal.TerminalFooter method)

 	cli() (in module mozbuild.codecoverage.packager)

 	clobber build

 	clobber_cause() (mozbuild.controller.clobber.Clobberer method)

 	clobber_needed() (mozbuild.controller.clobber.Clobberer method)

 	Clobberer (class in mozbuild.controller.clobber)

 	clone() (mozbuild.preprocessor.Preprocessor method)

 	close() (mozbuild.backend.recursivemake.BackendMakeFile method)

 	

 	(mozbuild.configure.util.LineIO method)

 	(mozbuild.util.FileAvoidWrite method)

 	(mozpack.files.Dest method)

 	(mozpack.mozjar.Deflater method)

 	(mozpack.mozjar.JarFileReader method)

 	(mozpack.mozjar.JarReader method)

 	(mozpack.packager.SimpleManifestSink method)

 	(mozpack.packager.SimplePackager method)

 	(mozpack.test.test_files.MockDest method)

 	cls (in module mozbuild.frontend.context)

 	cmp_ver() (in module mozbuild.configure.libstdcxx)

 	column (mozlint.result.ResultContainer attribute)

 	Command (class in mach.decorators)

 	CommandAction (class in mach.dispatcher)

 	CommandArgument (class in mach.decorators)

 	CommandArgumentGroup (class in mach.decorators)

 	CommandContext (class in mach.base)

 	CommandFormatter (class in mach.dispatcher)

 	CommandLineHelper (class in mozbuild.configure.options)

 	CommandProvider() (in module mach.decorators)

 	commands() (mozbuild.makeutil.Rule method)

 	CommonBackend (class in mozbuild.backend.common)

 	commonprefix() (in module mozpack.path)

 	CompileDBBackend (class in mozbuild.compilation.database)

 	COMPILERS (mozbuild.compilation.database.CompileDBBackend attribute)

 	CompilerWarning (class in mozbuild.compilation.warnings)

 	Component (class in mozpack.packager)

 	COMPONENT (mozbuild.frontend.data.SharedLibrary attribute)

 	ComposedFinder (class in mozpack.files)

 	compressed (mozpack.mozjar.Deflater attribute)

 	compressed_data (mozpack.mozjar.Deflater attribute)

 	

 	(mozpack.mozjar.JarFileReader attribute)

 	compressed_size (mozpack.mozjar.Deflater attribute)

 	compute_dependencies() (mozbuild.backend.recursivemake.RecursiveMakeTraversal method)

 	computeDependencies() (mozbuild.preprocessor.Preprocessor method)

 	condition() (mozlint.types.LineType method)

 	

 	(mozlint.types.RegexType method)

 	(mozlint.types.StringType method)

 	config (mozbuild.backend.recursivemake.RecursiveMakeBackend.Substitution attribute)

 	

 	(mozbuild.frontend.data.ContextDerived attribute)

 	(mozwebidlcodegen.WebIDLCodegenManager attribute)

 	config() (mozbuild.test.frontend.test_reader.TestBuildReader method)

 	

 	config.status

 	config_environment (mozbuild.base.MozbuildObject attribute)

 	config_settings (mach.dispatcher.DispatchSettings attribute)

 	

 	(mach.test.test_config.Provider1 attribute)

 	(mach.test.test_config.Provider2 attribute)

 	(mach.test.test_config.Provider4 attribute)

 	(mach.test.test_config.Provider5 attribute)

 	(mach.test.test_config.ProviderDuplicate attribute)

 	config_settings() (mach.test.test_config.Provider3 class method)

 	config_settings_locale_directory (mach.dispatcher.DispatchSettings attribute)

 	

 	(mach.test.test_config.Provider1 attribute)

 	(mach.test.test_config.Provider2 attribute)

 	(mach.test.test_config.Provider3 attribute)

 	(mach.test.test_config.Provider4 attribute)

 	(mach.test.test_config.Provider5 attribute)

 	(mach.test.test_config.ProviderDuplicate attribute)

 	config_status() (in module mozbuild.config_status)

 	ConfigEnvironment (class in mozbuild.backend.configenvironment)

 	

 	(class in mozbuild.test.backend.test_configenvironment)

 	ConfigException

 	ConfigFileSubstitution (class in mozbuild.frontend.data)

 	ConfigSettings (class in mach.config)

 	ConfigSettings.ConfigSection (class in mach.config)

 	ConfigType (class in mach.config)

 	configure

 	ConfigureError

 	ConfigureOutputHandler (class in mozbuild.configure.util)

 	ConfigureSandbox (class in mozbuild.configure)

 	ConflictingOptionError

 	consume() (mozbuild.backend.base.BuildBackend method)

 	consume_finished() (mozbuild.backend.android_eclipse.AndroidEclipseBackend method)

 	

 	(mozbuild.backend.base.BuildBackend method)

 	(mozbuild.backend.common.CommonBackend method)

 	(mozbuild.backend.cpp_eclipse.CppEclipseBackend method)

 	(mozbuild.backend.fastermake.FasterMakeBackend method)

 	(mozbuild.backend.recursivemake.RecursiveMakeBackend method)

 	(mozbuild.backend.visualstudio.VisualStudioBackend method)

 	(mozbuild.codecoverage.chrome_map.ChromeMapBackend method)

 	(mozbuild.compilation.database.CompileDBBackend method)

 	consume_object() (mozbuild.backend.android_eclipse.AndroidEclipseBackend method)

 	

 	(mozbuild.backend.base.BuildBackend method)

 	(mozbuild.backend.common.CommonBackend method)

 	(mozbuild.backend.cpp_eclipse.CppEclipseBackend method)

 	(mozbuild.backend.fastermake.FasterMakeBackend method)

 	(mozbuild.backend.recursivemake.RecursiveMakeBackend method)

 	(mozbuild.backend.visualstudio.VisualStudioBackend method)

 	(mozbuild.codecoverage.chrome_map.ChromeMapBackend method)

 	(mozbuild.compilation.database.CompileDBBackend method)

 	contains() (mozlint.pathutils.FilterPath method)

 	

 	(mozpack.copier.FileRegistry method)

 	(mozpack.copier.FileRegistrySubtree method)

 	(mozpack.files.BaseFinder method)

 	(mozpack.packager.formats.FlatSubFormatter method)

 	(mozpack.packager.formats.PiecemealFormatter method)

 	CONTENT (mozpack.manifests.InstallManifest attribute)

 	Context (class in mozbuild.frontend.context)

 	

 	(class in mozbuild.preprocessor)

 	context() (mozpack.errors.ErrorCollector method)

 	context_all_paths (mozbuild.frontend.data.ContextDerived attribute)

 	context_main_path (mozbuild.frontend.data.ContextDerived attribute)

 	ContextDerived (class in mozbuild.frontend.data)

 	ContextDerivedTypedHierarchicalStringList (in module mozbuild.frontend.context)

 	ContextDerivedTypedList (in module mozbuild.frontend.context)

 	ContextDerivedTypedListWithItems (in module mozbuild.frontend.context)

 	ContextDerivedTypedRecord (in module mozbuild.frontend.context)

 	ContextDerivedValue (class in mozbuild.frontend.context)

 	ContextWrapped (class in mozbuild.frontend.data)

 	ContextWrapper (class in mach.main)

 	convert_support_files() (mozbuild.testing.SupportFilesConverter method)

 	ConvertToStructuredFilter (class in mach.logging)

 	COPY (mozpack.manifests.InstallManifest attribute)

 	copy() (mozpack.copier.FileCopier method)

 	

 	(mozpack.copier.Jarrer method)

 	(mozpack.files.AbsoluteSymlinkFile method)

 	(mozpack.files.BaseFile method)

 	(mozpack.files.ExecutableFile method)

 	(mozpack.files.ExistingFile method)

 	(mozpack.files.PreprocessedFile method)

 	(mozpack.files.XPTFile method)

 	(mozpack.unify.UnifiedExecutableFile method)

 	count (mozpack.errors.ErrorCollector attribute)

 	CppEclipseBackend (class in mozbuild.backend.cpp_eclipse)

 	cpu (mozbuild.doctor.Doctor attribute)

 	crc32 (mozpack.mozjar.Deflater attribute)

 	create() (mozbuild.virtualenv.VirtualenvManager method)

 	create_both() (mozpack.test.test_unify.TestUnified method)

 	create_build_system_manager() (in module mozwebidlcodegen)

 	create_dmg() (in module mozpack.dmg)

 	create_dmg_from_staged() (in module mozpack.dmg)

 	create_one() (mozpack.test.test_unify.TestUnified method)

 	create_registry() (mozpack.test.test_copier.TestFileRegistrySubtree method)

 	create_rule() (mozbuild.makeutil.Makefile method)

 	create_tar_bz2_from_files() (in module mozpack.archive)

 	create_tar_from_files() (in module mozpack.archive)

 	create_tar_gz_from_files() (in module mozpack.archive)

 	createFile() (mozbuild.test.test_line_endings.TestLineEndings method)

 	CURRENT_VERSION (mozpack.manifests.InstallManifest attribute)

D

 	

 	debug (mozbuild.test.test_jarmaker.TestJarMaker attribute)

 	default (mozbuild.configure.options.Option attribute)

 	default() (mozlint.result.ResultEncoder method)

 	default_filter() (mozbuild.backend.recursivemake.RecursiveMakeTraversal static method)

 	default_support_files (mozbuild.frontend.data.TestManifest attribute)

 	DEFAULT_TOPSRCDIR_PATHS (mozbuild.mozconfig.MozconfigLoader attribute)

 	DefaultValue (class in mach.config)

 	deferred_installs (mozbuild.frontend.data.TestManifest attribute)

 	define_category() (mach.main.Mach method)

 	Defines (class in mozbuild.frontend.data)

 	defines (mozbuild.base.MozbuildObject attribute)

 	

 	(mozbuild.frontend.data.BaseDefines attribute)

 	(mozbuild.frontend.data.ContextDerived attribute)

 	(mozbuild.frontend.data.HostMixin attribute)

 	DefinesAction (class in mozbuild.util)

 	DeflatedFile (class in mozpack.files)

 	Deflater (class in mozpack.mozjar)

 	dependencies() (mozbuild.makeutil.Rule method)

 	DependentTestsEntry (in module mozbuild.frontend.context)

 	depends_impl() (mozbuild.configure.ConfigureSandbox method)

 	DependsFunction (class in mozbuild.configure)

 	DEPRECATED_HOME_PATHS (mozbuild.mozconfig.MozconfigLoader attribute)

 	DEPRECATED_TOPSRCDIR_PATHS (mozbuild.mozconfig.MozconfigLoader attribute)

 	deserialize() (mozbuild.compilation.warnings.WarningsDatabase method)

 	Dest (class in mozpack.files)

 	destdir (mozpack.packager.Component attribute)

 	DestNoWrite (class in mozpack.test.test_files)

 	DICT_ATTRS (mozbuild.frontend.data.BaseProgram attribute)

 	

 	(mozbuild.frontend.data.SharedLibrary attribute)

 	diff (mozbuild.backend.recursivemake.BackendMakeFile attribute)

 	directory (mozbuild.frontend.data.TestManifest attribute)

 	DIRECTORY_DESCRIPTION (mozbuild.controller.building.CCacheStats attribute)

 	DirectoryTraversal (class in mozbuild.frontend.data)

 	dirname() (in module mozpack.path)

 	dirs (mozbuild.frontend.data.DirectoryTraversal attribute)

 	disable_unstructured() (mach.logging.LoggingManager method)

 	dispatch() (mach.registrar.MachRegistrar method)

 	DispatchSettings (class in mach.dispatcher)

 	distdir (mozbuild.base.MozbuildObject attribute)

 	do_check() (in module mozpack.test.test_files)

 	

 	(mozpack.test.test_copier.BaseTestFileRegistry method)

 	(mozpack.test.test_files.TestComposedFinder method)

 	(mozpack.test.test_files.TestFileFinder method)

 	(mozpack.test.test_files.TestJarFinder method)

 	(mozpack.test.test_files.TestMercurialRevisionFinder method)

 	do_define() (mozbuild.preprocessor.Preprocessor method)

 	

 	do_elif() (mozbuild.preprocessor.Preprocessor method)

 	do_elifdef() (mozbuild.preprocessor.Preprocessor method)

 	do_elifndef() (mozbuild.preprocessor.Preprocessor method)

 	do_else() (mozbuild.preprocessor.Preprocessor method)

 	do_endif() (mozbuild.preprocessor.Preprocessor method)

 	do_error() (mozbuild.preprocessor.Preprocessor method)

 	do_expand() (mozbuild.preprocessor.Preprocessor method)

 	do_filter() (mozbuild.preprocessor.Preprocessor method)

 	do_finder_test() (mozpack.test.test_files.MatchTestTemplate method)

 	do_from_string() (mozpack.test.test_packager.TestComponent method)

 	do_GET() (mozbuild.html_build_viewer.HTTPHandler method)

 	do_if() (mozbuild.preprocessor.Preprocessor method)

 	do_ifdef() (mozbuild.preprocessor.Preprocessor method)

 	do_ifndef() (mozbuild.preprocessor.Preprocessor method)

 	do_include() (mozbuild.preprocessor.Preprocessor method)

 	do_include_compare() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	do_include_pass() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	do_includesubst() (mozbuild.preprocessor.Preprocessor method)

 	do_literal() (mozbuild.preprocessor.Preprocessor method)

 	do_match_test() (mozpack.test.test_files.MatchTestTemplate method)

 	do_POST() (mozbuild.html_build_viewer.HTTPHandler method)

 	do_split() (mozpack.test.test_packager.TestComponent method)

 	do_split_error() (mozpack.test.test_packager.TestComponent method)

 	do_test_contents() (mozpack.test.test_packager_formats.TestFormatters method)

 	do_test_file_registry() (mozpack.test.test_copier.BaseTestFileRegistry method)

 	do_test_read_jar_struct() (mozpack.test.test_mozjar.TestJarStruct method)

 	do_test_registry_paths() (mozpack.test.test_copier.BaseTestFileRegistry method)

 	do_undef() (mozbuild.preprocessor.Preprocessor method)

 	do_unfilter() (mozbuild.preprocessor.Preprocessor method)

 	Doctor (class in mozbuild.doctor)

 	DotProperties (class in mozbuild.dotproperties)

 	draw() (mach.terminal.TerminalFooter method)

 	dstdir (mozbuild.frontend.data.ClassPathEntry attribute)

 	DummyLogger (class in mach.test.test_logger)

 	dump() (mozbuild.makeutil.Makefile method)

 	

 	(mozbuild.makeutil.Rule method)

 	(mozwebidlcodegen.WebIDLCodegenManagerState method)

 	dupe_manifest (mozbuild.frontend.data.TestManifest attribute)

E

 	

 	elfhack() (in module mozpack.executables)

 	emit() (mach.terminal.LoggingHandler method)

 	

 	(mozbuild.configure.util.ConfigureOutputHandler method)

 	(mozbuild.frontend.emitter.TreeMetadataEmitter method)

 	emit_from_context() (mozbuild.frontend.emitter.TreeMetadataEmitter method)

 	EmptyConfig (class in mozbuild.frontend.reader)

 	EmptyConfig.PopulateOnGetDict (class in mozbuild.frontend.reader)

 	EmptyValue (class in mozbuild.util)

 	enable_unstructured() (mach.logging.LoggingManager method)

 	enabled (mozbuild.frontend.data.InstallationTarget attribute)

 	encode() (in module mozbuild.frontend.gyp_reader)

 	encode_ver() (in module mozbuild.configure.libstdcxx)

 	ensure() (mozbuild.virtualenv.VirtualenvManager method)

 	ensure_not_else() (mozbuild.preprocessor.Preprocessor method)

 	ensure_objdir_state() (mozbuild.controller.clobber.Clobberer method)

 	ensure_sorted() (mozbuild.util.StrictOrderingOnAppendListMixin static method)

 	ensureDirFor() (mozbuild.jar.JarMaker.OutputHelper_flat method)

 	ensureParentDir() (in module mozbuild.util)

 	entries (mozpack.mozjar.JarReader attribute)

 	Entry (class in mach.test.test_entry_point)

 	entry (mozbuild.frontend.data.ChromeManifestEntry attribute)

 	Enum() (in module mozbuild.frontend.context)

 	EnumString (class in mozbuild.util)

 	EnumStringComparisonError

 	env (mozbuild.configure.options.Option attribute)

 	ENVIRONMENT_VARIABLES (mozbuild.mozconfig.MozconfigLoader attribute)

 	ERROR (mozpack.errors.ErrorCollector attribute)

 	error() (mach.main.ArgumentParser method)

 	

 	(mozpack.errors.ErrorCollector method)

 	error_is_fatal (mozbuild.frontend.context.Context attribute)

 	ErrorCollector (class in mozpack.errors)

 	ErrorMessage

 	

 	evaluate() (mozbuild.preprocessor.Expression method)

 	ExampleWebIDLInterface (class in mozbuild.frontend.data)

 	exclude_patterns (mozbuild.frontend.data.ClassPathEntry attribute)

 	exec_() (in module mozbuild.util)

 	exec_file() (mozbuild.frontend.reader.MozbuildSandbox method)

 	

 	(mozbuild.frontend.sandbox.Sandbox method)

 	(mozbuild.test.frontend.test_sandbox.TestedSandbox method)

 	exec_function() (mozbuild.frontend.sandbox.Sandbox method)

 	exec_in_sandbox() (mozbuild.frontend.reader.TemplateFunction method)

 	exec_source() (mozbuild.frontend.sandbox.Sandbox method)

 	

 	(mozbuild.test.frontend.test_sandbox.TestedSandbox method)

 	ExecutableFile (class in mozpack.files)

 	execute() (mozpack.packager.CallDeque method)

 	ExecutionSummary (class in mozbuild.base)

 	existing_files_count (mozpack.copier.FileCopyResult attribute)

 	ExistingFile (class in mozpack.files)

 	exists (mozlint.pathutils.FilterPath attribute)

 	exists() (mozpack.files.Dest method)

 	

 	(mozpack.test.test_files.MockDest method)

