

Welcome to gff3-py’s documentation!

Contents:

	gff3-py
	Features

	Quick Start

	Installation

	Usage

	Contributing
	Types of Contributions

	Credits
	Development Lead

	Contributors

	History

	1.0.0 (2018-12-01)

	0.3.0 (2015-03-10)

	0.2.0 (2015-01-28)

	0.1.0 (2014-12-11)

Indices and tables

	Index

	Module Index

	Search Page

gff3-py

[image: _images/gff3.png]
 [http://badge.fury.io/py/gff3][image: _images/gff3-py.png]
 [https://travis-ci.org/hotdogee/gff3-py][image: _images/badge.png]
 [https://pypi.python.org/pypi/gff3]Manipulate genomic features and validate the syntax and reference sequence of your GFF3 [http://www.sequenceontology.org/gff3.shtml] files.

	Free software: BSD license

	Documentation: https://gff3-py.readthedocs.org.

Features

	Simple data structures: Parses a GFF3 [http://www.sequenceontology.org/gff3.shtml] file into a structure composed of simple python dict [https://docs.python.org/2/tutorial/datastructures.html#dictionaries] and list [https://docs.python.org/2/tutorial/datastructures.html#more-on-lists].

	Validation: Validates the GFF3 [http://www.sequenceontology.org/gff3.shtml] syntax on parse, and saves the error messages in the parsed structure.

	Best effort parsing: Despite any detected errors, continue to parse the whole file and make as much sense to it as possible.

	Uses the python logging [https://docs.python.org/2/library/logging.html] library to log error messages with support for custom loggers.

	Parses embeded or external FASTA [http://en.wikipedia.org/wiki/FASTA_format] sequences to check bounds and number of N s.

	Check and correct the phase for CDS features.

	Tree traversal methods ancestors and descendants returns a simple list in Breadth-first search order.

	Transfer children and parents using the adopt and adopted methods.

	Test for overlapping features using the overlap method.

	Remove a feature and its associated features using the remove method.

	Write the modified structure to a GFF3 file using the write mthod.

Quick Start

An example that just parses a GFF3 file named annotations.gff and validates it
using an external FASTA file named annotations.fa looks like:

validate.py
============
from gff3 import Gff3

initialize a Gff3 object
gff = Gff3()
parse GFF3 file and do syntax checking, this populates gff.lines and gff.features
if an embedded ##FASTA directive is found, parse the sequences into gff.fasta_embedded
gff.parse('annotations.gff')
parse the external FASTA file into gff.fasta_external
gff.parse_fasta_external('annotations.fa')
Check seqid, bounds and the number of Ns in each feature using one or more reference sources
gff.check_reference(allowed_num_of_n=0, feature_types=['CDS'])
Checks whether child features are within the coordinate boundaries of parent features
gff.check_parent_boundary()
Calculates the correct phase and checks if it matches the given phase for CDS features
gff.check_phase()

A more feature complete GFF3 validator with a command line interface which also generates validation
report in MarkDown is available under examples/gff_valid.py

The following example demonstrates how to filter, tranverse, and modify the parsed gff3 lines list.

	Change features with type exon to pseudogenic_exon and type transcript to pseudogenic_transcript if the feature has an ancestor of type pseudogene

	If a pseudogene feature overlaps with a gene feature, move all of the children from the pseudogene feature to the gene feature, and remove the pseudogene feature.

fix_pseudogene.py
=================
from gff3 import Gff3
gff = Gff3('annotations.gff')
type_map = {'exon': 'pseudogenic_exon', 'transcript': 'pseudogenic_transcript'}
pseudogenes = [line for line in gff.lines if line['line_type'] == 'feature' and line['type'] == 'pseudogene']
for pseudogene in pseudogenes:
 # convert types
 for line in gff.descendants(pseudogene):
 if line['type'] in type_map:
 line['type'] = type_map[line['type']]
 # find overlapping gene
 overlapping_genes = [line for line in gff.lines if line['line_type'] == 'feature' and line['type'] == 'gene' and gff.overlap(line, pseudogene)]
 if overlapping_genes:
 # move pseudogene children to overlapping gene
 gff.adopt(pseudogene, overlapping_genes[0])
 # remove pseudogene
 gff.remove(pseudogene)
gff.write('annotations_fixed.gff')

Installation

At the command line:

$ easy_install gff3

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv gff3
$ pip install gff3

Usage

To use gff3-py in a project:

from gff3 import Gff3

	
class gff3.Gff3(gff_file=None, fasta_external=None, logger=<logging.Logger object>)