 	(mozpack.test.test_packager_formats.MockDest method)

 	expand_variables() (in module mozbuild.util)

 	expected_build_output_files() (mozwebidlcodegen.WebIDLCodegenManager method)

 	EXPECTED_LOG (mozpack.test.test_packager.TestPreprocessManifest attribute)

 	explode() (in module mozbuild.action.explode_aar)

 	Exports (class in mozbuild.frontend.data)

 	Expression (class in mozbuild.preprocessor)

 	Expression.ParseError

 	extend() (mozbuild.base.ExecutionSummary method)

 	

 	(mozbuild.util.ListMixin method)

 	(mozbuild.util.ListWithActionMixin method)

 	(mozbuild.util.StrictOrderingOnAppendListMixin method)

 	(mozbuild.util.TypedListMixin method)

 	external_installs (mozbuild.frontend.data.TestManifest attribute)

 	ExternalLibrary (class in mozbuild.frontend.data)

 	ExternalSharedLibrary (class in mozbuild.frontend.data)

 	ExternalStaticLibrary (class in mozbuild.frontend.data)

 	ExternalType (class in mozlint.types)

 	extra_jars (mozbuild.frontend.data.AndroidEclipseProjectData attribute)

 	

 	(mozbuild.frontend.data.JavaJarData attribute)

F

 	

 	failUnused() (mozbuild.preprocessor.Preprocessor method)

 	FAKE_TOPSRCDIR (mozbuild.test.test_testing.TestTestResolver attribute)

 	FasterMakeBackend (class in mozbuild.backend.fastermake)

 	FATAL (mozpack.errors.ErrorCollector attribute)

 	fatal() (mozpack.errors.ErrorCollector method)

 	FIELD_SEPARATOR (mozpack.manifests.InstallManifest attribute)

 	File (class in mozpack.files)

 	file_hash() (in module mozpack.test.test_archive)

 	file_name (mozbuild.frontend.data.PerSourceFlag attribute)

 	file_path() (mozbuild.test.frontend.test_reader.TestBuildReader method)

 	FileAvoidWrite (class in mozbuild.util)

 	FileCopier (class in mozpack.copier)

 	FileCopyResult (class in mozpack.copier)

 	FileFinder (class in mozpack.files)

 	FileRegistry (class in mozpack.copier)

 	FileRegistrySubtree (class in mozpack.copier)

 	Files (class in mozbuild.frontend.context)

 	files (mozbuild.frontend.data.BaseSources attribute)

 	

 	(mozbuild.frontend.data.FinalTargetFiles attribute)

 	(mozbuild.frontend.data.FinalTargetPreprocessedFiles attribute)

 	(mozbuild.frontend.data.ObjdirFiles attribute)

 	(mozbuild.frontend.data.ObjdirPreprocessedFiles attribute)

 	FILES (mozbuild.test.test_util.TestGroupUnifiedFiles attribute)

 	files_info() (mozbuild.frontend.reader.BuildReader method)

 	fill_formatter() (in module mozpack.test.test_packager_formats)

 	filter() (mach.logging.ConvertToStructuredFilter method)

 	filter_attemptSubstitution() (mozbuild.preprocessor.Preprocessor method)

 	filter_emptyLines() (mozbuild.preprocessor.Preprocessor method)

 	filter_slashslash() (mozbuild.preprocessor.Preprocessor method)

 	filter_spaces() (mozbuild.preprocessor.Preprocessor method)

 	filter_substitution() (mozbuild.preprocessor.Preprocessor method)

 	filtered_resources (mozbuild.frontend.data.AndroidEclipseProjectData attribute)

 	FilterPath (class in mozlint.pathutils)

 	filterpaths() (in module mozlint.pathutils)

 	finalizeJar() (mozbuild.jar.JarMaker method)

 	FinalTargetFiles (class in mozbuild.frontend.data)

 	FinalTargetPreprocessedFiles (class in mozbuild.frontend.data)

 	FinalTargetValue (class in mozbuild.frontend.context)

 	find() (mozpack.files.BaseFinder method)

 	

 	(mozpack.files.ComposedFinder method)

 	(mozpack.packager.unpack.UnpackFinder method)

 	(mozpack.test.test_packager.MockFinder method)

 	find_linters() (in module mozlint.cli)

 	

 	find_mozconfig() (mozbuild.mozconfig.MozconfigLoader method), [1]

 	find_sphinx_variables() (mozbuild.frontend.reader.BuildReader method)

 	find_version() (in module mozbuild.configure.libstdcxx)

 	finder (mozlint.pathutils.FilterPath attribute)

 	finish() (mozbuild.controller.building.BuildMonitor method)

 	

 	(mozpack.mozjar.JarWriter method)

 	finish_tier() (mozbuild.controller.building.TierStatus method)

 	Flag (class in mozpack.chrome.flags)

 	Flags (class in mozpack.chrome.flags)

 	flags (mozbuild.frontend.data.GeneratedFile attribute)

 	

 	(mozbuild.frontend.data.PerSourceFlag attribute)

 	FLAGS (mozpack.chrome.flags.Flags attribute)

 	FlagsFactory() (in module mozbuild.util)

 	FlatFormatter (class in mozpack.packager.formats)

 	FlatSubFormatter (class in mozpack.packager.formats)

 	flavor (mozbuild.frontend.data.TestManifest attribute)

 	flush() (mach.terminal.LoggingHandler method)

 	fmt (mozlint.formatters.stylish.StylishFormatter attribute)

 	

 	(mozlint.formatters.treeherder.TreeherderFormatter attribute)

 	fmt_summary (mozlint.formatters.stylish.StylishFormatter attribute)

 	for_display (mozbuild.controller.building.BuildOutputResult attribute)

 	forbidden_import() (in module mozbuild.configure)

 	format() (mach.logging.StructuredHumanFormatter method)

 	

 	(mach.logging.StructuredJSONFormatter method)

 	(mach.logging.StructuredTerminalFormatter method)

 	(mozbuild.configure.options.OptionValue method)

 	format_docstring() (in module mach.dispatcher)

 	format_help() (mach.main.ArgumentParser method)

 	FORMAT_KEYS (mozbuild.controller.building.CCacheStats attribute)

 	format_module() (in module mozbuild.sphinx)

 	format_seconds() (in module mach.logging)

 	FRAMEWORK (mozbuild.frontend.data.SharedLibrary attribute)

 	from_config() (mach.config.BooleanType static method)

 	

 	(mach.config.ConfigType static method)

 	(mach.config.IntegerType static method)

 	(mach.config.PathType static method)

 	(mach.config.StringType static method)

 	from_config_status() (mozbuild.backend.configenvironment.BuildConfig class method)

 	

 	(mozbuild.backend.configenvironment.ConfigEnvironment static method)

 	from_environment() (mozbuild.base.MozbuildObject class method)

 	from_linter() (in module mozlint.result)

 	from_string() (mozpack.packager.Component static method)

 	fs_8dot3 (mozbuild.doctor.Doctor attribute)

 	fs_lastaccess (mozbuild.doctor.Doctor attribute)

 	Fuga (class in mozbuild.test.frontend.test_namespaces)

 	function_reference() (in module mozbuild.sphinx)

G

 	

 	generate_build_files() (mozwebidlcodegen.WebIDLCodegenManager method)

 	generate_example_files() (mozwebidlcodegen.WebIDLCodegenManager method)

 	generated_events_basenames() (mozbuild.backend.common.WebIDLCollection method)

 	generated_events_stems() (mozbuild.backend.common.WebIDLCollection method)

 	generated_sources (mozbuild.frontend.data.JavaJarData attribute)

 	GeneratedEventWebIDLFile (class in mozbuild.frontend.data)

 	GeneratedFile (class in mozbuild.frontend.data)

 	

 	(class in mozpack.files)

 	GeneratedSources (class in mozbuild.frontend.data)

 	GeneratedWebIDLFile (class in mozbuild.frontend.data)

 	generateLocaleDirs() (mozbuild.jar.JarMaker method)

 	get() (in module mozlint.formatters)

 	

 	(mozbuild.dotproperties.DotProperties method)

 	(mozbuild.frontend.reader.EmptyConfig.PopulateOnGetDict method)

 	(mozbuild.frontend.sandbox.Sandbox method)

 	(mozpack.files.BaseFinder method)

 	(mozpack.files.FileFinder method)

 	(mozpack.files.MercurialRevisionFinder method)

 	get_argument_parser() (mach.main.Mach method)

 	get_backend_class() (in module mozbuild.backend)

 	get_bases() (mozpack.packager.SimplePackager method)

 	get_binary_path() (mozbuild.base.MozbuildObject method)

 	get_build_vars() (in module mozbuild.compilation.util)

 	get_contents() (in module mozpack.test.test_packager_formats)

 	get_context() (mozpack.errors.ErrorCollector method)

 	get_data() (mozpack.mozjar.JarStruct static method)

 	get_defines() (mozbuild.frontend.data.BaseDefines method)

 	get_dict() (mozbuild.dotproperties.DotProperties method)

 	get_exe_info() (mozbuild.virtualenv.VirtualenvManager method)

 	get_id() (in module mozbuild.backend.visualstudio)

 	get_list() (mozbuild.dotproperties.DotProperties method)

 	get_loader() (mozbuild.test.test_mozconfig.TestMozconfigLoader method)

 	get_mach() (mach.test.common.TestBase method)

 	get_meta() (mach.config.ConfigSettings.ConfigSection method)

 	

 	get_milestone_ab_with_num() (in module mozbuild.milestone)

 	get_milestone_major() (in module mozbuild.milestone)

 	get_official_milestone() (in module mozbuild.milestone)

 	get_output() (mozpack.test.test_errors.TestErrors method)

 	get_parser() (mach.test.test_dispatcher.TestDispatcher method)

 	get_range_for() (in module mozbuild.configure.check_debug_ranges)

 	get_range_length() (in module mozbuild.configure.check_debug_ranges)

 	get_resource_usage() (mozbuild.controller.building.BuildMonitor method)

 	get_subdirs() (mozbuild.backend.recursivemake.RecursiveMakeTraversal method)

 	get_temp_dir() (mozbuild.test.test_mozconfig.TestMozconfigLoader method)

 	get_tempdir() (mozbuild.test.controller.test_clobber.TestClobberer method)

 	get_topsrcdir() (mozbuild.test.controller.test_clobber.TestClobberer method)

 	get_type() (in module mozpack.executables)

 	get_value() (mozbuild.configure.options.Option method)

 	get_warning() (in module mozbuild.test.compilation.test_warnings)

 	get_workspace_path() (mozbuild.backend.cpp_eclipse.CppEclipseBackend static method)

 	getCommandLineParser() (mozbuild.jar.JarMaker method)

 	

 	(mozbuild.preprocessor.Preprocessor method)

 	getDestModTime() (mozbuild.jar.JarMaker.OutputHelper_flat method)

 	

 	(mozbuild.jar.JarMaker.OutputHelper_jar method)

 	getIniTests() (in module mozbuild.action.xpccheck)

 	getmount() (mozbuild.doctor.Doctor method)

 	getOutput() (mozbuild.jar.JarMaker.OutputHelper_flat method)

 	

 	(mozbuild.jar.JarMaker.OutputHelper_jar method)

 	getpreferredencoding() (in module mozbuild.configure.util)

 	GiB (mozbuild.controller.building.CCacheStats attribute)

 	GLOBAL_DECLARE_FILES (mozwebidlcodegen.WebIDLCodegenManager attribute)

 	GLOBAL_DEFINE_FILES (mozwebidlcodegen.WebIDLCodegenManager attribute)

 	group_unified_files() (in module mozbuild.util)

 	GypContext (class in mozbuild.frontend.gyp_reader)

H

 	

 	handle() (mach.test.test_logger.DummyLogger method)

 	

 	(mozbuild.configure.options.CommandLineHelper method)

 	handle_line() (mozpack.packager.PackageManifestParser method)

 	handle_manifest_entry() (mozbuild.codecoverage.chrome_map.ChromeManifestHandler method)

 	handleCommandLine() (mozbuild.preprocessor.Preprocessor method)

 	handleLine() (mozbuild.preprocessor.Preprocessor method)

 	has_file() (mozbuild.compilation.warnings.WarningsDatabase method)

 	hash_file() (in module mozbuild.util)

 	have_excessive_swapping() (mozbuild.controller.building.BuildMonitor method)

 	have_high_finder_usage() (mozbuild.controller.building.BuildMonitor method)

 	have_resource_usage (mozbuild.controller.building.BuildMonitor attribute)

 	have_unified_mapping (mozbuild.frontend.data.UnifiedSources attribute)

 	have_winrm() (mozbuild.base.MozbuildObject method)

 	help (mozbuild.configure.options.Option attribute)

 	HelpFormatter (class in mozbuild.configure.help)

 	

 	HierarchicalStringList (class in mozbuild.util)

 	HierarchicalStringList.StringListAdaptor (class in mozbuild.util)

 	hint (mozlint.result.ResultContainer attribute)

 	hit_rate_message() (mozbuild.controller.building.CCacheStats method)

 	hit_rates() (mozbuild.controller.building.CCacheStats method)

 	HostDefines (class in mozbuild.frontend.data)

 	HostLibrary (class in mozbuild.frontend.data)

 	HostMixin (class in mozbuild.frontend.data)

 	HostProgram (class in mozbuild.frontend.data)

 	HostSimpleProgram (class in mozbuild.frontend.data)

 	HostSources (class in mozbuild.frontend.data)

 	HTTPHandler (class in mozbuild.html_build_viewer)

 	HybridBackend() (in module mozbuild.backend.base)

I

 	

 	id (mozbuild.configure.options.Option attribute)

 	ignore_errors() (mozpack.errors.ErrorCollector method)

 	IGNORE_SHELL_VARIABLES (mozbuild.mozconfig.MozconfigLoader attribute)

 	ignore_warnings (mozbuild.frontend.data.ClassPathEntry attribute)

 	imply_option_impl() (mozbuild.configure.ConfigureSandbox method)

 	import_name (mozbuild.frontend.data.BaseLibrary attribute)

 	imports_impl() (mozbuild.configure.ConfigureSandbox method)

 	include_file() (mozbuild.configure.ConfigureSandbox method)

 	include_impl() (mozbuild.configure.ConfigureSandbox method)

 	included_projects (mozbuild.frontend.data.AndroidEclipseProjectData attribute)

 	includedir (mozbuild.base.MozbuildObject attribute)

 	incremental build

 	init() (mozbuild.controller.building.BuildMonitor method)

 	InitializedDefines (class in mozbuild.frontend.context)

 	input_path (mozbuild.backend.recursivemake.RecursiveMakeBackend.Substitution attribute)

 	

 	(mozbuild.frontend.data.BaseConfigSubstitution attribute)

 	inputs (mozbuild.frontend.data.GeneratedFile attribute)

 	insert() (mozbuild.compilation.warnings.WarningsDatabase method)

 	install manifest

 	install_pip_package() (mozbuild.virtualenv.VirtualenvManager method)

 	install_prefix (mozbuild.frontend.data.TestManifest attribute)

 	install_target (mozbuild.frontend.data.BrandingFiles attribute)

 	

 	(mozbuild.frontend.data.ContextDerived attribute)

 	(mozbuild.frontend.data.Exports attribute)

 	(mozbuild.frontend.data.ObjdirFiles attribute)

 	(mozbuild.frontend.data.ObjdirPreprocessedFiles attribute)

 	(mozbuild.frontend.data.SdkFiles attribute)

 	(mozbuild.frontend.data.TestHarnessFiles attribute)

 	install_test_files() (in module mozbuild.testing)

 	install_tests() (mozbuild.controller.building.BuildDriver method)

 	InstallationTarget (class in mozbuild.frontend.data)

 	InstallManifest (class in mozpack.manifests)

 	installs (mozbuild.frontend.data.TestManifest attribute)

 	IntegerType (class in mach.config)

 	INTERRUPTED (mozbuild.configure.util.ConfigureOutputHandler attribute)

 	InvalidOptionError

 	

 	IPDLFile (class in mozbuild.frontend.data)

 	is_android() (mozbuild.base.MachCommandConditions static method)

 	is_artifact_build (mozbuild.backend.configenvironment.ConfigEnvironment attribute)

 	is_b2g() (mozbuild.base.MachCommandConditions static method)

 	is_b2g_desktop() (mozbuild.base.MachCommandConditions static method)

 	is_clobber_needed() (mozbuild.base.MozbuildObject method)

 	is_custom() (mozbuild.frontend.data.InstallationTarget method)

 	is_emulator() (mozbuild.base.MachCommandConditions static method)

 	is_executable() (in module mozpack.executables)

 	is_firefox() (mozbuild.base.MachCommandConditions static method)

 	is_git (mozlint.cli.VCFiles attribute)

 	is_git() (mozbuild.base.MachCommandConditions static method)

 	is_hg (mozlint.cli.VCFiles attribute)

 	is_hg() (mozbuild.base.MachCommandConditions static method)

 	is_library (mozbuild.frontend.data.AndroidEclipseProjectData attribute)

 	is_manifest() (in module mozpack.chrome.manifest)

 	is_mulet() (mozbuild.base.MachCommandConditions static method)

 	is_older() (mozpack.files.BaseFile static method)

 	is_optimized (mozpack.mozjar.JarReader attribute)

 	is_read_allowed() (in module mozbuild.frontend.reader)

 	is_resource() (mozpack.packager.formats.OmniJarSubFormatter method)

 	is_sdk (mozbuild.frontend.data.Library attribute)

 	is_symlink_to() (in module mozbuild.test.test_jarmaker)

 	isdir (mozlint.pathutils.FilterPath attribute)

 	isempty() (mozpack.files.ManifestFile method)

 	

 	(mozpack.files.XPTFile method)

 	isfile (mozlint.pathutils.FilterPath attribute)

 	istupleofstrings() (in module mozbuild.configure.options)

 	iter_modules_in_path() (in module mozbuild.pythonutil)

J

 	

 	JarCdirEnd (class in mozpack.mozjar)

 	JarCdirEntry (class in mozpack.mozjar)

 	JarFileReader (class in mozpack.mozjar)

 	JarFinder (class in mozpack.files)

 	JarFormatter (class in mozpack.packager.formats)

 	JarLocalFileHeader (class in mozpack.mozjar)

 	JarLog (class in mozpack.mozjar)

 	JarMaker (class in mozbuild.jar)

 	JarMaker.OutputHelper_flat (class in mozbuild.jar)

 	JarMaker.OutputHelper_jar (class in mozbuild.jar)

 	JarMaker.OutputHelper_symlink (class in mozbuild.jar)

 	JARManifest (class in mozbuild.frontend.data)

 	

 	JarReader (class in mozpack.mozjar)

 	JarReaderError

 	Jarrer (class in mozpack.copier)

 	JarStruct (class in mozpack.mozjar)

 	JarSubFormatter (class in mozpack.packager.formats)

 	JarWriter (class in mozpack.mozjar)

 	JarWriterError

 	javac_flags (mozbuild.frontend.data.JavaJarData attribute)

 	JavaJarData (class in mozbuild.frontend.data)

 	join() (in module mozpack.path)

 	

 	(mozbuild.frontend.context.Path method)

 	(mozlint.pathutils.FilterPath method)

 	JSONFormatter (class in mozlint.formatters)

K

 	

 	KEEP (mozbuild.configure.util.ConfigureOutputHandler attribute)

 	KEY_VALUE_RE (mozpack.packager.Component attribute)

 	KeyedDefaultDict (class in mozbuild.util)

 	

 	KiB (mozbuild.controller.building.CCacheStats attribute)

 	KIND (mozbuild.frontend.data.HostLibrary attribute)

 	

 	(mozbuild.frontend.data.HostProgram attribute)

 	(mozbuild.frontend.data.HostSimpleProgram attribute)

 	(mozbuild.frontend.data.Library attribute)

 	(mozbuild.frontend.data.Program attribute)

 	(mozbuild.frontend.data.SimpleProgram attribute)

L

 	

 	L10n

 	l10n-merge

 	L12y

 	last_preloaded (mozpack.mozjar.JarReader attribute)

 	letter (mozbuild.test.test_util.TestGroupUnifiedFiles attribute)

 	level (mozlint.result.ResultContainer attribute)

 	lib_defines (mozbuild.frontend.data.Linkable attribute)

 	lib_name (mozbuild.frontend.data.BaseLibrary attribute)

 	Library (class in mozbuild.frontend.data)

 	LIBRARY_NAME_VAR (mozbuild.frontend.emitter.TreeMetadataEmitter attribute)

 	libs (mozbuild.frontend.data.AndroidEclipseProjectData attribute)

 	LineIO (class in mozbuild.configure.util)

 	lineno (mozlint.result.ResultContainer attribute)

 	lineoffset (mozlint.result.ResultContainer attribute)

 	LineType (class in mozlint.types)

 	link_into (mozbuild.frontend.data.StaticLibrary attribute)

 	link_library() (mozbuild.frontend.data.Linkable method)

 	link_system_library() (mozbuild.frontend.data.Linkable method)

 	Linkable (class in mozbuild.frontend.data)

 	LinkageWrongKindError

 	linked_libraries (mozbuild.frontend.data.Linkable attribute)

 	linked_system_libs (mozbuild.frontend.data.Linkable attribute)

 	linter (mozlint.result.ResultContainer attribute)

 	LinterNotFound

 	LinterParseError

 	LintersNotConfigured

 	LintException

 	LintRoller (class in mozlint.roller)

 	

 	List (class in mozbuild.util)

 	ListMixin (class in mozbuild.util)

 	ListWithAction (class in mozbuild.util)

 	ListWithActionMixin (class in mozbuild.util)

 	load() (mach.test.test_entry_point.Entry method)

 	load_commands_from_directory() (mach.main.Mach method)

 	load_commands_from_entry_point() (mach.main.Mach method)

 	load_commands_from_file() (mach.main.Mach method)

 	load_file() (mach.config.ConfigSettings method)

 	load_files() (mach.config.ConfigSettings method)

 	load_fps() (mach.config.ConfigSettings method)

 	load_from_file() (mozbuild.compilation.warnings.WarningsDatabase method)

 	load_settings() (mach.main.Mach method)

 	LocaleManifestFinder (class in mozpack.packager.l10n)

 	LocalInclude (class in mozbuild.frontend.data)

 	Localizability

 	Localization

 	localized (mozpack.chrome.manifest.ManifestEntry attribute)

 	

 	(mozpack.chrome.manifest.ManifestLocale attribute)

 	(mozpack.chrome.manifest.ManifestOverload attribute)

 	location (mozpack.chrome.manifest.ManifestChrome attribute)

 	lock_file() (in module mozbuild.util)

 	LockFile (class in mozbuild.util)

 	log() (in module mozbuild.frontend.reader)

 	

 	(mach.main.Mach method)

 	(mach.mixin.logging.LoggingMixin method)

 	log_resource_usage() (mozbuild.controller.building.BuildMonitor method)

 	LoggingHandler (class in mach.terminal)

 	LoggingManager (class in mach.logging)

 	LoggingMixin (class in mach.mixin.logging)

 	lower() (mozbuild.test.frontend.test_namespaces.Piyo method)

M

 	

 	Mach (class in mach.main)

 	mach (module)

 	mach.base (module)

 	mach.commands (module)

 	mach.config (module)

 	mach.decorators (module)

 	mach.dispatcher (module)

 	mach.logging (module)

 	mach.main (module)

 	mach.mixin (module)

 	mach.mixin.logging (module)

 	mach.mixin.process (module)

 	mach.registrar (module)

 	mach.terminal (module)

 	mach.test (module)

 	mach.test.common (module)

 	mach.test.providers (module)

 	mach.test.providers.throw2 (module)

 	mach.test.test_conditions (module)

 	mach.test.test_config (module)

 	mach.test.test_dispatcher (module)

 	mach.test.test_entry_point (module)

 	mach.test.test_error_output (module)

 	mach.test.test_logger (module)

 	MachCommandBase (class in mozbuild.base)

 	MachCommandConditions (class in mozbuild.base)

 	MachError

 	MachRegistrar (class in mach.registrar)

 	MAGIC (mozpack.mozjar.JarCdirEnd attribute)

 	

 	(mozpack.mozjar.JarCdirEntry attribute)

 	(mozpack.mozjar.JarLocalFileHeader attribute)

 	(mozpack.test.test_mozjar.TestJarStruct.Foo attribute)

 	main() (in module mozbuild.action.buildlist)

 	

 	(in module mozbuild.action.explode_aar)

 	(in module mozbuild.action.generate_browsersearch)

 	(in module mozbuild.action.generate_suggestedsites)

 	(in module mozbuild.action.jar_maker)

 	(in module mozbuild.action.make_dmg)

 	(in module mozbuild.action.package_geckolibs_aar)

 	(in module mozbuild.action.preprocessor)

 	(in module mozbuild.action.process_install_manifest)

 	(in module mozbuild.action.webidl)

 	(in module mozbuild.action.xpccheck)

 	(in module mozbuild.action.zip)

 	(in module mozbuild.android_version_code)

 	(in module mozbuild.configure.check_debug_ranges)

 	(in module mozbuild.controller.clobber)

 	(in module mozbuild.milestone)

 	main_file (mozbuild.frontend.reader.BuildReaderError attribute)

 	make_dmg() (in module mozbuild.action.make_dmg)

 	make_quote() (in module mozbuild.backend.recursivemake)

 	Makefile (class in mozbuild.makeutil)

 	makeJar() (mozbuild.jar.JarMaker method)

 	manager (mozwebidlcodegen.BuildSystemWebIDL attribute)

 	Manifest (class in mozpack.chrome.manifest)

 	manifest (mozbuild.frontend.data.AndroidEclipseProjectData attribute)

 	

 	(mozbuild.frontend.data.TestManifest attribute)

 	manifest_obj_relpath (mozbuild.frontend.data.TestManifest attribute)

 	MANIFEST_PATH (mozpack.test.test_packager.TestPreprocessManifest attribute)

 	manifest_relpath (mozbuild.frontend.data.TestManifest attribute)

 	ManifestBinaryComponent (class in mozpack.chrome.manifest)

 	ManifestCategory (class in mozpack.chrome.manifest)

 	ManifestChrome (class in mozpack.chrome.manifest)

 	ManifestComponent (class in mozpack.chrome.manifest)

 	ManifestContent (class in mozpack.chrome.manifest)

 	ManifestContract (class in mozpack.chrome.manifest)

 	ManifestEntry (class in mozpack.chrome.manifest)

 	ManifestEntryWithRelPath (class in mozpack.chrome.manifest)

 	ManifestFile (class in mozpack.files)

 	ManifestInterfaces (class in mozpack.chrome.manifest)

 	ManifestLocale (class in mozpack.chrome.manifest)

 	ManifestMultiContent (class in mozpack.chrome.manifest)

 	ManifestOverlay (class in mozpack.chrome.manifest)

 	ManifestOverload (class in mozpack.chrome.manifest)

 	ManifestOverride (class in mozpack.chrome.manifest)

 	ManifestparserManifestList (in module mozbuild.frontend.context)

 	ManifestResource (class in mozpack.chrome.manifest)

 	ManifestSkin (class in mozpack.chrome.manifest)

 	ManifestStyle (class in mozpack.chrome.manifest)

 	match() (in module mozpack.path)

 	

 	(mozlint.pathutils.FilterPath method)

 	(mozpack.chrome.flags.Flags method)

 	(mozpack.copier.FileRegistry method)

 	(mozpack.copier.FileRegistrySubtree method)

 	matches() (mozpack.chrome.flags.Flag method)

 	

 	(mozpack.chrome.flags.StringFlag method)

 	(mozpack.chrome.flags.VersionFlag method)

 	MatchTestTemplate (class in mozpack.test.test_files)

 	MAX_VARIANT (mozbuild.frontend.data.SharedLibrary attribute)

 	maxargs (mozbuild.configure.options.Option attribute)

 	maxDiff (mozpack.test.test_packager_formats.TestFormatters attribute)

 	

 	(mozpack.test.test_packager_unpack.TestUnpack attribute)

 	may_elfhack() (in module mozpack.executables)

 	may_strip() (in module mozpack.executables)

 	may_unify_binary() (in module mozpack.unify)

 	maybe_do_clobber() (mozbuild.controller.clobber.Clobberer method)

 	memoize (class in mozbuild.util)

 	memoized_property (class in mozbuild.util)

 	memory (mozbuild.doctor.Doctor attribute)

 	MercurialFile (class in mozpack.files)

 	MercurialRevisionFinder (class in mozpack.files)

 	merge_properties() (in module mozbuild.action.generate_browsersearch)

 	

 	(in module mozbuild.action.generate_suggestedsites)

 	message (mozlint.result.ResultContainer attribute)

 	MetaCharacterException

 	method (mozbuild.frontend.data.GeneratedFile attribute)

 	method_call() (mozbuild.util.memoize method)

 	MiB (mozbuild.controller.building.CCacheStats attribute)

 	minargs (mozbuild.configure.options.Option attribute)

 	MinifiedJavaScript (class in mozpack.files)

 	MinifiedProperties (class in mozpack.files)

 	mkdir() (in module mozbuild.util)

 	

 	(in module mozpack.dmg)

 	MockConfig (class in mozbuild.test.common)

 	MockDest (class in mozpack.test.test_files)

 	

 	(class in mozpack.test.test_packager_formats)

 	MockFinder (class in mozpack.test.test_packager)

 	MockFormatter (class in mozpack.test.test_packager)

 	mode (mozpack.files.BaseFile attribute)

 	

 	(mozpack.files.File attribute)

 	module (mozbuild.frontend.data.XPIDLFile attribute)

 	move() (mozpack.chrome.manifest.ManifestEntry method)

 	mozbuild (module)

 	mozbuild.action (module)

 	mozbuild.action.buildlist (module)

 	mozbuild.action.explode_aar (module)

 	mozbuild.action.generate_browsersearch (module)

 	mozbuild.action.generate_suggestedsites (module)

 	mozbuild.action.jar_maker (module)

 	mozbuild.action.make_dmg (module)

 	mozbuild.action.package_geckolibs_aar (module)

 	mozbuild.action.preprocessor (module)

 	mozbuild.action.process_install_manifest (module)

 	mozbuild.action.webidl (module)

 	mozbuild.action.xpccheck (module)

 	mozbuild.action.zip (module)

 	mozbuild.android_version_code (module)

 	mozbuild.backend (module)

 	mozbuild.backend.android_eclipse (module)

 	mozbuild.backend.base (module)

 	mozbuild.backend.common (module)

 	mozbuild.backend.configenvironment (module)

 	mozbuild.backend.cpp_eclipse (module)

 	mozbuild.backend.fastermake (module)

 	mozbuild.backend.recursivemake (module)

 	mozbuild.backend.visualstudio (module)

 	mozbuild.base (module)

 	mozbuild.codecoverage (module)

 	mozbuild.codecoverage.chrome_map (module)

 	mozbuild.codecoverage.packager (module)

 	mozbuild.compilation (module)

 	mozbuild.compilation.database (module)

 	mozbuild.compilation.util (module)

 	

 	mozbuild.compilation.warnings (module)

 	mozbuild.config_status (module)

 	mozbuild.configure (module)

 	mozbuild.configure.check_debug_ranges (module)

 	mozbuild.configure.constants (module)

 	mozbuild.configure.help (module)

 	mozbuild.configure.libstdcxx (module)

 	mozbuild.configure.options (module)

 	mozbuild.configure.util (module)

 	mozbuild.controller (module)

 	mozbuild.controller.building (module)

 	mozbuild.controller.clobber (module)

 	mozbuild.doctor (module)

 	mozbuild.dotproperties (module)

 	mozbuild.frontend (module)

 	mozbuild.frontend.context (module)

 	mozbuild.frontend.data (module)

 	mozbuild.frontend.emitter (module)

 	mozbuild.frontend.gyp_reader (module)

 	mozbuild.frontend.reader (module)

 	mozbuild.frontend.sandbox (module)

 	mozbuild.html_build_viewer (module)

 	mozbuild.jar (module)

 	mozbuild.makeutil (module)

 	mozbuild.milestone (module)

 	mozbuild.mozconfig (module)

 	mozbuild.mozinfo (module)

 	mozbuild.preprocessor (module)

 	mozbuild.pythonutil (module)

 	mozbuild.shellutil (module)

 	mozbuild.sphinx (module)

 	mozbuild.test (module)

 	mozbuild.test.backend (module)

 	mozbuild.test.backend.common (module)

 	mozbuild.test.backend.test_android_eclipse (module)

 	mozbuild.test.backend.test_configenvironment (module)

 	mozbuild.test.backend.test_recursivemake (module)

 	mozbuild.test.backend.test_visualstudio (module)

 	mozbuild.test.common (module)

 	mozbuild.test.compilation (module)

 	mozbuild.test.compilation.test_warnings (module)

 	mozbuild.test.controller (module)

 	mozbuild.test.controller.test_ccachestats (module)

 	mozbuild.test.controller.test_clobber (module)

 	mozbuild.test.frontend (module)

 	mozbuild.test.frontend.test_context (module)

 	mozbuild.test.frontend.test_emitter (module)

 	mozbuild.test.frontend.test_namespaces (module)

 	mozbuild.test.frontend.test_reader (module)

 	mozbuild.test.frontend.test_sandbox (module)

 	mozbuild.test.test_android_version_code (module)

 	mozbuild.test.test_containers (module)

 	mozbuild.test.test_dotproperties (module)

 	mozbuild.test.test_expression (module)

 	mozbuild.test.test_jarmaker (module)

 	mozbuild.test.test_line_endings (module)

 	mozbuild.test.test_makeutil (module)

 	mozbuild.test.test_mozconfig (module)

 	mozbuild.test.test_mozinfo (module)

 	mozbuild.test.test_preprocessor (module)

 	mozbuild.test.test_pythonutil (module)

 	mozbuild.test.test_testing (module)

 	mozbuild.test.test_util (module)

 	mozbuild.testing (module)

 	mozbuild.util (module)

 	mozbuild.virtualenv (module)

 	MozbuildDeletionError

 	MozbuildObject (class in mozbuild.base)

 	MozbuildSandbox (class in mozbuild.frontend.reader)

 	MozbuildSymbols (class in mozbuild.sphinx)

 	mozconfig

 	

 	(mozbuild.base.MozbuildObject attribute)

 	MozconfigFindException

 	MozconfigLoader (class in mozbuild.mozconfig), [1]

 	MozconfigLoadException

 	mozillabuild (mozbuild.doctor.Doctor attribute)

 	mozinfo

 	mozlint (module)

 	mozlint.cli (module)

 	mozlint.errors (module)

 	mozlint.formatters (module)

 	mozlint.formatters.stylish (module)

 	mozlint.formatters.treeherder (module)

 	mozlint.parser (module)

 	mozlint.pathutils (module)

 	mozlint.result (module)

 	mozlint.roller (module)

 	mozlint.types (module)

 	MozlintParser (class in mozlint.cli)

 	mozpack (module)

 	mozpack.archive (module)

 	mozpack.chrome (module)

 	mozpack.chrome.flags (module)

 	mozpack.chrome.manifest (module)

 	mozpack.copier (module)

 	mozpack.dmg (module)

 	mozpack.errors (module)

 	mozpack.executables (module)

 	mozpack.files (module)

 	mozpack.manifests (module)

 	mozpack.mozjar (module)

 	mozpack.packager (module)

 	mozpack.packager.formats (module)

 	mozpack.packager.l10n (module)

 	mozpack.packager.unpack (module)

 	mozpack.path (module)

 	mozpack.test (module)

 	mozpack.test.test_archive (module)

 	mozpack.test.test_chrome_flags (module)

 	mozpack.test.test_chrome_manifest (module)

 	mozpack.test.test_copier (module)

 	mozpack.test.test_errors (module)

 	mozpack.test.test_files (module)

 	mozpack.test.test_manifests (module)

 	mozpack.test.test_mozjar (module)

 	mozpack.test.test_packager (module)

 	mozpack.test.test_packager_formats (module)

 	mozpack.test.test_packager_l10n (module)

 	mozpack.test.test_packager_unpack (module)

 	mozpack.test.test_path (module)

 	mozpack.test.test_unify (module)

 	mozpack.unify (module)

 	mozwebidlcodegen (module)