	
	
add_line_error(line_data, error_info, log_level=40)

	Helper function to record and log an error message

	Parameters

	
	line_data – dict

	error_info – dict

	logger –

	log_level – int

	Returns

	

	
adopt(old_parent, new_parent)

	Transfer children from old_parent to new_parent

	Parameters

	
	old_parent – feature_id(str) or line_index(int) or line_data(dict) or feature

	new_parent – feature_id(str) or line_index(int) or line_data(dict)

	Returns

	List of children transferred

	
adopted(old_child, new_child)

	Transfer parents from old_child to new_child

	Parameters

	
	old_child – line_data(dict) with line_data[‘line_index’] or line_index(int)

	new_child – line_data(dict) with line_data[‘line_index’] or line_index(int)

	Returns

	List of parents transferred

	
ancestors(line_data)

	BFS graph algorithm

	Parameters

	line_data – line_data(dict) with line_data[‘line_index’] or line_index(int)

	Returns

	list of line_data(dict)

	
check_parent_boundary()

	checks whether child features are within the coordinate boundaries of parent features

	Returns

	

	
check_phase()

	
	get a list of CDS with the same parent

	sort according to strand

	calculate and validate phase

	
check_reference(sequence_region=False, fasta_embedded=False, fasta_external=False, check_bounds=True, check_n=True, allowed_num_of_n=0, feature_types=('CDS',))

	Check seqid, bounds and the number of Ns in each feature using one or more reference sources.

Seqid check: check if the seqid can be found in the reference sources.

Bounds check: check the start and end fields of each features and log error if the values aren’t within the seqid sequence length, requires at least one of these sources: ##sequence-region, embedded #FASTA, or external FASTA file.

Ns check: count the number of Ns in each feature with the type specified in *line_types (default: ‘CDS’) and log an error if the number is greater than allowed_num_of_n (default: 0), requires at least one of these sources: embedded #FASTA, or external FASTA file.

When called with all source parameters set as False (default), check all available sources, and log debug message if unable to perform a check due to none of the reference sources being available.

If any source parameter is set to True, check only those sources marked as True, log error if those sources don’t exist.

	Parameters

	
	sequence_region – check bounds using the ##sequence-region directive (default: False)

	fasta_embedded – check bounds using the embedded fasta specified by the ##FASTA directive (default: False)

	fasta_external – check bounds using the external fasta given by the self.parse_fasta_external (default: False)

	check_bounds – If False, don’t run the bounds check (default: True)

	check_n – If False, don’t run the Ns check (default: True)

	allowed_num_of_n – only report features with a number of Ns greater than the specified value (default: 0)

	feature_types – only check features of these feature_types, multiple types may be specified, if none are specified, check only ‘CDS’

	Returns

	error_lines: a set of line_index(int) with errors detected by check_reference

	
descendants(line_data)

	BFS graph algorithm
:param line_data: line_data(dict) with line_data[‘line_index’] or line_index(int)
:return: list of line_data(dict)

	
parse(gff_file, strict=False)

	Parse the gff file into the following data structures:

	
	lines(list of line_data(dict))

	
	line_index(int): the index in lines

	line_raw(str)

	line_type(str in [‘feature’, ‘directive’, ‘comment’, ‘blank’, ‘unknown’])

	line_errors(list of str): a list of error messages

	line_status(str in [‘normal’, ‘modified’, ‘removed’])

	parents(list of feature(list of line_data(dict))): may have multiple parents

	children(list of line_data(dict))

	extra fields depending on line_type

	
	directive

	
	directive(str in [‘##gff-version’, ‘##sequence-region’, ‘##feature-ontology’, ‘##attribute-ontology’, ‘##source-ontology’, ‘##species’, ‘##genome-build’, ‘###’, ‘##FASTA’])

	extra fields depending on directive

	
	feature

	
	seqid(str): must escape any characters not in the set [a-zA-Z0-9.:^*$@!+_?-|] using RFC 3986 Percent-Encoding

	source(str)

	type(str in so_types)

	start(int)

	end(int)

	score(float)

	strand(str in [‘+’, ‘-‘, ‘.’, ‘?’])

	phase(int in [0, 1, 2])

	
	attributes(dict of tag(str) to value)

	
	ID(str)

	Name(str)

	Alias(list of str): multi value

	Parent(list of str): multi value

	
	Target(dict)

	
	target_id(str)

	start(int)

	end(int)

	strand(str in [‘+’, ‘-‘, ‘’])

	Gap(str): CIGAR format

	Derives_from(str)

	Note(list of str): multi value

	Dbxref(list of str): multi value

	Ontology_term(list of str): multi value

	Is_circular(str in [‘true’])

	
	fasta_dict(dict of id(str) to sequence_item(dict))

	
	id(str)

	header(str)

	seq(str)

	line_length(int)

	features(dict of feature_id(str in line_data[‘attributes’][‘ID’]) to feature(list of line_data(dict)))

A feature is a list of line_data(dict), since all lines that share an ID collectively represent a single feature.