N

 	

 	name (mozbuild.configure.options.Option attribute)

 	

 	(mozbuild.frontend.data.AndroidEclipseProjectData attribute)

 	(mozbuild.frontend.data.ExampleWebIDLInterface attribute)

 	(mozbuild.frontend.data.JavaJarData attribute)

 	(mozpack.files.Dest attribute)

 	(mozpack.packager.Component attribute)

 	nargs (mozbuild.configure.options.Option attribute)

 	NegativeOptionValue (class in mozbuild.configure.options)

 	no_expand_lib (mozbuild.frontend.data.StaticLibrary attribute)

 	NoCommandError

 	non_global_defines (mozbuild.base.MozbuildObject attribute)

 	normalize_path() (mozbuild.test.frontend.test_sandbox.TestedSandbox method)

 	

 	(mozpack.packager.SimpleManifestSink static method)

 	

 	normpath() (in module mozpack.path)

 	normsep() (in module mozpack.path)

 	noteLineInfo() (mozbuild.preprocessor.Preprocessor method)

 	notify() (mozbuild.base.MozbuildObject method)

 	NoUsageFormatter (class in mach.dispatcher)

 	NullTerminal (class in mozlint.formatters.stylish)

 	NullTerminal.NullCallableString (class in mozlint.formatters.stylish)

O

 	

 	objdir (mozbuild.frontend.data.ContextDerived attribute)

 	objdir_path() (mozbuild.base.PathArgument method)

 	ObjdirFiles (class in mozbuild.frontend.data)

 	ObjdirMismatchException

 	ObjDirPath (class in mozbuild.frontend.context)

 	ObjdirPreprocessedFiles (class in mozbuild.frontend.data)

 	object directory

 	OmniJarFormatter (class in mozpack.packager.formats)

 	OmniJarSubFormatter (class in mozpack.packager.formats)

 	on_line() (mozbuild.controller.building.BuildMonitor method)

 	open() (mozpack.copier.Jarrer method)

 	

 	(mozpack.files.BaseFile method)

 	(mozpack.files.DeflatedFile method)

 	(mozpack.files.GeneratedFile method)

 	(mozpack.files.ManifestFile method)

 	(mozpack.files.MinifiedJavaScript method)

 	(mozpack.files.MinifiedProperties method)

 	(mozpack.files.XPTFile method)

 	optimize (mozpack.test.test_mozjar.TestJar attribute)

 	

 	(mozpack.test.test_mozjar.TestOptimizeJar attribute)

 	Option (class in mozbuild.configure.options)

 	option (mozbuild.configure.options.Option attribute)

 	

 	option_help() (mach.config.ConfigSettings method)

 	option_impl() (mozbuild.configure.ConfigureSandbox method)

 	OPTIONAL_EXISTS (mozpack.manifests.InstallManifest attribute)

 	options (mach.config.ConfigSettings.ConfigSection attribute)

 	OptionValue (class in mozbuild.configure.options)

 	OrderedDefaultDict (class in mozbuild.util)

 	OrderedListWithAction() (in module mozbuild.frontend.context)

 	OrderedSourceList (in module mozbuild.frontend.context)

 	orig_lines (mozpack.test.test_files.TestMinifiedJavaScript attribute)

 	OS (mozbuild.configure.ConfigureSandbox attribute)

 	out (mozpack.errors.ErrorCollector attribute)

 	output_path (mozbuild.backend.recursivemake.RecursiveMakeBackend.Substitution attribute)

 	

 	(mozbuild.frontend.data.BaseConfigSubstitution attribute)

 	outputs (mozbuild.frontend.data.GeneratedFile attribute)

P

 	

 	package_gcno_tree() (in module mozbuild.codecoverage.packager)

 	package_geckolibs_aar() (in module mozbuild.action.package_geckolibs_aar)

 	package_geckoview_aar() (in module mozbuild.action.package_geckolibs_aar)

 	package_name (mozbuild.frontend.data.AndroidEclipseProjectData attribute)

 	PackageManifestParser (class in mozpack.packager)

 	packages (mozbuild.frontend.data.AndroidExtraPackages attribute)

 	packages() (mozbuild.virtualenv.VirtualenvManager method)

 	pair() (in module mozbuild.util)

 	parse() (mozlint.parser.Parser method)

 	parse_ld_line() (in module mozbuild.configure.libstdcxx)

 	parse_manifest() (in module mozpack.chrome.manifest)

 	parse_manifest_line() (in module mozpack.chrome.manifest)

 	parse_readelf_line() (in module mozbuild.configure.libstdcxx)

 	Parser (class in mozlint.parser)

 	PartialBackend (class in mozbuild.backend.base)

 	Path (class in mozbuild.frontend.context)

 	path (mozbuild.frontend.data.ChromeManifestEntry attribute)

 	

 	(mozbuild.frontend.data.ClassPathEntry attribute)

 	(mozbuild.frontend.data.JARManifest attribute)

 	(mozbuild.frontend.data.LocalInclude attribute)

 	(mozbuild.frontend.data.TestManifest attribute)

 	(mozlint.result.ResultContainer attribute)

 	(mozpack.chrome.manifest.ManifestEntryWithRelPath attribute)

 	PathArgument (class in mozbuild.base)

 	PathMeta (class in mozbuild.frontend.context)

 	paths (mozbuild.frontend.data.AndroidAssetsDirs attribute)

 	

 	(mozbuild.frontend.data.AndroidExtraResDirs attribute)

 	(mozbuild.frontend.data.AndroidResDirs attribute)

 	paths() (mozpack.copier.FileRegistry method)

 	

 	(mozpack.copier.FileRegistrySubtree method)

 	PathType (class in mach.config)

 	PATTERN_COPY (mozpack.manifests.InstallManifest attribute)

 	pattern_installs (mozbuild.frontend.data.TestManifest attribute)

 	PATTERN_SYMLINK (mozpack.manifests.InstallManifest attribute)

 	PerSourceFlag (class in mozbuild.frontend.data)

 	PiecemealFormatter (class in mozpack.packager.formats)

 	Piyo (class in mozbuild.test.frontend.test_namespaces)

 	platform (mozbuild.doctor.Doctor attribute)

 	pop_source() (mozbuild.frontend.context.Context method)

 	pop_subcontext() (mozbuild.frontend.sandbox.Sandbox method)

 	populate() (mozbuild.virtualenv.VirtualenvManager method)

 	populate_logger() (mach.mixin.logging.LoggingMixin method)

 	populate_registry() (mozpack.manifests.InstallManifest method)

 	PositiveIntegerType (class in mach.config)

 	PositiveOptionValue (class in mozbuild.configure.options)

 	

 	possible_origins (mozbuild.configure.options.Option attribute)

 	POSSIBLE_VALUES (mozbuild.util.EnumString attribute)

 	prefix (mozbuild.configure.options.Option attribute)

 	preload() (mozpack.copier.Jarrer method)

 	

 	(mozpack.mozjar.JarWriter method)

 	prepare_match_test() (mozpack.test.test_files.MatchTestTemplate method)

 	PREPROCESS (mozpack.manifests.InstallManifest attribute)

 	preprocess() (in module mozbuild.preprocessor)

 	

 	(in module mozpack.packager)

 	preprocess_manifest() (in module mozpack.packager)

 	PreprocessedFile (class in mozpack.files)

 	PreprocessedTestWebIDLFile (class in mozbuild.frontend.data)

 	PreprocessedWebIDLFile (class in mozbuild.frontend.data)

 	Preprocessor (class in mozbuild.preprocessor)

 	Preprocessor.Error

 	PreprocessorOutputWrapper (class in mozpack.packager)

 	pretty_print() (in module mozbuild.backend.android_eclipse)

 	PRIMARY_CONFIG_DESCRIPTION (mozbuild.controller.building.CCacheStats attribute)

 	PRINT (mozbuild.configure.util.ConfigureOutputHandler attribute)

 	process_line() (mozbuild.compilation.warnings.WarningsCollector method)

 	process_manifest() (in module mozbuild.action.process_install_manifest)

 	ProcessExecutionMixin (class in mach.mixin.process)

 	processFile() (mozbuild.preprocessor.Preprocessor method)

 	processJarSection() (mozbuild.jar.JarMaker method)

 	Program (class in mozbuild.frontend.data)

 	program (mozbuild.frontend.data.BaseProgram attribute)

 	prompt_bool() (mozbuild.doctor.Doctor method)

 	Provider1 (class in mach.test.test_config)

 	Provider2 (class in mach.test.test_config)

 	Provider3 (class in mach.test.test_config)

 	Provider4 (class in mach.test.test_config)

 	Provider5 (class in mach.test.test_config)

 	provider_dir (mach.test.common.TestBase attribute)

 	

 	(mach.test.test_entry_point.TestEntryPoints attribute)

 	ProviderDuplicate (class in mach.test.test_config)

 	prune() (mozbuild.compilation.warnings.WarningsDatabase method)

 	push_source() (mozbuild.frontend.context.Context method)

 	push_subcontext() (mozbuild.frontend.sandbox.Sandbox method)

 	python_path (mozbuild.virtualenv.VirtualenvManager attribute)

Q

 	

 	queue_debug() (mozbuild.configure.util.ConfigureOutputHandler method)

 	

 	quote() (in module mozbuild.shellutil)

R

 	

 	RE (mozpack.chrome.flags.Flags attribute)

 	RE_MAKE_VARIABLE (mozbuild.mozconfig.MozconfigLoader attribute)

 	RE_MODULE (mozbuild.configure.ConfigureSandbox attribute)

 	read() (mozlint.roller.LintRoller method)

 	

 	(mozpack.files.BaseFile method)

 	(mozpack.files.Dest method)

 	(mozpack.files.File method)

 	(mozpack.files.MercurialFile method)

 	(mozpack.mozjar.JarFileReader method)

 	(mozpack.test.test_files.MockDest method)

 	read_dep_makefile() (in module mozbuild.makeutil)

 	read_from_gyp() (in module mozbuild.frontend.gyp_reader)

 	read_interfaces() (in module mozpack.test.test_files)

 	read_manifestparser_manifest() (in module mozbuild.testing)

 	read_mozbuild() (mozbuild.frontend.reader.BuildReader method)

 	read_mozconfig() (mozbuild.mozconfig.MozconfigLoader method)

 	read_reftest_manifest() (in module mozbuild.testing)

 	read_relevant_mozbuilds() (mozbuild.frontend.reader.BuildReader method)

 	read_topsrcdir() (mozbuild.frontend.reader.BuildReader method)

 	

 	(mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	read_wpt_manifest() (in module mozbuild.testing)

 	reader() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	

 	(mozbuild.test.frontend.test_reader.TestBuildReader method)

 	readlines() (mozpack.mozjar.JarFileReader method)

 	ReadOnlyDefaultDict (class in mozbuild.util)

 	ReadOnlyDict (class in mozbuild.util)

 	ReadOnlyKeyedDefaultDict (class in mozbuild.util)

 	ReadOnlyNamespace (class in mozbuild.util)

 	realpath() (in module mozpack.path)

 	rebase() (in module mozpack.path)

 	

 	(mozpack.chrome.manifest.ManifestEntry method)

 	(mozpack.chrome.manifest.ManifestEntryWithRelPath method)

 	(mozpack.chrome.manifest.ManifestResource method)

 	recompute_exports() (mozbuild.frontend.reader.MozbuildSandbox method)

 	recursive_make_targets (mozbuild.frontend.data.AndroidEclipseProjectData attribute)

 	RecursiveMakeBackend (class in mozbuild.backend.recursivemake)

 	RecursiveMakeBackend.Substitution (class in mozbuild.backend.recursivemake)

 	RecursiveMakeTraversal (class in mozbuild.backend.recursivemake)

 	RecursiveMakeTraversal.SubDirectories (class in mozbuild.backend.recursivemake)

 	referenced_projects (mozbuild.frontend.data.AndroidEclipseProjectData attribute)

 	refs (mozbuild.frontend.data.BaseLibrary attribute)

 	ReftestManifestList (in module mozbuild.frontend.context)

 	RegexType (class in mozlint.types)

 	register_category() (mach.registrar.MachRegistrar method)

 	register_command_handler() (mach.registrar.MachRegistrar method)

 	register_idl() (mozbuild.backend.common.XPIDLManager method)

 	register_provider() (mach.config.ConfigSettings method)

 	register_settings_provider() (mach.registrar.MachRegistrar method)

 	

 	register_structured_logger() (mach.logging.LoggingManager method)

 	relativedir (mozbuild.frontend.data.ContextDerived attribute)

 	relobjdir (mozbuild.frontend.data.ContextDerived attribute)

 	relpath (mozbuild.frontend.data.BaseConfigSubstitution attribute)

 	relpath() (in module mozpack.path)

 	

 	(mozbuild.base.PathArgument method)

 	relsrcdir (mozbuild.frontend.context.Context attribute)

 	remove() (mozpack.copier.FileRegistry method)

 	

 	(mozpack.copier.FileRegistrySubtree method)

 	(mozpack.files.ManifestFile method)

 	(mozpack.files.XPTFile method)

 	(mozpack.packager.SimpleManifestSink method)

 	remove_objdir() (mozbuild.base.MozbuildObject method)

 	removed_directories_count (mozpack.copier.FileCopyResult attribute)

 	removed_files_count (mozpack.copier.FileCopyResult attribute)

 	RenamedSourcePath (class in mozbuild.frontend.context)

 	repack() (in module mozpack.packager.l10n)

 	replace_terminal_handler() (mach.logging.LoggingManager method)

 	report() (mozbuild.doctor.Doctor method)

 	require_conditions (mach.main.Mach attribute)

 	required_arguments (mozbuild.sphinx.MozbuildSymbols attribute)

 	required_attributes (mozlint.parser.Parser attribute)

 	required_directories() (mozpack.copier.FileRegistry method)

 	REQUIRED_EXISTS (mozpack.manifests.InstallManifest attribute)

 	reraise_attribute_error() (in module mach.config)

 	res (mozbuild.frontend.data.AndroidEclipseProjectData attribute)

 	resolve_config_guess() (mozbuild.base.MozbuildObject static method)

 	resolve_mozconfig_topobjdir() (mozbuild.base.MozbuildObject static method)

 	resolve_target_to_make() (in module mozbuild.util)

 	resolve_tests() (mozbuild.testing.TestMetadata method)

 	

 	(mozbuild.testing.TestResolver method)

 	result_with_base() (in module mozpack.test.test_packager_formats)

 	ResultContainer (class in mozlint.result)

 	ResultEncoder (class in mozlint.result)

 	retrieval_type_helper() (mach.test.test_config.TestConfigSettings method)

 	rewrite_test_base() (in module mozbuild.testing)

 	roll() (mozlint.roller.LintRoller method)

 	rsync() (in module mozpack.dmg)

 	Rule (class in mozbuild.makeutil)

 	rule (mozlint.result.ResultContainer attribute)

 	run() (in module mozlint.cli)

 	

 	(mach.main.Mach method)

 	(mozbuild.configure.ConfigureSandbox method)

 	(mozbuild.html_build_viewer.BuildViewerServer method)

 	(mozbuild.sphinx.MozbuildSymbols method)

 	run_process() (mach.mixin.process.ProcessExecutionMixin method)

 	RustRlibLibrary (class in mozbuild.frontend.data)

S

 	

 	samepath() (in module mozbuild.base)

 	Sandbox (class in mozbuild.frontend.sandbox)

 	sandbox() (mozbuild.test.frontend.test_sandbox.TestMozbuildSandbox method)

 	

 	(mozbuild.test.frontend.test_sandbox.TestSandbox method)

 	sandbox_error (mozbuild.frontend.reader.BuildReaderError attribute)

 	SandboxCalledError

 	SandboxedGlobal (class in mozbuild.configure)

 	SandboxError

 	SandboxExecutionError

 	SandboxLoadError

 	SandboxValidationError

 	sanitize_cflags() (in module mozbuild.compilation.util)

 	save_to_file() (mozbuild.compilation.warnings.WarningsDatabase method)

 	script (mozbuild.frontend.data.GeneratedFile attribute)

 	SdkFiles (class in mozbuild.frontend.data)

 	SECONDARY_CONFIG_DESCRIPTION (mozbuild.controller.building.CCacheStats attribute)

 	seek() (mozpack.mozjar.JarFileReader method)

 	serialize() (mozbuild.compilation.warnings.WarningsDatabase method)

 	

 	(mozpack.chrome.manifest.ManifestEntry method)

 	(mozpack.mozjar.JarStruct method)

 	serve_docroot() (mozbuild.html_build_viewer.HTTPHandler method)

 	set_config_impl() (mozbuild.configure.ConfigureSandbox method)

 	set_define_impl() (mozbuild.configure.ConfigureSandbox method)

 	set_folder_icon() (in module mozpack.dmg)

 	set_terminal() (mach.logging.StructuredTerminalFormatter method)

 	set_tiers() (mozbuild.controller.building.TierStatus method)

 	setMarker() (mozbuild.preprocessor.Preprocessor method)

 	setSilenceDirectiveWarnings() (mozbuild.preprocessor.Preprocessor method)

 	SettingsProvider() (in module mach.decorators)

 	setup() (in module mozbuild.sphinx)

 	setUp() (mozbuild.test.backend.common.BackendTester method)

 	

 	(mozbuild.test.controller.test_clobber.TestClobberer method)

 	(mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	(mozbuild.test.frontend.test_reader.TestBuildReader method)

 	(mozbuild.test.test_expression.TestContext method)

 	(mozbuild.test.test_expression.TestExpression method)

 	(mozbuild.test.test_jarmaker.TestJarMaker method)

 	(mozbuild.test.test_jarmaker.Test_relativesrcdir method)

 	(mozbuild.test.test_line_endings.TestLineEndings method)

 	(mozbuild.test.test_mozconfig.TestMozconfigLoader method)

 	(mozbuild.test.test_mozinfo.TestWriteMozinfo method)

 	(mozbuild.test.test_preprocessor.TestPreprocessor method)

 	(mozbuild.test.test_testing.Base method)

 	(mozbuild.test.test_testing.TestTestResolver method)

 	(mozbuild.test.test_util.TestHierarchicalStringList method)

 	(mozbuild.test.test_util.TestListWithAction method)

 	(mozbuild.test.test_util.TestResolveTargetToMake method)

 	(mozpack.test.test_chrome_flags.TestFlags method)

 	(mozpack.test.test_errors.TestErrors method)

 	(mozpack.test.test_files.TestMercurialRevisionFinder method)

 	(mozpack.test.test_files.TestWithTmpDir method)

 	(mozpack.test.test_packager.TestPreprocessManifest method)

 	setUpClass() (mozbuild.test.frontend.test_context.TestPaths class method)

 	

 	(mozpack.test.test_packager_unpack.TestUnpack class method)

 	SharedLibrary (class in mozbuild.frontend.data)

 	simple_diff() (in module mozbuild.util)

 	SimpleManifestSink (class in mozpack.packager)

 	SimplePackager (class in mozpack.packager)

 	SimpleProgram (class in mozbuild.frontend.data)

 	size (mozpack.mozjar.JarStruct attribute)

 	soname (mozbuild.frontend.data.SharedLibrary attribute)

 	source (mozlint.result.ResultContainer attribute)

 	source_path (mozbuild.frontend.data.XPIDLFile attribute)

 	source_path() (mozbuild.test.frontend.test_sandbox.TestedSandbox method)

 	source_stack (mozbuild.frontend.context.Context attribute)

 	SourcePath (class in mozbuild.frontend.context)

 	Sources (class in mozbuild.frontend.data)

 	sources (mozbuild.frontend.data.JavaJarData attribute)

 	special_reference() (in module mozbuild.sphinx)

 	split() (in module mozbuild.shellutil)

 	

 	(in module mozpack.path)

 	split_option() (mozbuild.configure.options.Option static method)

 	split_ver() (in module mozbuild.configure.libstdcxx)

 	

 	splitext() (in module mozpack.path)

 	srcdir (mozbuild.frontend.context.Context attribute)

 	

 	(mozbuild.frontend.data.ClassPathEntry attribute)

 	(mozbuild.frontend.data.ContextDerived attribute)

 	srcdir_path() (mozbuild.base.PathArgument method)

 	start() (mozbuild.controller.building.BuildMonitor method)

 	start_resource_recording() (mozbuild.controller.building.BuildMonitor method)

 	STARTUP_CACHE_PATHS (in module mozpack.packager.formats)

 	STAT0 (mozbuild.test.controller.test_ccachestats.TestCcacheStats attribute)

 	STAT1 (mozbuild.test.controller.test_ccachestats.TestCcacheStats attribute)

 	STAT2 (mozbuild.test.controller.test_ccachestats.TestCcacheStats attribute)

 	STAT3 (mozbuild.test.controller.test_ccachestats.TestCcacheStats attribute)

 	STAT4 (mozbuild.test.controller.test_ccachestats.TestCcacheStats attribute)

 	STAT5 (mozbuild.test.controller.test_ccachestats.TestCcacheStats attribute)

 	STAT_GARBAGE (mozbuild.test.controller.test_ccachestats.TestCcacheStats attribute)

 	state_changed (mozbuild.controller.building.BuildOutputResult attribute)

 	statedir (mozbuild.base.MozbuildObject attribute)

 	StaticLibrary (class in mozbuild.frontend.data)

 	STATS_KEYS (mozbuild.controller.building.CCacheStats attribute)

 	storage_freespace (mozbuild.doctor.Doctor attribute)

 	StrictOrderingOnAppendList (class in mozbuild.util)

 	StrictOrderingOnAppendListMixin (class in mozbuild.util)

 	StrictOrderingOnAppendListWithAction (class in mozbuild.util)

 	StrictOrderingOnAppendListWithFlags (class in mozbuild.util)

 	StrictOrderingOnAppendListWithFlagsFactory() (in module mozbuild.util)

 	StringFlag (class in mozpack.chrome.flags)

 	StringType (class in mach.config)

 	

 	(class in mozlint.types)

 	strip() (in module mozpack.executables)

 	STRUCT (mozpack.mozjar.JarCdirEnd attribute)

 	

 	(mozpack.mozjar.JarCdirEntry attribute)

 	(mozpack.mozjar.JarLocalFileHeader attribute)

 	(mozpack.test.test_mozjar.TestJarStruct.Foo attribute)

 	StructuredHumanFormatter (class in mach.logging)

 	StructuredJSONFormatter (class in mach.logging)

 	StructuredTerminalFormatter (class in mach.logging)

 	StylishFormatter (class in mozlint.formatters.stylish)

 	subclass() (mozbuild.util.EnumString static method)

 	SubCommand (class in mach.decorators)

 	SubContext (class in mozbuild.frontend.context)

 	subdir (mozbuild.frontend.data.InstallationTarget attribute)

 	SubDirectoriesTuple (mozbuild.backend.recursivemake.RecursiveMakeTraversal attribute)

 	SubDirectoryCategories (mozbuild.backend.recursivemake.RecursiveMakeTraversal attribute)

 	substs (mozbuild.base.MozbuildObject attribute)

 	SUFFIX_VAR (mozbuild.frontend.data.HostProgram attribute)

 	

 	(mozbuild.frontend.data.HostSimpleProgram attribute)

 	(mozbuild.frontend.data.Program attribute)

 	(mozbuild.frontend.data.SimpleProgram attribute)

 	summary() (mozbuild.backend.android_eclipse.AndroidEclipseBackend method)

 	

 	(mozbuild.backend.base.BuildBackend method)

 	(mozbuild.backend.cpp_eclipse.CppEclipseBackend method)

 	(mozbuild.backend.recursivemake.RecursiveMakeBackend method)

 	(mozbuild.backend.visualstudio.VisualStudioBackend method)

 	(mozbuild.frontend.emitter.TreeMetadataEmitter method)

 	(mozbuild.frontend.reader.BuildReader method)

 	supported_types (in module mozlint.types)

 	SupportFilesConverter (class in mozbuild.testing)

 	symbols_file (mozbuild.frontend.data.SharedLibrary attribute)

 	SYMLINK (mozpack.manifests.InstallManifest attribute)

 	symlink() (mozbuild.jar.JarMaker.OutputHelper_symlink method)

 	symlinks_supported() (in module mozbuild.test.test_jarmaker)

T

 	

 	target (mozbuild.frontend.data.InstallationTarget attribute)

 	target_basename (mozbuild.frontend.context.RenamedSourcePath attribute)

 	targets() (mozbuild.makeutil.Rule method)

 	tearDown() (mozbuild.test.backend.common.BackendTester method)

 	

 	(mozbuild.test.controller.test_clobber.TestClobberer method)

 	(mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	(mozbuild.test.frontend.test_reader.TestBuildReader method)

 	(mozbuild.test.test_jarmaker.TestJarMaker method)

 	(mozbuild.test.test_jarmaker.Test_relativesrcdir method)

 	(mozbuild.test.test_line_endings.TestLineEndings method)

 	(mozbuild.test.test_mozconfig.TestMozconfigLoader method)

 	(mozbuild.test.test_mozinfo.TestWriteMozinfo method)

 	(mozbuild.test.test_testing.Base method)

 	(mozbuild.test.test_testing.TestTestResolver method)

 	(mozpack.test.test_errors.TestErrors method)

 	(mozpack.test.test_files.TestWithTmpDir method)

 	template_impl() (mozbuild.configure.ConfigureSandbox method)

 	TemplateContext (class in mozbuild.frontend.context)

 	TemplateFunction (class in mozbuild.frontend.reader)

 	TemplateFunction.RewriteName (class in mozbuild.frontend.reader)

 	terminal (mach.logging.LoggingManager attribute)

 	TerminalFooter (class in mach.terminal)

 	test_a_simple_jar() (mozbuild.test.test_jarmaker.TestJarMaker method)

 	test_a_simple_symlink() (mozbuild.test.test_jarmaker.TestJarMaker method)

 	test_a_wildcard_jar() (mozbuild.test.test_jarmaker.TestJarMaker method)

 	test_a_wildcard_symlink() (mozbuild.test.test_jarmaker.TestJarMaker method)

 	test_absolute_path() (mozbuild.test.frontend.test_context.TestPaths method)

 	test_absolute_relative() (mozpack.test.test_files.TestAbsoluteSymlinkFile method)

 	test_add() (mozbuild.test.test_util.TestListWithAction method)

 	

 	(mozbuild.test.test_util.TestStrictOrderingOnAppendList method)

 	(mozbuild.test.test_util.TestTypedList method)

 	test_add_after_iadd() (mozbuild.test.test_util.TestStrictOrderingOnAppendList method)

 	test_add_coercion() (mozbuild.test.test_util.TestTypedList method)

 	test_add_from_finder() (mozpack.test.test_mozjar.TestJar method)

 	test_add_list() (mozbuild.test.test_containers.TestList method)

 	test_add_StrictOrderingOnAppendList() (mozbuild.test.test_util.TestStrictOrderingOnAppendList method)

 	test_add_string() (mozbuild.test.test_containers.TestList method)

 	test_adds() (mozpack.test.test_manifests.TestInstallManifest method)

 	test_aggregate_empty() (mozbuild.test.frontend.test_context.TestFiles method)

 	test_allowed_set() (mozbuild.test.frontend.test_namespaces.TestContext method)

 	test_android() (mozbuild.test.test_mozinfo.TestBuildDict method)

 	test_android_eclipse() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	test_android_res_dirs() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_android_version_code_v0() (mozbuild.test.test_android_version_code.TestAndroidVersionCode method)

 	test_android_version_code_v0_relative_v1() (mozbuild.test.test_android_version_code.TestAndroidVersionCode method)

 	test_android_version_code_v1() (mozbuild.test.test_android_version_code.TestAndroidVersionCode method)

 	test_android_version_code_v1_overflow() (mozbuild.test.test_android_version_code.TestAndroidVersionCode method)

 	test_android_version_code_v1_running_low() (mozbuild.test.test_android_version_code.TestAndroidVersionCode method)

 	test_android_version_code_v1_underflow() (mozbuild.test.test_android_version_code.TestAndroidVersionCode method)

 	test_arm() (mozbuild.test.test_mozinfo.TestBuildDict method)

 	test_assignment() (mozbuild.test.test_containers.TestReadOnlyDefaultDict method)

 	test_assignment_validation() (mach.test.test_config.TestConfigSettings method)

 	test_auto_substs() (mozbuild.test.backend.test_configenvironment.TestEnvironment method)

 	test_backend_mk() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	test_bad_unicode_from_file() (mozbuild.test.test_dotproperties.TestDotProperties method)

 	test_basedir() (mozpack.test.test_path.TestPath method)

 	test_basename() (mozpack.test.test_path.TestPath method)

 	test_bases() (mozpack.test.test_packager_formats.TestFormatters method)

 	test_basic() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	

 	(mozbuild.test.backend.test_visualstudio.TestVisualStudioBackend method)

 	(mozbuild.test.compilation.test_warnings.TestWarningsDatabase method)

 	(mozbuild.test.test_containers.TestReadOnlyDict method)

 	(mozbuild.test.test_containers.TestReadOnlyNamespace method)

 	(mozbuild.test.test_mozinfo.TestWriteMozinfo method)

 	test_binary_components() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	

 	(mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_branding_files() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	

 	(mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_cache_size_shrinking() (mozbuild.test.controller.test_ccachestats.TestCcacheStats method)

 	test_call_deque() (mozpack.test.test_packager.TestCallDeque method)

 	test_choices_validation() (mach.test.test_config.TestConfigSettings method)

 	test_clang_parsing() (mozbuild.test.compilation.test_warnings.TestWarningsParsing method)

 	test_classpathentries() (mozbuild.test.backend.test_android_eclipse.TestAndroidEclipseBackend method)

 	test_coercion() (mozbuild.test.frontend.test_context.TestTypedRecord method)

 	

 	(mozbuild.test.frontend.test_namespaces.TestContext method)

 	test_command_aliases() (mach.test.test_dispatcher.TestDispatcher method)

 	test_command_error() (mach.test.test_error_output.TestErrorOutput method)

 	test_command_line_literal_at() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_commonprefix() (mozpack.test.test_path.TestPath method)

 	test_comparison() (mozbuild.test.compilation.test_warnings.TestCompilerWarning method)

 	test_component_from_string() (mozpack.test.test_packager.TestComponent method)

 	test_component_split_component_and_options() (mozpack.test.test_packager.TestComponent method)

 	test_component_split_component_and_options_errors() (mozpack.test.test_packager.TestComponent method)

 	test_composed_finder() (mozpack.test.test_files.TestComposedFinder method)

 	test_conditional_if_0() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_conditional_if_0_elif_1() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_conditional_if_0_or_1() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_conditional_if_1() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_conditional_if_1_elif_1_else() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_conditional_if_1_if_1() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_conditional_not_0() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_conditional_not_0_and_1() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_conditional_not_1() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_conditional_not_emptyval() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_conditional_not_nullval() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_conditions_pass() (mach.test.test_conditions.TestConditions method)

 	test_config() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	test_config_access() (mozbuild.test.frontend.test_sandbox.TestMozbuildSandbox method)

 	test_config_file_substitution() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_construct() (mozpack.test.test_manifests.TestInstallManifest method)

 	test_context_derived_coercion() (mozbuild.test.frontend.test_namespaces.TestContext method)

 	test_context_derived_typed_list() (mozbuild.test.frontend.test_namespaces.TestContext method)

 	test_context_derived_typed_list_with_items() (mozbuild.test.frontend.test_namespaces.TestContext method)

 	test_context_dirs() (mozbuild.test.frontend.test_context.TestContext method)

 	test_context_paths() (mozbuild.test.frontend.test_context.TestContext method)

 	test_copier_application() (mozpack.test.test_manifests.TestInstallManifest method)

 	test_crashreporter() (mozbuild.test.test_mozinfo.TestBuildDict method)

 	test_create_tar_basic() (mozpack.test.test_archive.TestArchive method)

 	test_create_tar_bz2_basic() (mozpack.test.test_archive.TestArchive method)

 	test_create_tar_gz_basic() (mozpack.test.test_archive.TestArchive method)

 	test_cwd_children_only() (mozbuild.test.test_testing.TestTestResolver method)

 	test_cwd_is_topobjdir() (mozbuild.test.controller.test_clobber.TestClobberer method)

 	test_cwd_under_topobjdir() (mozbuild.test.controller.test_clobber.TestClobberer method)

 	test_debug() (mozbuild.test.test_mozinfo.TestBuildDict method)

 	test_default_defines() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_default_revision() (mozpack.test.test_files.TestMercurialRevisionFinder method)

 	test_default_state() (mozbuild.test.frontend.test_sandbox.TestMozbuildSandbox method)

 	test_defaults() (mozbuild.test.frontend.test_context.TestContext method)

 	

 	(mozbuild.test.test_containers.TestKeyedDefaultDict method)

 	(mozbuild.test.test_containers.TestOrderedDefaultDict method)

 	(mozbuild.test.test_containers.TestReadOnlyDefaultDict method)

 	(mozbuild.test.test_containers.TestReadOnlyKeyedDefaultDict method)

 	test_defaults_for_path() (mozbuild.frontend.reader.BuildReader method)

 	test_defined() (mozbuild.test.test_expression.TestExpression method)

 	test_defines() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	

 	(mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_deflated_file() (mozpack.test.test_files.TestDeflatedFile method)

 	test_deflated_file_no_write() (mozpack.test.test_files.TestDeflatedFile method)

 	test_deflated_file_open() (mozpack.test.test_files.TestDeflatedFile method)

 	test_deflater_compress() (mozpack.test.test_mozjar.TestDeflater method)

 	test_deflater_compress_no_gain() (mozpack.test.test_mozjar.TestDeflater method)

 	test_deflater_no_compress() (mozpack.test.test_mozjar.TestDeflater method)

 	test_del() (mozbuild.test.test_containers.TestReadOnlyDict method)

 	test_del_exports() (mozbuild.test.test_util.TestHierarchicalStringList method)

 	test_dest() (mozpack.test.test_files.TestDest method)

 	test_diff_create() (mozbuild.test.test_util.TestFileAvoidWrite method)

 	test_diff_not_default() (mozbuild.test.test_util.TestFileAvoidWrite method)

 	test_diff_update() (mozbuild.test.test_util.TestFileAvoidWrite method)

 	test_dir() (mozbuild.test.test_util.TestResolveTargetToMake method)

 	test_dirname() (mozpack.test.test_path.TestPath method)

 	test_dirs_refused() (mozpack.test.test_archive.TestArchive method)

 	test_dirs_traversal_all_variables() (mozbuild.test.frontend.test_reader.TestBuildReader method)

 	test_dirs_traversal_no_descend() (mozbuild.test.frontend.test_reader.TestBuildReader method)

 	test_dirs_traversal_simple() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	

 	(mozbuild.test.frontend.test_reader.TestBuildReader method)

 	test_documentation_formatting() (mozbuild.test.frontend.test_context.TestSymbols method)

 	test_dotfiles() (mozpack.test.test_files.TestFileFinder method)

 	test_dotfiles_plus_ignore() (mozpack.test.test_files.TestFileFinder method)

 	test_duplicate_option() (mach.test.test_config.TestConfigSettings method)

 	test_empty() (mach.test.test_config.TestConfigSettings method)

 	test_empty_test_manifest_rejected() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_en_US() (mozbuild.test.test_jarmaker.Test_relativesrcdir method)

 	test_equals() (mozbuild.test.test_expression.TestExpression method)

 	test_equivalence() (mozbuild.test.compilation.test_warnings.TestCompilerWarning method)

 	test_error() (mozbuild.test.frontend.test_sandbox.TestMozbuildSandbox method)

 	