During serialization, line_data(dict) references should be converted into line_index(int)

	Parameters

	
	gff_file – a string path or file object

	strict – when true, throw exception on syntax and format errors. when false, use best effort to finish parsing while logging errors

	
remove(line_data, root_type=None)

	Marks line_data and all of its associated feature’s ‘line_status’ as ‘removed’, does not actually remove the line_data from the data structure.
The write function checks the ‘line_status’ when writing the gff file.
Find the root parent of line_data of type root_type, remove all of its descendants.
If the root parent has a parent with no children after the remove, remove the root parent’s parent recursively.

	Parameters

	
	line_data –

	root_type –

	Returns

	

	
sequence(line_data, child_type=None, reference=None)

	Get the sequence of line_data, according to the columns ‘seqid’, ‘start’, ‘end’, ‘strand’.
Requires fasta reference.
When used on ‘mRNA’ type line_data, child_type can be used to specify which kind of sequence to return:
* child_type=None: pre-mRNA, returns the sequence of line_data from start to end, reverse complement according to strand. (default)
* child_type=’exon’: mature mRNA, concatenates the sequences of children type ‘exon’.
* child_type=’CDS’: coding sequence, concatenates the sequences of children type ‘CDS’. Use the helper

function translate(seq) on the returned value to obtain the protein sequence.

	Parameters

	
	line_data – line_data(dict) with line_data[‘line_index’] or line_index(int)

	child_type – None or feature type(string)

	reference – If None, will use self.fasta_external or self.fasta_embedded(dict)

	Returns

	sequence(string)

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/hotdogee/gff3-py/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

gff3 could always use more documentation, whether as part of the
official gff3 docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/hotdogee/gff3-py/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Credits

Development Lead

	Han Lin <hotdogee@gmail.com>

Contributors

None yet. Why not be the first?

History

1.0.0 (2018-12-01)

	Fix Python3 issues

	Added sequence functions: complement(seq) and translate(seq)

	Added fasta write function: fasta_dict_to_file(fasta_dict, fasta_file, line_char_limit=None)

	Added Gff method to return the sequence of line_data: sequence(self, line_data, child_type=None, reference=None)

	Gff.write no longer prints redundent ‘###’ when the whole gene is marked as removed

0.3.0 (2015-03-10)

	Fixed phase checking.

0.2.0 (2015-01-28)

	Supports python 2.6, 2.7, 3.3, 3.4, pypy.

	Don’t report empty attributes as errors.

	Improved documentation.

0.1.0 (2014-12-11)

	First release on PyPI.

Index

 A
 | C
 | D
 | G
 | P
 | R
 | S

A

 	
 	add_line_error() (gff3.Gff3 method)

 	adopt() (gff3.Gff3 method)

 	
 	adopted() (gff3.Gff3 method)

 	ancestors() (gff3.Gff3 method)

C

 	
 	check_parent_boundary() (gff3.Gff3 method)

 	
 	check_phase() (gff3.Gff3 method)

 	check_reference() (gff3.Gff3 method)

D

 	
 	descendants() (gff3.Gff3 method)

G

 	
 	Gff3 (class in gff3)

P

 	
 	parse() (gff3.Gff3 method)

R

 	
 	remove() (gff3.Gff3 method)

S

 	
 	sequence() (gff3.Gff3 method)

 _static/comment-bright.png

_images/gff3.png
pypi package 1.0.0

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/badge.png
 downloads downloads 133/month 133/month

_images/gff3-py.png
“build passing

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to gff3-py’s documentation!

 		
 gff3-py

 		
 Features

 		
 Quick Start

 		
 Installation

 		
 Usage

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 1.0.0 (2018-12-01)

 		
 0.3.0 (2015-03-10)

 		
 0.2.0 (2015-01-28)

 		
 0.1.0 (2014-12-11)

_static/up-pressed.png

_static/up.png

_static/plus.png