 	(mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_error_bad_dir() (mozbuild.test.frontend.test_reader.TestBuildReader method)

 	test_error_basic() (mozbuild.test.frontend.test_reader.TestBuildReader method)

 	test_error_empty_list() (mozbuild.test.frontend.test_reader.TestBuildReader method)

 	test_error_error_func() (mozbuild.test.frontend.test_reader.TestBuildReader method)

 	test_error_error_func_ok() (mozbuild.test.frontend.test_reader.TestBuildReader method)

 	test_error_illegal_path() (mozbuild.test.frontend.test_reader.TestBuildReader method)

 	test_error_included_from() (mozbuild.test.frontend.test_reader.TestBuildReader method)

 	test_error_loop() (mozpack.test.test_errors.TestErrorsImpl method)

 	test_error_missing_include_path() (mozbuild.test.frontend.test_reader.TestBuildReader method)

 	test_error_read_unknown_global() (mozbuild.test.frontend.test_reader.TestBuildReader method)

 	test_error_repeated_dir() (mozbuild.test.frontend.test_reader.TestBuildReader method)

 	test_error_script_error() (mozbuild.test.frontend.test_reader.TestBuildReader method)

 	test_error_syntax_error() (mozbuild.test.frontend.test_reader.TestBuildReader method)

 	test_error_write_bad_value() (mozbuild.test.frontend.test_reader.TestBuildReader method)

 	test_error_write_unknown_global() (mozbuild.test.frontend.test_reader.TestBuildReader method)

 	test_errors_context() (mozpack.test.test_errors.TestErrorsImpl method)

 	test_exec_compile_error() (mozbuild.test.frontend.test_sandbox.TestSandbox method)

 	test_exec_import_denied() (mozbuild.test.frontend.test_sandbox.TestSandbox method)

 	test_exec_source_illegal_key_set() (mozbuild.test.frontend.test_sandbox.TestSandbox method)

 	test_exec_source_multiple() (mozbuild.test.frontend.test_sandbox.TestSandbox method)

 	test_exec_source_reassign() (mozbuild.test.frontend.test_sandbox.TestSandbox method)

 	test_exec_source_reassign_builtin() (mozbuild.test.frontend.test_sandbox.TestSandbox method)

 	test_exec_source_reassign_exported() (mozbuild.test.frontend.test_sandbox.TestMozbuildSandbox method)

 	test_exec_source_success() (mozbuild.test.frontend.test_sandbox.TestSandbox method)

 	test_executable_preserved() (mozpack.test.test_archive.TestArchive method)

 	test_expand() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_expand_variables() (mozbuild.test.test_util.TestMisc method)

 	test_exports() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	

 	(mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_exports_append() (mozbuild.test.test_util.TestHierarchicalStringList method)

 	test_exports_generated() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	

 	(mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_exports_missing() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_exports_missing_generated() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_exports_multiple_subdir() (mozbuild.test.test_util.TestHierarchicalStringList method)

 	test_exports_subdir() (mozbuild.test.test_util.TestHierarchicalStringList method)

 	test_extend() (mozbuild.test.test_util.TestListWithAction method)

 	

 	(mozbuild.test.test_util.TestStrictOrderingOnAppendList method)

 	(mozbuild.test.test_util.TestTypedList method)

 	test_extra_jars() (mozbuild.test.backend.test_android_eclipse.TestAndroidEclipseBackend method)

 	test_fields() (mozbuild.test.frontend.test_context.TestTypedRecord method)

 	test_file() (mozpack.test.test_files.TestFile method)

 	test_file_avoid_write() (mozbuild.test.test_util.TestFileAvoidWrite method)

 	test_file_copier() (mozpack.test.test_copier.TestFileCopier method)

 	test_file_dest() (mozpack.test.test_files.TestFile method)

 	test_file_finder() (mozpack.test.test_files.TestFileFinder method)

 	test_file_no_write() (mozpack.test.test_files.TestFile method)

 	test_file_open() (mozpack.test.test_files.TestFile method)

 	test_file_reading_missing() (mach.test.test_config.TestConfigSettings method)

 	test_file_reading_multiple() (mach.test.test_config.TestConfigSettings method)

 	test_file_reading_single() (mach.test.test_config.TestConfigSettings method)

 	test_file_registry() (mozpack.test.test_copier.TestFileRegistry method)

 	test_file_registry_subtree() (mozpack.test.test_copier.TestFileRegistrySubtree method)

 	test_file_registry_subtree_base() (mozpack.test.test_copier.TestFileRegistrySubtree method)

 	test_file_test_deps() (mozbuild.test.frontend.test_reader.TestBuildReader method)

 	test_file_test_deps_default() (mozbuild.test.frontend.test_reader.TestBuildReader method)

 	test_file_test_deps_tags() (mozbuild.test.frontend.test_reader.TestBuildReader method)

 	test_file_writing() (mach.test.test_config.TestConfigSettings method)

 	test_fileobj() (mozbuild.test.test_mozinfo.TestWriteMozinfo method)

 	test_files_bad_bug_component() (mozbuild.test.frontend.test_reader.TestBuildReader method)

 	test_files_bug_component_different_matchers() (mozbuild.test.frontend.test_reader.TestBuildReader method)

 	test_files_bug_component_final() (mozbuild.test.frontend.test_reader.TestBuildReader method)

 	test_files_bug_component_simple() (mozbuild.test.frontend.test_reader.TestBuildReader method)

 	test_files_bug_component_static() (mozbuild.test.frontend.test_reader.TestBuildReader method)

 	test_filter_attemptSubstitution() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_filter_emptyLines() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_filter_slashslash() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_filter_spaces() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_filter_substitution() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_filterDefine() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_final_target() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	test_final_target_pp_files() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	

 	(mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_final_target_pp_files_non_srcdir() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_find_abs_path_not_exist() (mozbuild.test.test_mozconfig.TestMozconfigLoader method)

 	test_find_default_files() (mozbuild.test.test_mozconfig.TestMozconfigLoader method)

 	test_find_deprecated_home_paths() (mozbuild.test.test_mozconfig.TestMozconfigLoader method)

 	test_find_deprecated_path_srcdir() (mozbuild.test.test_mozconfig.TestMozconfigLoader method)

 	test_find_legacy_env() (mozbuild.test.test_mozconfig.TestMozconfigLoader method)

 	test_find_multiple_but_identical_configs() (mozbuild.test.test_mozconfig.TestMozconfigLoader method)

 	test_find_multiple_configs() (mozbuild.test.test_mozconfig.TestMozconfigLoader method)

 	test_find_multiple_defaults() (mozbuild.test.test_mozconfig.TestMozconfigLoader method)

 	test_find_no_relative_configs() (mozbuild.test.test_mozconfig.TestMozconfigLoader method)

 	test_find_path_not_file() (mozbuild.test.test_mozconfig.TestMozconfigLoader method)

 	test_find_relative_mozconfig() (mozbuild.test.test_mozconfig.TestMozconfigLoader method)

 	test_find_relevant_mozbuilds() (mozbuild.test.frontend.test_reader.TestBuildReader method)

 	test_flag() (mozpack.test.test_chrome_flags.TestFlag method)

 	test_flags_match() (mozpack.test.test_chrome_flags.TestFlags method)

 	test_flags_match_different() (mozpack.test.test_chrome_flags.TestFlags method)

 	test_flags_match_unset() (mozpack.test.test_chrome_flags.TestFlags method)

 	test_flags_match_version() (mozpack.test.test_chrome_flags.TestFlags method)

 	test_flags_str() (mozpack.test.test_chrome_flags.TestFlags method)

 	test_flat_formatter() (mozpack.test.test_packager_formats.TestFormatters method)

 	test_flat_formatter_with_base() (mozpack.test.test_packager_formats.TestFormatters method)

 	test_flat_unpack() (mozpack.test.test_packager_unpack.TestUnpack method)

 	test_function_args() (mozbuild.test.frontend.test_sandbox.TestMozbuildSandbox method)

 	test_generated_file() (mozpack.test.test_files.TestGeneratedFile method)

 	test_generated_file_no_write() (mozpack.test.test_files.TestGeneratedFile method)

 	test_generated_file_open() (mozpack.test.test_files.TestGeneratedFile method)

 	test_generated_files() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	

 	(mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_generated_files_absolute_script() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_generated_files_method_names() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_generated_files_no_inputs() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_generated_files_no_python_script() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_generated_files_no_script() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_generated_includes() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	

 	(mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_generated_sources() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_get() (mozbuild.test.test_dotproperties.TestDotProperties method)

 	

 	(mozpack.test.test_files.TestFileFinder method)

 	test_get_dict() (mozbuild.test.test_dotproperties.TestDotProperties method)

 	test_get_dict_with_shared_prefix() (mozbuild.test.test_dotproperties.TestDotProperties method)

 	test_get_dict_with_value_prefix() (mozbuild.test.test_dotproperties.TestDotProperties method)

 	test_get_list() (mozbuild.test.test_dotproperties.TestDotProperties method)

 	test_get_list_with_shared_prefix() (mozbuild.test.test_dotproperties.TestDotProperties method)

 	test_hash_file_known_hash() (mozbuild.test.test_util.TestHashing method)

 	test_hash_file_large() (mozbuild.test.test_util.TestHashing method)

 	test_hashing() (mozbuild.test.compilation.test_warnings.TestWarningsDatabase method)

 	test_help_message() (mach.test.test_conditions.TestConditions method)

 	test_hit_rate_of_diff_stats() (mozbuild.test.controller.test_ccachestats.TestCcacheStats method)

 	test_host_defines() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	

 	(mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_host_sources() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_iadd() (mozbuild.test.test_util.TestListWithAction method)

 	

 	(mozbuild.test.test_util.TestStrictOrderingOnAppendList method)

 	(mozbuild.test.test_util.TestTypedList method)

 	test_ignore_errors() (mozpack.test.test_errors.TestErrorsImpl method)

 	test_ignored_dirs() (mozpack.test.test_files.TestFileFinder method)

 	test_ignored_files() (mozpack.test.test_files.TestFileFinder method)

 	test_ignored_patterns() (mozpack.test.test_files.TestFileFinder method)

 	test_in() (mozbuild.test.test_expression.TestContext method)

 	test_include() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_include_basic() (mozbuild.test.frontend.test_sandbox.TestMozbuildSandbox method)

 	test_include_error_stack() (mozbuild.test.frontend.test_sandbox.TestMozbuildSandbox method)

 	test_include_line() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_include_literal_at() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_include_missing() (mozbuild.test.frontend.test_sandbox.TestMozbuildSandbox method)

 	test_include_missing_file() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_include_outside_topsrcdir() (mozbuild.test.frontend.test_sandbox.TestMozbuildSandbox method)

 	test_include_relative_from_child_dir() (mozbuild.test.frontend.test_sandbox.TestMozbuildSandbox method)

 	test_include_topsrcdir_relative() (mozbuild.test.frontend.test_sandbox.TestMozbuildSandbox method)

 	test_include_undefined_variable() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_included_projects() (mozbuild.test.backend.test_android_eclipse.TestAndroidEclipseBackend method)

 	test_inheriting_variables() (mozbuild.test.frontend.test_reader.TestBuildReader method)

 	test_init() (mozbuild.test.test_util.TestListWithAction method)

 	

 	(mozbuild.test.test_util.TestStrictOrderingOnAppendList method)

 	(mozbuild.test.test_util.TestTypedList method)

 	(mozbuild.test.test_util.TypedTestStrictOrderingOnAppendList method)

 	test_install_manifests_package_tests() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	test_install_manifests_written() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	test_install_shared_lib() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_install_substitute_config_files() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	test_invalid_context_message() (mach.test.test_conditions.TestConditions method)

 	test_invalid_exports_append() (mozbuild.test.test_util.TestHierarchicalStringList method)

 	test_invalid_exports_append_base() (mozbuild.test.test_util.TestHierarchicalStringList method)

 	test_invalid_exports_bool() (mozbuild.test.test_util.TestHierarchicalStringList method)

 	test_invalid_exports_set() (mozbuild.test.test_util.TestHierarchicalStringList method)

 	test_invalid_exports_set_base() (mozbuild.test.frontend.test_sandbox.TestMozbuildSandbox method)

 	test_invalid_flavor() (mozbuild.test.frontend.test_reader.TestBuildReader method)

 	test_invalid_type() (mach.test.test_conditions.TestConditions method)

 	test_invalid_utf8_substs() (mozbuild.test.frontend.test_sandbox.TestMozbuildSandbox method)

 	test_invoked_error() (mach.test.test_error_output.TestErrorOutput method)

 	test_ipdl_sources() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	

 	(mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_iter_modules_in_path() (mozbuild.test.test_pythonutil.TestIterModules method)

 	test_jar() (mozpack.test.test_mozjar.TestJar method)

 	test_jar_finder() (mozpack.test.test_files.TestJarFinder method)

 	test_jar_formatter() (mozpack.test.test_packager_formats.TestFormatters method)

 	test_jar_formatter_with_base() (mozpack.test.test_packager_formats.TestFormatters method)

 	test_jar_manifests() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	

 	(mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_jar_manifests_multiple_files() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_jar_struct() (mozpack.test.test_mozjar.TestJarStruct method)

 	test_jar_unpack() (mozpack.test.test_packager_unpack.TestUnpack method)

 	test_jarlog() (mozpack.test.test_mozjar.TestJarLog method)

 	test_jarrer() (mozpack.test.test_copier.TestJarrer method)

 	test_jarrer_compress() (mozpack.test.test_copier.TestJarrer method)

 	test_javascript_line() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_join() (mozpack.test.test_path.TestPath method)

 	test_key_checking() (mozbuild.test.frontend.test_namespaces.TestContext method)

 	test_key_rejection() (mozbuild.test.frontend.test_namespaces.TestContext method)

 	test_l10n_merge() (mozbuild.test.test_jarmaker.Test_relativesrcdir method)

 	test_l10n_no_merge() (mozbuild.test.test_jarmaker.Test_relativesrcdir method)

 	test_l10n_repack() (mozpack.test.test_packager_l10n.TestL10NRepack method)

 	test_library_defines() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_library_manifest() (mozbuild.test.backend.test_android_eclipse.TestAndroidEclipseBackend method)

 	test_library_project_files() (mozbuild.test.backend.test_android_eclipse.TestAndroidEclipseBackend method)

 	test_library_project_setting() (mozbuild.test.backend.test_android_eclipse.TestAndroidEclipseBackend method)

 	test_linux() (mozbuild.test.test_mozinfo.TestBuildDict method)

 	test_literal() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_load() (mozbuild.test.test_testing.TestTestMetadata method)

 	test_load_entry_point_from_directory() (mach.test.test_entry_point.TestEntryPoints method)

 	test_load_entry_point_from_file() (mach.test.test_entry_point.TestEntryPoints method)

 	test_local_includes() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	

 	(mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_logical_and() (mozbuild.test.test_expression.TestExpression method)

 	test_logical_ops() (mozbuild.test.test_expression.TestExpression method)

 	test_logical_or() (mozbuild.test.test_expression.TestExpression method)

 	test_mac() (mozbuild.test.test_mozinfo.TestBuildDict method)

 	test_mac_universal() (mozbuild.test.test_mozinfo.TestBuildDict method)

 	test_main_project_files() (mozbuild.test.backend.test_android_eclipse.TestAndroidEclipseBackend method)

 	test_makefile() (mozbuild.test.test_makeutil.TestMakefile method)

 	test_Makefile() (mozbuild.test.test_util.TestResolveTargetToMake method)

 	test_makefile_conversion() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	test_malformed() (mozpack.test.test_manifests.TestInstallManifest method)

 	test_manifest_assets() (mozbuild.test.backend.test_android_eclipse.TestAndroidEclipseBackend method)

 	test_manifest_classpathentries() (mozbuild.test.backend.test_android_eclipse.TestAndroidEclipseBackend method)

 	test_manifest_file() (mozpack.test.test_files.TestManifestFile method)

 	test_manifest_main_manifest() (mozbuild.test.backend.test_android_eclipse.TestAndroidEclipseBackend method)

 	test_manifest_rebase() (mozpack.test.test_chrome_manifest.TestManifest method)

 	test_manifest_res() (mozbuild.test.backend.test_android_eclipse.TestAndroidEclipseBackend method)

 	test_match() (mozpack.test.test_path.TestPath method)

 	test_memoize() (mozbuild.test.test_util.TestMemoize method)

 	test_memoize_method() (mozbuild.test.test_util.TestMemoize method)

 	test_memoized() (mozbuild.test.test_util.TestTypedList method)

 	test_memoized_property() (mozbuild.test.test_util.TestMemoize method)

 	test_merge() (mozbuild.test.test_util.TestHierarchicalStringList method)

 	test_minified_javascript() (mozpack.test.test_files.TestMinifiedJavaScript method)

 	test_minified_properties() (mozpack.test.test_files.TestMinifiedProperties method)

 	test_minified_verify_failure() (mozpack.test.test_files.TestMinifiedJavaScript method)

 	test_minified_verify_success() (mozpack.test.test_files.TestMinifiedJavaScript method)

 	test_missing() (mozbuild.test.test_mozinfo.TestBuildDict method)

 	test_missing_final_target_pp_files() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_missing_local_includes() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_missing_makefile_in() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	test_mozconfig_opt_in() (mozbuild.test.controller.test_clobber.TestClobberer method)

 	test_msvc_parsing() (mozbuild.test.compilation.test_warnings.TestWarningsParsing method)

 	test_mtime_no_change() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	test_multiple_bug_components() (mozbuild.test.frontend.test_context.TestFiles method)

 	test_multiple_errors() (mozpack.test.test_errors.TestErrorsImpl method)

 	test_multiple_files() (mozbuild.test.test_util.TestGroupUnifiedFiles method)

 	test_no_error() (mozpack.test.test_errors.TestErrorsImpl method)

 	test_no_marker() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_no_objdir() (mozbuild.test.controller.test_clobber.TestClobberer method)

 	test_no_recommended_bug_component() (mozbuild.test.frontend.test_context.TestFiles method)

 	test_no_remove() (mozpack.test.test_copier.TestFileCopier method)

 	test_no_remove_empty_directories() (mozpack.test.test_copier.TestFileCopier method)

 	test_non_ascii_logging() (mach.test.test_logger.TestStructuredHumanFormatter method)

 	test_none() (mozbuild.test.test_containers.TestList method)

 	test_noop() (mozpack.test.test_files.TestAbsoluteSymlinkFile method)

 	

 	test_normpath() (mozpack.test.test_path.TestPath method)

 	test_not() (mozbuild.test.test_expression.TestExpression method)

 	test_notequals() (mozbuild.test.test_expression.TestExpression method)

 	test_number_value() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_number_value_equals() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_number_value_equals_defines() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_number_value_not_equals_quoted_defines() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_objdir_clobber_newer() (mozbuild.test.controller.test_clobber.TestClobberer method)

 	test_objdir_clobber_older() (mozbuild.test.controller.test_clobber.TestClobberer method)

 	test_objdir_is_srcdir() (mozbuild.test.controller.test_clobber.TestClobberer method)

 	test_objdir_no_clobber_file() (mozbuild.test.controller.test_clobber.TestClobberer method)

 	test_objdir_path() (mozbuild.test.frontend.test_context.TestPaths method)

 	test_octal_value_equals() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_octal_value_equals_defines() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_octal_value_not_equals_quoted_defines() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_octal_value_quoted_expansion() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_old_install_manifest_deleted() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	test_old_revision() (mozpack.test.test_files.TestMercurialRevisionFinder method)

 	test_omnijar_formatter() (mozpack.test.test_packager_formats.TestFormatters method)

 	test_omnijar_formatter_with_base() (mozpack.test.test_packager_formats.TestFormatters method)

 	test_omnijar_is_resource() (mozpack.test.test_packager_formats.TestFormatters method)

 	test_omnijar_unpack() (mozpack.test.test_packager_unpack.TestUnpack method)

 	test_optional_existing_dest() (mozpack.test.test_files.TestExistingFile method)

 	test_optional_exists_creates_unneeded_directory() (mozpack.test.test_copier.TestFileCopier method)

 	test_optional_missing_dest() (mozpack.test.test_files.TestExistingFile method)

 	test_or() (mozpack.test.test_manifests.TestInstallManifest method)

 	test_output_files() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	test_outside_topsrcdir() (mozbuild.test.frontend.test_reader.TestBuildReader method)

 	test_override() (mozbuild.test.test_jarmaker.Test_relativesrcdir method)

 	test_override_l10n() (mozbuild.test.test_jarmaker.Test_relativesrcdir method)

 	test_pair() (mozbuild.test.test_util.TestMisc method)

 	test_parse_garbage_stats_message() (mozbuild.test.controller.test_ccachestats.TestCcacheStats method)

 	test_parse_manifest() (mozpack.test.test_chrome_manifest.TestManifest method)

 	test_parse_manifest_errors() (mozpack.test.test_chrome_manifest.TestManifestErrors method)

 	test_parse_zero_stats_message() (mozbuild.test.controller.test_ccachestats.TestCcacheStats method)

 	test_partial_paths() (mozpack.test.test_copier.TestFileRegistry method)

 	test_path() (mozbuild.test.frontend.test_context.TestPaths method)

 	test_path_calculation() (mozbuild.test.frontend.test_sandbox.TestMozbuildSandbox method)

 	test_path_normalization() (mozbuild.test.test_makeutil.TestMakefile method)

 	test_path_typed_hierarchy_list() (mozbuild.test.frontend.test_context.TestPaths method)

 	test_path_typed_list() (mozbuild.test.frontend.test_context.TestPaths method)

 	test_path_with_mixed_contexts() (mozbuild.test.frontend.test_context.TestPaths method)

 	test_pattern_expansion() (mozpack.test.test_manifests.TestInstallManifest method)

 	test_permissions() (mozpack.test.test_copier.TestFileCopier method)

 	test_plain_error() (mozpack.test.test_errors.TestErrorsImpl method)

 	test_populate_registry() (mozpack.test.test_manifests.TestInstallManifest method)

 	test_preload() (mozpack.test.test_mozjar.TestPreload method)

 	test_preprocess() (mozpack.test.test_files.TestPreprocessedFile method)

 	test_preprocess_file_dependencies() (mozpack.test.test_files.TestPreprocessedFile method)

 	test_preprocess_file_no_write() (mozpack.test.test_files.TestPreprocessedFile method)

 	test_preprocess_manifest() (mozpack.test.test_packager.TestPreprocessManifest method)

 	test_preprocess_manifest_defines() (mozpack.test.test_packager.TestPreprocessManifest method)

 	test_preprocess_manifest_missing_define() (mozpack.test.test_packager.TestPreprocessManifest method)

 	test_preprocessor() (mozpack.test.test_manifests.TestInstallManifest method)

 	test_preprocessor_dependencies() (mozpack.test.test_manifests.TestInstallManifest method)

 	test_program() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_pruning() (mozbuild.test.compilation.test_warnings.TestWarningsDatabase method)

 	test_python_unit_test_missing() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_read_ac_app_options() (mozbuild.test.test_mozconfig.TestMozconfigLoader method)

 	test_read_ac_options_substitution() (mozbuild.test.test_mozconfig.TestMozconfigLoader method)

 	test_read_capture_ac_options() (mozbuild.test.test_mozconfig.TestMozconfigLoader method)

 	test_read_capture_mk_options() (mozbuild.test.test_mozconfig.TestMozconfigLoader method)

 	test_read_capture_mk_options_objdir_environ() (mozbuild.test.test_mozconfig.TestMozconfigLoader method)

 	test_read_dep_makefile() (mozbuild.test.test_makeutil.TestMakefile method)

 	test_read_empty_mozconfig() (mozbuild.test.test_mozconfig.TestMozconfigLoader method)

 	test_read_empty_mozconfig_objdir_environ() (mozbuild.test.test_mozconfig.TestMozconfigLoader method)

 	test_read_empty_variable_value() (mozbuild.test.test_mozconfig.TestMozconfigLoader method)

 	test_read_exported_variables() (mozbuild.test.test_mozconfig.TestMozconfigLoader method)

 	test_read_jar_struct() (mozpack.test.test_mozjar.TestJarStruct method)

 	test_read_jar_struct_memoryview() (mozpack.test.test_mozjar.TestJarStruct method)

 	test_read_load_exception() (mozbuild.test.test_mozconfig.TestMozconfigLoader method)

 	test_read_modify_variables() (mozbuild.test.test_mozconfig.TestMozconfigLoader method)

 	test_read_moz_objdir_substitution() (mozbuild.test.test_mozconfig.TestMozconfigLoader method)

 	test_read_multiline_variables() (mozbuild.test.test_mozconfig.TestMozconfigLoader method)

 	test_read_new_variables() (mozbuild.test.test_mozconfig.TestMozconfigLoader method)

 	test_read_no_mozconfig() (mozbuild.test.test_mozconfig.TestMozconfigLoader method)

 	test_read_relevant_mozbuilds() (mozbuild.test.frontend.test_reader.TestBuildReader method)

 	test_read_removed_variables() (mozbuild.test.test_mozconfig.TestMozconfigLoader method)

 	test_read_topsrcdir_defined() (mozbuild.test.test_mozconfig.TestMozconfigLoader method)

 	test_read_unmodified_variables() (mozbuild.test.test_mozconfig.TestMozconfigLoader method)

 	test_reassign() (mozbuild.test.test_util.TestHierarchicalStringList method)

 	test_rebase() (mozpack.test.test_path.TestPath method)

 	test_recognize_repo_paths() (mozpack.test.test_files.TestMercurialRevisionFinder method)

 	test_referenced_projects() (mozbuild.test.backend.test_android_eclipse.TestAndroidEclipseBackend method)

 	test_registry_paths() (mozpack.test.test_copier.TestFileRegistry method)

 	test_registry_paths_subtree() (mozpack.test.test_copier.TestFileRegistrySubtree method)

 	test_regular_file() (mozbuild.test.test_util.TestResolveTargetToMake method)

 	test_rejar() (mozpack.test.test_mozjar.TestJar method)

 	test_relative_dirs() (mozbuild.test.frontend.test_reader.TestBuildReader method)

 	Test_relativesrcdir (class in mozbuild.test.test_jarmaker)

 	test_relpath() (mozpack.test.test_path.TestPath method)

 	test_remove_unaccounted_directory_symlinks() (mozpack.test.test_copier.TestFileCopier method)

 	test_remove_unaccounted_file_registry() (mozpack.test.test_copier.TestFileCopier method)

 	test_repeated_dirs_ignored() (mozbuild.test.frontend.test_reader.TestBuildReader method)

 	test_replace_file_with_symlink() (mozpack.test.test_files.TestAbsoluteSymlinkFile method)

 	test_replace_symlink() (mozpack.test.test_files.TestAbsoluteSymlinkFile method)

 	

 	(mozpack.test.test_files.TestPreprocessedFile method)

 	test_required_directories() (mozpack.test.test_copier.TestFileRegistry method)

 	test_required_existing_dest() (mozpack.test.test_files.TestExistingFile method)

 	test_required_missing_dest() (mozpack.test.test_files.TestExistingFile method)

 	test_resolve_all() (mozbuild.test.test_testing.TestTestMetadata method)

 	test_resolve_by_dir() (mozbuild.test.test_testing.TestTestMetadata method)

 	test_resolve_filter_flavor() (mozbuild.test.test_testing.TestTestMetadata method)

 	test_resolve_multiple_paths() (mozbuild.test.test_testing.TestTestMetadata method)

 	test_resolve_path_prefix() (mozbuild.test.test_testing.TestTestMetadata method)

 	test_resolve_support_files() (mozbuild.test.test_testing.TestTestMetadata method)

 	test_resolve_under_path() (mozbuild.test.test_testing.TestTestMetadata method)

 	test_resources() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	test_retrieval_type() (mach.test.test_config.TestConfigSettings method)

 	test_root_path() (mozbuild.test.test_util.TestResolveTargetToMake method)

 	test_rule() (mozbuild.test.test_makeutil.TestMakefile method)

 	test_sdk_files() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	

 	(mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_serialization() (mozpack.test.test_manifests.TestInstallManifest method)

 	test_setuid_setgid_refused() (mozpack.test.test_archive.TestArchive method)

 	test_simple() (mach.test.test_config.TestConfigSettings method)

 	

 	(mozbuild.test.test_containers.TestKeyedDefaultDict method)

 	(mozbuild.test.test_containers.TestOrderedDefaultDict method)

 	(mozbuild.test.test_containers.TestReadOnlyDefaultDict method)

 	(mozbuild.test.test_util.TestTypedNamedTuple method)

 	test_simple_error() (mozpack.test.test_errors.TestErrorsImpl method)

 	test_simple_manifest_parser() (mozpack.test.test_packager.TestSimpleManifestSink method)

 	test_simple_packager() (mozpack.test.test_packager.TestSimplePackager method)

 	test_simple_packager_manifest_consistency() (mozpack.test.test_packager.TestSimplePackager method)

 	test_single_bug_component() (mozbuild.test.frontend.test_context.TestFiles method)

 	test_slicing() (mozbuild.test.test_util.TestListWithAction method)

 	

 	(mozbuild.test.test_util.TestStrictOrderingOnAppendList method)

 	(mozbuild.test.test_util.TestTypedList method)

 	test_source_path() (mozbuild.test.frontend.test_context.TestPaths method)

 	test_sources() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	

 	(mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_special_variables() (mozbuild.test.frontend.test_sandbox.TestMozbuildSandbox method)

 	test_split() (mozpack.test.test_path.TestPath method)

 	test_splitext() (mozpack.test.test_path.TestPath method)

 	test_statement() (mozbuild.test.test_makeutil.TestMakefile method)

 	test_stats_contains_data() (mozbuild.test.controller.test_ccachestats.TestCcacheStats method)

 	test_stats_version32() (mozbuild.test.controller.test_ccachestats.TestCcacheStats method)

 	test_strict_ordering_on_append_list_with_flags_factory() (mozbuild.test.test_util.TestStrictOrderingOnAppendListWithFlagsFactory method)

 	test_strict_ordering_on_append_list_with_flags_factory_extend() (mozbuild.test.test_util.TestStrictOrderingOnAppendListWithFlagsFactory method)

 	test_string() (mozbuild.test.test_util.TestEnumString method)

 	test_string_flag() (mozpack.test.test_chrome_flags.TestFlag method)

 	test_string_literal() (mozbuild.test.test_expression.TestContext method)

 	

 	(mozbuild.test.test_expression.TestExpression method)

 	test_string_value() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_substitute_config_files() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	

 	(mozbuild.test.frontend.test_sandbox.TestMozbuildSandbox method)

 	test_subsuites() (mozbuild.test.test_testing.TestTestResolver method)

 	test_symbol_presence() (mozbuild.test.frontend.test_sandbox.TestMozbuildSandbox method)

 	test_symlink_directory_replaced() (mozpack.test.test_copier.TestFileCopier method)

 	test_symlink_file() (mozpack.test.test_files.TestAbsoluteSymlinkFile method)

 	test_tar_gz_name() (mozpack.test.test_archive.TestArchive method)

 	test_templates() (mozbuild.test.frontend.test_sandbox.TestMozbuildSandbox method)

 	test_test_harness_files() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_test_harness_files_root() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_test_manifest_absolute_support_files() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_test_manifest_deffered_install_missing() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_test_manifest_deffered_installs_written() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	test_test_manifest_dupe_support_files() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_test_manifest_includes() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_test_manifest_install_includes() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_test_manifest_install_to_subdir() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_test_manifest_just_support_files() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_test_manifest_keys_extracted() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_test_manifest_missing_manifest() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_test_manifest_missing_test_error() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_test_manifest_missing_test_error_unfiltered() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_test_manifest_parent_support_files_dir() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_test_manifest_pattern_matches_recorded() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	test_test_manifest_shared_support_files() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_test_manifest_unmatched_generated() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_test_manifests_duplicate_support_files() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	test_test_manifests_files_written() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	test_top_level() (mozbuild.test.test_util.TestResolveTargetToMake method)

 	test_traversal() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeTraversal method)

 	test_traversal_2() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeTraversal method)

 	test_traversal_all_vars() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_traversal_all_vars_enable_tests() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_traversal_filter() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeTraversal method)

 	test_type_check() (mozbuild.test.frontend.test_context.TestContext method)

 	test_undef_defined() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_undef_undefined() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_undefined_variable() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_unicode() (mozbuild.test.test_dotproperties.TestDotProperties method)

 	test_unified_build_finder() (mozpack.test.test_unify.TestUnifiedBuildFinder method)

 	test_unified_finder() (mozpack.test.test_unify.TestUnifiedFinder method)

 	test_unified_sources() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_unified_sources_non_unified() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_unknown() (mozbuild.test.test_mozinfo.TestBuildDict method)

 	test_unsorted() (mozbuild.test.test_util.TestHierarchicalStringList method)

 	test_unsorted_files() (mozbuild.test.test_util.TestGroupUnifiedFiles method)

 	test_update() (mozbuild.test.frontend.test_context.TestContext method)

 	

 	(mozbuild.test.test_containers.TestReadOnlyDict method)

 	(mozbuild.test.test_dotproperties.TestDotProperties method)

 	test_use_yasm() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_valid_unicode_from_file() (mozbuild.test.test_dotproperties.TestDotProperties method)

 	test_value_checking() (mozbuild.test.frontend.test_namespaces.TestContext method)

 	test_value_quoted_expansion() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_var_directory() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_var_file() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_var_if_0() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_var_if_0_elifdef() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_var_if_0_elifndef() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_var_ifdef_0() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_var_ifdef_1_or_undef() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_var_ifdef_undef() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_var_ifndef_0() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_var_ifndef_0_and_undef() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_var_ifndef_undef() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_var_line() (mozbuild.test.test_preprocessor.TestPreprocessor method)

 	test_variable() (mozbuild.test.test_expression.TestContext method)

 	

 	(mozbuild.test.test_expression.TestExpression method)

 	test_variable_passthru() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	

 	(mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_various_cwd() (mozbuild.test.test_testing.TestTestResolver method)

 	test_version_flag() (mozpack.test.test_chrome_flags.TestFlag method)

 	test_walk() (mozbuild.test.test_util.TestHierarchicalStringList method)

 	test_wildcard_options() (mach.test.test_config.TestConfigSettings method)

 	test_wildcard_patterns() (mozbuild.test.test_testing.TestTestResolver method)

 	test_win() (mozbuild.test.test_mozinfo.TestBuildDict method)

 	test_write_dep_makefile() (mozbuild.test.test_makeutil.TestMakefile method)

 	test_x86() (mozbuild.test.test_mozinfo.TestBuildDict method)

 	test_xpidl_generation() (mozbuild.test.backend.test_recursivemake.TestRecursiveMakeBackend method)

 	test_xpidl_module_no_sources() (mozbuild.test.frontend.test_emitter.TestEmitterBasic method)

 	test_xpt_file() (mozpack.test.test_files.TestXPTFile method)

 	TestAbsoluteSymlinkFile (class in mozpack.test.test_files)

 	TestAndroidEclipseBackend (class in mozbuild.test.backend.test_android_eclipse)

 	TestAndroidVersionCode (class in mozbuild.test.test_android_version_code)

 	TestArchive (class in mozpack.test.test_archive)

 	TestBase (class in mach.test.common)

 	TestBuildDict (class in mozbuild.test.test_mozinfo)

 	TestBuildReader (class in mozbuild.test.frontend.test_reader)

 	TestCallDeque (class in mozpack.test.test_packager)

 	TestCcacheStats (class in mozbuild.test.controller.test_ccachestats)

 	TestClobberer (class in mozbuild.test.controller.test_clobber)

 	TestCompilerWarning (class in mozbuild.test.compilation.test_warnings)

 	TestComponent (class in mozpack.test.test_packager)

 	TestComposedFinder (class in mozpack.test.test_files)

 	TestConditions (class in mach.test.test_conditions)

 	TestConfigSettings (class in mach.test.test_config)

 	TestContext (class in mozbuild.test.frontend.test_context)

 	

 	(class in mozbuild.test.frontend.test_namespaces)

 	(class in mozbuild.test.test_expression)

 	TestDeflatedFile (class in mozpack.test.test_files)

 	TestDeflater (class in mozpack.test.test_mozjar)

 	TestDeflaterMemoryView (class in mozpack.test.test_mozjar)

 	TestDest (class in mozpack.test.test_files)

 	TestDispatcher (class in mach.test.test_dispatcher)

 	TestDotProperties (class in mozbuild.test.test_dotproperties)

 	TestedSandbox (class in mozbuild.test.frontend.test_sandbox)

 	TestEmitterBasic (class in mozbuild.test.frontend.test_emitter)

 	TestEntryPoints (class in mach.test.test_entry_point)

 	TestEnumString (class in mozbuild.test.test_util)

 	TestEnvironment (class in mozbuild.test.backend.test_configenvironment)

 	TestErrorOutput (class in mach.test.test_error_output)

 	TestErrors (class in mozpack.test.test_errors)

 	TestErrorsImpl (class in mozpack.test.test_errors)

 	TestExistingFile (class in mozpack.test.test_files)

 	TestExpression (class in mozbuild.test.test_expression)

 	TestFile (class in mozpack.test.test_files)

 	TestFileAvoidWrite (class in mozbuild.test.test_util)

 	TestFileCopier (class in mozpack.test.test_copier)

 	TestFileFinder (class in mozpack.test.test_files)

 	TestFileRegistry (class in mozpack.test.test_copier)

 	TestFileRegistrySubtree (class in mozpack.test.test_copier)

 	TestFiles (class in mozbuild.test.frontend.test_context)

 	TestFlag (class in mozpack.test.test_chrome_flags)

 	TestFlags (class in mozpack.test.test_chrome_flags)

 	TestFormatters (class in mozpack.test.test_packager_formats)

 	TestGeneratedFile (class in mozpack.test.test_files)

 	TestGroupUnifiedFiles (class in mozbuild.test.test_util)

 	TestHarnessFiles (class in mozbuild.frontend.data)

 	TestHashing (class in mozbuild.test.test_util)

 	TestHierarchicalStringList (class in mozbuild.test.test_util)

 	TestInstallInfo (class in mozbuild.testing)

 	TestInstallManifest (class in mozpack.test.test_manifests)

 	TestIterModules (class in mozbuild.test.test_pythonutil)

 	TestJar (class in mozpack.test.test_mozjar)

 	TestJarFinder (class in mozpack.test.test_files)

 	TestJarLog (class in mozpack.test.test_mozjar)

 	TestJarMaker (class in mozbuild.test.test_jarmaker)

 	TestJarrer (class in mozpack.test.test_copier)

 	TestJarStruct (class in mozpack.test.test_mozjar)

 	TestJarStruct.Foo (class in mozpack.test.test_mozjar)

 	TestKeyedDefaultDict (class in mozbuild.test.test_containers)

 	TestL10NRepack (class in mozpack.test.test_packager_l10n)

 	TestLineEndings (class in mozbuild.test.test_line_endings)

 	TestList (class in mozbuild.test.test_containers)

 	TestListWithAction (class in mozbuild.test.test_util)

 	testMac() (mozbuild.test.test_line_endings.TestLineEndings method)

 	TestMakefile (class in mozbuild.test.test_makeutil)

 	TestManager (class in mozbuild.backend.common)

 	TestManifest (class in mozbuild.frontend.data)

 	

 	(class in mozpack.test.test_chrome_manifest)

 	TestManifestErrors (class in mozpack.test.test_chrome_manifest)

 	TestManifestFile (class in mozpack.test.test_files)

 	TestMemoize (class in mozbuild.test.test_util)

 	TestMercurialNativeRevisionFinder (class in mozpack.test.test_files)

 	TestMercurialRevisionFinder (class in mozpack.test.test_files)

 	TestMetadata (class in mozbuild.testing)

 	TestMinifiedJavaScript (class in mozpack.test.test_files)

 	TestMinifiedProperties (class in mozpack.test.test_files)

 	TestMisc (class in mozbuild.test.test_util)

 	TestMozbuildSandbox (class in mozbuild.test.frontend.test_sandbox)

 	TestMozconfigLoader (class in mozbuild.test.test_mozconfig)

 	TestOptimizeJar (class in mozpack.test.test_mozjar)

 	TestOrderedDefaultDict (class in mozbuild.test.test_containers)

 	TestPath (class in mozpack.test.test_path)

 	TestPaths (class in mozbuild.test.frontend.test_context)

 	TestPreload (class in mozpack.test.test_mozjar)

 	TestPreprocessedFile (class in mozpack.test.test_files)

 	TestPreprocessManifest (class in mozpack.test.test_packager)

 	TestPreprocessor (class in mozbuild.test.test_preprocessor)

 	TestReadOnlyDefaultDict (class in mozbuild.test.test_containers)

 	TestReadOnlyDict (class in mozbuild.test.test_containers)

 	TestReadOnlyKeyedDefaultDict (class in mozbuild.test.test_containers)

 	TestReadOnlyNamespace (class in mozbuild.test.test_containers)

 	TestRecursiveMakeBackend (class in mozbuild.test.backend.test_recursivemake)

 	TestRecursiveMakeTraversal (class in mozbuild.test.backend.test_recursivemake)

 	TestResolver (class in mozbuild.testing)

 	TestResolveTargetToMake (class in mozbuild.test.test_util)

 	tests (mozbuild.frontend.data.TestManifest attribute)

 	tests_with_flavor() (mozbuild.testing.TestMetadata method)

 	TestSandbox (class in mozbuild.test.frontend.test_sandbox)

 	TestSimpleManifestSink (class in mozpack.test.test_packager)

 	TestSimplePackager (class in mozpack.test.test_packager)

 	TestStrictOrderingOnAppendList (class in mozbuild.test.test_util)

 	TestStrictOrderingOnAppendListWithFlagsFactory (class in mozbuild.test.test_util)

 	TestStructuredHumanFormatter (class in mach.test.test_logger)

 	TestSymbols (class in mozbuild.test.frontend.test_context)

 	TestTestMetadata (class in mozbuild.test.test_testing)

 	TestTestResolver (class in mozbuild.test.test_testing)

 	TestTypedList (class in mozbuild.test.test_util)

 	TestTypedNamedTuple (class in mozbuild.test.test_util)

 	TestTypedRecord (class in mozbuild.test.frontend.test_context)

 	TestUnified (class in mozpack.test.test_unify)

 	TestUnifiedBuildFinder (class in mozpack.test.test_unify)

 	TestUnifiedFinder (class in mozpack.test.test_unify)

 	testUnix() (mozbuild.test.test_line_endings.TestLineEndings method)

 	TestUnpack (class in mozpack.test.test_packager_unpack)

 	TestVisualStudioBackend (class in mozbuild.test.backend.test_visualstudio)

 	TestWarningsDatabase (class in mozbuild.test.compilation.test_warnings)

 	TestWarningsParsing (class in mozbuild.test.compilation.test_warnings)

 	TestWebIDLFile (class in mozbuild.frontend.data)

 	testWindows() (mozbuild.test.test_line_endings.TestLineEndings method)

 	TestWithTmpDir (class in mozpack.test.test_files)

 	TestWriteMozinfo (class in mozbuild.test.test_mozinfo)

 	TestXPTFile (class in mozpack.test.test_files)

 	THROW (mozbuild.configure.util.ConfigureOutputHandler attribute)

 	throw_deep() (in module mach.test.providers.throw2)

 	throw_real() (in module mach.test.providers.throw2)

 	tiered_resource_usage() (mozbuild.controller.building.TierStatus method)

 	TierStatus (class in mozbuild.controller.building)

 	tmppath() (mozpack.test.test_files.TestWithTmpDir method)

 	to_config() (mach.config.BooleanType static method)

 	

 	(mach.config.ConfigType static method)

 	to_dict() (mozbuild.frontend.data.TreeMetadata method)

 	topobjdir (mozbuild.backend.recursivemake.RecursiveMakeBackend.Substitution attribute)

 	

 	(mozbuild.base.MozbuildObject attribute)

 	(mozbuild.frontend.data.ContextDerived attribute)

 	topsrcdir (mozbuild.backend.recursivemake.RecursiveMakeBackend.Substitution attribute)

 	

 	(mozbuild.frontend.data.ContextDerived attribute)

 	traverse() (mozbuild.backend.recursivemake.RecursiveMakeTraversal method)

 	TreeherderFormatter (class in mozlint.formatters.treeherder)

 	TreeMetadata (class in mozbuild.frontend.data)

 	TreeMetadataEmitter (class in mozbuild.frontend.emitter)

 	type (mozpack.chrome.manifest.Manifest attribute)

 	

 	(mozpack.chrome.manifest.ManifestBinaryComponent attribute)

 	(mozpack.chrome.manifest.ManifestCategory attribute)

 	(mozpack.chrome.manifest.ManifestComponent attribute)

 	(mozpack.chrome.manifest.ManifestContent attribute)

 	(mozpack.chrome.manifest.ManifestContract attribute)

 	(mozpack.chrome.manifest.ManifestEntry attribute)

 	(mozpack.chrome.manifest.ManifestInterfaces attribute)

 	(mozpack.chrome.manifest.ManifestLocale attribute)

 	(mozpack.chrome.manifest.ManifestMultiContent attribute)

 	(mozpack.chrome.manifest.ManifestOverlay attribute)

 	(mozpack.chrome.manifest.ManifestOverload attribute)

 	(mozpack.chrome.manifest.ManifestOverride attribute)

 	(mozpack.chrome.manifest.ManifestResource attribute)

 	(mozpack.chrome.manifest.ManifestSkin attribute)

 	(mozpack.chrome.manifest.ManifestStyle attribute)

 	type_counts() (mozbuild.compilation.warnings.WarningsDatabase method)

 	TYPE_MAPPING (mozpack.mozjar.JarStruct attribute)

 	TypedList (in module mozbuild.util)

 	TypedListMixin (class in mozbuild.util)

 	TypedListWithAction() (in module mozbuild.frontend.context)

 	TypedNamedTuple() (in module mozbuild.util)

 	TypedTestStrictOrderingOnAppendList (class in mozbuild.test.test_util)

U

 	

 	uncompressed_data (mozpack.mozjar.JarFileReader attribute)

 	uncompressed_size (mozpack.mozjar.Deflater attribute)

 	undefined_default (class in mozbuild.util)

 	unified_source_mapping (mozbuild.frontend.data.UnifiedSources attribute)

 	UnifiedBuildFinder (class in mozpack.unify)

 	UnifiedExecutableFile (class in mozpack.unify)

 	UnifiedFinder (class in mozpack.unify)

 	UnifiedSources (class in mozbuild.frontend.data)

 	unify_file() (mozpack.unify.UnifiedBuildFinder method)

 	

 	(mozpack.unify.UnifiedFinder method)

 	UnknownCommandError

 	unpack() (in module mozpack.packager.unpack)

 	UNPACK_ADDON_RE (mozpack.packager.SimplePackager attribute)

 	

 	unpack_to_registry() (in module mozpack.packager.unpack)

 	UnpackFinder (class in mozpack.packager.unpack)

 	UnreadableInstallManifest

 	UnrecognizedArgumentError

 	UnsortedError

 	up_to_date() (mozbuild.virtualenv.VirtualenvManager method)

 	update() (mozbuild.dotproperties.DotProperties method)

 	

 	(mozbuild.frontend.context.Context method)

 	(mozbuild.frontend.data.BaseDefines method)

 	(mozbuild.util.ReadOnlyDict method)

 	updated_files_count (mozpack.copier.FileCopyResult attribute)

 	updateManifest() (mozbuild.jar.JarMaker method)

 	url (mozbuild.html_build_viewer.BuildViewerServer attribute)

 	USAGE (mach.main.Mach attribute)

 	usage() (mozbuild.configure.help.HelpFormatter method)

V

 	

 	validate() (mach.config.BooleanType static method)

 	

 	(mach.config.ConfigType static method)

 	(mach.config.IntegerType static method)

 	(mach.config.PathType static method)

 	(mach.config.PositiveIntegerType static method)

 	(mach.config.StringType static method)

 	variable_reference() (in module mozbuild.sphinx)

 	VariablePassthru (class in mozbuild.frontend.data)

 	VARIABLES (mozbuild.frontend.context.Files attribute)

 	variables (mozbuild.frontend.data.VariablePassthru attribute)

 	variant (mozbuild.frontend.data.SharedLibrary attribute)

 	VCFiles (class in mozlint.cli)

 	vcs (mozlint.cli.VCFiles attribute)

 	verify_python_version() (in module mozbuild.virtualenv)

 	verifyDirectory() (in module mozbuild.action.xpccheck)

 	verifyIniFile() (in module mozbuild.action.xpccheck)

 	

 	Version (class in mozbuild.configure.util)

 	VERSION (mozwebidlcodegen.WebIDLCodegenManagerState attribute)

 	VersionFlag (class in mozpack.chrome.flags)

 	virtualenv_manager (mozbuild.base.MozbuildObject attribute)

 	virtualenv_script_path (mozbuild.virtualenv.VirtualenvManager attribute)

 	VirtualenvManager (class in mozbuild.virtualenv)

 	visit_Name() (mozbuild.frontend.reader.TemplateFunction.RewriteName method)

 	visit_Str() (mozbuild.frontend.reader.TemplateFunction.RewriteName method)

 	visual_studio_product_to_platform_toolset_version() (in module mozbuild.backend.visualstudio)

 	visual_studio_product_to_solution_version() (in module mozbuild.backend.visualstudio)

 	VisualStudioBackend (class in mozbuild.backend.visualstudio)

W

 	

 	WAITING (mozbuild.configure.util.ConfigureOutputHandler attribute)

 	walk() (mozbuild.util.HierarchicalStringList method)

 	WARN (mozpack.errors.ErrorCollector attribute)

 	warn() (mozpack.errors.ErrorCollector method)

 	warning (mozbuild.controller.building.BuildOutputResult attribute)

 	warnings (mozbuild.compilation.warnings.WarningsDatabase attribute)

 	warnings_for_file() (mozbuild.compilation.warnings.WarningsDatabase method)

 	WarningsCollector (class in mozbuild.compilation.warnings)

 	WarningsDatabase (class in mozbuild.compilation.warnings)

 	WebIDLCodegenManager (class in mozwebidlcodegen)

 	WebIDLCodegenManagerState (class in mozwebidlcodegen)

 	

 	WebIDLCollection (class in mozbuild.backend.common)

 	WebIDLFile (class in mozbuild.frontend.data)

 	WptManifestList (in module mozbuild.frontend.context)

 	wrap() (mozpack.test.test_mozjar.TestDeflater method)

 	

 	(mozpack.test.test_mozjar.TestDeflaterMemoryView method)

 	wrapped (mozbuild.frontend.data.ContextWrapped attribute)

 	write() (mach.config.ConfigSettings method)

 	

 	(mozbuild.backend.recursivemake.BackendMakeFile method)

 	(mozbuild.configure.util.LineIO method)

 	(mozbuild.preprocessor.Preprocessor method)

 	(mozbuild.util.FileAvoidWrite method)

 	(mozpack.files.Dest method)

 	(mozpack.manifests.InstallManifest method)

 	(mozpack.mozjar.Deflater method)

 	(mozpack.packager.PreprocessorOutputWrapper method)

 	(mozpack.test.test_files.DestNoWrite method)

 	(mozpack.test.test_files.MockDest method)

 	write_dep_makefile() (in module mozbuild.makeutil)

 	write_exe_info() (mozbuild.virtualenv.VirtualenvManager method)

 	write_mozinfo() (in module mozbuild.mozinfo)

 	write_once() (mozbuild.backend.recursivemake.BackendMakeFile method)

 	write_vs_project() (mozbuild.backend.visualstudio.VisualStudioBackend static method)

X

 	

 	XPIDLFile (class in mozbuild.frontend.data)

 	XPIDLManager (class in mozbuild.backend.common)

 	

 	xpiname (mozbuild.frontend.data.InstallationTarget attribute)

 	XPTFile (class in mozpack.files)

 Copyright .
 Created using Sphinx 1.3.5.

 _static/comment-close.png

_static/comment-bright.png

_images/graphviz-c584833a21578f69eb79071b8807246952a801ba.png

_images/subsession_triggers.png
midnight

env change

shutdown
or crash

tools/lint/eslint/eslint-plugin-mozilla/eslint-plugin-mozilla/import-globals.html

 Navigation

 		
 index

 		
 modules |

 		Mozilla Source Tree Docs 50.0a1 documentation »

import-globals

Rule Details

Parses a file for globals defined in various unique Mozilla ways.

When a “import-globals-from <path>” comment is found in a file, then all globals
from the file at <path> will be imported in the current scope. This will also
operate recursively.

This is useful for scripts that are loaded as <script> tag in a window and rely
on each other’s globals.

If <path> is a relative path, then it must be relative to the file being
checked by the rule.

 © Copyright .
 Created using Sphinx 1.3.5.

tools/lint/eslint/eslint-plugin-mozilla/eslint-plugin-mozilla/no-single-arg-cu-import.html

 Navigation

 		
 index

 		
 modules |

 		Mozilla Source Tree Docs 50.0a1 documentation »

no-single-arg-cu-import

Rule Details

Rejects calls to “Cu.import” that do not supply a second argument (meaning they
add the exported properties into global scope).

 © Copyright .
 Created using Sphinx 1.3.5.

tools/lint/eslint/eslint-plugin-mozilla/eslint-plugin-mozilla/import-browserjs-globals.html

 Navigation

 		
 index

 		
 modules |

 		Mozilla Source Tree Docs 50.0a1 documentation »

import-browserjs-globals

Rule Details

When included files from the main browser UI scripts will be loaded and any
declared globals will be defined for the current file. This is mostly useful for
browser-chrome mochitests that call browser functions.

 © Copyright .
 Created using Sphinx 1.3.5.

_static/up-pressed.png

_static/plus.png

_static/file.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/down.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Mozilla Source Tree Docs 50.0a1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.3.5.

_staging/toolkit/components/telemetry/telemetry/concepts/subsession_triggers.png
midnight

env change

shutdown
or crash

_static/minus.png

_static/comment.png

python/setup.html

 Navigation

 		
 index

 		
 modules |

 		Mozilla Source Tree Docs 50.0a1 documentation »

setup module

 © Copyright .
 Created using Sphinx 1.3.5.

